Search Results

Search found 4842 results on 194 pages for 'computation expression'.

Page 63/194 | < Previous Page | 59 60 61 62 63 64 65 66 67 68 69 70  | Next Page >

  • C#: LINQ vs foreach - Round 1.

    - by James Michael Hare
    So I was reading Peter Kellner's blog entry on Resharper 5.0 and its LINQ refactoring and thought that was very cool.  But that raised a point I had always been curious about in my head -- which is a better choice: manual foreach loops or LINQ?    The answer is not really clear-cut.  There are two sides to any code cost arguments: performance and maintainability.  The first of these is obvious and quantifiable.  Given any two pieces of code that perform the same function, you can run them side-by-side and see which piece of code performs better.   Unfortunately, this is not always a good measure.  Well written assembly language outperforms well written C++ code, but you lose a lot in maintainability which creates a big techncial debt load that is hard to offset as the application ages.  In contrast, higher level constructs make the code more brief and easier to understand, hence reducing technical cost.   Now, obviously in this case we're not talking two separate languages, we're comparing doing something manually in the language versus using a higher-order set of IEnumerable extensions that are in the System.Linq library.   Well, before we discuss any further, let's look at some sample code and the numbers.  First, let's take a look at the for loop and the LINQ expression.  This is just a simple find comparison:       // find implemented via LINQ     public static bool FindViaLinq(IEnumerable<int> list, int target)     {         return list.Any(item => item == target);     }         // find implemented via standard iteration     public static bool FindViaIteration(IEnumerable<int> list, int target)     {         foreach (var i in list)         {             if (i == target)             {                 return true;             }         }           return false;     }   Okay, looking at this from a maintainability point of view, the Linq expression is definitely more concise (8 lines down to 1) and is very readable in intention.  You don't have to actually analyze the behavior of the loop to determine what it's doing.   So let's take a look at performance metrics from 100,000 iterations of these methods on a List<int> of varying sizes filled with random data.  For this test, we fill a target array with 100,000 random integers and then run the exact same pseudo-random targets through both searches.                       List<T> On 100,000 Iterations     Method      Size     Total (ms)  Per Iteration (ms)  % Slower     Any         10       26          0.00046             30.00%     Iteration   10       20          0.00023             -     Any         100      116         0.00201             18.37%     Iteration   100      98          0.00118             -     Any         1000     1058        0.01853             16.78%     Iteration   1000     906         0.01155             -     Any         10,000   10,383      0.18189             17.41%     Iteration   10,000   8843        0.11362             -     Any         100,000  104,004     1.8297              18.27%     Iteration   100,000  87,941      1.13163             -   The LINQ expression is running about 17% slower for average size collections and worse for smaller collections.  Presumably, this is due to the overhead of the state machine used to track the iterators for the yield returns in the LINQ expressions, which seems about right in a tight loop such as this.   So what about other LINQ expressions?  After all, Any() is one of the more trivial ones.  I decided to try the TakeWhile() algorithm using a Count() to get the position stopped like the sample Pete was using in his blog that Resharper refactored for him into LINQ:       // Linq form     public static int GetTargetPosition1(IEnumerable<int> list, int target)     {         return list.TakeWhile(item => item != target).Count();     }       // traditionally iterative form     public static int GetTargetPosition2(IEnumerable<int> list, int target)     {         int count = 0;           foreach (var i in list)         {             if(i == target)             {                 break;             }               ++count;         }           return count;     }   Once again, the LINQ expression is much shorter, easier to read, and should be easier to maintain over time, reducing the cost of technical debt.  So I ran these through the same test data:                       List<T> On 100,000 Iterations     Method      Size     Total (ms)  Per Iteration (ms)  % Slower     TakeWhile   10       41          0.00041             128%     Iteration   10       18          0.00018             -     TakeWhile   100      171         0.00171             88%     Iteration   100      91          0.00091             -     TakeWhile   1000     1604        0.01604             94%     Iteration   1000     825         0.00825             -     TakeWhile   10,000   15765       0.15765             92%     Iteration   10,000   8204        0.08204             -     TakeWhile   100,000  156950      1.5695              92%     Iteration   100,000  81635       0.81635             -     Wow!  I expected some overhead due to the state machines iterators produce, but 90% slower?  That seems a little heavy to me.  So then I thought, well, what if TakeWhile() is not the right tool for the job?  The problem is TakeWhile returns each item for processing using yield return, whereas our for-loop really doesn't care about the item beyond using it as a stop condition to evaluate. So what if that back and forth with the iterator state machine is the problem?  Well, we can quickly create an (albeit ugly) lambda that uses the Any() along with a count in a closure (if a LINQ guru knows a better way PLEASE let me know!), after all , this is more consistent with what we're trying to do, we're trying to find the first occurence of an item and halt once we find it, we just happen to be counting on the way.  This mostly matches Any().       // a new method that uses linq but evaluates the count in a closure.     public static int TakeWhileViaLinq2(IEnumerable<int> list, int target)     {         int count = 0;         list.Any(item =>             {                 if(item == target)                 {                     return true;                 }                   ++count;                 return false;             });         return count;     }     Now how does this one compare?                         List<T> On 100,000 Iterations     Method         Size     Total (ms)  Per Iteration (ms)  % Slower     TakeWhile      10       41          0.00041             128%     Any w/Closure  10       23          0.00023             28%     Iteration      10       18          0.00018             -     TakeWhile      100      171         0.00171             88%     Any w/Closure  100      116         0.00116             27%     Iteration      100      91          0.00091             -     TakeWhile      1000     1604        0.01604             94%     Any w/Closure  1000     1101        0.01101             33%     Iteration      1000     825         0.00825             -     TakeWhile      10,000   15765       0.15765             92%     Any w/Closure  10,000   10802       0.10802             32%     Iteration      10,000   8204        0.08204             -     TakeWhile      100,000  156950      1.5695              92%     Any w/Closure  100,000  108378      1.08378             33%     Iteration      100,000  81635       0.81635             -     Much better!  It seems that the overhead of TakeAny() returning each item and updating the state in the state machine is drastically reduced by using Any() since Any() iterates forward until it finds the value we're looking for -- for the task we're attempting to do.   So the lesson there is, make sure when you use a LINQ expression you're choosing the best expression for the job, because if you're doing more work than you really need, you'll have a slower algorithm.  But this is true of any choice of algorithm or collection in general.     Even with the Any() with the count in the closure it is still about 30% slower, but let's consider that angle carefully.  For a list of 100,000 items, it was the difference between 1.01 ms and 0.82 ms roughly in a List<T>.  That's really not that bad at all in the grand scheme of things.  Even running at 90% slower with TakeWhile(), for the vast majority of my projects, an extra millisecond to save potential errors in the long term and improve maintainability is a small price to pay.  And if your typical list is 1000 items or less we're talking only microseconds worth of difference.   It's like they say: 90% of your performance bottlenecks are in 2% of your code, so over-optimizing almost never pays off.  So personally, I'll take the LINQ expression wherever I can because they will be easier to read and maintain (thus reducing technical debt) and I can rely on Microsoft's development to have coded and unit tested those algorithm fully for me instead of relying on a developer to code the loop logic correctly.   If something's 90% slower, yes, it's worth keeping in mind, but it's really not until you start get magnitudes-of-order slower (10x, 100x, 1000x) that alarm bells should really go off.  And if I ever do need that last millisecond of performance?  Well then I'll optimize JUST THAT problem spot.  To me it's worth it for the readability, speed-to-market, and maintainability.

    Read the article

  • How LINQ to Object statements work

    - by rajbk
    This post goes into detail as to now LINQ statements work when querying a collection of objects. This topic assumes you have an understanding of how generics, delegates, implicitly typed variables, lambda expressions, object/collection initializers, extension methods and the yield statement work. I would also recommend you read my previous two posts: Using Delegates in C# Part 1 Using Delegates in C# Part 2 We will start by writing some methods to filter a collection of data. Assume we have an Employee class like so: 1: public class Employee { 2: public int ID { get; set;} 3: public string FirstName { get; set;} 4: public string LastName {get; set;} 5: public string Country { get; set; } 6: } and a collection of employees like so: 1: var employees = new List<Employee> { 2: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 3: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 4: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 5: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 6: }; Filtering We wish to  find all employees that have an even ID. We could start off by writing a method that takes in a list of employees and returns a filtered list of employees with an even ID. 1: static List<Employee> GetEmployeesWithEvenID(List<Employee> employees) { 2: var filteredEmployees = new List<Employee>(); 3: foreach (Employee emp in employees) { 4: if (emp.ID % 2 == 0) { 5: filteredEmployees.Add(emp); 6: } 7: } 8: return filteredEmployees; 9: } The method can be rewritten to return an IEnumerable<Employee> using the yield return keyword. 1: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 2: foreach (Employee emp in employees) { 3: if (emp.ID % 2 == 0) { 4: yield return emp; 5: } 6: } 7: } We put these together in a console application. 1: using System; 2: using System.Collections.Generic; 3: //No System.Linq 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 15: }; 16: var filteredEmployees = GetEmployeesWithEvenID(employees); 17:  18: foreach (Employee emp in filteredEmployees) { 19: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 20: emp.ID, emp.FirstName, emp.LastName, emp.Country); 21: } 22:  23: Console.ReadLine(); 24: } 25: 26: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 27: foreach (Employee emp in employees) { 28: if (emp.ID % 2 == 0) { 29: yield return emp; 30: } 31: } 32: } 33: } 34:  35: public class Employee { 36: public int ID { get; set;} 37: public string FirstName { get; set;} 38: public string LastName {get; set;} 39: public string Country { get; set; } 40: } Output: ID 2 First_Name Jim Last_Name Ashlock Country UK ID 4 First_Name Jill Last_Name Anderson Country AUS Our filtering method is too specific. Let us change it so that it is capable of doing different types of filtering and lets give our method the name Where ;-) We will add another parameter to our Where method. This additional parameter will be a delegate with the following declaration. public delegate bool Filter(Employee emp); The idea is that the delegate parameter in our Where method will point to a method that contains the logic to do our filtering thereby freeing our Where method from any dependency. The method is shown below: 1: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 2: foreach (Employee emp in employees) { 3: if (filter(emp)) { 4: yield return emp; 5: } 6: } 7: } Making the change to our app, we create a new instance of the Filter delegate on line 14 with a target set to the method EmployeeHasEvenId. Running the code will produce the same output. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, filterDelegate); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  37: public class Employee { 38: public int ID { get; set;} 39: public string FirstName { get; set;} 40: public string LastName {get; set;} 41: public string Country { get; set; } 42: } Lets use lambda expressions to inline the contents of the EmployeeHasEvenId method in place of the method. The next code snippet shows this change (see line 15).  For brevity, the Employee class declaration has been skipped. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  The output displays the same two employees.  Our Where method is too restricted since it works with a collection of Employees only. Lets change it so that it works with any IEnumerable<T>. In addition, you may recall from my previous post,  that .NET 3.5 comes with a lot of predefined delegates including public delegate TResult Func<T, TResult>(T arg); We will get rid of our Filter delegate and use the one above instead. We apply these two changes to our code. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14:  15: foreach (Employee emp in filteredEmployees) { 16: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 17: emp.ID, emp.FirstName, emp.LastName, emp.Country); 18: } 19: Console.ReadLine(); 20: } 21: 22: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 23: foreach (var x in source) { 24: if (filter(x)) { 25: yield return x; 26: } 27: } 28: } 29: } We have successfully implemented a way to filter any IEnumerable<T> based on a  filter criteria. Projection Now lets enumerate on the items in the IEnumerable<Employee> we got from the Where method and copy them into a new IEnumerable<EmployeeFormatted>. The EmployeeFormatted class will only have a FullName and ID property. 1: public class EmployeeFormatted { 2: public int ID { get; set; } 3: public string FullName {get; set;} 4: } We could “project” our existing IEnumerable<Employee> into a new collection of IEnumerable<EmployeeFormatted> with the help of a new method. We will call this method Select ;-) 1: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 2: foreach (var emp in employees) { 3: yield return new EmployeeFormatted { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; 7: } 8: } The changes are applied to our app. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14: var formattedEmployees = Select(filteredEmployees); 15:  16: foreach (EmployeeFormatted emp in formattedEmployees) { 17: Console.WriteLine("ID {0} Full_Name {1}", 18: emp.ID, emp.FullName); 19: } 20: Console.ReadLine(); 21: } 22:  23: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 24: foreach (var x in source) { 25: if (filter(x)) { 26: yield return x; 27: } 28: } 29: } 30: 31: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 32: foreach (var emp in employees) { 33: yield return new EmployeeFormatted { 34: ID = emp.ID, 35: FullName = emp.LastName + ", " + emp.FirstName 36: }; 37: } 38: } 39: } 40:  41: public class Employee { 42: public int ID { get; set;} 43: public string FirstName { get; set;} 44: public string LastName {get; set;} 45: public string Country { get; set; } 46: } 47:  48: public class EmployeeFormatted { 49: public int ID { get; set; } 50: public string FullName {get; set;} 51: } Output: ID 2 Full_Name Ashlock, Jim ID 4 Full_Name Anderson, Jill We have successfully selected employees who have an even ID and then shaped our data with the help of the Select method so that the final result is an IEnumerable<EmployeeFormatted>.  Lets make our Select method more generic so that the user is given the freedom to shape what the output would look like. We can do this, like before, with lambda expressions. Our Select method is changed to accept a delegate as shown below. TSource will be the type of data that comes in and TResult will be the type the user chooses (shape of data) as returned from the selector delegate. 1:  2: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 3: foreach (var x in source) { 4: yield return selector(x); 5: } 6: } We see the new changes to our app. On line 15, we use lambda expression to specify the shape of the data. In this case the shape will be of type EmployeeFormatted. 1:  2: public class Program 3: { 4: [STAThread] 5: static void Main(string[] args) 6: { 7: var employees = new List<Employee> { 8: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 9: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 10: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 11: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 12: }; 13:  14: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 15: var formattedEmployees = Select(filteredEmployees, (emp) => 16: new EmployeeFormatted { 17: ID = emp.ID, 18: FullName = emp.LastName + ", " + emp.FirstName 19: }); 20:  21: foreach (EmployeeFormatted emp in formattedEmployees) { 22: Console.WriteLine("ID {0} Full_Name {1}", 23: emp.ID, emp.FullName); 24: } 25: Console.ReadLine(); 26: } 27: 28: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 29: foreach (var x in source) { 30: if (filter(x)) { 31: yield return x; 32: } 33: } 34: } 35: 36: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 37: foreach (var x in source) { 38: yield return selector(x); 39: } 40: } 41: } The code outputs the same result as before. On line 14 we filter our data and on line 15 we project our data. What if we wanted to be more expressive and concise? We could combine both line 14 and 15 into one line as shown below. Assuming you had to perform several operations like this on our collection, you would end up with some very unreadable code! 1: var formattedEmployees = Select(Where(employees, emp => emp.ID % 2 == 0), (emp) => 2: new EmployeeFormatted { 3: ID = emp.ID, 4: FullName = emp.LastName + ", " + emp.FirstName 5: }); A cleaner way to write this would be to give the appearance that the Select and Where methods were part of the IEnumerable<T>. This is exactly what extension methods give us. Extension methods have to be defined in a static class. Let us make the Select and Where extension methods on IEnumerable<T> 1: public static class MyExtensionMethods { 2: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 3: foreach (var x in source) { 4: if (filter(x)) { 5: yield return x; 6: } 7: } 8: } 9: 10: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 11: foreach (var x in source) { 12: yield return selector(x); 13: } 14: } 15: } The creation of the extension method makes the syntax much cleaner as shown below. We can write as many extension methods as we want and keep on chaining them using this technique. 1: var formattedEmployees = employees 2: .Where(emp => emp.ID % 2 == 0) 3: .Select (emp => new EmployeeFormatted { ID = emp.ID, FullName = emp.LastName + ", " + emp.FirstName }); Making these changes and running our code produces the same result. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new EmployeeFormatted { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (EmployeeFormatted emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } 55:  56: public class EmployeeFormatted { 57: public int ID { get; set; } 58: public string FullName {get; set;} 59: } Let’s change our code to return a collection of anonymous types and get rid of the EmployeeFormatted type. We see that the code produces the same output. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (var emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: public static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: public static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } To be more expressive, C# allows us to write our extension method calls as a query expression. Line 16 can be rewritten a query expression like so: 1: var formattedEmployees = from emp in employees 2: where emp.ID % 2 == 0 3: select new { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; When the compiler encounters an expression like the above, it simply rewrites it as calls to our extension methods.  So far we have been using our extension methods. The System.Linq namespace contains several extension methods for objects that implement the IEnumerable<T>. You can see a listing of these methods in the Enumerable class in the System.Linq namespace. Let’s get rid of our extension methods (which I purposefully wrote to be of the same signature as the ones in the Enumerable class) and use the ones provided in the Enumerable class. Our final code is shown below: 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; //Added 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 15: }; 16:  17: var formattedEmployees = from emp in employees 18: where emp.ID % 2 == 0 19: select new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: }; 23:  24: foreach (var emp in formattedEmployees) { 25: Console.WriteLine("ID {0} Full_Name {1}", 26: emp.ID, emp.FullName); 27: } 28: Console.ReadLine(); 29: } 30: } 31:  32: public class Employee { 33: public int ID { get; set;} 34: public string FirstName { get; set;} 35: public string LastName {get; set;} 36: public string Country { get; set; } 37: } 38:  39: public class EmployeeFormatted { 40: public int ID { get; set; } 41: public string FullName {get; set;} 42: } This post has shown you a basic overview of LINQ to Objects work by showning you how an expression is converted to a sequence of calls to extension methods when working directly with objects. It gets more interesting when working with LINQ to SQL where an expression tree is constructed – an in memory data representation of the expression. The C# compiler compiles these expressions into code that builds an expression tree at runtime. The provider can then traverse the expression tree and generate the appropriate SQL query. You can read more about expression trees in this MSDN article.

    Read the article

  • Editing XML Literals Embedded Expressions in Visual Basic 2010 (Avner Aharoni)

    The implicit line continuation feature in Visual Basic 2010 provided an opportunity to improve the code editing experience in XML literals embedded expressions. In Visual Studio 2008, pressing Enter inside an embedded expression would result in the cursor being positioned to the left of the end embedded expression tag. In Visual Studio 2010, pressing Enter inserts a newline for the cursor, and the end embedded expression tag moves to the line below. This minimizes the number of key strokes needed...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • ECMAScript : ajouts et modifications de la 5e édition qui introduisent des incompatibilités avec le 3e

    (une petite traduction rapide des changements impactant entre la v5 et la v3. les numéros correspondent aux chapitres de la norme) Ecma-362 alias EcmaScript5 Annex E Ajouts et modifications dans la 5e édition qui introduisent des incompatibilités avec le 3e édition 7.1: si des caractères de contrôle Unicode sont présent dans une expression String ou une expression d'ExpressionRegulière ils seront inclus dans la l'expression. alors que dans l'édition 3 ils étaient ignorés. 7.2: le caractère Unicode <BOM> (Byte Order Mark) est maintenant traité comme un whitespace alors qu'il provoquait une Syntax Error dans l'édition ...

    Read the article

  • Fluent MVC Route Testing Helper

    - by Nettuce
    static class GetUrlFromController<T> where T : Controller     {         public static string WithAction(Expression<Func<T, ActionResult>> expression)         {             var controllerName = typeof(T).Name.Replace("Controller", string.Empty);             var methodCall = (MethodCallExpression)expression.Body;             var actionName = methodCall.Method.Name;             var routeValueDictionary = new RouteValueDictionary();             for (var i = 0; i < methodCall.Arguments.Count; i++)             {                 routeValueDictionary.Add(methodCall.Method.GetParameters()[i].Name, methodCall.Arguments[i]);             }             var routes = new RouteCollection();             MvcApplication.RegisterRoutes(routes);             return UrlHelper.GenerateUrl(null, actionName, controllerName, routeValueDictionary, routes, ContextMocks.RequestContext, true);         }     } I'm using FluentAssertions too, so you get this: GetUrlFromController<HomeController>.WithAction(x => x.Edit(1)).Should().Be("/Home/Edit/1");

    Read the article

  • Perl: Printing without a newline

    - by synapz
    I have a computationally expensive task in perl, and would like to inform the user that computation is ongoing by printing out a period after each portion of the computation is completed. Unfortunately, until I print a "\n", none of my periods are printed. How can I address this?

    Read the article

  • Do you think functional language is good for applications that have a lot of business rules but very

    - by StackUnderflow
    I am convinced that functional programming is an excellent choice when it comes to applications that require a lot of computation (data mining, AI, nlp etc). But is it wise to use functional programming for a typical enterprise application where there are a lot of business rules but not much in terms of computation? Please disregard the fact that there are very few people using functional programming and that it's kind of tough. Thanks

    Read the article

  • How do I unit test the methods in a method object?

    - by Sancho
    I've performed the "Replace Method with Method Object" refactoring described by Beck. Now, I have a class with a "run()" method and a bunch of member functions that decompose the computation into smaller units. How do I test those member functions? My first idea is that my unit tests be basically copies of the "run()" method (with different initializations), but with assertions between each call to the member functions to check the state of the computation. (I'm using Python and the unittest module.)

    Read the article

  • SOA 10g Developing a Simple Hello World Process

    - by [email protected]
    Softwares & Hardware Needed Intel Pentium D CPU 3 GHz, 2 GB RAM, Windows XP System ( Thats what i am using ) You could as well use Linux , but please choose High End RAM 10G SOA Suite from Oracle(TM) , Read Installation documents at www.Oracle.com J Developer 10.1.3.3 Official Documents at http://www.oracle.com/technology/products/ias/bpel/index.html java -version Java HotSpot(TM) Client VM (build 1.5.0_06-b05, mixed mode)BPEL Introduction - Developing a Simple Hello World Process  Synchronous BPEL Process      This Exercise focuses on developing a Synchronous Process, which mean you give input to the BPEL Process you get output immediately no waiting at all. The Objective of this exercise is to give input as name and it greets with Hello Appended by that name example, if I give input as "James" the BPEL process returns "Hello James". 1. Open the Oracle JDeveloper click on File -> New Application give the name "JamesApp" you can give your own name if it pleases you. Select the folder where you want to place the application. Click "OK" 2. Right Click on the "JamesApp" in the Application Navigator, Select New Menu. 3. Select "Projects" under "General" and "BPEL Process Project", click "OK" these steps remain same for all BPEL Projects 4. Project Setting Wizard Appears, Give the "Process Name" as "MyBPELProc" and Namespace as http://xmlns.james.com/ MyBPELProc, Select Template as "Synchronous BPEL Process click "Next" 5. Accept the input and output schema names as it is, click "Finish" 6. You would see the BPEL Process Designer, some of the folders such as Integration content and Resources are created and few more files 7. Assign Activity : Allows Assigning values to variables or copying values of one variable to another and also do some string manipulation or mathematical operations In the component palette at extreme right, select Process Activities from the drop down, and drag and drop "Assign" between "receive Input" and "replyOutput" 8. You can right click and edit the Assign activity and give any suitable name "AssignHello", 9. Select "Copy Operation" Tab create "Copy Operation" 10. In the From variables click on expression builder, select input under "input variable", Click on insert into expression bar, complete the concat syntax, Note to use "Ctrl+space bar" inside expression window to Auto Populate the expression as shown in the figure below. What we are actually doing here is concatenating the String "Hello ", with the variable value received through the variable named "input" 11. Observe that once an expression is completed the "To Variable" is assigned to a variable by name "result" 12. Finally the copy variable looks as below 13. It's the time to deploy, start the SOA Suite 14. Establish connection to the Server from JDeveloper, this can be done adding a New Application Server under Connection, give the server name, username and password and test connection. 15. Deploy the "MyBPELProc" to the "default domain" 16. http://localhost:8080/ allows connecting to SOA Suite web portal, click on "BPEL Control" , login with the username "oc4jadmin" password what ever you gave during installation 17. "MyBPELProc" is visisble under "Deployed BPEL Processes" in the "Dashboard" Tab, click on the it 18. Initiate tab open to accept input, enter data such as input is "James" click on "Post XML Button" 19. Click on Visual Flow 20. Click on receive Input , it shows "James" as input received 21. Click on reply Output, it shows "Hello James" so the BPEL process is successfully executed. 22. It may be worth seeing all the instance created everytime a BPEL process is executed by giving some inputs. Purge All button allows to delete all the unwanted previous instances of BPEL process, dont worry it wont delete the BPEL process itself :-) 23. It may also be some importance to understand the XSD File which holds input & output variable names & data types. 24. You could drag n drop variables as elements over sequence at the designer or directly edit the XML Source file. 

    Read the article

  • InternalsVisibleTo attribute and security vulnerability

    - by Sergey Litvinov
    I found one issue with InternalsVisibleTo attribute usage. The idea of InternalsVisibleTo attribute to allow some other assemblies to use internal classes\methods of this assembly. To make it work you need sign your assemblies. So, if other assemblies isn't specified in main assembly and if they have incorrect public key, then they can't use Internal members. But the issue in Reflection Emit type generation. For example, we have CorpLibrary1 assembly and it has such class: public class TestApi { internal virtual void DoSomething() { Console.WriteLine("Base DoSomething"); } public void DoApiTest() { // some internal logic // ... // call internal method DoSomething(); } } This assembly is marked with such attribute to allow another CorpLibrary2 to make inheritor for that TestAPI and override behaviour of DoSomething method. [assembly: InternalsVisibleTo("CorpLibrary2, PublicKey=0024000004800000940000000602000000240000525341310004000001000100434D9C5E1F9055BF7970B0C106AAA447271ECE0F8FC56F6AF3A906353F0B848A8346DC13C42A6530B4ED2E6CB8A1E56278E664E61C0D633A6F58643A7B8448CB0B15E31218FB8FE17F63906D3BF7E20B9D1A9F7B1C8CD11877C0AF079D454C21F24D5A85A8765395E5CC5252F0BE85CFEB65896EC69FCC75201E09795AAA07D0")] The issue is that I'm able to override this internal DoSomething method and break class logic. My steps to do it: Generate new assembly in runtime via AssemblyBuilder Get AssemblyName from CorpLibrary1 and copy PublikKey to new assembly Generate new assembly that will inherit TestApi class As PublicKey and name of generated assembly is the same as in InternalsVisibleTo, then we can generate new DoSomething method that will override internal method in TestAPI assembly Then we have another assembly that isn't related to this CorpLibrary1 and can't use internal members. We have such test code in it: class Program { static void Main(string[] args) { var builder = new FakeBuilder(InjectBadCode, "DoSomething", true); TestApi fakeType = builder.CreateFake(); fakeType.DoApiTest(); // it will display: // Inject bad code // Base DoSomething Console.ReadLine(); } public static void InjectBadCode() { Console.WriteLine("Inject bad code"); } } And this FakeBuilder class has such code: /// /// Builder that will generate inheritor for specified assembly and will overload specified internal virtual method /// /// Target type public class FakeBuilder { private readonly Action _callback; private readonly Type _targetType; private readonly string _targetMethodName; private readonly string _slotName; private readonly bool _callBaseMethod; public FakeBuilder(Action callback, string targetMethodName, bool callBaseMethod) { int randomId = new Random((int)DateTime.Now.Ticks).Next(); _slotName = string.Format("FakeSlot_{0}", randomId); _callback = callback; _targetType = typeof(TFakeType); _targetMethodName = targetMethodName; _callBaseMethod = callBaseMethod; } public TFakeType CreateFake() { // as CorpLibrary1 can't use code from unreferences assemblies, we need to store this Action somewhere. // And Thread is not bad place for that. It's not the best place as it won't work in multithread application, but it's just a sample LocalDataStoreSlot slot = Thread.AllocateNamedDataSlot(_slotName); Thread.SetData(slot, _callback); // then we generate new assembly with the same nameand public key as target assembly trusts by InternalsVisibleTo attribute var newTypeName = _targetType.Name + "Fake"; var targetAssembly = Assembly.GetAssembly(_targetType); AssemblyName an = new AssemblyName(); an.Name = GetFakeAssemblyName(targetAssembly); // copying public key to new generated assembly var assemblyName = targetAssembly.GetName(); an.SetPublicKey(assemblyName.GetPublicKey()); an.SetPublicKeyToken(assemblyName.GetPublicKeyToken()); AssemblyBuilder assemblyBuilder = Thread.GetDomain().DefineDynamicAssembly(an, AssemblyBuilderAccess.RunAndSave); ModuleBuilder moduleBuilder = assemblyBuilder.DefineDynamicModule(assemblyBuilder.GetName().Name, true); // create inheritor for specified type TypeBuilder typeBuilder = moduleBuilder.DefineType(newTypeName, TypeAttributes.Public | TypeAttributes.Class, _targetType); // LambdaExpression.CompileToMethod can be used only with static methods, so we need to create another method that will call our Inject method // we can do the same via ILGenerator, but expression trees are more easy to use MethodInfo methodInfo = CreateMethodInfo(moduleBuilder); MethodBuilder methodBuilder = typeBuilder.DefineMethod(_targetMethodName, MethodAttributes.Public | MethodAttributes.Virtual); ILGenerator ilGenerator = methodBuilder.GetILGenerator(); // call our static method that will call inject method ilGenerator.EmitCall(OpCodes.Call, methodInfo, null); // in case if we need, then we put call to base method if (_callBaseMethod) { var baseMethodInfo = _targetType.GetMethod(_targetMethodName, BindingFlags.NonPublic | BindingFlags.Instance); // place this to stack ilGenerator.Emit(OpCodes.Ldarg_0); // call the base method ilGenerator.EmitCall(OpCodes.Call, baseMethodInfo, new Type[0]); // return ilGenerator.Emit(OpCodes.Ret); } // generate type, create it and return to caller Type cheatType = typeBuilder.CreateType(); object type = Activator.CreateInstance(cheatType); return (TFakeType)type; } /// /// Get name of assembly from InternalsVisibleTo AssemblyName /// private static string GetFakeAssemblyName(Assembly assembly) { var internalsVisibleAttr = assembly.GetCustomAttributes(typeof(InternalsVisibleToAttribute), true).FirstOrDefault() as InternalsVisibleToAttribute; if (internalsVisibleAttr == null) { throw new InvalidOperationException("Assembly hasn't InternalVisibleTo attribute"); } var ind = internalsVisibleAttr.AssemblyName.IndexOf(","); var name = internalsVisibleAttr.AssemblyName.Substring(0, ind); return name; } /// /// Generate such code: /// ((Action)Thread.GetData(Thread.GetNamedDataSlot(_slotName))).Invoke(); /// private LambdaExpression MakeStaticExpressionMethod() { var allocateMethod = typeof(Thread).GetMethod("GetNamedDataSlot", BindingFlags.Static | BindingFlags.Public); var getDataMethod = typeof(Thread).GetMethod("GetData", BindingFlags.Static | BindingFlags.Public); var call = Expression.Call(allocateMethod, Expression.Constant(_slotName)); var getCall = Expression.Call(getDataMethod, call); var convCall = Expression.Convert(getCall, typeof(Action)); var invokExpr = Expression.Invoke(convCall); var lambda = Expression.Lambda(invokExpr); return lambda; } /// /// Generate static class with one static function that will execute Action from Thread NamedDataSlot /// private MethodInfo CreateMethodInfo(ModuleBuilder moduleBuilder) { var methodName = "_StaticTestMethod_" + _slotName; var className = "_StaticClass_" + _slotName; TypeBuilder typeBuilder = moduleBuilder.DefineType(className, TypeAttributes.Public | TypeAttributes.Class); MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName, MethodAttributes.Static | MethodAttributes.Public); LambdaExpression expression = MakeStaticExpressionMethod(); expression.CompileToMethod(methodBuilder); var type = typeBuilder.CreateType(); return type.GetMethod(methodName, BindingFlags.Static | BindingFlags.Public); } } remarks about sample: as we need to execute code from another assembly, CorpLibrary1 hasn't access to it, so we need to store this delegate somewhere. Just for testing I stored it in Thread NamedDataSlot. It won't work in multithreaded applications, but it's just a sample. I know that we use Reflection to get private\internal members of any class, but within reflection we can't override them. But this issue is allows anyone to override internal class\method if that assembly has InternalsVisibleTo attribute. I tested it on .Net 3.5\4 and it works for both of them. How does it possible to just copy PublicKey without private key and use it in runtime? The whole sample can be found there - https://github.com/sergey-litvinov/Tests_InternalsVisibleTo UPDATE1: That test code in Program and FakeBuilder classes hasn't access to key.sn file and that library isn't signed, so it hasn't public key at all. It just copying it from CorpLibrary1 by using Reflection.Emit

    Read the article

  • LINQ to SQL exception: System.OutOfMemoryException

    - by Adam
    Not sure why I keep getting an OutOfMemory exception. I'm using ASP.NET MVC with LINQ to SQL. Here's some of the stack trace: [OutOfMemoryException: Exception of type 'System.OutOfMemoryException' was thrown.] System.Runtime.CompilerServices.RuntimeHelpers._CompileMethod(IntPtr method) +0 System.Reflection.Emit.DynamicMethod.CreateDelegate(Type delegateType) +7652553 System.Data.Linq.SqlClient.ObjectReaderCompiler.Compile(SqlExpression expression, Type elementType) +442 System.Data.Linq.SqlClient.SqlProvider.GetReaderFactory(SqlNode node, Type elemType) +100 System.Data.Linq.SqlClient.SqlProvider.System.Data.Linq.Provider.IProvider.Execute(Expression query) +253 System.Data.Linq.Table1.System.Linq.IQueryProvider.Execute(Expression expression) +49 System.Linq.Queryable.Single(IQueryable1 source, Expression`1 predicate) +301 WorkGrabber.Web.Models.WorkGrabberDataContext.GetJob(Int32 id) +233 WorkGrabber.Web.Controllers.BidsController.New(Int32 jobId) +19

    Read the article

  • Handle "Cannot access a closed resource set"

    - by Philip
    I have a website with several languages in a database. From the database I use ResXResourceWriter to create my .resx files. This is working really good but sometimes I get this exception: MESSAGE: Cannot access a closed resource set. SOURCE: mscorlib FORM: QUERYSTRING: TARGETSITE: System.Object GetObject(System.String, Boolean, Boolean) STACKTRACE: at System.Resources.RuntimeResourceSet.GetObject(String key, Boolean ignoreCase, Boolean isString) at System.Resources.RuntimeResourceSet.GetString(String key, Boolean ignoreCase) at System.Resources.ResourceManager.GetString(String name, CultureInfo culture) at System.Linq.Expressions.Expression.ValidateStaticOrInstanceMethod(Expression instance, MethodInfo method) at System.Linq.Expressions.Expression.Call(Expression instance, MethodInfo method, IEnumerable`1 arguments) at System.Data.Linq.DataContext.GetMethodCall(Object instance, MethodInfo methodInfo, Object[] parameters) at System.Data.Linq.DataContext.ExecuteMethodCall(Object instance, MethodInfo methodInfo, Object[] parameters) at Business.DatabaseModelDataContext.Web_GetMostPlayedEvents(String cultureCode) at Presentation.Default.Page_Load(Object sender, EventArgs e) at System.Web.Util.CalliHelper.EventArgFunctionCaller(IntPtr fp, Object o, Object t, EventArgs e) at System.Web.UI.Control.LoadRecursive() at System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean includeStagesAfterAsyncPoint) I don't know why this is happening or how to solve it. Does anyone know anything about this? Thanks, Philip

    Read the article

  • Using constructor to load data in subsonic3?

    - by Dennis
    I'm getting an error while trying to load an record through the constructor. The constructor is: public Document(Expression<Func<Document,bool>> expression); and i try to load a single item in like this var x = new Document(f=>f.publicationnumber=="xxx"); publicationnumber isn't a key but tried making an it an unique key and still no go.. Am i totally wrong regarding the use of the constructor? and can someone please tell me how to use that constructor? The error i'm getting is: Test method TestProject1.UnitTest1.ParseFileNameTwoProductSingleLanguage threw exception: System.NullReferenceException: with the following stacktrace: SubSonic.Query.SqlQuery.Where[T](Expression1` expression) Load`[T]`(T item, Expression1expression) db.Document..ctor(Expression``1 expression) in C:\@Projects\DocumentsSearchAndAdmin\DocumentsSearchAndAdmin\Generated\ActiveRecord.cs: line 5613 rest removed for simplicity Regards Dennis

    Read the article

  • Function approximation with Maclaurin series

    - by marines
    I need to approx (1-x)^0.25 with given accuracy (0.0001 e.g.). I'm using expansion found on Wikipedia for (1+x)^0.25. I need to stop approximating when current expression is less than the accuracy. long double s(long double x, long double d) { long double w = 1; long double n = 1; // nth expression in series long double tmp = 1; // sum while last expression is greater than accuracy while (fabsl(tmp) >= d) { tmp *= (1.25 / n - 1) * (-x); // the next expression w += tmp; // is added to approximation n++; } return w; } Don't mind long double n. :P This works well when I'm not checking value of current expression but when I'm computing 1000 or more expressions. Domain of the function is <-1;1 and s() calculates approximation well for x in <-1;~0.6. The bigger the argument is the bigger is the error of calculation. From 0.6 it exceeds the accuracy. I'm not sure if the problem is clear enough because I don't know English math language well. The thing is what's the matter with while condition and why the function s() doesn't approximate correctly.

    Read the article

  • Regular exp to validate email in C

    - by Liju Mathew
    Hi, We need to write a email validation program in C. We are planning to use GNU Cregex.h) regular expression. The regular expression we prepared is [a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*@(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])? But the below code is failing while compiling the regex. #include <stdio.h> #include <regex.h> int main(const char *argv, int argc) { const char *reg_exp = "[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*@(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?"; int status = 1; char email[71]; regex_t preg; int rc; printf("The regex = %s\n", reg_exp); rc = regcomp(&preg, reg_exp, REG_EXTENDED|REG_NOSUB); if (rc != 0) { if (rc == REG_BADPAT || rc == REG_ECOLLATE) fprintf(stderr, "Bad Regex/Collate\n"); if (rc == REG_ECTYPE) fprintf(stderr, "Invalid Char\n"); if (rc == REG_EESCAPE) fprintf(stderr, "Trailing \\\n"); if (rc == REG_ESUBREG || rc == REG_EBRACK) fprintf(stderr, "Invalid number/[] error\n"); if (rc == REG_EPAREN || rc == REG_EBRACE) fprintf(stderr, "Paren/Bracket error\n"); if (rc == REG_BADBR || rc == REG_ERANGE) fprintf(stderr, "{} content invalid/Invalid endpoint\n"); if (rc == REG_ESPACE) fprintf(stderr, "Memory error\n"); if (rc == REG_BADRPT) fprintf(stderr, "Invalid regex\n"); fprintf(stderr, "%s: Failed to compile the regular expression:%d\n", __func__, rc); return 1; } while (status) { fgets(email, sizeof(email), stdin); status = email[0]-48; rc = regexec(&preg, email, (size_t)0, NULL, 0); if (rc == 0) { fprintf(stderr, "%s: The regular expression is a match\n", __func__); } else { fprintf(stderr, "%s: The regular expression is not a match: %d\n", __func__, rc); } } regfree(&preg); return 0; } The regex compilation is failing with the below error. The regex = [a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*@(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])? Invalid regex main: Failed to compile the regular expression:13 What is the cause of this error? Whether the regex need to be modified? Thanks, Mathew Liju

    Read the article

  • LINQ Generic Query with inherited base class?

    - by sah302
    I am trying to write some generic LINQ queries for my entities, but am having issue doing the more complex things. Right now I am using an EntityDao class that has all my generics and each of my object class Daos (such as Accomplishments Dao) inherit it, am example: using LCFVB.ObjectsNS; using LCFVB.EntityNS; namespace AccomplishmentNS { public class AccomplishmentDao : EntityDao<Accomplishment>{} } Now my entityDao has the following code: using LCFVB.ObjectsNS; using LCFVB.LinqDataContextNS; namespace EntityNS { public abstract class EntityDao<ImplementationType> where ImplementationType : Entity { public ImplementationType getOneByValueOfProperty(string getProperty, object getValue) { ImplementationType entity = null; if (getProperty != null && getValue != null) { //Nhibernate Example: //ImplementationType entity = default(ImplementationType); //entity = Me.session.CreateCriteria(Of ImplementationType)().Add(Expression.Eq(getProperty, getValue)).UniqueResult(Of InterfaceType)() LCFDataContext lcfdatacontext = new LCFDataContext(); //Generic LINQ Query Here lcfdatacontext.GetTable<ImplementationType>(); lcfdatacontext.SubmitChanges(); lcfdatacontext.Dispose(); } return entity; } public bool insertRow(ImplementationType entity) { if (entity != null) { //Nhibernate Example: //Me.session.Save(entity, entity.Id) //Me.session.Flush() LCFDataContext lcfdatacontext = new LCFDataContext(); //Generic LINQ Query Here lcfdatacontext.GetTable<ImplementationType>().InsertOnSubmit(entity); lcfdatacontext.SubmitChanges(); lcfdatacontext.Dispose(); return true; } else { return false; } } } }             I have gotten the insertRow function working, however I am not even sure how to go about doing getOnebyValueOfProperty, the closest thing I could find on this site was: http://stackoverflow.com/questions/2157560/generic-linq-to-sql-query How can I pass in the column name and the value I am checking against generically using my current set-up? It seems like from that link it's impossible since using a where predicate because entity class doesn't know what any of the properties are until I pass them in. Lastly, I need some way of setting a new object as the return type set to the implementation type, in nhibernate (what I am trying to convert from) it was simply this line that did it: ImplentationType entity = default(ImplentationType); However default is an nhibernate command, how would I do this for LINQ? EDIT: getOne doesn't seem to work even when just going off the base class (this is a partial class of the auto generated LINQ classes). I even removed the generics. I tried: namespace ObjectsNS { public partial class Accomplishment { public Accomplishment getOneByWhereClause(Expression<Action<Accomplishment, bool>> singleOrDefaultClause) { Accomplishment entity = new Accomplishment(); if (singleOrDefaultClause != null) { LCFDataContext lcfdatacontext = new LCFDataContext(); //Generic LINQ Query Here entity = lcfdatacontext.Accomplishments.SingleOrDefault(singleOrDefaultClause); lcfdatacontext.Dispose(); } return entity; } } } Get the following error: Error 1 Overload resolution failed because no accessible 'SingleOrDefault' can be called with these arguments: Extension method 'Public Function SingleOrDefault(predicate As System.Linq.Expressions.Expression(Of System.Func(Of Accomplishment, Boolean))) As Accomplishment' defined in 'System.Linq.Queryable': Value of type 'System.Action(Of System.Func(Of LCFVB.ObjectsNS.Accomplishment, Boolean))' cannot be converted to 'System.Linq.Expressions.Expression(Of System.Func(Of LCFVB.ObjectsNS.Accomplishment, Boolean))'. Extension method 'Public Function SingleOrDefault(predicate As System.Func(Of Accomplishment, Boolean)) As Accomplishment' defined in 'System.Linq.Enumerable': Value of type 'System.Action(Of System.Func(Of LCFVB.ObjectsNS.Accomplishment, Boolean))' cannot be converted to 'System.Func(Of LCFVB.ObjectsNS.Accomplishment, Boolean)'. 14 LCF Okay no problem I changed: public Accomplishment getOneByWhereClause(Expression<Action<Accomplishment, bool>> singleOrDefaultClause) to: public Accomplishment getOneByWhereClause(Expression<Func<Accomplishment, bool>> singleOrDefaultClause) Error goes away. Alright, but now when I try to call the method via: Accomplishment accomplishment = new Accomplishment(); var result = accomplishment.getOneByWhereClause(x=>x.Id = 4) It doesn't work it says x is not declared. I also tried getOne, and various other Expression =(

    Read the article

  • [Cocoa] Can't find leak in my code.

    - by ryyst
    Hi, I've been spending the last few hours trying to find the memory leak in my code. Here it is: NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init]; expression = [expression stringByTrimmingCharactersInSet: [NSCharacterSet whitespaceAndNewlineCharacterSet]]; // expression is an NSString object. NSArray *arguments = [NSArray arrayWithObjects:expression, [@"~/Desktop/file.txt" stringByExpandingTildeInPath], @"-n", @"--line-number", nil]; NSPipe *outPipe = [[NSPipe alloc] init]; NSTask *task = [[NSTask alloc] init]; [task setLaunchPath:@"/usr/bin/grep"]; [task setArguments:arguments]; [task setStandardOutput:outPipe]; [outPipe release]; [task launch]; NSData *data = [[outPipe fileHandleForReading] readDataToEndOfFile]; [task waitUntilExit]; [task release]; NSString *string = [[NSString alloc] initWithBytes:[data bytes] length:[data length] encoding:NSUTF8StringEncoding]; string = [string stringByReplacingOccurrencesOfString:@"\r" withString:@""]; int linesNum = 0; NSMutableArray *possibleMatches = [[NSMutableArray alloc] init]; if ([string length] > 0) { NSArray *lines = [string componentsSeparatedByString:@"\n"]; linesNum = [lines count]; for (int i = 0; i < [lines count]; i++) { NSString *currentLine = [lines objectAtIndex:i]; NSArray *values = [currentLine componentsSeparatedByString:@"\t"]; if ([values count] == 20) [possibleMatches addObject:currentLine]; } } [string release]; [pool release]; return [possibleMatches autorelease]; I tried to follow the few basic rules of Cocoa memory management, but somehow there still seems to be a leak, I believe it's an array that's leaking. It's noticeable if possibleMatches is large. You can try the code by using any large file as "~/Desktop/file.txt" and as expression something that yields many results when grep-ing. What's the mistake I'm making? Thanks for any help! -- Ry

    Read the article

  • Linq-to-SQL produces bad SQL?

    - by strager
    I am trying to run a Linq-to-SQL query, but when the query is evaluated, I get the following exception: System.Data.OleDb.OleDbException was unhandled Message=The SELECT statement includes a reserved word or an argument name that is misspelled or missing, or the punctuation is incorrect. Source=Microsoft JET Database Engine ErrorCode=-2147217900 StackTrace: at System.Data.OleDb.OleDbCommand.ExecuteCommandTextErrorHandling(OleDbHResult hr) at System.Data.OleDb.OleDbCommand.ExecuteCommandTextForSingleResult(tagDBPARAMS dbParams, Object& executeResult) at System.Data.OleDb.OleDbCommand.ExecuteCommandText(Object& executeResult) at System.Data.OleDb.OleDbCommand.ExecuteCommand(CommandBehavior behavior, Object& executeResult) at System.Data.OleDb.OleDbCommand.ExecuteReaderInternal(CommandBehavior behavior, String method) at System.Data.OleDb.OleDbCommand.ExecuteReader(CommandBehavior behavior) at System.Data.OleDb.OleDbCommand.ExecuteDbDataReader(CommandBehavior behavior) at System.Data.Common.DbCommand.ExecuteReader() at System.Data.Linq.SqlClient.SqlProvider.Execute(Expression query, QueryInfo queryInfo, IObjectReaderFactory factory, Object[] parentArgs, Object[] userArgs, ICompiledSubQuery[] subQueries, Object lastResult) at System.Data.Linq.SqlClient.SqlProvider.ExecuteAll(Expression query, QueryInfo[] queryInfos, IObjectReaderFactory factory, Object[] userArguments, ICompiledSubQuery[] subQueries) at System.Data.Linq.SqlClient.SqlProvider.System.Data.Linq.Provider.IProvider.Execute(Expression query) at System.Data.Linq.DataQuery`1.System.Linq.IQueryProvider.Execute[S](Expression expression) at System.Linq.Queryable.FirstOrDefault[TSource](IQueryable`1 source) at xxx.InventoryPopulator`2.Clear(String barcode) in F:\Projects\C#\xxx\xxx\InventoryPopulator.cs:line 38 [..etc..] InnerException: The debugger shows my query is: SELECT [t0].[SupplierID] AS [Id], [t0].[SupplierSKU] AS [Sku], [t0].[LocalSKU] AS [LocalSku], [t0].[ManufacturersBarcode] AS [Barcode], [t0].[QuantityAvailable] FROM [inventorySupplier] AS [t0] WHERE [t0].[ManufacturersBarcode] = @p0 And the Linq query which generates the above is: var items = from item in this.supplierItems where item.Barcode == barcode select item; How do I fix my query?

    Read the article

  • linq-to-sql combine child expressions

    - by VictorS
    I need to create and combine several expressions for child entity into one to use it on "Any" operator of a parent. Code now looks like this: Expresion<Child, bool> startDateExpression = t => t.start_date >= startDate; Expression<Child, bool> endDateExpression = t => t.end_date <= endDate; .... ParameterExpression param = startDateExpression.Parameters[0]; Expression<Func<T, bool>> Combined = Expression.Lambda<Func<Child, bool>>( Expression.AndAlso(startDateExpression.Body, startDateExpression.Body), param); //but now I am trying to use combined expression on parent //this line fails just to give an idea on what I am trying to do: //filter type is IQueryable<Parent>; var filter = filter.Where(p =>p.Children.Any(Combined)); How can I do that? Is there better(more elegant way way of doing it?

    Read the article

  • Asp.Net Random Error

    - by John Boker
    At random times, twice in the past two weeks, the we application will start to error and not work until I recycle the app pool in IIS. The specific error and stacktrace are: System.Web.HttpUnhandledException: Exception of type 'System.Web.HttpUnhandledException' was thrown. ---> System.InvalidCastException: Unable to cast object of type 'System.Guid' to type 'System.String'. at System.Data.Linq.SqlClient.SqlProvider.Execute(Expression query, QueryInfo queryInfo, IObjectReaderFactory factory, Object[] parentArgs, Object[] userArgs, ICompiledSubQuery[] subQueries, Object lastResult) at System.Data.Linq.SqlClient.SqlProvider.ExecuteAll(Expression query, QueryInfo[] queryInfos, IObjectReaderFactory factory, Object[] userArguments, ICompiledSubQuery[] subQueries) at System.Data.Linq.SqlClient.SqlProvider.System.Data.Linq.Provider.IProvider.Execute(Expression query) at System.Data.Linq.DataQuery`1.System.Linq.IQueryProvider.Execute[S](Expression expression) at System.Linq.Queryable.FirstOrDefault[TSource](IQueryable`1 source) at DigitalScout.WEDS.Business.Slug.GetTeamPath(String teamID) at DigitalScout.WEDS.WebApp.Code.Navigator.TeamNavigator.Home(String teamID) at ASP.management_default_aspx.__DataBind__control7(Object sender, EventArgs e) at System.Web.UI.Control.OnDataBinding(EventArgs e) at System.Web.UI.Control.DataBind(Boolean raiseOnDataBinding) at System.Web.UI.Control.DataBindChildren() at System.Web.UI.Control.DataBind(Boolean raiseOnDataBinding) at System.Web.UI.WebControls.Repeater.CreateControlHierarchy(Boolean useDataSource) at System.Web.UI.WebControls.Repeater.OnDataBinding(EventArgs e) at System.Web.UI.Control.DataBindChildren() at System.Web.UI.Control.DataBind(Boolean raiseOnDataBinding) at System.Web.UI.WebControls.Repeater.CreateControlHierarchy(Boolean useDataSource) at System.Web.UI.WebControls.Repeater.OnDataBinding(EventArgs e) at DigitalScout.WEDS.WebApp.Management._default.Page_Load(Object sender, EventArgs e) at System.Web.Util.CalliHelper.EventArgFunctionCaller(IntPtr fp, Object o, Object t, EventArgs e) at System.Web.Util.CalliEventHandlerDelegateProxy.Callback(Object sender, EventArgs e) at System.Web.UI.Control.OnLoad(EventArgs e) at DigitalScout.WEDS.WebApp.Code.BaseClass.Pages.ManagementPage.OnLoad(EventArgs e) at System.Web.UI.Control.LoadRecursive() at System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean includeStagesAfterAsyncPoint) --- End of inner exception stack trace --- at System.Web.UI.Page.HandleError(Exception e) at System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean includeStagesAfterAsyncPoint) at System.Web.UI.Page.ProcessRequest(Boolean includeStagesBeforeAsyncPoint, Boolean includeStagesAfterAsyncPoint) at System.Web.UI.Page.ProcessRequest() at System.Web.UI.Page.ProcessRequest(HttpContext context) at ASP.management_default_aspx.ProcessRequest(HttpContext context) at System.Web.HttpApplication.CallHandlerExecutionStep.System.Web.HttpApplication.IExecutionStep.Execute() at System.Web.HttpApplication.ExecuteStep(IExecutionStep step, Boolean& completedSynchronously) This error happens for every user of the system until the app pool is recycled. Any help on this would be helpful as we are not able to reproduce the error.

    Read the article

  • Clojure: Equivalent to Common Lisp READ function?

    - by jkndrkn
    Hi there. When I want to read in an S-expression stored in a file into a running Common Lisp program, I do the following: (defun load-file (filename) "Loads data corresponding to a s-expression in file with name FILENAME." (with-open-file (stream filename) (read stream))) If, for example, I have a file named foo.txt that contains the S-expression (1 2 3), the above function will return that S-expression if called as follows: (load-file "foo.txt"). I've been searching and searching and have not found an equally elegant solution in Clojure. Any ideas? Thanks!

    Read the article

  • Advantage of creating a generic repository vs. specific repository for each object?

    - by LuckyLindy
    We are developing an ASP.NET MVC application, and are now building the repository/service classes. I'm wondering if there are any major advantages to creating a generic IRepository interface that all repositories implement, vs. each Repository having its own unique interface and set of methods. For example: a generic IRepository interface might look like (taken from this answer): public interface IRepository : IDisposable { T[] GetAll<T>(); T[] GetAll<T>(Expression<Func<T, bool>> filter); T GetSingle<T>(Expression<Func<T, bool>> filter); T GetSingle<T>(Expression<Func<T, bool>> filter, List<Expression<Func<T, object>>> subSelectors); void Delete<T>(T entity); void Add<T>(T entity); int SaveChanges(); DbTransaction BeginTransaction(); } Each Repository would implement this interface (e.g. CustomerRepository:IRepository, ProductRepository:IRepository, etc). The alternate that we've followed in prior projects would be: public interface IInvoiceRepository : IDisposable { EntityCollection<InvoiceEntity> GetAllInvoices(int accountId); EntityCollection<InvoiceEntity> GetAllInvoices(DateTime theDate); InvoiceEntity GetSingleInvoice(int id, bool doFetchRelated); InvoiceEntity GetSingleInvoice(DateTime invoiceDate, int accountId); //unique InvoiceEntity CreateInvoice(); InvoiceLineEntity CreateInvoiceLine(); void SaveChanges(InvoiceEntity); //handles inserts or updates void DeleteInvoice(InvoiceEntity); void DeleteInvoiceLine(InvoiceLineEntity); } In the second case, the expressions (LINQ or otherwise) would be entirely contained in the Repository implementation, whoever is implementing the service just needs to know which repository function to call. I guess I don't see the advantage of writing all the expression syntax in the service class and passing to the repository. Wouldn't this mean easy-to-messup LINQ code is being duplicated in many cases? For example, in our old invoicing system, we call InvoiceRepository.GetSingleInvoice(DateTime invoiceDate, int accountId) from a few different services (Customer, Invoice, Account, etc). That seems much cleaner than writing the following in multiple places: rep.GetSingle(x => x.AccountId = someId && x.InvoiceDate = someDate.Date); The only disadvantage I see to using the specific approach is that we could end up with many permutations of Get* functions, but this still seems preferable to pushing the expression logic up into the Service classes. What am I missing?

    Read the article

  • Group by/count in LINQ against SQL Compact 3.5 SP2

    - by bash74
    Hello, I am using LINQ-To-Entities in C# and run queries against a SQL Compact Server 3.5 SP2. What I try to achieve is a simple group by with an additional where clause which includes a Count(). var baseIdent="expression"; var found=from o in ObservedElements where o.ObservedRoots.BaseIdent==baseIdent group o by o.ID into grouped where grouped.Count()==1 select new {key=grouped.Key, val=grouped}; foreach(var res in found){ //do something here } This query throws the famous exception "A parameter is not allowed in this location. Ensure that the '@' sign and all other parameters are in a valid location in the SQL statement." When I either omit the where clause OR directly enter the expression "expression" in the query (where o.ObservedRoots.BaseIdent=="expression") everything just works fine. Does anybody know how to solve this? Workaround would also be fine? Thanks in advance, Sebastian

    Read the article

  • SQL - How to join on similar (not exact) columns

    - by BlueRaja
    I have two tables which get updated at almost the exact same time - I need to join on the datetime column. I've tried this: SELECT * FROM A, B WHERE ABS(DATEDIFF(second, A.Date_Time, B.Date_Time) = ( SELECT MIN(ABS(DATEDIFF(second, A.Date_Time, B2.Date_Time))) FROM B AS B2 ) But it tells me: Multiple columns are specified in an aggregated expression containing an outer reference. If an expression being aggregated contains an outer reference, then that outer reference must be the only column referenced in the expression. How can I join these tables?

    Read the article

< Previous Page | 59 60 61 62 63 64 65 66 67 68 69 70  | Next Page >