Search Results

Search found 41789 results on 1672 pages for 'software development'.

Page 596/1672 | < Previous Page | 592 593 594 595 596 597 598 599 600 601 602 603  | Next Page >

  • Colorize with a given color a texture

    - by Pacha
    I have a texture and I want to "colorize" it with a given color, lets say cyan (#00ffff) or purple (#800080). What I want to do, is get all the pixel values from the texture, and remove the color and keep the "brightness" and "saturation" and apply to the desired color. There is a tool in GIMP to do this called Colorize (Colors -> Colorize.. while editing), I made an example below. This is will all be done in a shader (GLSL), although this is probably a general algorithm.

    Read the article

  • Can anyone explain step-by-step how the as3isolib depth-sorts isometric objects?

    - by Rob Evans
    The library manages to depth-sort correctly, even when using items of non-1x1 sizes. I took a look through the code but it's a big project to go through line by line! There are some questions about the process such as: How are the x, y, z values of each object defined? Are they the center points of the objects or something else? I noticed that the IBounds defines the bounds of the object. If you were to visualise a cuboid of 40, 40, 90 in size, where would each of the IBounds metrics be? I would like to know how as3isolib achieves this although I would also be happy with a generalised pseudo-code version. At present I have a system that works 90% of the time but in cases of objects that are along the same horizontal line, the depth is calculated as the same value. The depth calculation currently works like this: x = object horizontal center point y = object vertical center point originX and Y = the origin point relative to the object so if you want the origin to be the center, the value would be originX = 0.5, originY = 0.5. If you wanted the origin to be vertical center, horizontal far right of the object it would be originX = 1.0, originY = 0.5. The origin adjusts the position that the object is transformed from. AABB_width = The bounding box width. AABB_height = The bounding box height. depth = x + (AABB_width * originX) + y + (AABB_height * originY) - z; This generates the same depth for all objects along the same horizontal x.

    Read the article

  • How do I draw a point sprite using OpenGL ES on Android?

    - by nbolton
    Edit: I'm using the GL enum, which is incorrect since it's not part of OpenGL ES (see my answer). I should have used GL10, GL11 or GL20 instead. Here's a few snippets of what I have so far... void create() { renderer = new ImmediateModeRenderer(); tiles = Gdx.graphics.newTexture( Gdx.files.getFileHandle("res/tiles2.png", FileType.Internal), TextureFilter.MipMap, TextureFilter.Linear, TextureWrap.ClampToEdge, TextureWrap.ClampToEdge); } void render() { Gdx.gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT); Gdx.gl.glClearColor(0.6f, 0.7f, 0.9f, 1); } void renderSprite() { int handle = tiles.getTextureObjectHandle(); Gdx.gl.glBindTexture(GL.GL_TEXTURE_2D, handle); Gdx.gl.glEnable(GL.GL_POINT_SPRITE); Gdx.gl11.glTexEnvi(GL.GL_POINT_SPRITE, GL.GL_COORD_REPLACE, GL.GL_TRUE); renderer.begin(GL.GL_POINTS); renderer.vertex(pos.x, pos.y, pos.z); renderer.end(); } create() is called once when the program starts, and renderSprites() is called for each sprite (so, pos is unique to each sprite) where the sprites are arranged in a sort-of 3D cube. Unfortunately though, this just renders a few white dots... I suppose that the texture isn't being bound which is why I'm getting white dots. Also, when I draw my sprites on anything other than 0 z-axis, they do not appear -- I read that I need to crease my zfar and znear, but I have no idea how to do this using libgdx (perhaps it's because I'm using ortho projection? What do I use instead?). I know that the texture is usable, since I was able to render it using a SpriteBatch, but I guess I'm not using it properly with OpenGL.

    Read the article

  • How do I use depth testing and texture transparency together in my 2.5D world?

    - by nbolton
    Note: I've already found an answer (which I will post after this question) - I was just wondering if I was doing it right, or if there is a better way. I'm making a "2.5D" isometric game using OpenGL ES (JOGL). By "2.5D", I mean that the world is 3D, but it is rendered using 2D isometric tiles. The original problem I had to solve was that my textures had to be rendered in order (from back to front), so that the tiles overlapped properly to create the proper effect. After some reading, I quickly realised that this is the "old hat" 2D approach. This became difficult to do efficiently, since the 3D world can be modified by the player (so stuff can appear anywhere in 3D space) - so it seemed logical that I take advantage of the depth buffer. This meant that I didn't have to worry about rendering stuff in the correct order. However, I faced a problem. If you use GL_DEPTH_TEST and GL_BLEND together, it creates an effect where objects are blended with the background before they are "sorted" by z order (meaning that you get a weird kind of overlap where the transparency should be). Here's some pseudo code that should illustrate the problem (incidentally, I'm using libgdx for Android). create() { // ... // some other code here // ... Gdx.gl.glEnable(GL10.GL_DEPTH_TEST); Gdx.gl.glEnable(GL10.GL_BLEND); } render() { Gdx.gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT); Gdx.gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA); // ... // bind texture and create vertices // ... } So the question is: How do I solve the transparency overlap problem?

    Read the article

  • XNA calculate normals for linesegment

    - by Gerhman
    I am quite new to 3D graphical programming and thus far only understand that normal somehow define the direction in which a vertex faces and therefore the direction in which light is reflected. I have now idea how they are calculated though, only that they are defined by a Vector3. For a visualizer that I am creating I am importing a bunch of coordinate which represent layer upon layer of line segments. At the moment I am only using a vertex buffer and adding the start and end point of each line and then rendering a linelist. The thing is now that I need to calculate the normal for the vertices of these line segments so that I can get some realistic lighting. I have no idea how to calculate these normal but I know they all face sideways and not up or down. To calculate them all I have are the start and end positions of each line segment. The below image is a representation of what I think I need to do in the case of an example layer: The red arrows represent the normal that should be calculates, the blue text represent the coordinates of the vertices and the green numbers represent their indices. I would greatly appreciate it if someone could please explain to me how I should calculate these normal.

    Read the article

  • creating the nodes for path finding during run time - more like path making and more

    - by bigbadbabybear
    i'm making my 1st game. i'm using javascript as i currently want to learn to make games without needing to learn another language but this is more of a general game dev question its a 2d turn-based tile/grid game. you can check it here http://www.patinterotest.tk/ it creates a movable area when you hover a player and it implements the A* algo for moving the player. The Problem: i want to make the 'dynamic movable area creation' already implement a limited number of steps for a player. The Questions: what is a good way to do this? is there another algorithm to use for this? the A* algorithm needs a start and destination, with what i want to do i don't have a destination or should i just limit the iteration of the A* algo to the steps variable? hopefully you understand the problem & questions easily

    Read the article

  • How is this lighting effect done?

    - by Mike
    This is the most beautiful 2d lighting I have ever seen. Does anyone know how he went about doing it? http://www.youtube.com/watch?v=BIQRhOFkvQY http://www.youtube.com/watch?v=tnTYXPuecMs http://www.youtube.com/watch?v=rhC_jVM8IYU http://www.youtube.com/watch?v=_Aw5BdjWqqU Or download it here: http://grantkot.com/PollutedPlanet/publish.htm edit: I am not asking how the particles are simulated; I don't care about the physics.

    Read the article

  • Torque2D, Class vs Datablock

    - by Max Kielland
    I'm scripting my first game with Torque2D and have not fully understood the difference between "Class" and Datablock. To me it seems like Datablock is similar to a struct in C/C++ or a Record in Pascal. If I create Datablocks with new, are they instantiated in the same way as a "Class"? I have a large TileMap and need to attach some information to each Tile. I was thinking to use a Datablock, as a struct, to attach this information to the tile's CustomData property. The two questions are: What is a Datablock and should I use a Datablock or a "Class" for this tile information?

    Read the article

  • What's the proper way to calculate probability for a card game?

    - by Milan Babuškov
    I'm creating AI for a card game, and I run into problem calculating the probability of passing/failing the hand when AI needs to start the hand. Cards are A, K, Q, J, 10, 9, 8, 7 (with A being the strongest) and AI needs to play to not take the hand. Assuming there are 4 cards of the suit left in the game and one is in AI's hand, I need to calculate probability that one of the other players would take the hand. Here's an example: AI player has: J Other 2 players have: A, K, 7 If a single opponent has AK7 then AI would lose. However, if one of the players has A or K without 7, AI would survive. Now, looking at possible distribution, I have: P1 P2 AI --- --- --- AK7 loses AK 7 survives A7 K survives K7 A survives A 7K survives K 7A survives 7 KA survives AK7 loses Looking at this, it seems that there is 75% chance of survival. However, I skipped the permutations that mirror the ones from above. It should be the same, but somehow when I write them all down, it seems that chance is only 50%: P1 P2 AI --- --- --- AK7 loses A7K loses K7A loses KA7 loses 7AK loses 7KA loses AK 7 survives A7 K survives K7 A survives KA 7 survives 7A K survives 7K A survives A K7 survives A 7K survives K 7A survives K A7 survives 7 AK survives 7 KA survives AK7 loses A7K loses K7A loses KA7 loses 7AK loses 7KA loses 12 loses, 12 survivals = 50% chance. Obviously, it should be the same (shouldn't it?) and I'm missing something in one of the ways to calculate. Which one is correct?

    Read the article

  • Unity3D: How to make the camera focus a moving game object with ITween?

    - by nathan
    I'm trying to write a solar system with Unity3D. Planets are sphere game objects rotating around another sphere game object representing the star. What i want to achieve is let the user click on a planet and then zoom the camera on this planet and then make the camera follow and keep it centered on the screen while it keep moving around the star. I decided to use iTween library and so far i was able to create the zoom effect using iTween.MoveUpdate. My problem is that the focused planet does not say properly centered as it moves. Here is the relevant part of my script: void Update () { if (Input.GetButtonDown("Fire1")) { Ray ray = Camera.main.ScreenPointToRay(Input.mousePosition); RaycastHit hit; if (Physics.Raycast(ray, out hit, Mathf.Infinity, concernedLayers)) { selectedPlanet = hit.collider.gameObject; } } } void LateUpdate() { if (selectedPlanet != null) { Vector3 pos = selectedPlanet.transform.position; pos.z = selectedPlanet.transform.position.z - selectedPlanet.transform.localScale.z; pos.y = selectedPlanet.transform.position.y; iTween.MoveUpdate(Camera.main.gameObject, pos, 2); } } What do i need to add to this script to make the selected planet stay centered on the screen? I hosted my current project as a webplayer application so you see what's going wrong. You can access it here.

    Read the article

  • Moving player in direciton camera is facing

    - by Samurai Fox
    I have a 3rd person camera which can rotate around the player. My problem is that wherever camera is facing, players forward is always the same direction. For example when camera is facing the right side of the player, when I press button to move forward, I want player to turn to the left and make that the "new forward". My camera script so far: using UnityEngine; using System.Collections; public class PlayerScript : MonoBehaviour { public float RotateSpeed = 150, MoveSpeed = 50; float DeltaTime; void Update() { DeltaTime = Time.deltaTime; transform.Rotate(0, Input.GetAxis("LeftX") * RotateSpeed * DeltaTime, 0); transform.Translate(0, 0, -Input.GetAxis("LeftY") * MoveSpeed * DeltaTime); } } public class CameraScript : MonoBehaviour { public GameObject Target; public float RotateSpeed = 170, FollowDistance = 20, FollowHeight = 10; float RotateSpeedPerTime, DesiredRotationAngle, DesiredHeight, CurrentRotationAngle, CurrentHeight, Yaw, Pitch; Quaternion CurrentRotation; void LateUpdate() { RotateSpeedPerTime = RotateSpeed * Time.deltaTime; DesiredRotationAngle = Target.transform.eulerAngles.y; DesiredHeight = Target.transform.position.y + FollowHeight; CurrentRotationAngle = transform.eulerAngles.y; CurrentHeight = transform.position.y; CurrentRotationAngle = Mathf.LerpAngle(CurrentRotationAngle, DesiredRotationAngle, 0); CurrentHeight = Mathf.Lerp(CurrentHeight, DesiredHeight, 0); CurrentRotation = Quaternion.Euler(0, CurrentRotationAngle, 0); transform.position = Target.transform.position; transform.position -= CurrentRotation * Vector3.forward * FollowDistance; transform.position = new Vector3(transform.position.x, CurrentHeight, transform.position.z); Yaw = Input.GetAxis("Right Horizontal") * RotateSpeedPerTime; Pitch = Input.GetAxis("Right Vertical") * RotateSpeedPerTime; transform.Translate(new Vector3(Yaw, -Pitch, 0)); transform.position = new Vector3(transform.position.x, transform.position.y, transform.position.z); transform.LookAt(Target.transform); } }

    Read the article

  • Importing a windows project into android using cocos2d-x

    - by Ef Es
    What I am trying to do today is to import a full project to Android, but no tutorials are available for that that I have seen. My approach was to create a new android project, copy all the classes and resources in the folders and calling ./build_native.sh but I get an error because most of the files are not being included in the project. I tried opening the Android.mk and I can see why "LOCAL_SRC_FILES := AppDelegate.cpp \ HelloWorldScene.cpp" are the only files linked. Should I manually modify the make file or can it be automated by some way I don't know? Thank you. UPDATE: I manually added all files and headers to the make file and I get errors linking Box2D or cocosdenshion libraries.

    Read the article

  • Simulating smooth movement along a line after calculating a collision containing a restitution of zero in 2D

    - by Casey
    [for tl;dr see after listing] //...Code to determine shapes types involved in collision here... //...Rectangle-Line collision detected. if(_rbTest->GetCollisionShape()->Intersects(*_ground->GetCollisionShape())) { //Convert incoming shape to a line. a2de::Line l(*dynamic_cast<a2de::Line*>(_ground->GetCollisionShape())); //Get line's normal. a2de::Vector2D normal_vector(l.GetSlope().GetY(), -l.GetSlope().GetX()); a2de::Vector2D::Normalize(normal_vector); //Accumulate forces involved. a2de::Vector2D intermediate_forces; a2de::Vector2D normal_force = normal_vector * _rbTest->GetMass() * _world->GetGravityHandler()->GetGravityValue(); intermediate_forces += normal_force; //Calculate final velocity: See [1] double Ma = _rbTest->GetMass(); a2de::Vector2D Ua = _rbTest->GetVelocity(); double Mb = _ground->GetMass(); a2de::Vector2D Ub = _ground->GetVelocity(); double mCr = Mb * _ground->GetRestitution(); a2de::Vector2D collision_velocity( ((Ma * Ua) + (Mb * Ub) + ((mCr * Ub) - (mCr * Ua))) / (Ma + Mb)); //Calculate reflection vector: See [2] a2de::Vector2D reflect_velocity( -collision_velocity + 2 * (a2de::Vector2D::DotProduct(collision_velocity, normal_vector)) * normal_vector ); //Affect velocity to account for restitution of colliding bodies. reflect_velocity *= (_ground->GetRestitution() * _rbTest->GetRestitution()); _rbTest->SetVelocity(reflect_velocity); //THE ULTIMATE ISSUE STEMS FROM THE FOLLOWING LINE: //Move object away from collision one pixel to prevent constant collision. _rbTest->SetPosition(_rbTest->GetPosition() + normal_vector); _rbTest->ApplyImpulse(intermediate_forces); } Sources: (1) Wikipedia: Coefficient of Restitution: Speeds after impact (2) Wikipedia: Specular Reflection: Direction of reflection First, I have a system in place to account for friction (that is, a coefficient of friction) but is not used right now (in addition, it is zero, which should not affect the math anyway). I'll deal with that after I get this working. Anyway, when the restitution of either object involved in the collision is zero the object stops as required, but if movement along the same direction (again, irrespective of the friction value that isn't used) as the line is attempted the object moves as if slogging through knee deep snow. If I remove the line of code in question and the object is not push away one pixel the object barely moves at all. All because the object collides, is stopped, is pushed up, collides, is stopped...etc. OR collides, is stopped, collides, is stopped, etc... TL;DR How do I only account for a collision ONCE for restitution purposes (BONUS: but CONTINUALLY for frictional purposes, to be implemented later)

    Read the article

  • Looking for 2D Cross platform suggestions based on requirements specified

    - by MannyG
    I am an intermediate developer with minor experience on enterprise mobile applications for iphone, android and blackberry looking to build my first ever mobile game. I did a google search for some game dev forums and this popped up so I thought I would try posting here as I lack luck elsewhere. If you have ever heard of the game for the iphone and android platform entitled avatar fight then you will have an idea of the graphic capabilities I require. Basically the battles which are automated one sprite attacking another doing cool animations but all in 2d. My buddy and I have two motivations, one is to jump into mobile Dev as my experience is limited as is his so we would like some trending knowledge (html5 would be nice to learn) . The other is to make some money on the side, don't expect much but polishing the game and putting our all will hopefully reward us a bit. We have looked into corona engine, however a lot of people are saying it is limited in the graphics department, we are open to learning new languages like lua, c++, python etc. Others we have looked at include phonegap, rhomobile, unity, and the list goes on. I really have no idea what the pros and cons of these are but for a basic battle sequence and some mini games we want to chose the right one. Some more things that we will be doing include things like card games, side scrolling flying object based games, maybe fishing stuff. We want to start small with these minigames and work our way up to the idea we would like to implement in the future. We only want to work in 2D. So with these requirements please help me chose a platform to work on (cross platform is what we are ideally leaning towards). Please feel free to throw in some pieces of advice you may have for newbie game developers like myself too. Thank you for reading!

    Read the article

  • Need ideas for an algorithm to draw irregular blotchy shapes

    - by Yttermayn
    I'm looking to draw irregular shapes on an x,y grid, and I'd like to come up with a simple, fast method if possible. My only idea so far is to draw a bunch of circles of random sizes very near each other, but at a random distance apart from a more or less central coordinate, then fill in any blank spaces. I realize this is a clunky, inelegant method, hopefully it will give you a rough idea of the kinds of rounded, random blotchy shapesI'm shooting for. Please suggest methods to accomplish this, I'm not so much interested in code. I can noodle that part out myself. Thanks!

    Read the article

  • How to implement smooth flocking

    - by Craig
    I'm working on a simple survival game, avoid the big guy and chase the the small guys to stay alive for as long as possible. I have taken the chase and evade example from MSDN create and drawn 20 mice on the screen. I want the small guys to flock when they arent evading. They are doing this, but it isnt as smooth as I would like it to be. How do i make the movement smoother? Its very jittery.# Below is what I have going at the moment, flocking code is within the IF statement, when it isnt set to evading. Any help would be greatly appreciated! :) namespace ChaseAndEvade { class MouseSprite { public enum MouseAiState { // evading the cat Evading, // the mouse can't see the "cat", and it's wandering around. Wander } // how fast can the mouse move? public float MaxMouseSpeed = 4.5f; // and how fast can it turn? public float MouseTurnSpeed = 0.20f; // MouseEvadeDistance controls the distance at which the mouse will flee from // cat. If the mouse is further than "MouseEvadeDistance" pixels away, he will // consider himself safe. public float MouseEvadeDistance = 100.0f; // this constant is similar to TankHysteresis. The value is larger than the // tank's hysteresis value because the mouse is faster than the tank: with a // higher velocity, small fluctuations are much more visible. public float MouseHysteresis = 60.0f; public Texture2D mouseTexture; public Vector2 mouseTextureCenter; public Vector2 mousePosition; public MouseAiState mouseState = MouseAiState.Wander; public float mouseOrientation; public Vector2 mouseWanderDirection; int separationImpact = 4; int cohesionImpact = 6; int alignmentImpact = 2; int sensorDistance = 50; public void UpdateMouse(Vector2 position, MouseSprite [] mice, int numberMice, int index) { Vector2 catPosition = position; int enemies = numberMice; // first, calculate how far away the mouse is from the cat, and use that // information to decide how to behave. If they are too close, the mouse // will switch to "active" mode - fleeing. if they are far apart, the mouse // will switch to "idle" mode, where it roams around the screen. // we use a hysteresis constant in the decision making process, as described // in the accompanying doc file. float distanceFromCat = Vector2.Distance(mousePosition, catPosition); // the cat is a safe distance away, so the mouse should idle: if (distanceFromCat > MouseEvadeDistance + MouseHysteresis) { mouseState = MouseAiState.Wander; } // the cat is too close; the mouse should run: else if (distanceFromCat < MouseEvadeDistance - MouseHysteresis) { mouseState = MouseAiState.Evading; } // if neither of those if blocks hit, we are in the "hysteresis" range, // and the mouse will continue doing whatever it is doing now. // the mouse will move at a different speed depending on what state it // is in. when idle it won't move at full speed, but when actively evading // it will move as fast as it can. this variable is used to track which // speed the mouse should be moving. float currentMouseSpeed; // the second step of the Update is to change the mouse's orientation based // on its current state. if (mouseState == MouseAiState.Evading) { // If the mouse is "active," it is trying to evade the cat. The evasion // behavior is accomplished by using the TurnToFace function to turn // towards a point on a straight line facing away from the cat. In other // words, if the cat is point A, and the mouse is point B, the "seek // point" is C. // C // B // A Vector2 seekPosition = 2 * mousePosition - catPosition; // Use the TurnToFace function, which we introduced in the AI Series 1: // Aiming sample, to turn the mouse towards the seekPosition. Now when // the mouse moves forward, it'll be trying to move in a straight line // away from the cat. mouseOrientation = ChaseAndEvadeGame.TurnToFace(mousePosition, seekPosition, mouseOrientation, MouseTurnSpeed); // set currentMouseSpeed to MaxMouseSpeed - the mouse should run as fast // as it can. currentMouseSpeed = MaxMouseSpeed; } else { // if the mouse isn't trying to evade the cat, it should just meander // around the screen. we'll use the Wander function, which the mouse and // tank share, to accomplish this. mouseWanderDirection and // mouseOrientation are passed by ref so that the wander function can // modify them. for more information on ref parameters, see // http://msdn2.microsoft.com/en-us/library/14akc2c7(VS.80).aspx ChaseAndEvadeGame.Wander(mousePosition, ref mouseWanderDirection, ref mouseOrientation, MouseTurnSpeed); // if the mouse is wandering, it should only move at 25% of its maximum // speed. currentMouseSpeed = .25f * MaxMouseSpeed; Vector2 separate = Vector2.Zero; Vector2 moveCloser = Vector2.Zero; Vector2 moveAligned = Vector2.Zero; // What the AI does when it sees other AIs for (int j = 0; j < enemies; j++) { if (index != j) { // Calculate a vector towards another AI Vector2 separation = mice[index].mousePosition - mice[j].mousePosition; // Only react if other AI is within a certain distance if ((separation.Length() < this.sensorDistance) & (separation.Length()> 0) ) { moveAligned += mice[j].mouseWanderDirection; float distance = Math.Abs(separation.Length()); if (distance == 0) distance = 1; moveCloser += mice[j].mousePosition; separation.Normalize(); separate += separation / distance; } } } if (moveAligned.LengthSquared() != 0) { moveAligned.Normalize(); } if (moveCloser.LengthSquared() != 0) { moveCloser.Normalize(); } moveCloser /= enemies; mice[index].mousePosition += (separate * separationImpact) + (moveCloser * cohesionImpact) + (moveAligned * alignmentImpact); } // The final step is to move the mouse forward based on its current // orientation. First, we construct a "heading" vector from the orientation // angle. To do this, we'll use Cosine and Sine to tell us the x and y // components of the heading vector. See the accompanying doc for more // information. Vector2 heading = new Vector2( (float)Math.Cos(mouseOrientation), (float)Math.Sin(mouseOrientation)); // by multiplying the heading and speed, we can get a velocity vector. the // velocity vector is then added to the mouse's current position, moving him // forward. mousePosition += heading * currentMouseSpeed; } } }

    Read the article

  • Narrow-phase collision detection algorithms

    - by Marian Ivanov
    There are three phases of collision detection. Broadphase: It loops between all objecs that can interact, false positives are allowed, if it would speed up the loop. Narrowphase: Determines whether they collide, and sometimes, how, no false positives Resolution: Resolves the collision. The question I'm asking is about the narrowphase. There are multiple algorithms, differing in complexity and accuracy. Hitbox intersection: This is an a-posteriori algorithm, that has the lowest complexity, but also isn't too accurate, Color intersection: Hitbox intersection for each pixel, a-posteriori, pixel-perfect, not accuratee in regards to time, higher complexity Separating axis theorem: This is used more often, accurate for triangles, however, a-posteriori, as it can't find the edge, when taking last frame in account, it's more stable Linear raycasting: A-priori algorithm, useful for semi-realistic-looking physics, finds the intersection point, even more accurate than SAT, but with more complexity Spline interpolation: A-priori, even more accurate than linear rays, even more coplexity. There are probably many more that I've forgot about. The question is, in when is it better to use SAT, when rays, when splines, and whether there is anything better.

    Read the article

  • Modern Shader Book?

    - by Michael Stum
    I'm interested in learning about Shaders: What are they, when/for what would I use them, and how to use them. (Specifically I'm interested in Water and Bloom effects, but I know close to 0 about Shaders, so I need a general introduction). I saw a lot of books that are a couple of years old, so I don't know if they still apply. I'm targeting XNA 4.0 at the moment (which I believe means HLSL Shaders for Shader Model 4.0), but anything that generally targets DirectX 11 and OpenGL 4 is helpful I guess.

    Read the article

  • Solving 2D Collision Detection Issues with Relative Velocities

    - by Jengerer
    Imagine you have a situation where two objects are moving parallel to one-another and are both within range to collide with a static wall, like this: A common method used in dynamic collision detection is to loop through all objects in arbitrary order, solve for pair-wise collision detection using relative velocities, and then move the object to the nearest collision, if any. However, in this case, if the red object is checked first against the blue one, it would see that the relative velocity to the blue object is -20 m/s (and would thereby not collide this time frame). Then it would see that the red object would collide with the static wall, and the solution would be: And the red object passes through the blue one. So it appears to be a matter of choosing the right order in which you check collisions; but how can you determine which order is correct? How can this passing through of objects be avoided? Is ignoring relative velocity and considering every object as static during pair-wise checks a better idea for this reason?

    Read the article

  • Is there a maximum delay an UDP packet can have?

    - by Jens Nolte
    I am currently implementing a real-time network protocol for a multiplayer game using UDP. I am not having any technical difficulties, but as I always have to care about late UDP packets I am wondering just how late they can arrive. I have researched the topic and have not found any mention of it, so I assume there is no technical limitation, but I wonder if common network/internet architecture (or hardware) gives an effective limitation of how late a UDP packet can be delivered.

    Read the article

  • What methods should save/load a game state

    - by vedi
    There are a lot of articles about how to save a state of a game and they are pretty good. But I have one conceptual misunderstanding where should I save the state? My game has number of screens and pair of them are MainMenuScreen and MainSceneScreen these are inherited from Screen class. MainMenuScreen is shown at start of the game the MainSceneScreen little later. What is the problem? I navigated to MainSceneScreen, forced Android to stop the application (I change a language settings on the device to achieve it, please let me know if I'm wrong). After that I select the application again and I can see MainMenuScreen is shown. But I want MainSceneScreen to be shown. I suppose I should override resume method. But what class I should override? I have class PsGame that extends Game class of libgdx. I put breakpoints to its resume method and it turned out that method was not called. I investigated the problem and I've found little strange code in onResume method of AndroidApplication class of libgdx: if (!firstResume) graphics.resume(); else firstResume = false; My debugger said firstResume was true and didn't go to *graphics.resume()*line. Sorry for a lot of words but could you answer following question: What did I do wrong? What methods should I override? Thank you in advance.

    Read the article

  • How can I make the camera return to the beginning of the terrain when it reaches the end?

    - by wbaccari
    How can I make the camera return to the beginning of the terrain when it reaches the end? I tried using the ICameraSceneNode*-setPosition(). if (camera->getPosition().X>1200.f) camera->setPosition(vector3df(1.f,1550.f,camera->getPosition().Z)); if (camera->getPosition().X<0.f) camera->setPosition(vector3df(1199.f,1550.f,camera->getPosition().Z)); if (camera->getPosition().Z>1200.f) camera->setPosition(vector3df(camera->getPosition().X,1550.f,1.f)); if (camera->getPosition().Z<0.f) camera->setPosition(vector3df(camera->getPosition().X,1550.f,1199.f)); It seems to work fine with a flat terrain (one shade of grey in heightmap) but it starts to produce a strange behavior as soon as i try to add some hills. Edit: The setPosition() call seems to perform a translation of the camera toward the new position, therefore the camera stops at the first obstacle it encounters on its way.

    Read the article

  • How do I implement collision detection with a sprite walking up a rocky-terrain hill?

    - by detectivecalcite
    I'm working in SDL and have bounding rectangles for collisions set up for each frame of the sprite's animation. However, I recently stumbled upon the issue of putting together collisions for characters walking up and down hills/slopes with irregularly curved or rocky terrain - what's a good way to do collisions for that type of situation? Per-pixel? Loading up the points of the incline and doing player-line collision checking? Should I use bounding rectangles in general or circle collision detection?

    Read the article

  • Using multiple indexes with buffer objects in OpenTK

    - by Rushyo
    I've got multiple buffers in OpenGL holding data on position, normals and texcoords. I also have an equal number of buffers holding distinct index data for each of those buffers. I quite like this format (indvidual indexes for each buffer) utilised by COLLADA since it strikes me as optimally efficient at accessing each buffer. I've set up pointers to the relevant data arrays using VertexPointer, NormalPointer, etc however I have no way to assign pointers to the index buffers since DrawElements appear to only look at one ElementArrayBuffer. Can I utilise multiple indices some way or will I be better off using a different technique which can support this? I'd prefer to keep the distinct indices if at all possible.

    Read the article

  • 2D metaball liquid effect - how to feed output of one rendering pass as input to another shader

    - by Guye Incognito
    I'm attempting to make a shader for unity3d web project. I want to implement something like in the great answer by DMGregory in this question. in order to achieve a final look something like this.. Its metaballs with specular and shading. The steps to make this shader are. 1. Convert the feathered blobs into a heightmap. 2. Generate a normalmap from the heightmap 3. Feed the normal map and height map into a standard unity shader, for instance transparent parallax specular. I pretty much have all the pieces I need assembled but I am new to shaders and need help putting them together I can generate a heightmap from the blobs using some fragment shader code I wrote (I'm just using the red channel here cus i dont know if you can access the brightness) half4 frag (v2f i) : COLOR{ half4 texcol,finalColor; texcol = tex2D (_MainTex, i.uv); finalColor=_MyColor; if(texcol.r<_botmcut) { finalColor.r= 0; } else if((texcol.r>_topcut)) { finalColor.r= 0; } else { float r = _topcut-_botmcut; float xpos = _topcut - texcol.r; finalColor.r= (_botmcut + sqrt((xpos*xpos)-(r*r)))/_constant; } return finalColor; } turns these blobs.. into this heightmap Also I've found some CG code that generates a normal map from a height map. The bit of code that makes the normal map from finite differences is here void surf (Input IN, inout SurfaceOutput o) { o.Albedo = fixed3(0.5); float3 normal = UnpackNormal(tex2D(_BumpMap, IN.uv_MainTex)); float me = tex2D(_HeightMap,IN.uv_MainTex).x; float n = tex2D(_HeightMap,float2(IN.uv_MainTex.x,IN.uv_MainTex.y+1.0/_HeightmapDimY)).x; float s = tex2D(_HeightMap,float2(IN.uv_MainTex.x,IN.uv_MainTex.y-1.0/_HeightmapDimY)).x; float e = tex2D(_HeightMap,float2(IN.uv_MainTex.x-1.0/_HeightmapDimX,IN.uv_MainTex.y)).x; float w = tex2D(_HeightMap,float2(IN.uv_MainTex.x+1.0/_HeightmapDimX,IN.uv_MainTex.y)).x; float3 norm = normal; float3 temp = norm; //a temporary vector that is not parallel to norm if(norm.x==1) temp.y+=0.5; else temp.x+=0.5; //form a basis with norm being one of the axes: float3 perp1 = normalize(cross(norm,temp)); float3 perp2 = normalize(cross(norm,perp1)); //use the basis to move the normal in its own space by the offset float3 normalOffset = -_HeightmapStrength * ( ( (n-me) - (s-me) ) * perp1 + ( ( e - me ) - ( w - me ) ) * perp2 ); norm += normalOffset; norm = normalize(norm); o.Normal = norm; } Also here is the built-in transparent parallax specular shader for unity. Shader "Transparent/Parallax Specular" { Properties { _Color ("Main Color", Color) = (1,1,1,1) _SpecColor ("Specular Color", Color) = (0.5, 0.5, 0.5, 0) _Shininess ("Shininess", Range (0.01, 1)) = 0.078125 _Parallax ("Height", Range (0.005, 0.08)) = 0.02 _MainTex ("Base (RGB) TransGloss (A)", 2D) = "white" {} _BumpMap ("Normalmap", 2D) = "bump" {} _ParallaxMap ("Heightmap (A)", 2D) = "black" {} } SubShader { Tags {"Queue"="Transparent" "IgnoreProjector"="True" "RenderType"="Transparent"} LOD 600 CGPROGRAM #pragma surface surf BlinnPhong alpha #pragma exclude_renderers flash sampler2D _MainTex; sampler2D _BumpMap; sampler2D _ParallaxMap; fixed4 _Color; half _Shininess; float _Parallax; struct Input { float2 uv_MainTex; float2 uv_BumpMap; float3 viewDir; }; void surf (Input IN, inout SurfaceOutput o) { half h = tex2D (_ParallaxMap, IN.uv_BumpMap).w; float2 offset = ParallaxOffset (h, _Parallax, IN.viewDir); IN.uv_MainTex += offset; IN.uv_BumpMap += offset; fixed4 tex = tex2D(_MainTex, IN.uv_MainTex); o.Albedo = tex.rgb * _Color.rgb; o.Gloss = tex.a; o.Alpha = tex.a * _Color.a; o.Specular = _Shininess; o.Normal = UnpackNormal(tex2D(_BumpMap, IN.uv_BumpMap)); } ENDCG } FallBack "Transparent/Bumped Specular" }

    Read the article

< Previous Page | 592 593 594 595 596 597 598 599 600 601 602 603  | Next Page >