Search Results

Search found 38203 results on 1529 pages for 'library development'.

Page 624/1529 | < Previous Page | 620 621 622 623 624 625 626 627 628 629 630 631  | Next Page >

  • lwjgl custom icon

    - by melchor629
    I have a little problem with the icon in lwjgl, it doesn't work. I google about it, but i haven't found anything that works for me yet. This is my code for now: PNGDecoder imageDecoder = new PNGDecoder(new FileInputStream("res/images/Icon.png")); ByteBuffer imageData = BufferUtils.createByteBuffer(4 * imageDecoder.getWidth() * imageDecoder.getHeight()); imageDecoder.decode(imageData, imageDecoder.getWidth() * 4, PNGDecoder.Format.RGBA); imageData.flip(); System.err.println(Display.setIcon(new ByteBuffer[]{imageData}) == 0 ? "No se ha creado el icono" : "Se ha creado el icono"); The png file is a 128x128px with transparency. PNGDecoder is from the matthiasmann utility (de.matthiasmann.twl.utils). I'm using Mac OS, 10.8.4 with lwjgl 2.9.0. Thanks :)

    Read the article

  • Building dynamic bounding box hierachies.

    - by adivasile
    I've been reading about collision detection and I saw that the first part was a coarse detection which generates possible contacts using bounding box hierarchies. I understand the concept of splitting up your objects in groups, to speed up the detection phase, but I'm a little confused on how do you actually build the hierachy, more so on what criteria is used to group them together. Do I iterate through all the objects in the scene, and check the distance between them to see where they should be inserted in the tree? Do you know some resources that may shed some light on this topic for me?

    Read the article

  • Per fragment lighting with OpenGL 4.x tessellated model

    - by Finlaybob
    I'm experienced with OpenGL 3+. I'm dabbling with tessellation shaders and have now got to a point where I have a nicely tessellated teapot/plane demo (quick look here) As can be seen from the screenshots, the lighting is broken (though admittedly doesn't look too bad in the image) I've tried to add a normal map to the equation but it still doesn't come out right, I can calculate the normals, tangents and binormals per triangle in the geometry shader but still looks wrong. I think the question would be; How do I add per fragment lighting to a tessellated model? The teapot is 32 16-point patches, the plane is one single 16 point patch. The shaders are here, but they are a complete mess, so I don't blame anyone who cant make sense of them. But peruse at your leisure if you like. Also, if this question is more suited to be somewhere else i.e. Stack Overflow or the Programming stack please let me know.

    Read the article

  • Animations / OpenGL (ES 2) in game menu

    - by user16547
    (I am specifically asking for Android) If you look at Angry Birds (and in fact many other games), you can already see a lot of animations & effects going in the main menu and in other places even before starting to play. I assume they are done with OpenGL, more precisely a FrameLayout is used and inside it a GLSurfaceView is somewhere at the bottom of the hierarchy; above the GLSurfaceView you have regular Android buttons and texts. Is this how it's done*? Also would you reuse the same GLSurfaceView when running the actual game or should another one be created? *I am aware an alternative approach would be to make absolutely everything in OpenGL. Of these two I prefer the FrameLayout one, but I don't know whether other developers agree.

    Read the article

  • How to end game properly in unity? [duplicate]

    - by user3889649
    This question already has an answer here: Why do I seem to lose control of my computer when full screen Unity game loses focus? 1 answer I have made a game in unity free. The game is functioning properly but if your computer receives any kind of notification, the game minimizes automatically and stops to work completely. Along with that, my computer freezes completely and I need to restart each time. Is there any solution to this problem in unity ?

    Read the article

  • OpenGL directional light creating black spots

    - by AnonymousDeveloper
    I probably ought to start by saying that I suspect the problem is that one of my vectors is not in the correct "space", but I don't know for sure. I am having a strange problem with a directional light. When I move the camera away from (0.0, 0.0, 0.0) it creates tiny black spots that grow larger as the distance increases. I apologize ahead of time for the length of the code. Vertex shader: #version 410 core in vec3 vf_normal; in vec3 vf_bitangent; in vec3 vf_tangent; in vec2 vf_textureCoordinates; in vec3 vf_vertex; out vec3 tc_normal; out vec3 tc_bitangent; out vec3 tc_tangent; out vec2 tc_textureCoordinates; out vec3 tc_vertex; uniform mat3 vf_m_normal; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform float vf_te_inner; uniform float vf_te_outer; void main() { tc_normal = vf_normal; tc_bitangent = vf_bitangent; tc_tangent = vf_tangent; tc_textureCoordinates = vf_textureCoordinates; tc_vertex = vf_vertex; gl_Position = vf_m_mvp * vec4(vf_vertex, 1.0); } Tessellation Control shader: #version 410 core layout (vertices = 3) out; in vec3 tc_normal[]; in vec3 tc_bitangent[]; in vec3 tc_tangent[]; in vec2 tc_textureCoordinates[]; in vec3 tc_vertex[]; out vec3 te_normal[]; out vec3 te_bitangent[]; out vec3 te_tangent[]; out vec2 te_textureCoordinates[]; out vec3 te_vertex[]; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; #define ID gl_InvocationID float getTessLevelInner(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_inner - avgDistance), 1.0, vf_te_inner); } float getTessLevelOuter(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_outer - avgDistance), 1.0, vf_te_outer); } void main() { te_normal[gl_InvocationID] = tc_normal[gl_InvocationID]; te_bitangent[gl_InvocationID] = tc_bitangent[gl_InvocationID]; te_tangent[gl_InvocationID] = tc_tangent[gl_InvocationID]; te_textureCoordinates[gl_InvocationID] = tc_textureCoordinates[gl_InvocationID]; te_vertex[gl_InvocationID] = tc_vertex[gl_InvocationID]; float eyeToVertexDistance0 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[0], 1.0)).xyz); float eyeToVertexDistance1 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[1], 1.0)).xyz); float eyeToVertexDistance2 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[2], 1.0)).xyz); gl_TessLevelOuter[0] = getTessLevelOuter(eyeToVertexDistance1, eyeToVertexDistance2); gl_TessLevelOuter[1] = getTessLevelOuter(eyeToVertexDistance2, eyeToVertexDistance0); gl_TessLevelOuter[2] = getTessLevelOuter(eyeToVertexDistance0, eyeToVertexDistance1); gl_TessLevelInner[0] = getTessLevelInner(eyeToVertexDistance2, eyeToVertexDistance0); } Tessellation Evaluation shader: #version 410 core layout (triangles, equal_spacing, cw) in; in vec3 te_normal[]; in vec3 te_bitangent[]; in vec3 te_tangent[]; in vec2 te_textureCoordinates[]; in vec3 te_vertex[]; out vec3 g_normal; out vec3 g_bitangent; out vec4 g_patchDistance; out vec3 g_tangent; out vec2 g_textureCoordinates; out vec3 g_vertex; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_displace; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 interpolate2D(vec2 v0, vec2 v1, vec2 v2) { return vec2(gl_TessCoord.x) * v0 + vec2(gl_TessCoord.y) * v1 + vec2(gl_TessCoord.z) * v2; } vec3 interpolate3D(vec3 v0, vec3 v1, vec3 v2) { return vec3(gl_TessCoord.x) * v0 + vec3(gl_TessCoord.y) * v1 + vec3(gl_TessCoord.z) * v2; } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2*d*d); return d; } float getDisplacement(vec2 t0, vec2 t1, vec2 t2) { float displacement = 0.0; vec2 textureCoordinates = interpolate2D(t0, t1, t2); vec2 vector = ((t0 + t1 + t2) / 3.0); float sampleDistance = sqrt((vector.x * vector.x) + (vector.y * vector.y)); sampleDistance /= ((vf_te_inner + vf_te_outer) / 2.0); displacement += texture(vf_t_displace, textureCoordinates).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, -sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, -sampleDistance)).x; return (displacement / 5.0); } void main() { g_normal = normalize(interpolate3D(te_normal[0], te_normal[1], te_normal[2])); g_bitangent = normalize(interpolate3D(te_bitangent[0], te_bitangent[1], te_bitangent[2])); g_patchDistance = vec4(gl_TessCoord, (1.0 - gl_TessCoord.y)); g_tangent = normalize(interpolate3D(te_tangent[0], te_tangent[1], te_tangent[2])); g_textureCoordinates = interpolate2D(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); g_vertex = interpolate3D(te_vertex[0], te_vertex[1], te_vertex[2]); float displacement = getDisplacement(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); float d2 = min(min(min(g_patchDistance.x, g_patchDistance.y), g_patchDistance.z), g_patchDistance.w); d2 = amplify(d2, 50, -0.5); g_vertex += g_normal * displacement * 0.1 * d2; gl_Position = vf_m_mvp * vec4(g_vertex, 1.0); } Geometry shader: #version 410 core layout (triangles) in; layout (triangle_strip, max_vertices = 3) out; in vec3 g_normal[3]; in vec3 g_bitangent[3]; in vec4 g_patchDistance[3]; in vec3 g_tangent[3]; in vec2 g_textureCoordinates[3]; in vec3 g_vertex[3]; out vec3 f_tangent; out vec3 f_bitangent; out vec3 f_eyeDirection; out vec3 f_lightDirection; out vec3 f_normal; out vec4 f_patchDistance; out vec4 f_shadowCoordinates; out vec2 f_textureCoordinates; out vec3 f_vertex; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; void main() { int index = 0; while (index < 3) { vec3 vertexNormal_cameraspace = vf_m_normal * normalize(g_normal[index]); vec3 vertexTangent_cameraspace = vf_m_normal * normalize(f_tangent); vec3 vertexBitangent_cameraspace = vf_m_normal * normalize(f_bitangent); mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); vec3 eyeDirection = -(vf_m_view * vf_m_model * vec4(g_vertex[index], 1.0)).xyz; vec3 lightDirection = normalize(-(vf_m_view * vec4(vf_l_position, 1.0)).xyz); f_eyeDirection = TBN * eyeDirection; f_lightDirection = TBN * lightDirection; f_normal = normalize(g_normal[index]); f_patchDistance = g_patchDistance[index]; f_shadowCoordinates = vf_m_depthBias * vec4(g_vertex[index], 1.0); f_textureCoordinates = g_textureCoordinates[index]; f_vertex = (vf_m_model * vec4(g_vertex[index], 1.0)).xyz; gl_Position = gl_in[index].gl_Position; EmitVertex(); index ++; } EndPrimitive(); } Fragment shader: #version 410 core in vec3 f_bitangent; in vec3 f_eyeDirection; in vec3 f_lightDirection; in vec3 f_normal; in vec4 f_patchDistance; in vec4 f_shadowCoordinates; in vec3 f_tangent; in vec2 f_textureCoordinates; in vec3 f_vertex; out vec4 fragColor; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 poissonDisk[16] = vec2[]( vec2(-0.94201624, -0.39906216), vec2( 0.94558609, -0.76890725), vec2(-0.09418410, -0.92938870), vec2( 0.34495938, 0.29387760), vec2(-0.91588581, 0.45771432), vec2(-0.81544232, -0.87912464), vec2(-0.38277543, 0.27676845), vec2( 0.97484398, 0.75648379), vec2( 0.44323325, -0.97511554), vec2( 0.53742981, -0.47373420), vec2(-0.26496911, -0.41893023), vec2( 0.79197514, 0.19090188), vec2(-0.24188840, 0.99706507), vec2(-0.81409955, 0.91437590), vec2( 0.19984126, 0.78641367), vec2( 0.14383161, -0.14100790) ); float random(vec3 seed, int i) { vec4 seed4 = vec4(seed,i); float dot_product = dot(seed4, vec4(12.9898, 78.233, 45.164, 94.673)); return fract(sin(dot_product) * 43758.5453); } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2.0 * d * d); return d; } void main() { vec3 lightColor = vf_l_color.xyz; float lightPower = vf_l_color.w; vec3 materialDiffuseColor = texture(vf_t_diffuse, f_textureCoordinates).xyz; vec3 materialAmbientColor = vec3(0.1, 0.1, 0.1) * materialDiffuseColor; vec3 materialSpecularColor = texture(vf_t_specular, f_textureCoordinates).xyz; vec3 n = normalize(texture(vf_t_normal, f_textureCoordinates).rgb * 2.0 - 1.0); vec3 l = normalize(f_lightDirection); float cosTheta = clamp(dot(n, l), 0.0, 1.0); vec3 E = normalize(f_eyeDirection); vec3 R = reflect(-l, n); float cosAlpha = clamp(dot(E, R), 0.0, 1.0); float visibility = 1.0; float bias = 0.005 * tan(acos(cosTheta)); bias = clamp(bias, 0.0, 0.01); for (int i = 0; i < 4; i ++) { float shading = (0.5 / 4.0); int index = i; visibility -= shading * (1.0 - texture(vf_t_shadow, vec3(f_shadowCoordinates.xy + poissonDisk[index] / 3000.0, (f_shadowCoordinates.z - bias) / f_shadowCoordinates.w))); }\n" fragColor.xyz = materialAmbientColor + visibility * materialDiffuseColor * lightColor * lightPower * cosTheta + visibility * materialSpecularColor * lightColor * lightPower * pow(cosAlpha, 5); fragColor.w = texture(vf_t_diffuse, f_textureCoordinates).w; } The following images should be enough to give you an idea of the problem. Before moving the camera: Moving the camera just a little. Moving it to the center of the scene.

    Read the article

  • Is there a size limit when using UICollectionView as tiled map for iOS game?

    - by Alexander Winn
    I'm working on a turn-based strategy game for iOS, (picture Civilization 2 as an example), and I'm considering using a UICollectionView as my game map. Each cell would be a tile, and I could use the "didSelectCell" method to handle player interaction with each tile. Here's my question: I know that UICollectionViewCells are dequeued and reused by the OS, so does that mean that the map could support an effectively infinitely-large map, so long as only a few cells are onscreen at a time? However many cells were onscreen would be held in memory, and obviously the data source would take up some memory, but would my offscreen map be limited to a certain size or could it be enormous so long as the number of cells visible at any one time wasn't too much for the device to handle? Basically, is there any memory weight to offscreen cells, or do only visible cells have any impact?

    Read the article

  • 3d trajectory - calculate initial velocity

    - by Skoder
    Hey, I've got a 2D projectile code sample working, but would like to extend it to 3D. How would I calculate the initial velocity of the Z-axis? At the moment, I've got: initVel.X = (float)Math.Cos(45.0); initVel.Y = (float)Math.Sin(45.0); How would I convert this to work in 3D (and add the initial velocity for the Z-axis)? In my example, X is across, Y is up down and Z is going into the screen. I also normalize the vector and multiply it by the speed. Thanks

    Read the article

  • Optimizing hierarchical transform

    - by Geotarget
    I'm transforming objects in 3D space by transforming each vector with the object's 4x4 transform matrix. In order to achieve hierarchical transform, I transform the child by its own matrix, and then the child by the parent matrix. This becomes costly because objects deeper in the display tree have to be transformed by all the parent objects. This is what's happening, in summary: Root -- transform its verts by Root matrix Parent -- transform its verts by Parent, Root matrix Child -- transform its verts by Child, Parent, Root matrix Is there a faster way to transform vertices to achieve hierarchical transform? What If I first concatenated each transform matrix with the parent matrices, and then transform verts by that final resulting matrix, would that work and wouldn't that be faster? Root -- transform its verts by Root matrix Parent -- concat Parent, Root matrices, transform its verts by Concated matrix Child -- concat Child, Parent, Root matrices, transform its verts by Concated matrix

    Read the article

  • Animation Color [on hold]

    - by user2425429
    I'm having problems in my java program for animation. I'm trying to draw a hexagon with a shape similar to that of a trapezoid. Then, I'm making it move to the right for a certain amount of time (DEMO_TIME). Animation and ScreenManager are "API" classes, and AnimationTest1 is a demo. In my test program, it runs with a black screen and white stroke color. I'd like to know why this happened and how to fix it. I'm a beginner, so I apologize for this question being stupid to all you game programmers. Here is the code I have now: import java.awt.DisplayMode; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Image; import java.awt.Polygon; import java.util.ArrayList; import java.util.List; import java.util.concurrent.Executor; import java.util.concurrent.Executors; import javax.swing.ImageIcon; public class AnimationTest1 { public static void main(String args[]) { AnimationTest1 test = new AnimationTest1(); test.run(); } private static final DisplayMode POSSIBLE_MODES[] = { new DisplayMode(800, 600, 32, 0), new DisplayMode(800, 600, 24, 0), new DisplayMode(800, 600, 16, 0), new DisplayMode(640, 480, 32, 0), new DisplayMode(640, 480, 24, 0), new DisplayMode(640, 480, 16, 0) }; private static final long DEMO_TIME = 4000; private ScreenManager screen; private Image bgImage; private Animation anim; public void loadImages() { // create animation List<Polygon> polygons=new ArrayList(); int[] x=new int[]{20,4,4,20,40,56,56,40}; int[] y=new int[]{20,32,40,44,44,40,32,20}; polygons.add(new Polygon(x,y,8)); anim = new Animation(); //# of frames long startTime = System.currentTimeMillis(); long currTimer = startTime; long elapsedTime = 0; boolean animated = false; Graphics2D g = screen.getGraphics(); int width=200; int height=200; while (currTimer - startTime < DEMO_TIME*2) { //draw the polygons if(!animated){ for(int j=0; j<polygons.size();j++){ for(int pos=0; pos<polygons.get(j).npoints; pos++){ polygons.get(j).xpoints[pos]+=1; } } anim.setNewPolyFrame(polygons , width , height , 64); } else{ // update animation anim.update(elapsedTime); draw(g); g.dispose(); screen.update(); try{ Thread.sleep(20); } catch(InterruptedException ie){} } if(currTimer - startTime == DEMO_TIME) animated=true; elapsedTime = System.currentTimeMillis() - currTimer; currTimer += elapsedTime; } } public void run() { screen = new ScreenManager(); try { DisplayMode displayMode = screen.findFirstCompatibleMode(POSSIBLE_MODES); screen.setFullScreen(displayMode); loadImages(); } finally { screen.restoreScreen(); } } public void draw(Graphics g) { // draw background g.drawImage(bgImage, 0, 0, null); // draw image g.drawImage(anim.getImage(), 0, 0, null); } } ScreenManager: import java.awt.Color; import java.awt.DisplayMode; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.GraphicsConfiguration; import java.awt.GraphicsDevice; import java.awt.GraphicsEnvironment; import java.awt.Toolkit; import java.awt.Window; import java.awt.event.KeyListener; import java.awt.event.MouseListener; import java.awt.image.BufferStrategy; import java.awt.image.BufferedImage; import javax.swing.JFrame; import javax.swing.JPanel; public class ScreenManager extends JPanel { private GraphicsDevice device; /** Creates a new ScreenManager object. */ public ScreenManager() { GraphicsEnvironment environment=GraphicsEnvironment.getLocalGraphicsEnvironment(); device = environment.getDefaultScreenDevice(); setBackground(Color.white); } /** Returns a list of compatible display modes for the default device on the system. */ public DisplayMode[] getCompatibleDisplayModes() { return device.getDisplayModes(); } /** Returns the first compatible mode in a list of modes. Returns null if no modes are compatible. */ public DisplayMode findFirstCompatibleMode( DisplayMode modes[]) { DisplayMode goodModes[] = device.getDisplayModes(); for (int i = 0; i < modes.length; i++) { for (int j = 0; j < goodModes.length; j++) { if (displayModesMatch(modes[i], goodModes[j])) { return modes[i]; } } } return null; } /** Returns the current display mode. */ public DisplayMode getCurrentDisplayMode() { return device.getDisplayMode(); } /** Determines if two display modes "match". Two display modes match if they have the same resolution, bit depth, and refresh rate. The bit depth is ignored if one of the modes has a bit depth of DisplayMode.BIT_DEPTH_MULTI. Likewise, the refresh rate is ignored if one of the modes has a refresh rate of DisplayMode.REFRESH_RATE_UNKNOWN. */ public boolean displayModesMatch(DisplayMode mode1, DisplayMode mode2) { if (mode1.getWidth() != mode2.getWidth() || mode1.getHeight() != mode2.getHeight()) { return false; } if (mode1.getBitDepth() != DisplayMode.BIT_DEPTH_MULTI && mode2.getBitDepth() != DisplayMode.BIT_DEPTH_MULTI && mode1.getBitDepth() != mode2.getBitDepth()) { return false; } if (mode1.getRefreshRate() != DisplayMode.REFRESH_RATE_UNKNOWN && mode2.getRefreshRate() != DisplayMode.REFRESH_RATE_UNKNOWN && mode1.getRefreshRate() != mode2.getRefreshRate()) { return false; } return true; } /** Enters full screen mode and changes the display mode. If the specified display mode is null or not compatible with this device, or if the display mode cannot be changed on this system, the current display mode is used. <p> The display uses a BufferStrategy with 2 buffers. */ public void setFullScreen(DisplayMode displayMode) { JFrame frame = new JFrame(); frame.setUndecorated(true); frame.setIgnoreRepaint(true); frame.setResizable(true); device.setFullScreenWindow(frame); if (displayMode != null && device.isDisplayChangeSupported()) { try { device.setDisplayMode(displayMode); } catch (IllegalArgumentException ex) { } } frame.createBufferStrategy(2); Graphics g=frame.getGraphics(); g.setColor(Color.white); g.drawRect(0, 0, frame.WIDTH, frame.HEIGHT); frame.paintAll(g); g.setColor(Color.black); g.dispose(); } /** Gets the graphics context for the display. The ScreenManager uses double buffering, so applications must call update() to show any graphics drawn. <p> The application must dispose of the graphics object. */ public Graphics2D getGraphics() { Window window = device.getFullScreenWindow(); if (window != null) { BufferStrategy strategy = window.getBufferStrategy(); return (Graphics2D)strategy.getDrawGraphics(); } else { return null; } } /** Updates the display. */ public void update() { Window window = device.getFullScreenWindow(); if (window != null) { BufferStrategy strategy = window.getBufferStrategy(); if (!strategy.contentsLost()) { strategy.show(); } } // Sync the display on some systems. // (on Linux, this fixes event queue problems) Toolkit.getDefaultToolkit().sync(); } /** Returns the window currently used in full screen mode. Returns null if the device is not in full screen mode. */ public Window getFullScreenWindow() { return device.getFullScreenWindow(); } /** Returns the width of the window currently used in full screen mode. Returns 0 if the device is not in full screen mode. */ public int getWidth() { Window window = device.getFullScreenWindow(); if (window != null) { return window.getWidth(); } else { return 0; } } /** Returns the height of the window currently used in full screen mode. Returns 0 if the device is not in full screen mode. */ public int getHeight() { Window window = device.getFullScreenWindow(); if (window != null) { return window.getHeight(); } else { return 0; } } /** Restores the screen's display mode. */ public void restoreScreen() { Window window = device.getFullScreenWindow(); if (window != null) { window.dispose(); } device.setFullScreenWindow(null); } /** Creates an image compatible with the current display. */ public BufferedImage createCompatibleImage(int w, int h, int transparency) { Window window = device.getFullScreenWindow(); if (window != null) { GraphicsConfiguration gc = window.getGraphicsConfiguration(); return gc.createCompatibleImage(w, h, transparency); } return null; } } Animation: import java.awt.Color; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Image; import java.awt.Polygon; import java.awt.image.BufferedImage; import java.util.ArrayList; import java.util.List; /** The Animation class manages a series of images (frames) and the amount of time to display each frame. */ public class Animation { private ArrayList frames; private int currFrameIndex; private long animTime; private long totalDuration; /** Creates a new, empty Animation. */ public Animation() { frames = new ArrayList(); totalDuration = 0; start(); } /** Adds an image to the animation with the specified duration (time to display the image). */ public synchronized void addFrame(BufferedImage image, long duration){ ScreenManager s = new ScreenManager(); totalDuration += duration; frames.add(new AnimFrame(image, totalDuration)); } /** Starts the animation over from the beginning. */ public synchronized void start() { animTime = 0; currFrameIndex = 0; } /** Updates the animation's current image (frame), if necessary. */ public synchronized void update(long elapsedTime) { if (frames.size() >= 1) { animTime += elapsedTime; /*if (animTime >= totalDuration) { animTime = animTime % totalDuration; currFrameIndex = 0; }*/ while (animTime > getFrame(0).endTime) { frames.remove(0); } } } /** Gets the Animation's current image. Returns null if this animation has no images. */ public synchronized Image getImage() { if (frames.size() > 0&&!(currFrameIndex>=frames.size())) { return getFrame(currFrameIndex).image; } else{ System.out.println("There are no frames!"); System.exit(0); } return null; } private AnimFrame getFrame(int i) { return (AnimFrame)frames.get(i); } private class AnimFrame { Image image; long endTime; public AnimFrame(Image image, long endTime) { this.image = image; this.endTime = endTime; } } public void setNewPolyFrame(List<Polygon> polys,int imagewidth,int imageheight,int time){ BufferedImage image=new BufferedImage(imagewidth, imageheight, 1); Graphics g=image.getGraphics(); for(int i=0;i<polys.size();i++){ g.drawPolygon(polys.get(i)); } addFrame(image,time); g.dispose(); } }

    Read the article

  • Partial Shader Signatures HLSL D3D11 C++

    - by ThePhD
    I had been debugging a problem I was having in a single shader file with 2 functions in it. I'm using DirectX 11, vs_5_0 and ps_5_0. I have stripped it down to its basic components to understand what was going wrong with the shaders, because the different named components of the Pixel and Vertex shaders were swapping the data being input: void QuadVertex ( inout float4 position : SV_Position, inout float4 color : COLOR0, inout float2 tex : TEXCOORD0 ) { // ViewProject is a 4x4 matrix, // just included here to show the simple passthrough of the data position = mul(position, ViewProjection); } And a Pixel Shader: float4 QuadPixel ( float4 color : COLOR0, float2 tex : TEXCOORD0 ) : SV_Target0 { // Color is filled with position data and tex is // filled with color values from the Vertex Shader return color; } The ID3D11InputLayout and associated C++ code correctly compiles the shaders and sets them up with some simple primitive data: data[0].Position.x = 0.0f * 210; data[0].Position.y = 1.0f * 160; data[0].Position.z = 0.0f; data[1].Position.x = 0.0f * 210; data[1].Position.y = 0.0f * 160; data[1].Position.z = 0.0f; data[2].Position.x = 1.0f * 210; data[2].Position.y = 1.0f * 160; data[2].Position.z = 0.0f; data[0].Colour = Colors::Red; data[1].Colour = Colors::Red; data[2].Colour = Colors::Red; data[0].Texture = Vector2::Zero; data[1].Texture = Vector2::Zero; data[2].Texture = Vector2::Zero; When used with the shader, the float4 color always ended up with the position data, and the float2 tex always ended up with the color data. After a moment, I figured out that the shader's input and output signatures needed to be in the correct order and the correct format and be laid out in the exact order of the output from the Vertex Shader, regardless of the semantics: float4 QuadPixel ( float4 pos : SV_Position, float4 color : COLOR0, float2 tex : TEXCOORD0 ) : SV_Target0 { return color; } After finding this out, My question is: Why don't the semantics map the appropriate components when going from Vertex Shader to Pixel Shader? Is there any way that I can make it so certain semantics are always mapped to other semantics, or do I always have to follow the rigid Shader Signature (in this case, Position, Color, and Texture) ? As a side note for why I'm asking: I know that when using XNA, my shader signatures for functions could differ in position and even drop items from Vertex Shader to Pixel Shader function parameters, having only the COLOR0 and TEXCOORD0 components being used (and it would still match up correctly). However, I also know that XNA relied on DX9 (and maybe a little DX10) implementation, and that maybe this kind of flexibility no longer exists in DX11?

    Read the article

  • Grid Based Lighting in XNA/Monogame

    - by sm81095
    I know that questions like this have been asked many times, but I have not found one exactly like this yes. I have implemented a top-down grid based world in Monogame, and am starting on the lighting system soon. How I want to do lighting is to have a grid that is 4 times wider and higher, basically splitting each world tile into a 4x4 system of "subtiles". I would like to use a flow like system to spread light across the tiles by reducing the light by a small amount each time. This is kind of the effect I was going for: http://i.imgur.com/rv8LCxZ.png The black grid lines are the light grid, and the red lines are the actual tile grid, and the light drop-off is very exaggerated. I plan to render the world by drawing the unlit grid to a separate RenderTarget2D, then rendering the lighting grid to a separate target and overlaying the two. Basically, my questions are: What would be the algorithm for a flow style lighting system like this? Would there be a more efficient way of rendering this? How would I handle the darkening of the light with colors, reducing the RGB values in each grid, or reducing the alpha in each grid, assuming that I render the light map over the grid using blending? Even assuming the former are possible, what BlendState would I use for that?

    Read the article

  • Can't use my form

    - by Alexandr
    I have class with my form in folder /application/forms/Auth.php it looks like class Form_Auth extends Zend_Form { public function __construct() { $this->setName(); parent::__construct(); $username = new Zend_Form_Element_Text('username'); $password = new Zend_Form_Element_Password('password'); $mail = new Zend_Form_Element_Text('mail'); $submit = new Zend_Form_Element_Submit('submit'); $this->addElements(array($username,$password,$mail,$submit)); } } When i try create object $this->view->form = new Form_Auth(); is see exeption Application error Exception information: Message: Invalid name provided; must contain only valid variable characters and be non-empty Stack trace: D:\WWW\zends\application\Forms\Auth.php(8): Zend_Form-setName() d:\WWW\zends\application\controllers\RegistrationController.php(49): Form_Auth-__construct() D:\WebServer\ZendFramework\ZendFramework\library\Zend\Controller\Action.php(513): RegistrationController-indexAction() D:\WebServer\ZendFramework\ZendFramework\library\Zend\Controller\Dispatcher\Standard.php(289): Zend_Controller_Action-dispatch('indexAction') D:\WebServer\ZendFramework\ZendFramework\library\Zend\Controller\Front.php(954): Zend_Controller_Dispatcher_Standard-dispatch(Object(Zend_Controller_Request_Http), Object(Zend_Controller_Response_Http)) D:\WebServer\ZendFramework\ZendFramework\library\Zend\Application\Bootstrap\Bootstrap.php(97): Zend_Controller_Front-dispatch() D:\WebServer\ZendFramework\ZendFramework\library\Zend\Application.php(366): Zend_Application_Bootstrap_Bootstrap-run() D:\WWW\zends\public\index.php(26): Zend_Application-run() {main} Request Parameters: array ( 'controller' = 'registration', 'action' = 'index', 'module' = 'default', ) the version zf is 1.10.3 what i do wrong ?

    Read the article

  • Delay command execution over sockets

    - by David
    I've been trying to fix the game loop in a real time (tick delay) MUD. I realized using Thread.Sleep would seem clunky when the user spammed commands through their choice of client (Zmud, etc) e.g. east;south;southwest would wait three move ticks and then output everything from the past couple rooms. The game loop basically calls a Flush and Fill method for each socket during each tick (50ms) private void DoLoop() { Stopwatch stopWatch = new Stopwatch(); stopWatch.Start(); while (running) { // for each socket, flush and fill ConnectionMonitor.Update(); stopWatch.Stop(); WaitIfNeeded(stopWatch.ElapsedMilliseconds); stopWatch.Reset(); } } The Fill method fires the command events, but as mentioned before, they currently block using Thread.Sleep. I tried adding a "ready" flag to the state object that attempts to execute the command along with a queue of spammed commands, but it ends up executing one command and queuing up the rest i.e. each subsequent command executes something that got queued up that should've been executed before. I must be missing something about the timer. private readonly Queue<SpammedCommand> queuedCommands = new Queue<SpammedCommand>(); private bool ready = true; private void TryExecuteCommand(string input) { var commandContext = CommandContext.Create(input); var player = Server.Current.Database.Get<Player>(Session.Player.Key); var commandInfo = Server.Current.CommandLookup .FindCommand(commandContext.CommandName, player.IsAdmin); if (commandInfo != null) { if (!ready) { // queue command queuedCommands.Enqueue(new SpammedCommand() { Context = commandContext, Info = commandInfo }); return; } if (queuedCommands.Count > 0) { // queue the incoming command queuedCommands.Enqueue(new SpammedCommand() { Context = commandContext, Info = commandInfo, }); // dequeue and execute var command = queuedCommands.Dequeue(); command.Info.Command.Execute(Session, command.Context); setTimeout(command.Info.TickLength); return; } commandInfo.Command.Execute(Session, commandContext); setTimeout(commandInfo.TickLength); } else { Session.WriteLine("Command not recognized"); } } Finally, setTimeout was supposed to set the execution delay (TickLength) for that command, and makeReady just sets the ready flag on the state object to true. private void setTimeout(TickDelay tickDelay) { ready = false; var t = new System.Timers.Timer() { Interval = (long) tickDelay, AutoReset = false, }; t.Elapsed += makeReady; t.Start(); // fire this in tickDelay ms } // MAKE READYYYYY!!!! private void makeReady(object sender, System.Timers.ElapsedEventArgs e) { ready = true; } Am I missing something about the System.Timers.Timer created in setTimeout? How can I execute (and output) spammed commands per TickLength without using Thread.Sleep?

    Read the article

  • GLES2.0 3D Android game performance and multi threading the update?

    - by Ofer
    I have profiled my mixed Java\C++ Android game and I got the following result: https://dl.dropbox.com/u/8025882/PompiDev/AndroidProfile.png As you can see, the pink think is a C++ functions that updates the game. It does things like updating the logic but it mostly it generates a "request list" for rendering. The thing is, I generate DrawLists on C++ and then send them to Java to process and draw using GLES2.0. Since then I was able to improve update from 9ms down to about 7ms, but I would like to ask if I would benefit from multi threading the update? As I understand from that diagram is that the function that takes the most time is the one you see it's color on the timeline. So the pink area is taken mostly by update. The other area has MainOpenGL.Handle as it's main contributor(whch is my java function), but since it's not drawn to the top of the diagram I can conclude other things are happening at the same time that use the CPU? Or even GPU stuff that isn't shown in this diagram. I am not sure how the GPU works on this. Does it calculate stuff in parallel to the CPU? Or is it part of the CPU usage as in SoC? I am not sure. Anyway, in case GPU things DO happen in parallel to CPU, then I would guess that if I do this C++ Update in parallel to the thread that makes the OpenGL calls, I might make use of "dead CPU time" due to GPU stalling or maybe have the GPU calls getting processed earlier because it won't have to wait for Update to finish? How do you suggest to improve performance based on that? Thanks.

    Read the article

  • Getting a mirrored mesh from my data structure

    - by Steve
    Here's the background: I'm in the beginning stages of an RTS game in Unity. I have a procedurally generated terrain with a perlin-noise height map, as well as a function to generate a river. The problem is that the graphical creation of the map is taking the data structure of the map and rotating it by 180 degrees. I noticed this problem when I was creating my rivers. I would set the River's height to flat, and noticed that the actual tiles that were flat in the graphical representation were flipped and mirrored. Here's 3 screenshots of the map from different angles: http://imgur.com/a/VLHHq As you can see, if you flipped (graphically) the river by 180 degrees on the z axis, it would fit where the terrain is flattened. I have a suspicion it is being caused by a misunderstanding on my part of how vertices work. Alas, here is a snippet of the code that is used: This code here creates a new array of Tile objects, which hold the information for each tile, including its type, coordinate, height, and it's 4 vertices public DTileMap (int size_x, int size_y) { this.size_x = size_x; this.size_y = size_y; //Initialize Map_Data Array of Tile Objects map_data = new Tile[size_x, size_y]; for (int j = 0; j < size_y; j++) { for (int i = 0; i < size_x; i++) { map_data [i, j] = new Tile (); map_data[i,j].coordinate.x = (int)i; map_data[i,j].coordinate.y = (int)j; map_data[i,j].vertices[0] = new Vector3 (i * GTileMap.TileMap.tileSize, map_data[i,j].Height, -j * GTileMap.TileMap.tileSize); map_data[i,j].vertices[1] = new Vector3 ((i+1) * GTileMap.TileMap.tileSize, map_data[i,j].Height, -(j) * GTileMap.TileMap.tileSize); map_data[i,j].vertices[2] = new Vector3 (i * GTileMap.TileMap.tileSize, map_data[i,j].Height, -(j-1) * GTileMap.TileMap.tileSize); map_data[i,j].vertices[3] = new Vector3 ((i+1) * GTileMap.TileMap.tileSize, map_data[i,j].Height, -(j-1) * GTileMap.TileMap.tileSize); } } This code sets the river tiles to height 0 foreach (Tile t in map_data) { if (t.realType == "Water") { t.vertices[0].y = 0f; t.vertices[1].y = 0f; t.vertices[2].y = 0f; t.vertices[3].y = 0f; } } And below is the code to generate the actual graphics from the data: public void BuildMesh () { DTileMap.DTileMap map = new DTileMap.DTileMap (size_x, size_z); int numTiles = size_x * size_z; int numTris = numTiles * 2; int vsize_x = size_x + 1; int vsize_z = size_z + 1; int numVerts = vsize_x * vsize_z; // Generate the mesh data Vector3[] vertices = new Vector3[ numVerts ]; Vector3[] normals = new Vector3[numVerts]; Vector2[] uv = new Vector2[numVerts]; int[] triangles = new int[ numTris * 3 ]; int x, z; for (z=0; z < vsize_z; z++) { for (x=0; x < vsize_x; x++) { normals [z * vsize_x + x] = Vector3.up; uv [z * vsize_x + x] = new Vector2 ((float)x / size_x, 1f - (float)z / size_z); } } for (z=0; z < vsize_z; z+=1) { for (x=0; x < vsize_x; x+=1) { if (x == vsize_x - 1 && z == vsize_z - 1) { vertices [z * vsize_x + x] = DTileMap.DTileMap.map_data [x - 1, z - 1].vertices [3]; } else if (z == vsize_z - 1) { vertices [z * vsize_x + x] = DTileMap.DTileMap.map_data [x, z - 1].vertices [2]; } else if (x == vsize_x - 1) { vertices [z * vsize_x + x] = DTileMap.DTileMap.map_data [x - 1, z].vertices [1]; } else { vertices [z * vsize_x + x] = DTileMap.DTileMap.map_data [x, z].vertices [0]; vertices [z * vsize_x + x+1] = DTileMap.DTileMap.map_data [x, z].vertices [1]; vertices [(z+1) * vsize_x + x] = DTileMap.DTileMap.map_data [x, z].vertices [2]; vertices [(z+1) * vsize_x + x+1] = DTileMap.DTileMap.map_data [x, z].vertices [3]; } } } } for (z=0; z < size_z; z++) { for (x=0; x < size_x; x++) { int squareIndex = z * size_x + x; int triOffset = squareIndex * 6; triangles [triOffset + 0] = z * vsize_x + x + 0; triangles [triOffset + 2] = z * vsize_x + x + vsize_x + 0; triangles [triOffset + 1] = z * vsize_x + x + vsize_x + 1; triangles [triOffset + 3] = z * vsize_x + x + 0; triangles [triOffset + 5] = z * vsize_x + x + vsize_x + 1; triangles [triOffset + 4] = z * vsize_x + x + 1; } } // Create a new Mesh and populate with the data Mesh mesh = new Mesh (); mesh.vertices = vertices; mesh.triangles = triangles; mesh.normals = normals; mesh.uv = uv; // Assign our mesh to our filter/renderer/collider MeshFilter mesh_filter = GetComponent<MeshFilter> (); MeshCollider mesh_collider = GetComponent<MeshCollider> (); mesh_filter.mesh = mesh; mesh_collider.sharedMesh = mesh; calculateMeshTangents (mesh); BuildTexture (map); } If this looks familiar to you, its because i got most of it from Quill18. I've been slowly adapting it for my uses. And please include any suggestions you have for my code. I'm still in the very early prototyping stage.

    Read the article

  • Cutting out smaller rectangles from a larger rectangle

    - by Mauro Destro
    The world is initially a rectangle. The player can move on the world border and then "cut" the world via orthogonal paths (not oblique). When the player reaches the border again I have a list of path segments they just made. I'm trying to calculate and compare the two areas created by the path cut and select the smaller one to remove it from world. After the first iteration, the world is no longer a rectangle and player must move on border of this new shape. How can I do this? Is it possible to have a non rectangular path? How can I move the player character only on path? EDIT Here you see an example of what I'm trying to achieve: Initial screen layout. Character moves inside the world and than reaches the border again. Segment of the border present in the smaller area is deleted and last path becomes part of the world border. Character moves again inside the world. Segments of border present in the smaller area are deleted etc.

    Read the article

  • Cocos2d: Adding a CCSequence to a CCArray

    - by Axort
    I have a problem with an action performed by a sprite. I have one CCSequence in a CCArray and I have an scheduled method (is called every 5 seconds) that make the sprite run the action. The action is performed correctly only the first time (the first 5 seconds), after that, the action do whatever it wants lol. Here is the code: In .h - @interface PowerUpLayer : CCLayer { PowerUp *powerUp; CCArray *trajectories; } @property (nonatomic, retain) CCArray *trajectories; In .mm - @implementation PowerUpLayer @synthesize trajectories; -(id)init { if((self = [super init])) { [self createTrajectories]; self.isTouchEnabled = YES; [self schedule:@selector(spawn:) interval:5]; } return self; } -(void)createTrajectories { self.trajectories = [CCArray arrayWithCapacity:1]; //Wave trajectory ccBezierConfig firstWave, secondWave; firstWave.controlPoint_1 = CGPointMake([[CCDirector sharedDirector] winSize].width + 30, [[CCDirector sharedDirector] winSize].height / 2);//powerUp.sprite.position.x, powerUp.sprite.position.y); firstWave.controlPoint_2 = CGPointMake([[CCDirector sharedDirector] winSize].width - ([[CCDirector sharedDirector] winSize].width / 4), 0); firstWave.endPosition = CGPointMake([[CCDirector sharedDirector] winSize].width / 2, [[CCDirector sharedDirector] winSize].height / 2); secondWave.controlPoint_1 = CGPointMake([[CCDirector sharedDirector] winSize].width / 2, [[CCDirector sharedDirector] winSize].height / 2); secondWave.controlPoint_2 = CGPointMake([[CCDirector sharedDirector] winSize].width / 4, [[CCDirector sharedDirector] winSize].height); secondWave.endPosition = CGPointMake(-30, [[CCDirector sharedDirector] winSize].height / 2); id bezierWave1 = [CCBezierTo actionWithDuration:1 bezier:firstWave]; id bezierWave2 = [CCBezierTo actionWithDuration:1 bezier:secondWave]; id waveTrajectory = [CCSequence actions:bezierWave1, bezierWave2, [CCCallFuncN actionWithTarget:self selector:@selector(setInvisible:)], nil]; [self.trajectories addObject:waveTrajectory]; //[powerUp.sprite runAction:bezierForward]; // [CCMoveBy actionWithDuration:3 position:CGPointMake(-[[CCDirector sharedDirector] winSize].width - powerUp.sprite.contentSize.width, 0)] //[powerUp.sprite runAction:[CCSequence actions:bezierWave1, bezierWave2, [CCCallFuncN actionWithTarget:self selector:@selector(setInvisible:)], nil]]; } -(void)setInvisible:(id)sender { if(powerUp != nil) { [self removeChild:sender cleanup:YES]; powerUp = nil; } } This is the scheduled method: -(void)spawn:(ccTime)dt { if(powerUp == nil) { powerUp = [[PowerUp alloc] initWithType:0]; powerUp.sprite.position = CGPointMake([[CCDirector sharedDirector] winSize].width + powerUp.sprite.contentSize.width, [[CCDirector sharedDirector] winSize].height / 2); [self addChild:powerUp.sprite z:-1]; [powerUp.sprite runAction:((CCSequence *)[self.trajectories objectAtIndex:0])]; } } I don't know what is happening; I never modify the content of the CCSequence after the first time. Thanks!

    Read the article

  • RPG Item processing

    - by f00b4r
    I started working on an item system for my (first) game, and I'm having a problem conceptualizing how it should work. Since Items can produce a bunch of potentially non-standard actions (revive a character vs increasing some stat) or have use restrictions (can only revive if a character is dead). For obvious reasons, I don't want to create a new Item class for every item type. What is the best way to handle this? Should I make a handful of item types (field modifiers, status modifiers, )? Is it normal to script item usage? Could (should?) this be combined with the above mentioned solution (have a couple of different sub item types, make special case items usage scripted)? Thanks.

    Read the article

  • Java enum pairs / "subenum" or what exactly?

    - by vemalsar
    I have an RPG-style Item class and I stored the type of the item in enum (itemType.sword). I want to store subtype too (itemSubtype.long), but I want to express the relation between two data type (sword can be long, short etc. but shield can't be long or short, only round, tower etc). I know this is wrong source code but similar what I want: enum type { sword; } //not valid code! enum swordSubtype extends type.sword { short, long } Question: How can I define this connection between two data type (or more exactly: two value of the data types), what is the most simple and standard way? Array-like data with all valid (itemType,itemSubtype) enum pairs or (itemType,itemSubtype[]) so more subtype for one type, it would be the best. OK but how can I construct this simplest way? Special enum with "subenum" set or second level enum or anything else if it does exists 2 dimensional "canBePairs" array, itemType and itemSubtype dimensions with all type and subtype and boolean elements, "true" means itemType (first dimension) and itemSubtype (second dimension) are okay, "false" means not okay Other better idea Thank you very much!

    Read the article

  • Almost working 2D Collisions

    - by TheGag96
    I'm terribly sorry I'm asking this question YET AGAIN, but I can almost guarantee that this will be the last time I'll have to ask. I'm currently on the verge of FINALLY getting these collisions to work for my game, made with libGDX in Java. My collisions use the same method as (and are basically copied and modified code from) the XNA Platformer example (here) where the direction of the collision is based on the rectangle where two objects are overlapping. The collisions themselves almost work perfectly, but for some reason, holding down/up and left and colliding with the floor/ceiling while doing so doesn't seem to work well. I'm not at all sure why. Instead of vaguely giving my problem and snippets of code, I've decided to instead provide a binary and the source of the game I have so far so you can see for yourself what my problem is. Link. (Note: make sure you unzip everything into a folder somewhere or it will not work) You'll find the collision code in the method workingCollisions() in Link.java. Please excuse the messy code and terrible graphics as this whole thing is in pre-pre-alpha. If anyone is kind enough and helps me out here, you are the best person ever. I'm completely desperate; I've been trying this on and off for months and I just can't get it to work. I cannot thank you enough.

    Read the article

  • Handling player/background movements in 2D games

    - by lukeluke
    Suppose you have your animated character controlled by the player and a 2D world (like the old 2D side-scrolling games). When the user press right on the keyboard, the background is moved to the right. If the path is always horizontal, this is simple to do (incrementation/decrementation of the x-coordinate). But suppose that the path is instead a polygonal chain. My questions are: How do you move the background? How do you move the background if the game objects are managed with a physics engine like box2D?

    Read the article

  • Character with several colliders and rigidbodies

    - by Lautaro
    I am doing a PvP fighting game. This is the GameObject hierarchy of the player character. Player contains: Legs Sword Torso Head I want to be able to Register impacts of the sword on a specific body part Use AddForce on the whole player entity when a body part is struck Change the animation of the player that owns the sword that hit Questions Is it correct that the only rigidbody should be on the root Player GameObject ? Is it correct that The body parts should have colliders and be triggers ? Is it correct that The swords should have colliders but not be trigger ?

    Read the article

  • Ray Picking Problems

    - by A Name I Haven't Decided On
    I've read so many answers on here about how to do Ray Picking, that I thought I had the idea of it down. But when I try to implement it in my game, I get garbage. I'm working with LWJGL. Here's the code: public static Ray getPick(int mouseX, int mouseY){ glPushMatrix(); //Setting up the Mouse Clip Vector4f mouseClip = new Vector4f((float)mouseX * 2 / 960f - 1, 1 - (float)mouseY * 2 / 640f ,0 ,1); //Loading Matrices FloatBuffer modMatrix = BufferUtils.createFloatBuffer(16); FloatBuffer projMatrix = BufferUtils.createFloatBuffer(16); glGetFloat(GL_MODELVIEW_MATRIX, modMatrix); glGetFloat(GL_PROJECTION_MATRIX, projMatrix); //Assigning Matrices Matrix4f proj = new Matrix4f(); Matrix4f model = new Matrix4f(); model.load(modMatrix); proj.load(projMatrix); //Multiplying the Projection Matrix by the Model View Matrix Matrix4f tempView = new Matrix4f(); Matrix4f.mul(proj, model, tempView); tempView.invert(); //Getting the Camera Position in World Space. The 4th Column of the Model View Matrix. model.invert(); Point cameraPos = new Point(model.m30, model.m31, model.m32); //Theoretically getting the vector the Picking Ray goes Vector4f rayVector = new Vector4f(); Matrix4f.transform(tempView, mouseClip, rayVector); rayVector.translate((float)-cameraPos.getX(),(float) -cameraPos.getY(),(float) -cameraPos.getZ(), 0f); rayVector.normalise(); glPopMatrix(); //This Basically Spits out a value that changes as the Camera moves. //When the Mouse moves, the values change around 0.001 points from screen edge to edge. System.out.format("Vector: %f %f %f%n", rayVector.x, rayVector.y, rayVector.z); //return new Ray(cameraPos, rayVector); return null; } I don't really know why this isn't working. I was hoping some more experienced eyes might be able to help me out. I can get the camera position like a champ, it's the vector the rays going in that I can't seem to get right. Thanks.

    Read the article

  • 3D physics engine for accurate collision handling on desktop/laptop computers (non-console)

    - by Georges Oates Larsen
    What are your suggestions for a physics engine that satisfies the following criteria? Capable of calculating collisions between multiple concave mesh-based colliders Handles many collisions going on at once (for instance one mesh being wedged between two others, which themselves may be wedged between two meshes) Does not allow for collider passthrough, even at high speeds. For instance, if I am applying force to a programmatically hinged object that makes it spin, I do not want it to pass through another rigidbody that it collides with while spinning. I have this problem using PhysX As implied before, reacts well to hinged objects, preferably has its own implementation of a hinge, but I am willing to program my own. The important part is that it has some sort of interface that guarantees accurate collision tracking even when dealing with these things Platform independent -- runs on mac as well as PC, also not tied down to specific graphics cards I think that's the best way to explain what I am looking for. Basically, I need SUPER reliable collisions. Something that can't be accomplished with a simple ray casting approach that sends a ray from the last position of the object to the current position (as this object may be potentially large and colliding with small objects via rotation) Bonus points for also including an OPEN SOURCE engine.

    Read the article

< Previous Page | 620 621 622 623 624 625 626 627 628 629 630 631  | Next Page >