Search Results

Search found 4842 results on 194 pages for 'computation expression'.

Page 64/194 | < Previous Page | 60 61 62 63 64 65 66 67 68 69 70 71  | Next Page >

  • Why can't I use resources as ErrorMessage with DataAnnotations?

    - by Jova
    Why can't I do like this? [Required(ErrorMessage = "*")] [RegularExpression("^[a-zA-Z0-9_]*$", ErrorMessage = Resources.RegistrationModel.UsernameError)] public string Username { get; set; } What is the error message telling me? An attribute argument must be a constant expression , typeof expression or array creation expression of an attribute parameter type.

    Read the article

  • Linq DateTime expressions wont compare if only one is nullable

    - by tigermain
    I have been getting the following exception: The binary operator GreaterThanOrEqual is not defined for the types 'System.Nullable`1[System.DateTime]' and 'System.DateTime'. I am getting the left hand expression from a class property which is a nullable datetime variable and my right hand side is using Expression.Constant(new Nullable<DateTime>(DateTime.Now)) However I still get the above exception despite explicitly setting the right hand expression to a nullable type

    Read the article

  • Shall this Regex do what I expect from it, that is, matching against "A1:B10,C3,D4:E1000"?

    - by Will Marcouiller
    I'm currently writing a library where I wish to allow the user to be able to specify spreadsheet cell(s) under four possible alternatives: A single cell: "A1"; Multiple contiguous cells: "A1:B10" Multiple separate cells: "A1,B6,I60,AA2" A mix of 2 and 3: "B2:B12,C13:C18,D4,E11000" Then, to validate whether the input respects these formats, I intended to use a regular expression to match against. I have consulted this article on Wikipedia: Regular Expression (Wikipedia) And I also found this related SO question: regex matching alpha character followed by 4 alphanumerics. Based on the information provided within the above-linked articles, I would try with this Regex: Default Readonly Property Cells(ByVal cellsAddresses As String) As ReadOnlyDictionary(Of String, ICell) Get Dim validAddresses As Regex = New Regex("A-Za-z0-9:,A-Za-z0-9") If (Not validAddresses.IsMatch(cellsAddresses)) then _ Throw New FormatException("cellsAddresses") // Proceed with getting the cells from the Interop here... End Get End Property Questions 1. Is my regular expression correct? If not, please help me understand what expression I could use. 2. What exception is more likely to be the more meaningful between a FormatException and an InvalidExpressionException? I hesitate here, since it is related to the format under which the property expect the cells to be input, aside, I'm using an (regular) expression to match against. Thank you kindly for your help and support! =)

    Read the article

  • Conversion of Linq expressions

    - by Arnis L.
    I'm not sure how exactly argument what I'm trying to achieve, therefore - wrote some code: public class Foo{ public Bar Bar{get;set;} } public class Bar{ public string Fizz{get;set;} } public class Facts{ [Fact] public void fact(){ Assert.Equal(expectedExp(),barToFoo(barExp())); } private Expression<Func<Foo,bool>> expectedExp(){ return f=>f.Bar.Fizz=="fizz"; } private Expression<Func<Bar,bool>> barExp(){ return b=>b.Fizz=="fizz"; } private Expression<Func<Foo,bool>> barToFoo (Expression<Func<Bar,bool>> barExp){ return Voodoo(barExp); //<-------------------------------------------??? } } Is this even possible?

    Read the article

  • How is the ">" operator implemented (on 32 bit integers)?

    - by Ron Klein
    Let's say that the environment is x86. How do compilers compile the "" operator on 32 bit integers. Logically, I mean. Without any knowledge of Assembly. Let's say that the high level language code is: int32 x, y; x = 123; y = 456; bool z; z = x > y; What does the compiler do for evaluating the expression x > y? Does it perform something like (assuming that x and y are positive integers): w = sign_of(x - y); if (w == 0) // expression is 'false' else if (w == 1) // expression is 'true' else // expression is 'false' Is there any reference for such information?

    Read the article

  • Cleaning up a SQL SP with Regex

    - by Douglas Osborne
    1) If I am running a find and replace in SQL 2005 - what would be the regular expression to find tab and space sequences ( or space and tab sequences ) and replace them with just tab? 2) If I have a line which begins with a space - is there a regular expression to convert that leading space to a tab? 3) What would be the regular expression to remove all of the spaces before a CR/LF in a SQL statement? TIA for the help - I know this will be trivial to most of you, Doug

    Read the article

  • How to do a proper search with nhibernate

    - by Denis Rosca
    Hello everyone, i'm working on a small project that is supposed to allow basic searches of the database. Currently i'm using nhibernate for the database interaction. In the database i have 2 tables: Person and Address. The Person table has a many-to-one relationship with Address. The code i've come up with for doing searches is: public IList<T> GetByParameterList(List<QueryParameter> parameterList) { if (parameterList == null) { return GetAll(); } using (ISession session = NHibernateHelper.OpenSession()) { ICriteria criteria = session.CreateCriteria<T>(); foreach (QueryParameter param in parameterList) { switch (param.Constraint) { case ConstraintType.Less: criteria.Add(Expression.Lt(param.ParameterName, param.ParameterValue)); break; case ConstraintType.More: criteria.Add(Expression.Gt(param.ParameterName, param.ParameterValue)); break; case ConstraintType.LessOrEqual: criteria.Add(Expression.Le(param.ParameterName, param.ParameterValue)); break; case ConstraintType.EqualOrMore: criteria.Add(Expression.Ge(param.ParameterName, param.ParameterValue)); break; case ConstraintType.Equals: criteria.Add(Expression.Eq(param.ParameterName, param.ParameterValue)); break; case ConstraintType.Like: criteria.Add(Expression.Like(param.ParameterName, param.ParameterValue)); break; } } try { IList<T> result = criteria.List<T>(); return result; } catch { //TODO: Implement some exception handling throw; } } } The query parameter is a helper object that i use to create criterias and send it to the dal, it looks like this: public class QueryParameter { public QueryParameter(string ParameterName, Object ParameterValue, ConstraintType constraintType) { this.ParameterName = ParameterName; this.ParameterValue = ParameterValue; this.Constraint = constraintType; } public string ParameterName { get; set; } public Object ParameterValue { get; set; } public ConstraintType Constraint { get; set; } } Now this works well if i'm doing a search like FirstName = "John" , but not when i try to give a parameter like Street = "Some Street". It seems that nhibernate is looking for a street column in the Person table but not in the Address table. Any idea on how should i change my code for so i could do a proper search? Tips? Maybe some alternatives? Disclaimer: i'm kind of a noob so please be gentle ;) Thanks, Denis.

    Read the article

  • Problem creating a custom input element using FluentHtml (MVCContrib)

    - by seth
    Hi there, I just recently started dabbling in ASP.NET MVC 1.0 and came across the wonderful MVCContrib. I had originally gone down the path of creating some extended html helpers, but after finding FluentHTML decided to try my hand at creating a custom input element. Basically I am wanting to ultimately create several custom input elements to make it easier for some other devs on the project I'm working on to add their input fields to the page and have all of my preferred markup to render for them. So, in short, I'd like to wrap certain input elements with additional markup.. A TextBox would be wrapped in an <li /> for example. I've created my custom input elements following Tim Scott's answer in another question on here: DRY in the MVC View. So, to further elaborate, I've created my class, "TextBoxListItem": public class TextBoxListItem : TextInput<TextBox> { public TextBoxListItem (string name) : base(HtmlInputType.Text, name) { } public TextBoxListItem (string name, MemberExpression forMember, IEnumerable<IBehaviorMarker> behaviors) : base(HtmlInputType.Text, name, forMember, behaviors) { } public override string ToString() { var liBuilder = new TagBuilder(HtmlTag.ListItem); liBuilder.InnerHtml = ToString(); return liBuilder.ToString(TagRenderMode.SelfClosing); } } I've also added it to my ViewModelContainerExtensions class: public static TextBox TextBoxListItem<T>(this IViewModelContainer<T> view, Expression<Func<T, object>> expression) where T : class { return new TextBoxListItem(expression.GetNameFor(view), expression.GetMemberExpression(), view.Behaviors) .Value(expression.GetValueFrom(view.ViewModel)); } And lastly, I've added it to ViewDataContainerExtensions as well: public static TextBox TextBoxListItem(this IViewDataContainer view, string name) { return new TextBox(name).Value(view.ViewData.Eval(name)); } I'm calling it in my view like so: <%= this.TextBoxListItem("username").Label("Username:") %> Anyway, I'm not getting anything other than the standard FluentHTML TextBox, not wrapped in <li></li> elements. What am I missing here? Thanks very much for any assistance.

    Read the article

  • C++ converting back and forth from derived and base classes

    - by user127817
    I was wondering if there is a way in C++ to accomplish the following: I have a base class called ResultBase and two class that are Derived from it, Variable and Expression. I have a few methods that do work on vector<ResultBase> . I want to be able to pass in vectors of Variable and Expression into these methods. I can achieve this by creating a vector<ResultBase> and using static_cast to fill it with the members from my vector of Variable/Expression. However, once the vector has run through the methods, I want to be able to get it back as the vector of Result/Expression. I'll know for sure which one I want back. static_cast won't work here as there isn't a method to reconstruct a Variable/Expression from a ResultBase, and more importantly I wouldn't have the original properties of the Variables/Expressions The methods modify some of the properties of the ResultBase and I need those changes to be reflected in the original vectors. (i.e. ResultBase has a property called IsLive, and one of the methods will modify this property. I want this IsLive value to be reflected in the derived class used to create the ResultBase Whats the easiest way to accomplish this?

    Read the article

  • Partially Modifying an XML serialized document.

    - by Stacey
    I have an XML document, several actually, that will be editable via a front-end UI. I've discovered a problem with this approach (other than the fact that it is using xml files instead of a database... but I cannot change that right now). If one user makes a change while another user is in the process of making a change, then the second one's changes will overwrite the first. I need to be able to request objects from the xml files, change them, and then submit the changes back to the xml file without re-writing the entire file. I've got my entire xml access class posted here (which was formed thanks to wonderful help from stackoverflow!) using System; using System.Linq; using System.Collections; using System.Collections.Generic; namespace Repositories { /// <summary> /// A file base repository represents a data backing that is stored in an .xml file. /// </summary> public partial class Repository<T> : IRepository { /// <summary> /// Default constructor for a file repository /// </summary> public Repository() { } /// <summary> /// Initialize a basic repository with a filename. This will have to be passed from a context to be mapped. /// </summary> /// <param name="filename"></param> public Repository(string filename) { FileName = filename; } /// <summary> /// Discovers a single item from this repository. /// </summary> /// <typeparam name="TItem">The type of item to recover.</typeparam> /// <typeparam name="TCollection">The collection the item belongs to.</typeparam> /// <param name="expression"></param> /// <returns></returns> public TItem Single<TItem, TCollection>(Predicate<TItem> expression) where TCollection : IDisposable, IEnumerable<TItem> { using (var list = List<TCollection>()) { return list.Single(i => expression(i)); } } /// <summary> /// Discovers a collection from the repository, /// </summary> /// <typeparam name="TCollection"></typeparam> /// <returns></returns> public TCollection List<TCollection>() where TCollection : IDisposable { using (var list = System.Xml.Serializer.Deserialize<TCollection>(FileName)) { return (TCollection)list; } } /// <summary> /// Discovers a single item from this repository. /// </summary> /// <typeparam name="TItem">The type of item to recover.</typeparam> /// <typeparam name="TCollection">The collection the item belongs to.</typeparam> /// <param name="expression"></param> /// <returns></returns> public List<TItem> Select<TItem, TCollection>(Predicate<TItem> expression) where TCollection : IDisposable, IEnumerable<TItem> { using (var list = List<TCollection>()) { return list.Where( i => expression(i) ).ToList<TItem>(); } } /// <summary> /// Attempts to save an entire collection. /// </summary> /// <typeparam name="TCollection"></typeparam> /// <param name="collection"></param> /// <returns></returns> public Boolean Save<TCollection>(TCollection collection) { try { // load the collection into an xml reader and try to serialize it. System.Xml.XmlDocument xDoc = new System.Xml.XmlDocument(); xDoc.LoadXml(System.Xml.Serializer.Serialize<TCollection>(collection)); // attempt to flush the file xDoc.Save(FileName); // assume success return true; } catch { return false; } } internal string FileName { get; private set; } } public interface IRepository { TItem Single<TItem, TCollection>(Predicate<TItem> expression) where TCollection : IDisposable, IEnumerable<TItem>; TCollection List<TCollection>() where TCollection : IDisposable; List<TItem> Select<TItem, TCollection>(Predicate<TItem> expression) where TCollection : IDisposable, IEnumerable<TItem>; Boolean Save<TCollection>(TCollection collection); } }

    Read the article

  • Recursive Iterators

    - by soandos
    I am having some trouble making an iterator that can traverse the following type of data structure. I have a class called Expression, which has one data member, a List<object>. This list can have any number of children, and some of those children might be other Expression objects. I want to traverse this structure, and print out every non-list object (but I do want to print out the elements of the list of course), but before entering a list, I want to return "begin nest" and after I just exited a list, I want to return "end nest". I was able to do this if I ignored the class wherever possible, and just had List<object> objects with List<object> items if I wanted a subExpression, but I would rather do away with this, and instead have an Expressions as the sublists (it would make it easier to do operations on the object. I am aware that I could use extension methods on the List<object> but it would not be appropriate (who wants an Evaluate method on their list that takes no arguments?). The code that I used to generate the origonal iterator (that works) is: public IEnumerator GetEnumerator(){ return theIterator(expr).GetEnumerator(); } private IEnumerable theIterator(object root) { if ((root is List<object>)){ yield return " begin nest "; foreach (var item in (List<object>)root){ foreach (var item2 in theIterator(item)){ yield return item2; } } yield return " end nest "; } else yield return root; } A type swap of List<object> for expression did not work, and lead to a stackOverflow error. How should the iterator be implemented? Update: Here is the swapped code: public IEnumerator GetEnumerator() { return this.GetEnumerator(); } private IEnumerable theIterator(object root) { if ((root is Expression)) { yield return " begin nest "; foreach (var item in (Expression)root) { foreach (var item2 in theIterator(item)) yield return item2; } yield return " end nest "; } else yield return root; }

    Read the article

  • Camel | Need for Scheduling console

    - by user1692063
    I am using camel 2.9.0 in my project. We have a number of routes divided into different camel contexts. Each camel context is bundled separately and deployed in Apache Karaf. Now the problem is divied into 2 parts: 1.) Each route is a scheduled route. Although using Quartz component, we are able to define a cron expressio in each route, we want a console where in we can trigger,stop any route and also put a cron expression to any route.(Scheduling a route through a web console is our main objective). 2.) Also we tried to configure the cron expression for each route through quartz.property. But if someone wants to change the cron expression at runtime in Apache Karaf, then we have to stop the bundle deployed and start in again. What can be done to change the value of cron expression at runtime. Any replies and help would be appreciable. Piyush

    Read the article

  • Server-side validation in ASP.NET 2.0

    - by Zerotoinfinite
    Hi All, My application is in ASP.NET 2.0 with C#. I have a regular expression validator with the regular expression ^[0-9]*(\\,)?[0-9]?[0-9]?$, now my client don't want this validation at client side but on button click i.e. Server Side. EX: I have to check the value of txtPrice textbox Please let me know how can I put this regular expression validation on server side. Thanks in advance.

    Read the article

  • binary operator "<"

    - by md004
    Consider this expression as a "selection" control structure on integer "x": 0 < x < 10, with the intention that the structure returns TRUE if "x" is in the range 1..9. Explain why a compiler should not accept this expression. (In particular, what are the issues regarding the binary operator "<"? Explain how a prefix operator could be introduced so the expression can be successfully processed.

    Read the article

  • How do I get a Type[] with arguments from a MethodCallExpression?

    - by Tomas Lycken
    I'm reflecting over a class (in a unit test of said class) to make sure its members have all the required attributes. To do so, I've constructed a couple of helpers, that take an Expression as an argument. I do some checks for it, and take slightly different actions depending on what type of Expression it is, but it's basically the same. Now, my problem is that I have several methods with the same name (but different signatures), and the following code throws an AmbiguousMatchException: // TOnType is a type argument for the type where the method is declared // mce is the MethodCallExpression var m = typeof(TOnType).GetMethod(mce.Method.Name); Now, if I could add an array of Type[] with the types of the arguments to this method as a second parameter to .GetMethod(), the problem would be solved. But how do I find this Type[] array that I need? I have cast the Expression<Func<...>> to an Expression, and then to a MethodCallExpression, and in this method the contents of <...> is not known.

    Read the article

  • Using ANTLR with Left-Recursive Rules

    - by CNevin561
    Basically Ive written a Parse for a language with just basic arithmetic operators ( +, -, * / ) etc, but for the minus and plus cases, the Abstract Syntax Tree which is generated has parsed them as right associative when they need to be left associative. Having a googled for a solution, i found a tutorial that suggests rewriting the rule from: Expression ::= Expression <operator> Term | Term as Expression ::= Term <operator> Expression*. However in my head this seems to generate the tree the wrong way round. Any pointers on a way to resolve this issue?

    Read the article

  • Error when customize ValidationMessageFor

    - by user1542080
    i want to customize ValidationMessageFor which display error. when i run application, a get an error : No overload for method 'ValidationMessageFor' takes 1 arguments I'm understand my error, but i don't know how to fix it ? I need some suggest . Thanks you for reading! My code : using System.Linq.Expressions; using System.Web; using System.Web.Mvc; namespace OurCompanyUI.app_code { public static class MyHtml { public static MvcHtmlString ValidationMessageFor<TModel, TProperty>( this HtmlHelper<TModel> htmlHelper, Expression<Func<TModel, TProperty>> expression, string validationMessage, IDictionary<string, Object> htmlAttributes ) { string modelName = ExpressionHelper.GetExpressionText(expression); TagBuilder p = new TagBuilder("p"); p.InnerHtml = htmlHelper.ValidationMessageFor(htmlHelper,expression).ToString(); // p.InnerHtml = htmlHelper.ValidationMessageFor().ToString(); return MvcHtmlString.Create(p.ToString(TagRenderMode.Normal)); } } }

    Read the article

  • A Guided Tour of Complexity

    - by JoshReuben
    I just re-read Complexity – A Guided Tour by Melanie Mitchell , protégé of Douglas Hofstadter ( author of “Gödel, Escher, Bach”) http://www.amazon.com/Complexity-Guided-Tour-Melanie-Mitchell/dp/0199798109/ref=sr_1_1?ie=UTF8&qid=1339744329&sr=8-1 here are some notes and links:   Evolved from Cybernetics, General Systems Theory, Synergetics some interesting transdisciplinary fields to investigate: Chaos Theory - http://en.wikipedia.org/wiki/Chaos_theory – small differences in initial conditions (such as those due to rounding errors in numerical computation) yield widely diverging outcomes for chaotic systems, rendering long-term prediction impossible. System Dynamics / Cybernetics - http://en.wikipedia.org/wiki/System_Dynamics – study of how feedback changes system behavior Network Theory - http://en.wikipedia.org/wiki/Network_theory – leverage Graph Theory to analyze symmetric  / asymmetric relations between discrete objects Algebraic Topology - http://en.wikipedia.org/wiki/Algebraic_topology – leverage abstract algebra to analyze topological spaces There are limits to deterministic systems & to computation. Chaos Theory definitely applies to training an ANN (artificial neural network) – different weights will emerge depending upon the random selection of the training set. In recursive Non-Linear systems http://en.wikipedia.org/wiki/Nonlinear_system – output is not directly inferable from input. E.g. a Logistic map: Xt+1 = R Xt(1-Xt) Different types of bifurcations, attractor states and oscillations may occur – e.g. a Lorenz Attractor http://en.wikipedia.org/wiki/Lorenz_system Feigenbaum Constants http://en.wikipedia.org/wiki/Feigenbaum_constants express ratios in a bifurcation diagram for a non-linear map – the convergent limit of R (the rate of period-doubling bifurcations) is 4.6692016 Maxwell’s Demon - http://en.wikipedia.org/wiki/Maxwell%27s_demon - the Second Law of Thermodynamics has only a statistical certainty – the universe (and thus information) tends towards entropy. While any computation can theoretically be done without expending energy, with finite memory, the act of erasing memory is permanent and increases entropy. Life & thought is a counter-example to the universe’s tendency towards entropy. Leo Szilard and later Claude Shannon came up with the Information Theory of Entropy - http://en.wikipedia.org/wiki/Entropy_(information_theory) whereby Shannon entropy quantifies the expected value of a message’s information in bits in order to determine channel capacity and leverage Coding Theory (compression analysis). Ludwig Boltzmann came up with Statistical Mechanics - http://en.wikipedia.org/wiki/Statistical_mechanics – whereby our Newtonian perception of continuous reality is a probabilistic and statistical aggregate of many discrete quantum microstates. This is relevant for Quantum Information Theory http://en.wikipedia.org/wiki/Quantum_information and the Physics of Information - http://en.wikipedia.org/wiki/Physical_information. Hilbert’s Problems http://en.wikipedia.org/wiki/Hilbert's_problems pondered whether mathematics is complete, consistent, and decidable (the Decision Problem – http://en.wikipedia.org/wiki/Entscheidungsproblem – is there always an algorithm that can determine whether a statement is true).  Godel’s Incompleteness Theorems http://en.wikipedia.org/wiki/G%C3%B6del's_incompleteness_theorems  proved that mathematics cannot be both complete and consistent (e.g. “This statement is not provable”). Turing through the use of Turing Machines (http://en.wikipedia.org/wiki/Turing_machine symbol processors that can prove mathematical statements) and Universal Turing Machines (http://en.wikipedia.org/wiki/Universal_Turing_machine Turing Machines that can emulate other any Turing Machine via accepting programs as well as data as input symbols) that computation is limited by demonstrating the Halting Problem http://en.wikipedia.org/wiki/Halting_problem (is is not possible to know when a program will complete – you cannot build an infinite loop detector). You may be used to thinking of 1 / 2 / 3 dimensional systems, but Fractal http://en.wikipedia.org/wiki/Fractal systems are defined by self-similarity & have non-integer Hausdorff Dimensions !!!  http://en.wikipedia.org/wiki/List_of_fractals_by_Hausdorff_dimension – the fractal dimension quantifies the number of copies of a self similar object at each level of detail – eg Koch Snowflake - http://en.wikipedia.org/wiki/Koch_snowflake Definitions of complexity: size, Shannon entropy, Algorithmic Information Content (http://en.wikipedia.org/wiki/Algorithmic_information_theory - size of shortest program that can generate a description of an object) Logical depth (amount of info processed), thermodynamic depth (resources required). Complexity is statistical and fractal. John Von Neumann’s other machine was the Self-Reproducing Automaton http://en.wikipedia.org/wiki/Self-replicating_machine  . Cellular Automata http://en.wikipedia.org/wiki/Cellular_automaton are alternative form of Universal Turing machine to traditional Von Neumann machines where grid cells are locally synchronized with their neighbors according to a rule. Conway’s Game of Life http://en.wikipedia.org/wiki/Conway's_Game_of_Life demonstrates various emergent constructs such as “Glider Guns” and “Spaceships”. Cellular Automatons are not practical because logical ops require a large number of cells – wasteful & inefficient. There are no compilers or general program languages available for Cellular Automatons (as far as I am aware). Random Boolean Networks http://en.wikipedia.org/wiki/Boolean_network are extensions of cellular automata where nodes are connected at random (not to spatial neighbors) and each node has its own rule –> they demonstrate the emergence of complex  & self organized behavior. Stephen Wolfram’s (creator of Mathematica, so give him the benefit of the doubt) New Kind of Science http://en.wikipedia.org/wiki/A_New_Kind_of_Science proposes the universe may be a discrete Finite State Automata http://en.wikipedia.org/wiki/Finite-state_machine whereby reality emerges from simple rules. I am 2/3 through this book. It is feasible that the universe is quantum discrete at the plank scale and that it computes itself – Digital Physics: http://en.wikipedia.org/wiki/Digital_physics – a simulated reality? Anyway, all behavior is supposedly derived from simple algorithmic rules & falls into 4 patterns: uniform , nested / cyclical, random (Rule 30 http://en.wikipedia.org/wiki/Rule_30) & mixed (Rule 110 - http://en.wikipedia.org/wiki/Rule_110 localized structures – it is this that is interesting). interaction between colliding propagating signal inputs is then information processing. Wolfram proposes the Principle of Computational Equivalence - http://mathworld.wolfram.com/PrincipleofComputationalEquivalence.html - all processes that are not obviously simple can be viewed as computations of equivalent sophistication. Meaning in information may emerge from analogy & conceptual slippages – see the CopyCat program: http://cognitrn.psych.indiana.edu/rgoldsto/courses/concepts/copycat.pdf Scale Free Networks http://en.wikipedia.org/wiki/Scale-free_network have a distribution governed by a Power Law (http://en.wikipedia.org/wiki/Power_law - much more common than Normal Distribution). They are characterized by hubs (resilience to random deletion of nodes), heterogeneity of degree values, self similarity, & small world structure. They grow via preferential attachment http://en.wikipedia.org/wiki/Preferential_attachment – tipping points triggered by positive feedback loops. 2 theories of cascading system failures in complex systems are Self-Organized Criticality http://en.wikipedia.org/wiki/Self-organized_criticality and Highly Optimized Tolerance http://en.wikipedia.org/wiki/Highly_optimized_tolerance. Computational Mechanics http://en.wikipedia.org/wiki/Computational_mechanics – use of computational methods to study phenomena governed by the principles of mechanics. This book is a great intuition pump, but does not cover the more mathematical subject of Computational Complexity Theory – http://en.wikipedia.org/wiki/Computational_complexity_theory I am currently reading this book on this subject: http://www.amazon.com/Computational-Complexity-Christos-H-Papadimitriou/dp/0201530821/ref=pd_sim_b_1   stay tuned for that review!

    Read the article

  • BizTalk 2009 - Naming Guidelines

    - by StuartBrierley
    The following is effectively a repost of the BizTalk 2004 naming guidlines that I have previously detailed.  I have posted these again for completeness under BizTalk 2009 and to allow an element of separation in case I find some reason to amend these for BizTalk 2009. These guidlines should be universal across any version of BizTalk you may wish to apply them to. General Rules All names should be named with a Pascal convention. Project Namespaces For message schemas: [CompanyName].XML.Schemas.[FunctionalName]* Examples:  ABC.XML.Schemas.Underwriting DEF.XML.Schemas.MarshmellowTradingExchange * Donates potential for multiple levels of functional name, such as Underwriting.Dictionary.Valuation For web services: [CompanyName].Web.Services.[FunctionalName] Examples: ABC.Web.Services.OrderJellyBeans For the main BizTalk Projects: [CompanyName].BizTalk.[AssemblyType].[FunctionalName]* Examples: ABC.BizTalk.Mappings.Underwriting ABC.BizTalk.Orchestrations.Underwriting * Donates potential for multiple levels of functional name, such as Mappings.Underwriting.Valuations Assemblies BizTalk Assembly names should match the associated Project Namespace, such as ABC.BizTalk.Mappings.Underwriting. This pertains to the formal assembly name and the DLL name. The Solution name should take the name of the main project within the solution, and also therefore the namespace for that project. Although long names such as this can be unwieldy to work with, the benefits of having the full scope available when the assemblies are installed on the target server are generally judged to outweigh this inconvenience. Messaging Artifacts Artifact Standard Notes Example Schema <DescriptiveName>.xsd   .NET Type name should match, without file extension.    .NET Namespace will likely match assembly name. PurchaseOrderAcknowledge_FF.xsd  or FNMA100330_FF.xsd Property Schema <DescriptiveName>.xsd Should be named to reflect possible common usage across multiple schemas  IspecMessagePropertySchema.xsd UnderwritingOrchestrationKeys.xsd Map <SourceSchema>2<DestinationSchema>.btm Exceptions to this may be made where the source and destination schemas share the majority of the name, such as in mainframe web service maps InstructionResponse2CustomEmailRequest.btm (exception example) AccountCustomerAddressSummaryRequest2MainframeRequest.btm Orchestration <DescriptiveName>.odx   GetValuationReports.odx SendMTEDecisionResponse.odx Send/Receive Pipeline <DescriptiveName>.btp   ValidatingXMLReceivePipeline.btp FlatFileAssembler.btp Receive Port A plainly worded phrase that will clearly explain the function.    FraudPreventionServices LetterProcessing   Receive Location A plainly worded phrase that will clearly explain the function.  ? Do we want to include the transport type here ? Arrears Web Service Send Port Group A plainly worded phrase that will clearly explain the function.   Customer Updates Send Port A plainly worded phrase that will clearly explain the function.    ABCProductUpdater LogLendingPolicyOutput Parties A meaningful name for a Trading Partner. If dealing with multiple entities within a Trading Partner organization, the Organization name could be used as a prefix.   Roles A meaningful name for the role that a Trading Partner plays.     Orchestration Workflow Shapes Shape Standard Notes Example Scopes <DescriptionOfContainedWork> or <DescOfcontainedWork><TxType>   Including info about transaction type may be appropriate in some situations where it adds significant documentation value to the diagram. HandleReportResponse         Receive Receive<MessageName> Typically, MessageName will be the same as the name of the message variable that is being received “into”. ReceiveReportResponse Send Send<MessageName> Typically, MessageName will be the same as the name of the message variable that is being sent. SendValuationDetailsRequest Expression <DescriptionOfEffect> Expression shapes should be named to describe the net effect of the expression, similar to naming a method.  The exception to this is the case where the expression is interacting with an external .NET component to perform a function that overlaps with existing BizTalk functionality – use closest BizTalk shape for this case. CreatePrintXML Decide <DescriptionOfDecision> A description of what will be decided in the “if” branch Report Type? Perform MF Save? If-Branch <DescriptionOfDecision> A (potentially abbreviated) description of what is being decided Mortgage Valuation Yes Else-Branch Else Else-branch shapes should always be named “Else” Else Construct Message (Assign) Create<Message> (for Construct)     <ExpressionDescription> (for expression) If a Construct shape contains a message assignment, it should be prefixed with “Create” followed by an abbreviated name of the message being assigned.    The actual message assignment shape contained should be named to describe the expression that is contained. CreateReportDataMV   which contains expression: ExtractReportData Construct Message (Transform) Create<Message> (for Construct)   <SourceSchema>2<DestSchema> (for transform) If a Construct shape contains a message transform, it should be prefixed with “Create” followed by an abbreviated name of the message being assigned.   The actual message transform shape contained should generally be named the same as the called map.  CreateReportDataMV   which contains transform: ReportDataMV2ReportDataMV                 Construct Message (containing multiple shapes)   If a Construct Message shape uses multiple assignments or transforms, the overall shape should be named to communicate the net effect, using no prefix.     Call/Start Orchestration Call<OrchestrationName>   Start<OrchestrationName>     Throw Throw<ExceptionType> The corresponding variable name for the exception type should (often) be the same name as the exception type, only camel-cased. ThrowRuleException, which references the “ruleException” variable.     Parallel <DescriptionOfParallelWork> Parallel shapes should be named by a description of what work will be done in parallel   Delay <DescriptionOfWhatWaitingFor> Delay shapes should be named by a description of what is being waited for.  POAcknowledgeTimeout Listen <DescriptionOfOutcomes> Listen shapes should be named by a description that captures (to the degree possible) all the branches of the Listen shape POAckOrTimeout FirstShippingBid Loop <DescriptionOfLoop> A (potentially abbreviated) description of what the loop is. ForEachValuationReport WhileErrorFlagTrue Role Link   See “Roles” in messaging naming conventions above.   Suspend <ReasonDescription> Describe what action an administrator must take to resume the orchestration.  More detail can be passed to error property – and should include what should be done by the administrator before resuming the orchestration. ReEstablishCreditLink Terminate <ReasonDescription> Describe why the orchestration terminated.  More detail can be passed to error property. TimeoutsExpired Call Rules Call<PolicyName> The policy name may need to be abbreviated. CallLendingPolicy Compensate Compensate or Compensate<TxName> If the shape compensates nested transactions, names should be suffixed with the name of the nested transaction – otherwise it should simple be Compensate. CompensateTransferFunds Orchestration Types Type Standard Notes Example Multi-Part Message Types <LogicalDocumentType>   Multi-part types encapsulate multiple parts.  The WSDL spec indicates “parts are a flexible mechanism for describing the logical abstract content of a message.”  The name of the multi-part type should correspond to the “logical” document type, i.e. what the sum of the parts describes. InvoiceReceipt   (which might encapsulate an invoice acknowledgement and a payment voucher.) Multi-Part Messsage Part <SchemaNameOfPart> Should be named (most often) simply for the schema (or simple type) associated with the part. InvoiceHeader Messages <SchemaName> or <MuliPartMessageTypeName> Should be named based on the corresponding schema type or multi-part message type.  If there is more than one variable of a type, name for its use within the orchestration. ReportDataMV UpdatedReportDataMV Variables <DescriptiveName>   TargetFilePath StringProcessor Port Types <FunctionDescription>PortType Should be named to suggest the nature of an endpoint, with pascal casing and suffixed with “PortType”.   If there will be more than one Port for a Port Type, the Port Type should be named according to the abstract service supplied.   The WSDL spec indicates port types are “a named set of abstract operations and the abstract messages involved” that also encapsulates the message pattern (i.e. one-way, request-response, solicit-response) that all operations on the port type adhere to. ReceiveReportResponsePortType  or CallEAEPortType (This is a two way port, so Receove or Send alone would not be appropriate.  Could have been ProcessEAERequestPortType etc....) Ports <FunctionDescription>Port Should be named to suggest a grouping of functionality, with pascal casing and suffixed with “Port.”  ReceiveReportResponsePort CallEAEPort Correlation types <DescriptiveName> Should be named based on the logical name of what is being used to correlate.  PurchaseOrderNumber Correlation sets <DescriptiveName> Should be named based on the corresponding correlation type.  If there is more than one, it should be named to reflect its specific purpose within the orchestration.   PurchaseOrderNumber Orchestration parameters <DescriptiveName> Should be named to match the caller’s names for the corresponding variables where appropriate.

    Read the article

  • F# Objects &ndash; Integration with the other .Net Languages &ndash; Part 2

    - by MarkPearl
    So in part one of my posting I covered the real basics of object creation. Today I will hopefully dig a little deeper… My expert F# book brings up an interesting point – properties in F# are just syntactic sugar for method calls. This makes sense… for instance assume I had the following object with the property exposed called Firstname. type Person(Firstname : string, Lastname : string) = member v.Firstname = Firstname I could extend the Firstname property with the following code and everything would be hunky dory… type Person(Firstname : string, Lastname : string) = member v.Firstname = Console.WriteLine("Side Effect") Firstname   All that this would do is each time I use the property Firstname, I would see the side effect printed to the screen saying “Side Effect”. Member methods have a very similar look & feel to properties, in fact the only difference really is that you declare that parameters are being passed in. type Person(Firstname : string, Lastname : string) = member v.FullName(middleName) = Firstname + " " + middleName + " " + Lastname   In the code above, FullName requires the parameter middleName, and if viewed from another project in C# would show as a method and not a property. Precomputation Optimizations Okay, so something that is obvious once you think of it but that poses an interesting side effect of mutable value holders is pre-computation of results. All it is, is a slight difference in code but can result in quite a huge saving in performance. Basically pre-computation means you would not need to compute a value every time a method is called – but could perform the computation at the creation of the object (I hope I have got it right). In a way I battle to differentiate this from lazy evaluation but I will show an example to explain the principle. Let me try and show an example to illustrate the principle… assume the following F# module namespace myNamespace open System module myMod = let Add val1 val2 = Console.WriteLine("Compute") val1 + val2 type MathPrecompute(val1 : int, val2 : int) = let precomputedsum = Add val1 val2 member v.Sum = precomputedsum type MathNormalCompute(val1 : int, val2 : int) = member v.Sum = Add val1 val2 Now assume you have a C# console app that makes use of the objects with code similar to the following… using System; using myNamespace; namespace CSharpTest { class Program { static void Main(string[] args) { Console.WriteLine("Constructing Objects"); var myObj1 = new myMod.MathNormalCompute(10, 11); var myObj2 = new myMod.MathPrecompute(10, 11); Console.WriteLine(""); Console.WriteLine("Normal Compute Sum..."); Console.WriteLine(myObj1.Sum); Console.WriteLine(myObj1.Sum); Console.WriteLine(myObj1.Sum); Console.WriteLine(""); Console.WriteLine("Pre Compute Sum..."); Console.WriteLine(myObj2.Sum); Console.WriteLine(myObj2.Sum); Console.WriteLine(myObj2.Sum); Console.ReadKey(); } } } The output when running the console application would be as follows…. You will notice with the normal compute object that the system would call the Add function every time the method was called. With the Precompute object it only called the compute method when the object was created. Subtle, but something that could lead to major performance benefits. So… this post has gone off in a slight tangent but still related to F# objects.

    Read the article

  • Come up with a real-world problem in which only the best solution will do (a problem from Introduction to algorithms) [closed]

    - by Mike
    EDITED (I realized that the question certainly needs a context) The problem 1.1-5 in the book of Thomas Cormen et al Introduction to algorithms is: "Come up with a real-world problem in which only the best solution will do. Then come up with one in which a solution that is “approximately” the best is good enough." I'm interested in its first statement. And (from my understanding) it is asked to name a real-world problem where only the exact solution will work as opposed to a real-world problem where good-enough solution will be ok. So what is the difference between the exact and good enough solution. Consider some physics problem for example the simulation of the fulid flow in the permeable medium. To make this simulation happen some simplyfing assumptions have to be made when deriving a mathematical model. Otherwise the model becomes at least complex and unsolvable. Virtually any particle in the universe has its influence on the fluid flow. But not all particles are equal. Those that form the permeable medium are much more influental than the ones located light years away. Then when the mathematical model needs to be solved an exact solution can rarely be found unless the mathematical model is simple enough (wich probably means the model isn't close to reality). We take an approximate numerical method and after hours of coding and days of verification come up with the program or algorithm which is a solution. And if the model and an algorithm give results close to a real problem by some degree that is good enough soultion. Its worth noting the difference between exact solution algorithm and exact computation result. When considering real-world problems and real-world computation machines I believe all physical problems solutions where any calculations are taken can not be exact because universal physical constants are represented approximately in the computer. Any numbers are represented with the limited precision, at least limited by amount of memory available to computing machine. I can imagine plenty of problems where good-enough, good to some degree solution will work, like train scheduling, automated trading, satellite orbit calculation, health care expert systems. In that cases exact solutions can't be derived due to constraints on computation time, limitations in computer memory or due to the nature of problems. I googled this question and like what this guy suggests: there're kinds of mathematical problems that need exact solutions (little note here: because the question is taken from the book "Introduction to algorithms" the term "solution" means an algorithm or a program, which in this case gives exact answer on each input). But that's probably more of theoretical interest. So I would like to narrow down the question to: What are the real-world practical problems where only the best (exact) solution algorithm or program will do (but not the good-enough solution)? There are problems like breaking of cryptographic ciphers where only exact solution matters in practice and again in practice the process of deciphering without knowing a secret should take reasonable amount of time. Returning to the original question this is the problem where good-enough (fast-enough) solution will do there's no practical need in instant crack though it's desired. So the quality of "best" can be understood in any sense: exact, fastest, requiring least memory, having minimal possible network traffic etc. And still I want this question to be theoretical if possible. In a sense that there may be example of computer X that has limited resource R of amount Y where the best solution to problem P is the one that takes not more than available Y for inputs of size N*Y. But that's the problem of finding solution for P on computer X which is... well, good enough. My final thought that we live in a world where it is required from programming solutions to practical purposes to be good enough. In rare cases really very very good but still not the best ones. Isn't it? :) If it's not can you provide an example? Or can you name any such unsolved problem of practical interest?

    Read the article

< Previous Page | 60 61 62 63 64 65 66 67 68 69 70 71  | Next Page >