Search Results

Search found 8215 results on 329 pages for 'high ball'.

Page 59/329 | < Previous Page | 55 56 57 58 59 60 61 62 63 64 65 66  | Next Page >

  • Software Architecture: Quality Attributes

    Quality is what all software engineers should strive for when building a new system or adding new functionality. Dictonary.com ambiguously defines quality as a grade of excellence. Unfortunately, quality must be defined within the context of a situation in that each engineer must extract quality attributes from a project’s requirements. Because quality is defined by project requirements the meaning of quality is constantly changing base on the project. Software architecture factors that indicate the relevance and effectiveness The relevance and effectiveness of architecture can vary based on the context in which it was conceived and the quality attributes that are required to meet. Typically when evaluating architecture for a specific system regarding relevance and effectiveness the following questions should be asked.   Architectural relevance and effectiveness questions: Does the architectural concept meet the needs of the system for which it was designed? Out of the competing architectures for a system, which one is the most suitable? If we look at the first question regarding meeting the needs of a system for which it was designed. A system that answers yes to this question must meet all of its quality goals. This means that it consistently meets or exceeds performance goals for the system. In addition, the system meets all the other required system attributers based on the systems requirements. The suitability of a system is based on several factors. In order for a project to be suitable the necessary resources must be available to complete the task. Standard Project Resources: Money Trained Staff Time Life cycle factors that affect the system and design The development life cycle used on a project can drastically affect how a system’s architecture is created as well as influence its design. In the case of using the software development life cycle (SDLC) each phase must be completed before the next can begin.  This waterfall approach does not allow for changes in a system’s architecture after that phase is completed. This can lead to major system issues when the architecture for the system is not as optimal because of missed quality attributes. This can occur when a project has poor requirements and makes misguided architectural decisions to name a few examples. Once the architectural phase is complete the concepts established in this phase must move on to the design phase that is bound to use the concepts and guidelines defined in the previous phase regardless of any missing quality attributes needed for the project. If any issues arise during this phase regarding the selected architectural concepts they cannot be corrected during the current project. This directly has an effect on the design of a system because the proper qualities required for the project where not used when the architectural concepts were approved. When this is identified nothing can be done to fix the architectural issues and system design must use the existing architectural concepts regardless of its missing quality properties because the architectural concepts for the project cannot be altered. The decisions made in the design phase then preceded to fall down to the implementation phase where the actual system is coded based on the approved architectural concepts established in the architecture phase regardless of its architectural quality. Conversely projects using more of an iterative or agile methodology to implement a system has more flexibility to correct architectural decisions based on missing quality attributes. This is due to each phase of the SDLC is executed more than once so any issues identified in architecture of a system can be corrected in the next architectural phase. Subsequently the corresponding changes will then be adjusted in the following design phase so that when the project is completed the optimal architectural and design decision are applied to the solution. Architecture factors that indicate functional suitability Systems that have function shortcomings do not have the proper functionality based on the project’s driving quality attributes. What this means in English is that the system does not live up to what is required of it by the stakeholders as identified by the missing quality attributes and requirements. One way to prevent functional shortcomings is to test the project’s architecture, design, and implementation against the project’s driving quality attributes to ensure that none of the attributes were missed in any of the phases. Another way to ensure a system has functional suitability is to certify that all its requirements are fully articulated so that there is no chance for misconceptions or misinterpretations by all stakeholders. This will help prevent any issues regarding interpreting the system requirements during the initial architectural concept phase, design phase and implementation phase. Consider the applicability of other architectural models When considering an architectural model for a project is also important to consider other alternative architectural models to ensure that the model that is selected will meet the systems required functionality and high quality attributes. Recently I can remember talking about a project that I was working on and a coworker suggested a different architectural approach that I had never considered. This new model will allow for the same functionally that is offered by the existing model but will allow for a higher quality project because it fulfills more quality attributes. It is always important to seek alternatives prior to committing to an architectural model. Factors used to identify high-risk components A high risk component can be defined as a component that fulfills 2 or more quality attributes for a system. An example of this can be seen in a web application that utilizes a remote database. One high-risk component in this system is the TCIP component because it allows for HTTP connections to handle by a web server and as well as allows for the server to also connect to a remote database server so that it can import data into the system. This component allows for the assurance of data quality attribute and the accessibility quality attribute because the system is available on the network. If for some reason the TCIP component was to fail the web application would fail on two quality attributes accessibility and data assurance in that the web site is not accessible and data cannot be update as needed. Summary As stated previously, quality is what all software engineers should strive for when building a new system or adding new functionality. The quality of a system can be directly determined by how closely it is implemented when compared to its desired quality attributes. One way to insure a higher quality system is to enforce that all project requirements are fully articulated so that no assumptions or misunderstandings can be made by any of the stakeholders. By doing this a system has a better chance of becoming a high quality system based on its quality attributes

    Read the article

  • How can I respond to mouse events in AS3?

    - by Gabriel Meono
    Background: Trying to make a simple "drop the ball" game. The code is located inside the first frame of the timeline. Nothing more is on the stage. Issue: Using QuickBox2D I made a simple If statement that drops and object acording the Mouse-x position: if (MouseEvent.CLICK) { sim.addCircle({x:mouseX, y:1, radius:0.25, density:5}); I imported the MouseEvent library: import flash.events.MouseEvent; Nothing happens if I click, no output errors either. See it in action: http://gabrielmeono.com/download/Lucky_Hit_Alpha.swf http://gabrielmeono.com/download/Lucky_Hit_Alpha.fla Full Code: [SWF(width = 350, height = 600, frameRate = 60)] import com.actionsnippet.qbox.*; import flash.events.MouseEvent; var sim:QuickBox2D = new QuickBox2D(this); sim.createStageWalls(); //var ball:sim.addCircle({x:mouseX, y:1, radius:0.25, density:5}); // // make a heavy circle sim.addCircle({x:3, y:1, radius:0.25, density:5}); sim.addCircle({x:2, y:1, radius:0.25, density:5}); sim.addCircle({x:4, y:1, radius:0.25, density:5}); sim.addCircle({x:5, y:1, radius:0.25, density:5}); sim.addCircle({x:6, y:1, radius:0.25, density:5}); // create a few platforms sim.addBox({x:3, y:2, width:4, height:0.2, density:0, angle:0.1}); // make 26 dominoes for (var i:int = 0; i<7; i++){ //End sim.addCircle({x:1 + i * 1.5, y:16, radius:0.1, density:0}); sim.addCircle({x:2 + i * 1.5, y:15, radius:0.1, density:0}); //Mid end sim.addCircle({x:0 + i * 2, y:14, radius:0.1, density:0}); sim.addCircle({x:0 + i * 2, y:13, radius:0.1, density:0}); sim.addCircle({x:0 + i * 2, y:12, radius:0.1, density:0}); sim.addCircle({x:0 + i * 2, y:11, radius:0.1, density:0}); sim.addCircle({x:0 + i * 2, y:10, radius:0.1, density:0}); //Middle Start sim.addCircle({x:0 + i * 1.5, y:09, radius:0.1, density:0}); sim.addCircle({x:1 + i * 1.5, y:08, radius:0.1, density:0}); sim.addCircle({x:0 + i * 1.5, y:07, radius:0.1, density:0}); sim.addCircle({x:1 + i * 1.5, y:06, radius:0.1, density:0}); } if (MouseEvent.CLICK) { sim.addCircle({x:mouseX, y:1, radius:0.25, density:5}); sim.start(); /*sim.mouseDrag();*/ }

    Read the article

  • An XEvent a Day (9 of 31) – Targets Week – pair_matching

    - by Jonathan Kehayias
    Yesterday’s post, Targets Week – synchronous_event_counter , looked at the counter Target in Extended Events and how it could be used to determine the number of Events a Event Session will generate without actually incurring the cost to collect and store the Events.  Today’s post is coming late, I know, but sometimes that’s just how the ball rolls.  My original planned demo’s for today’s post turned out to only work based on a fluke, though they were very consistent at working as expected,...(read more)

    Read the article

  • BOX2D and AS3: Mouse Event not working

    - by Gabriel Meono
    Background: Trying to make a simple "drop the ball" game. The code is located inside the first frame of the timeline. Nothing more is on the stage. Issue: Using QuickBox2D I made a simple If statement that drops and object acording the Mouse-x position: if (MouseEvent.CLICK) { sim.addCircle({x:mouseX, y:1, radius:0.25, density:5}); I imported the MouseEvent library: import flash.events.MouseEvent; Nothing happens if I click, no output errors either. See it in action: http://gabrielmeono.com/download/Lucky_Hit_Alpha.swf http://gabrielmeono.com/download/Lucky_Hit_Alpha.fla Full Code: [SWF(width = 350, height = 600, frameRate = 60)] import com.actionsnippet.qbox.*; import flash.events.MouseEvent; var sim:QuickBox2D = new QuickBox2D(this); sim.createStageWalls(); //var ball:sim.addCircle({x:mouseX, y:1, radius:0.25, density:5}); // // make a heavy circle sim.addCircle({x:3, y:1, radius:0.25, density:5}); sim.addCircle({x:2, y:1, radius:0.25, density:5}); sim.addCircle({x:4, y:1, radius:0.25, density:5}); sim.addCircle({x:5, y:1, radius:0.25, density:5}); sim.addCircle({x:6, y:1, radius:0.25, density:5}); // create a few platforms sim.addBox({x:3, y:2, width:4, height:0.2, density:0, angle:0.1}); // make 26 dominoes for (var i:int = 0; i<7; i++){ //End sim.addCircle({x:1 + i * 1.5, y:16, radius:0.1, density:0}); sim.addCircle({x:2 + i * 1.5, y:15, radius:0.1, density:0}); //Mid end sim.addCircle({x:0 + i * 2, y:14, radius:0.1, density:0}); sim.addCircle({x:0 + i * 2, y:13, radius:0.1, density:0}); sim.addCircle({x:0 + i * 2, y:12, radius:0.1, density:0}); sim.addCircle({x:0 + i * 2, y:11, radius:0.1, density:0}); sim.addCircle({x:0 + i * 2, y:10, radius:0.1, density:0}); //Middle Start sim.addCircle({x:0 + i * 1.5, y:09, radius:0.1, density:0}); sim.addCircle({x:1 + i * 1.5, y:08, radius:0.1, density:0}); sim.addCircle({x:0 + i * 1.5, y:07, radius:0.1, density:0}); sim.addCircle({x:1 + i * 1.5, y:06, radius:0.1, density:0}); } if (MouseEvent.CLICK) { sim.addCircle({x:mouseX, y:1, radius:0.25, density:5}); sim.start(); /*sim.mouseDrag();*/ }

    Read the article

  • How do I build a 2D physics engine?

    - by Vish
    The most advanced games I've made are a 8-ball pool game made with the physics engine Box2dFlashAS3 and a platform game with levels. When I did platform games, I've always wished to know how to make an engine, so that I could re-use it. When I see games that have slopes, curved slopes, perfect gravity and real-life physics, I've always wished I knew how to code the engine. Please suggest techniques and articles for whatever relevant knowledge-base is necessary.

    Read the article

  • How to sync the actions in a mutiplayer game?

    - by Wheeler
    I connect the clients with UDP (its a peer to peer connection on a multicast network) and the clients are sending their positions in every frame (in WP7 it means the default 30 FPS) to each other. This game is kinda a pong game, and my problem is the next: whenever the opponent hits the ball the angle will not be the same on both mobiles. I think its because the latency (1 pixel difference can cause a different angle). So my question is: how can I sync the hitting event?

    Read the article

  • Silverlight Cream for June 15, 2010 - 2 -- #883

    - by Dave Campbell
    In this Issue: Vibor Cipan, Chris Klug, Pete Brown, Kirupa, and Xianzhong Zhu. Shoutouts (thought I gave up on them, didn't you?): Jesse Liberty has the companion video to his WP7 OData post up: New Video: Master/Detail in WinPhone 7 with oData Michael Scherotter who made the first Ball Watch SL1 app back in the day, has a Virtual Event: Creating an Entry for the BALL Watch Silverlight Contest... sounds like the thing to do if you want in on this :) Even if you don't speak Portuguese, you can check this out: MSN Brazil Uses Silverlight to Showcase the 2010 FIFA World Cup South Africa Erik Mork and crew have their latest up: This Week in Silverlight – Teched and Quizes Michael Klucher has a post up to give you some relief if you're having Trouble Installing the Windows Phone Developer Tools Portuguese above and now French... Jeremy Alles has a post up about [WP7] Windows Phone 7 challenge for french readers ! Just a note, not that it makes any difference, but Adam Kinney turned @SilverlightNews over to me today. I am the only one that has ever posted on it, but still having it all to myself feels special :) From SilverlightCream.com: Silverlight 4 tutorial: HOW TO use PathListBox and Sample Data Crank up that new version of Blend and follow along with Vibor Cipan's PathListBox tutorial ... oh, and sample data too. Cool INotifyPropertyChanged implementation Chris Klug shows off some INotifyPropertyChange goodness he is not implementing, and credits a blog by Manuel Felicio for some inspiration. Check out that post as well... I've tagged his blog... I needed *another* one :) Silverlight Tip: Using LINQ to Select the Largest Available Webcam Resolution With no Silverlight Tip of the Day today, Pete Brown stepped up with this tip for finding the largest available webcam resolution using LINQ ... and read the comment from Rene as well. Creating a Master-Detail UI in Blend Kirupa has a very nice Master/Detail UI post up with backrounder info and the code for the project. There's a running example in the post for you to get an idea what you're learning. Get started with Farseer Physics 2.1.3 in Silverlight 3 Xianzhong Zhu has a Silverlight 3 tutorial up for Farseer Physics 2.1.3 ... might track for Silverlight 4, but hey, WP7 is kinda/sort Silverlight 3, right? ... lots of code and external links. Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • Different Style Technique

    - by Muhammad Iqbal Dwi Cahyo
    I'm newbie here.. Please anyone knows, to create a character that his/her Style Tech is had a different kind of movement... I wanna make my character 2d his/her power technique like rasengan, I mean first the ball its just spining around and then going bigger and much more bigger so blow up if it touch his/her opponent? How the coding is, and what I've must do? Please your guide, thank's a lot... ^_^

    Read the article

  • how to implement motion blur effect?

    - by PlayerOne
    I wanted to know how one would implement this motion blur or fade effect behind the soccer ball . Here is what I was thinking . You have the balls current position and you also keep its previous position(couple of sec back). and you draw a "streak" sprite between the 2 points. I have seen this effect lots of time implemented for projects in various 2d games and wanted to know if there is a standard technique. http://i45.tinypic.com/2n24j7r.png

    Read the article

  • Smooth animation when using fixed time step

    - by sythical
    I'm trying to implement the game loop where the physics is independent from rendering but my animation isn't as smooth as I would like it to be and it seems to periodically jump. Here is my code: // alpha is used for interpolation double alpha = 0, counter_old_time = 0; double accumulator = 0, delta_time = 0, current_time = 0, previous_time = 0; unsigned frame_counter = 0, current_fps = 0; const unsigned physics_rate = 40, max_step_count = 5; const double step_duration = 1.0 / 40.0, accumulator_max = step_duration * 5; // information about the circ;e (position and velocity) int old_pos_x = 100, new_pos_x = 100, render_pos_x = 100, velocity_x = 60; previous_time = al_get_time(); while(true) { current_time = al_get_time(); delta_time = current_time - previous_time; previous_time = current_time; accumulator += delta_time; if(accumulator > accumulator_max) { accumulator = accumulator_max; } while(accumulator >= step_duration) { if(new_pos_x > 1330) velocity_x = -15; else if(new_pos_x < 70) velocity_x = 15; old_pos_x = new_pos_x; new_pos_x += velocity_x; accumulator -= step_duration; } alpha = accumulator / static_cast<double>(step_duration); render_pos_x = old_pos_x + (new_pos_x - old_pos_x) * alpha; al_clear_to_color(al_map_rgb(20, 20, 40)); // clears the screen al_draw_textf(font, al_map_rgb(255, 255, 255), 20, 20, 0, "current_fps: %i", current_fps); // print fps al_draw_filled_circle(render_pos_x, 400, 15, al_map_rgb(255, 255, 255)); // draw circle // I've added this to test how the program will behave when rendering takes // considerably longer than updating the game. al_rest(0.008); al_flip_display(); // swaps the buffers frame_counter++; if(al_get_time() - counter_old_time >= 1) { current_fps = frame_counter; frame_counter = 0; counter_old_time = al_get_time(); } } I have added a pause during the rendering part because I wanted to see how the code would behave when a lot of rendering is involved. Removing it makes the animation smooth but then I'll have to make sure that I don't let the frame rate drop too much and that doesn't seem like a good solution. I've been trying to fix this for a week and have had no luck so I'd be very grateful if someone can read through my code. Thank you! Edit: I added the following code to work out the actual velocity (pixels per second) of the ball each time the ball is rendered and surprisingly it's not constant so I'm guessing that's the issue. I'm not sure why it's not constant. alpha = accumulator / static_cast<double>(step_duration); render_pos_x = old_pos_x + (new_pos_x - old_pos_x) * alpha; cout << (render_pos_x - old_render_pos) / delta_time << endl; old_render_pos = render_pos_x;

    Read the article

  • Creating a frozen bubble clone

    - by Vaughan Hilts
    This photo illustrates the environment: http://i.imgur.com/V4wbp.png I'll shoot the cannon, it'll bounce off the wall and it's SUPPOSED to stick to the bubble. It does at pretty much every other angle. The problem is always reproduced here, when hit off the wall into those bubbles. It also exists in other cases, but I'm not sure what triggers it. What actually happens: The ball will sometimes set to the wrong cell, and my "dropping" code will detect it as a loner and drop it off the stage. *There are many implementations of "Frozen Bubble" on the web, but I can't for the life of me find a good explanation as to how the algorithm for the "Bubble Sticking" works. * I see this: http://www.wikiflashed.com/wiki/BubbleBobble https://frozenbubblexna.svn.codeplex.com/svn/FrozenBubble/ But I can't figure out the algorithims... could anyone explain possibly the general idea behind getting the balls to stick? Code in question: //Counstruct our bounding rectangle for use var nX = currentBall.x + ballvX * gameTime; var nY = currentBall.y - ballvY * gameTime; var movingRect = new BoundingRectangle(nX, nY, 32, 32); var able = false; //Iterate over the cells and draw our bubbles for (var x = 0; x < 8; x++) { for (var y = 0; y < 12; y++) { //Get the bubble at this layout var bubble = bubbleLayout[x][y]; var rowHeight = 27; //If this slot isn't empty, draw if (bubble != null) { var bx = 0, by = 0; if (y % 2 == 0) { bx = x * 32 + 270; by = y * 32 + 45; } else { bx = x * 32 + 270 + 16; by = y * 32 + 45; } //Check var targetBox = new BoundingRectangle(bx, by, 32, 32); if (targetBox.intersects(movingRect)) { able = true; } } } } cellY = Math.round((currentBall.y - 45) / 32); if (cellY % 2 == 0) cellX = Math.round((currentBall.x - 270) / 32); else cellX = Math.round((currentBall.x - 270 - 16) / 32); Any ideas are very much welcome. Things I've tried: Flooring and Ceiling values Changing the wall bounce to a lower value Slowing down the ball None of these seem to affect it. Is there something in my math I'm not getting?

    Read the article

  • 2D Animation Smoothness - Delta time vs. Kinematics

    - by viperld002
    I'm animating a sprite in 2D with key frames of rotation and xy-positions. I've recently had a discussion with someone saying that when the device (happens to be an iPad using cocos2D) hits a performance bump due to whatever else the user may be doing, lag will arise and that the best way to fight it is to not use actual positions, but velocities, accelerations and torques with kinematics. His message is to evaluate the positions and rotations from these speeds at the current point in time. I've never experienced a situation where I've heard of using kinematics to stem lag in 2D animations and am not sure of how effective it could be. Also, it seems to be overkill. The application is not networked so it's all running on a local device. The desired effect is that the animation always plays as closely as it can to the target frame rate. Wouldn't the technique suffer the same problems as just using the time since the last frame or a fixed time step since the kinematics would also require some time value to perform the calculation? What techniques could you suggest to best achieve the desired effect? EDIT 1 Thank you for your responses, they are very illuminating. I want to clarify my question before choosing an answer however, to make sure that this post really serves it's purpose. I have a sprite of a ball, and a text file with 3 arrays worth of information (rotation,translations x, translations y) with each unit of information existing as a key frame to be stepped through (0 to 49 and back to 0 to replay it again). I have this playing by interpolating from the current key frame to the next, every n-units of time. The animation is visibly correct when compared to a video I was given of it, and it is smooth because of the interpolations between the key frames. This is the existing state of the project. There are no physics simulated, only a static animation of a ball moving in a way an artist specifically designed. Should I, instead of rotation in degrees and translations by positions in space, derive velocities, accelerations and torques to express this static animation as a function of time? As in, position now = foo(time now), where foo uses kinematics.

    Read the article

  • Box2D relations

    - by Valentino Ru
    As far as I know, the unit in Box2D is meters. When I use Box2D in Processing with JBox2D, I set the "world size" as the window size specified in the setup(). Now I'm wondering if there is any function that scales down the world. For example, how can I simulate the throw of tennis ball within a room, without using a window of only 5 x 5 pixels? Additionally, is there any good documentation like the Java API?

    Read the article

  • Technologies stack to create soccer game vizualization on web page [on hold]

    - by Lambrusco
    I want to create soccer game vizualization. What technologies will be best to create such one for web page? On input I have two teams with players. I have theory about their movements, the movement of the ball on field and so on. I just want to vizualize their movements. What will be the best technology stack? I mean programming languages (C++, Ruby, Java, PHP) and vizualization ways (Flash, HTML5, JS)

    Read the article

  • Generating Backlinks Quickly

    Generating backlinks quickly is generally required when a site is fresh, new, and requiring indexing. Follow these simple, and generally quick steps to get the ball rolling. These backlinks will prove beneficial to your overall SEO efforts.

    Read the article

  • Generating Backlinks Quickly

    Generating backlinks quickly is generally required when a site is fresh, new, and requiring indexing. Follow these simple, and generally quick steps to get the ball rolling. These backlinks will prove beneficial to your overall SEO efforts.

    Read the article

  • The Benefits of Smart Grid Business Software

    - by Sylvie MacKenzie, PMP
    Smart Grid Background What Are Smart Grids?Smart Grids use computer hardware and software, sensors, controls, and telecommunications equipment and services to: Link customers to information that helps them manage consumption and use electricity wisely. Enable customers to respond to utility notices in ways that help minimize the duration of overloads, bottlenecks, and outages. Provide utilities with information that helps them improve performance and control costs. What Is Driving Smart Grid Development? Environmental ImpactSmart Grid development is picking up speed because of the widespread interest in reducing the negative impact that energy use has on the environment. Smart Grids use technology to drive efficiencies in transmission, distribution, and consumption. As a result, utilities can serve customers’ power needs with fewer generating plants, fewer transmission and distribution assets,and lower overall generation. With the possible exception of wind farm sprawl, landscape preservation is one obvious benefit. And because most generation today results in greenhouse gas emissions, Smart Grids reduce air pollution and the potential for global climate change.Smart Grids also more easily accommodate the technical difficulties of integrating intermittent renewable resources like wind and solar into the grid, providing further greenhouse gas reductions. CostsThe ability to defer the cost of plant and grid expansion is a major benefit to both utilities and customers. Utilities do not need to use as many internal resources for traditional infrastructure project planning and management. Large T&D infrastructure expansion costs are not passed on to customers.Smart Grids will not eliminate capital expansion, of course. Transmission corridors to connect renewable generation with customers will require major near-term expenditures. Additionally, in the future, electricity to satisfy the needs of population growth and additional applications will exceed the capacity reductions available through the Smart Grid. At that point, expansion will resume—but with greater overall T&D efficiency based on demand response, load control, and many other Smart Grid technologies and business processes. Energy efficiency is a second area of Smart Grid cost saving of particular relevance to customers. The timely and detailed information Smart Grids provide encourages customers to limit waste, adopt energy-efficient building codes and standards, and invest in energy efficient appliances. Efficiency may or may not lower customer bills because customer efficiency savings may be offset by higher costs in generation fuels or carbon taxes. It is clear, however, that bills will be lower with efficiency than without it. Utility Operations Smart Grids can serve as the central focus of utility initiatives to improve business processes. Many utilities have long “wish lists” of projects and applications they would like to fund in order to improve customer service or ease staff’s burden of repetitious work, but they have difficulty cost-justifying the changes, especially in the short term. Adding Smart Grid benefits to the cost/benefit analysis frequently tips the scales in favor of the change and can also significantly reduce payback periods.Mobile workforce applications and asset management applications work together to deploy assets and then to maintain, repair, and replace them. Many additional benefits result—for instance, increased productivity and fuel savings from better routing. Similarly, customer portals that provide customers with near-real-time information can also encourage online payments, thus lowering billing costs. Utilities can and should include these cost and service improvements in the list of Smart Grid benefits. What Is Smart Grid Business Software? Smart Grid business software gathers data from a Smart Grid and uses it improve a utility’s business processes. Smart Grid business software also helps utilities provide relevant information to customers who can then use it to reduce their own consumption and improve their environmental profiles. Smart Grid Business Software Minimizes the Impact of Peak Demand Utilities must size their assets to accommodate their highest peak demand. The higher the peak rises above base demand: The more assets a utility must build that are used only for brief periods—an inefficient use of capital. The higher the utility’s risk profile rises given the uncertainties surrounding the time needed for permitting, building, and recouping costs. The higher the costs for utilities to purchase supply, because generators can charge more for contracts and spot supply during high-demand periods. Smart Grids enable a variety of programs that reduce peak demand, including: Time-of-use pricing and critical peak pricing—programs that charge customers more when they consume electricity during peak periods. Pilot projects indicate that these programs are successful in flattening peaks, thus ensuring better use of existing T&D and generation assets. Direct load control, which lets utilities reduce or eliminate electricity flow to customer equipment (such as air conditioners). Contracts govern the terms and conditions of these turn-offs. Indirect load control, which signals customers to reduce the use of on-premises equipment for contractually agreed-on time periods. Smart Grid business software enables utilities to impose penalties on customers who do not comply with their contracts. Smart Grids also help utilities manage peaks with existing assets by enabling: Real-time asset monitoring and control. In this application, advanced sensors safely enable dynamic capacity load limits, ensuring that all grid assets can be used to their maximum capacity during peak demand periods. Real-time asset monitoring and control applications also detect the location of excessive losses and pinpoint need for mitigation and asset replacements. As a result, utilities reduce outage risk and guard against excess capacity or “over-build”. Better peak demand analysis. As a result: Distribution planners can better size equipment (e.g. transformers) to avoid over-building. Operations engineers can identify and resolve bottlenecks and other inefficiencies that may cause or exacerbate peaks. As above, the result is a reduction in the tendency to over-build. Supply managers can more closely match procurement with delivery. As a result, they can fine-tune supply portfolios, reducing the tendency to over-contract for peak supply and reducing the need to resort to spot market purchases during high peaks. Smart Grids can help lower the cost of remaining peaks by: Standardizing interconnections for new distributed resources (such as electricity storage devices). Placing the interconnections where needed to support anticipated grid congestion. Smart Grid Business Software Lowers the Cost of Field Services By processing Smart Grid data through their business software, utilities can reduce such field costs as: Vegetation management. Smart Grids can pinpoint momentary interruptions and tree-caused outages. Spatial mash-up tools leverage GIS models of tree growth for targeted vegetation management. This reduces the cost of unnecessary tree trimming. Service vehicle fuel. Many utility service calls are “false alarms.” Checking meter status before dispatching crews prevents many unnecessary “truck rolls.” Similarly, crews use far less fuel when Smart Grid sensors can pinpoint a problem and mobile workforce applications can then route them directly to it. Smart Grid Business Software Ensures Regulatory Compliance Smart Grids can ensure compliance with private contracts and with regional, national, or international requirements by: Monitoring fulfillment of contract terms. Utilities can use one-hour interval meters to ensure that interruptible (“non-core”) customers actually reduce or eliminate deliveries as required. They can use the information to levy fines against contract violators. Monitoring regulations imposed on customers, such as maximum use during specific time periods. Using accurate time-stamped event history derived from intelligent devices distributed throughout the smart grid to monitor and report reliability statistics and risk compliance. Automating business processes and activities that ensure compliance with security and reliability measures (e.g. NERC-CIP 2-9). Grid Business Software Strengthens Utilities’ Connection to Customers While Reducing Customer Service Costs During outages, Smart Grid business software can: Identify outages more quickly. Software uses sensors to pinpoint outages and nested outage locations. They also permit utilities to ensure outage resolution at every meter location. Size outages more accurately, permitting utilities to dispatch crews that have the skills needed, in appropriate numbers. Provide updates on outage location and expected duration. This information helps call centers inform customers about the timing of service restoration. Smart Grids also facilitates display of outage maps for customer and public-service use. Smart Grids can significantly reduce the cost to: Connect and disconnect customers. Meters capable of remote disconnect can virtually eliminate the costs of field crews and vehicles previously required to change service from the old to the new residents of a metered property or disconnect customers for nonpayment. Resolve reports of voltage fluctuation. Smart Grids gather and report voltage and power quality data from meters and grid sensors, enabling utilities to pinpoint reported problems or resolve them before customers complain. Detect and resolve non-technical losses (e.g. theft). Smart Grids can identify illegal attempts to reconnect meters or to use electricity in supposedly vacant premises. They can also detect theft by comparing flows through delivery assets with billed consumption. Smart Grids also facilitate outreach to customers. By monitoring and analyzing consumption over time, utilities can: Identify customers with unusually high usage and contact them before they receive a bill. They can also suggest conservation techniques that might help to limit consumption. This can head off “high bill” complaints to the contact center. Note that such “high usage” or “additional charges apply because you are out of range” notices—frequently via text messaging—are already common among mobile phone providers. Help customers identify appropriate bill payment alternatives (budget billing, prepayment, etc.). Help customers find and reduce causes of over-consumption. There’s no waiting for bills in the mail before they even understand there is a problem. Utilities benefit not just through improved customer relations but also through limiting the size of bills from customers who might struggle to pay them. Where permitted, Smart Grids can open the doors to such new utility service offerings as: Monitoring properties. Landlords reduce costs of vacant properties when utilities notify them of unexpected energy or water consumption. Utilities can perform similar services for owners of vacation properties or the adult children of aging parents. Monitoring equipment. Power-use patterns can reveal a need for equipment maintenance. Smart Grids permit utilities to alert owners or managers to a need for maintenance or replacement. Facilitating home and small-business networks. Smart Grids can provide a gateway to equipment networks that automate control or let owners access equipment remotely. They also facilitate net metering, offering some utilities a path toward involvement in small-scale solar or wind generation. Prepayment plans that do not need special meters. Smart Grid Business Software Helps Customers Control Energy Costs There is no end to the ways Smart Grids help both small and large customers control energy costs. For instance: Multi-premises customers appreciate having all meters read on the same day so that they can more easily compare consumption at various sites. Customers in competitive regions can match their consumption profile (detailed via Smart Grid data) with specific offerings from competitive suppliers. Customers seeing inexplicable consumption patterns and power quality problems may investigate further. The result can be discovery of electrical problems that can be resolved through rewiring or maintenance—before more serious fires or accidents happen. Smart Grid Business Software Facilitates Use of Renewables Generation from wind and solar resources is a popular alternative to fossil fuel generation, which emits greenhouse gases. Wind and solar generation may also increase energy security in regions that currently import fossil fuel for use in generation. Utilities face many technical issues as they attempt to integrate intermittent resource generation into traditional grids, which traditionally handle only fully dispatchable generation. Smart Grid business software helps solves many of these issues by: Detecting sudden drops in production from renewables-generated electricity (wind and solar) and automatically triggering electricity storage and smart appliance response to compensate as needed. Supporting industry-standard distributed generation interconnection processes to reduce interconnection costs and avoid adding renewable supplies to locations already subject to grid congestion. Facilitating modeling and monitoring of locally generated supply from renewables and thus helping to maximize their use. Increasing the efficiency of “net metering” (through which utilities can use electricity generated by customers) by: Providing data for analysis. Integrating the production and consumption aspects of customer accounts. During non-peak periods, such techniques enable utilities to increase the percent of renewable generation in their supply mix. During peak periods, Smart Grid business software controls circuit reconfiguration to maximize available capacity. Conclusion Utility missions are changing. Yesterday, they focused on delivery of reasonably priced energy and water. Tomorrow, their missions will expand to encompass sustainable use and environmental improvement.Smart Grids are key to helping utilities achieve this expanded mission. But they come at a relatively high price. Utilities will need to invest heavily in new hardware, software, business process development, and staff training. Customer investments in home area networks and smart appliances will be large. Learning to change the energy and water consumption habits of a lifetime could ultimately prove even more formidable tasks.Smart Grid business software can ease the cost and difficulties inherent in a needed transition to a more flexible, reliable, responsive electricity grid. Justifying its implementation, however, requires a full understanding of the benefits it brings—benefits that can ultimately help customers, utilities, communities, and the world address global issues like energy security and climate change while minimizing costs and maximizing customer convenience. This white paper is available for download here. For further information about Oracle's Primavera Solutions for Utilities, please read our Utilities e-book.

    Read the article

  • BIOS upgrade lowers CPU temperature

    - by N.N.
    Setup I've got a system with an Asus P8Z68-V PRO motherboard and an Intel Core i7-2600K CPU running at stock speed (no overlocking) which I cool with a Noctua NH-U12P. On the heatsink I've got the two included fans connected via the included Low-Noise Adapters (L.N.A.) 1100 RPM, 16.9 dB(A). In the BIOS settings I've set the CPU and chassis fan profile to silent. Issue Yesterday I upgraded from BIOS version 0501 to 0606. After the upgrade I checked the temperatures in the BIOS monitor and was surprised to see that the CPU temperature was slightly ~30°C. Before the upgrade the CPU temperature was ~50°C with the same BIOS settings (see the following heading for details on temperatures). How can this be? It seems a bit odd that a BIOS upgrade can lower the CPU temperature by 20°C and it also seems odd that the CPU temperature is lower than the chassis temperature. Temperatures When I've checked temperatures the room temperature has been ~23°C. I haven't changed the placement of the computer nor the hardware or cooling setup between BIOS versions. BIOS version 0501 BIOS monitor: CPU: ~50°C Chassis: ~33°C I haven't got any temperature measures from lm-sensors or the like for version 0501 because I only discovered the issue after upgrading to version 0606 and the BIOS updater utility won't let me downgrade to version 0501 (it says "outdated image" when I try to load version 0501). BIOS version 0606 BIOS monitor: CPU: ~30°C Chassis: ~33°C lm-sensors in Ubuntu 11.04 Desktop 64-bit (sudo sensors after an uptime of 4 h 52 min and a load average of 0.22, 0.18, 0.15): coretemp-isa-0000 Adapter: ISA adapter Core 0: +32.0°C (high = +80.0°C, crit = +98.0°C) coretemp-isa-0001 Adapter: ISA adapter Core 1: +35.0°C (high = +80.0°C, crit = +98.0°C) coretemp-isa-0002 Adapter: ISA adapter Core 2: +29.0°C (high = +80.0°C, crit = +98.0°C) coretemp-isa-0003 Adapter: ISA adapter Core 3: +36.0°C (high = +80.0°C, crit = +98.0°C) The BIOS monitor temperatures was checked directly after the lm-sensors temperatures was checked. BIOS version 0706, 0801, 1101 and 3203 I get the same kind of temperatures both in the BIOS monitor and with lm-sensors in BIOS version 0706, 0801, 1101 and 3203 as in 0606. Information from Asus The 0606 changelog mentions nothing explicitly about CPU temperature (but item 3., as indicated by sidran32, might affect temperatures): P8Z68-V PRO 0606 BIOS with IRST 10.6.0.1002 Enable the support of Intel Rapid Storage Technology version 10.6.0.1002 Release Improve DRAM compatibility Improve System stability Improve compatibility with some Raid card model Increase IGD share memory size to 512MB However the following FAQ might give a hint: FAQs I find that the CPU temperature reading in BIOS is about 10~20 degrees centigrade hotter than the reading in OS. Is it normal? Page Tools Solution That is normal as BIOS does not send idle command to the CPU, making most of the power saving features useless. You should be getting similar reading if you disable EIST/C1E/CPU C3 Report/CPU C6 Report in BIOS.

    Read the article

  • Mysql Cluster not working on Ubuntu

    - by user53864
    I am unable to setup MySQL Cluster on ubuntu servers. As a starting point I started from the link but I am not successful and the tar ball version I download is 6.3.45. As I wanted to test the mysql cluster, the Data node and SQL node are same but sql never appeared as connected in management node console and it looks like below. [ndbd(NDB)] 2 node(s) id=2 @192.168.1.107 (Version: version number, Nodegroup: 0, Master) id=3 @192.168.1.108 (Version: version number, Nodegroup: 0) [ndb_mgmd(MGM)] 1 node(s) id=1 @192.168.1.105 (Version: version number) [mysqld(API)] 2 node(s) id=4 (not connected, accepting connect from 192.168.1.107) id=5 (not connected, accepting connect from 192.168.1.108) On all the 3 machines mysql-server & client(apt-get install mysql-server mysql-client) were already installed and I completely stopped and also removed them at the system start up. Now the mysqld is from extracted cluster tar ball(/usr/local/mysql/support-files/mysql.server). As for testing, I created a test database on both the data nodes but the tables are also not syncing on other node. I checked many links, configurations are remained similar in all the links but somewhere it's going wrong. Anymore extra package is required?, Could anyone help me here..?. I am trying this for past 3 days... Thank you!

    Read the article

  • Why have trackballs almost disappeared? [closed]

    - by Gary M. Mugford
    One of the movement sensors in my Microsoft Trackball Explorer has failed and right now I am using a mouse. Ugggh! I'll got steal one of the various Logitech trackballs spread around the house, but they all have issues. The Trackman has a horrible placement for the scroll wheel. Others have marbles for the thumb rather than a big ball for the fingers and at least one trackball is working around here without having a scroll wheel at all! (The one at the dinner table, for when I dine alone). My question is, why have trackballs fallen into disfavour? Seems to me that trackballs are great for crowded desktops (you know, the one with keyboards, notes, pens and coffee cups), and for laptops with those hated overly-sensitive touchpads. But right now, it seems to be a choice between that Logitech Trackman and some Kensington models that lack scroll wheels. All I want is a nice big ball to manipulate with the fingers and two buttons on the thumb side with the scroil wheel between them. Placement of other buttons is completely optional. Is that asking too much?

    Read the article

  • Weird screeching sounds coming from computer

    - by EGHDK
    My computer makes a high pitched whine noise that initially was coming from my SSD, but now I recently installed more ram into my laptop and it makes a new sounds. I don't want my ram or SSD to die on me. Are there any tests to test both of these? Again, these are really high pitched whine(y) sounds that you wouldn't hear normally, but when I'm home alone and it's silent, the noise sounds as loud as can be.

    Read the article

< Previous Page | 55 56 57 58 59 60 61 62 63 64 65 66  | Next Page >