Search Results

Search found 4842 results on 194 pages for 'computation expression'.

Page 62/194 | < Previous Page | 58 59 60 61 62 63 64 65 66 67 68 69  | Next Page >

  • Modify static variables while debugging in Eclipse

    - by sleske
    As an extension the the question "Modify/view static variables while debugging in Eclipse", I'd like to be able to modify static variables while debugging in Eclipse. For instance and local variables, I can just choose the variable in the "Variables" view of Eclipse, and use the context menu "Change value..." to change the value. This is not possible for arbitrary static variables, because they do not appear in the "Variables" view. What I tried: If you choose "Java / Show static variables" from the triangle menu in the "Variables" view, you can see and modify static member variables of the variables listed in the "Variables view". However, I did not find how to access a static member of a class whose instance does not appear in the "Variables view". You can of course enter a static member as an expression into the "Expression view" (using fully qualified name). Then you can see the value, but the "Expression view" does not have an option to modify the value (it does allow to modify members of an expression, but not the expression itself, even if the expression is a field). So, if I have a static variable like a boolean MyClass.disableAllBugs, is there a way to change MyClass.disableAllBugs during debugging? As an aside: I realize that even having public mutable static fields (i.e. mutable global variables) is very bad style. But some codebases have it, and then it's sometimes useful to modify it while debugging.

    Read the article

  • Mule ESB 3.2 Splitter destroys Enricher results

    - by Eddie
    Here is the snippet of my flow: <logger message="PRODUCT_ID = #[header:productID]" level="INFO" doc:name="Logger"/> <splitter evaluator="jxpath" expression="//*/BisacHeaderCodes" doc:name="Splitter"/> <logger message="PRODUCT_ID_POST_SPLITTER = #[header:productID]" level="INFO" doc:name="Logger"/> #[header:productID] was set up prior to Logger call. I tried #[variable:productID] and got the same result. When I run it, this is the out put I get: INFO 2012-04-05 23:12:47,865 [[bookinista_order_management].connector.http.mule.default.receiver.02] org.mule.api.processor.LoggerMessageProcessor: PRODUCT_ID = 72 ERROR 2012-04-05 23:12:47,871 [[bookinista_order_management].connector.http.mule.default.receiver.02] org.mule.exception.DefaultSystemExceptionStrategy: Caught exception in Exception Strategy: Expression Evaluator "header" with expression "outbound:productID" returned null but a value was required. org.mule.api.expression.RequiredValueException: Expression Evaluator "header" with expression "outbound:productID" returned null but a value was required. So, right before Splitter, I have a perfect value in my header, and right after Splitter, that value disappears! I understand that Splitter propagates only part of payloda, but shouldn't it leave headers and variables alone? Any ideas for a workaround?

    Read the article

  • Parsing: How to make error recovery in grammars like " a* b*"?

    - by Lavir the Whiolet
    Let we have a grammar like this: Program ::= a* b* where "*" is considered to be greedy. I usually implement "*" operator naively: Try to apply the expression under "*" to input one more time. If it has been applied successfully then we are still under current "*"-expression; try to apply the expression under "*" one more time. Otherwise we have reached next grammar expression; put characters parsed by expression under "*" back into input and proceed with next expression. But if there are errors in input in any of "a*" or "b*" part such a parser will "think" that in position of error both "a*" and "b*" have finished ("let's try "a"... Fail! OK, it looks like we have to proceed to "b*". Let's try "b"... Fail! OK, it looks like the string should have been finished...). For example, for string "daaaabbbbbbc" it will "say": "The string must end at position 1, delete superflous characters: daaaabbbbbbc". In short, greedy "*" operator becomes lazy if there are errors in input. How to make "*" operator to recover from errors nicely?

    Read the article

  • Python parsing error message functions

    - by user1716168
    The code below was created by me with the help of many SO veterans: The code takes an entered math expression and splits it into operators and operands for later use. I have created two functions, the parsing function that splits, and the error function. I am having problems with the error function because it won't display my error messages and I feel the function is being ignored when the code runs. An error should print if an expression such as this is entered: 3//3+4,etc. where there are two operators together, or there are more than two operators in the expression overall, but the error messages dont print. My code is below: def errors(): numExtrapolation,opExtrapolation=parse(expression) if (len(numExtrapolation) == 3) and (len(opExtrapolation) !=2): print("Bad1") if (len(numExtrapolation) ==2) and (len(opExtrapolation) !=1): print("Bad2") def parse(expression): operators= set("*/+-") opExtrapolate= [] numExtrapolate= [] buff=[] for i in expression: if i in operators: numExtrapolate.append(''.join(buff)) buff= [] opExtrapolate.append(i) opExtrapolation=opExtrapolate else: buff.append(i) numExtrapolate.append(''.join(buff)) numExtrapolation=numExtrapolate #just some debugging print statements print(numExtrapolation) print("z:", len(opExtrapolation)) return numExtrapolation, opExtrapolation errors() Any help would be appreciated. Please don't introduce new code that is any more advanced than the code already here. I am looking for a solution to my problem... not large new code segments. Thanks.

    Read the article

  • SSIS Expressions - EvaluateAsExpression Problem

    - by Randy Minder
    In a Data Flow, I have an Derived Column task. In the expression for one of the columns, I have the following expression: [siteid] == "100" ? "1101" : [siteid] == "110" ? "1001" : [siteid] == "120" ? "2101" : [siteid] == "140" ? "1102" : [siteid] == "210" ? "2001" : [siteid] == "310" ? "3001" : [siteid] This works just fine. However, I intend to reuse this in at least a dozen other places so I want to store this to a variable and use the variable in the Derived Column instead of the hard-coded expression. When I attempt to create a variable, using the expression above, I get a syntax error saying 'siteid' is not defined. I guess this makes sense because it isn't. But how can I get this the expression to work by using a variable? It seems like I need some sort of way to tell it that 'siteid' will be the column containing the data I want to apply the expression to.

    Read the article

  • Sequence Point and Evaluation Order( Preincrement)

    - by Josh
    There was a debate today among some of my colleagues and I wanted to clarify it. It is about the evaluation order and the sequence point in an expression. It is clearly stated in the standard that C/C++ does not have a left-to-right evaluation in an expression unlike languages like Java which is guaranteed to have a sequencial left-to-right order. So, in the below expression, the evaluation of the leftmost operand(B) in the binary operation is sequenced before the evaluation of the rightmost operand(C): A = B B_OP C The following expression according, to CPPReference under the subsection Sequenced-before rules(Undefined Behaviour) and Bjarne's TCPPL 3rd ed, is an UB x = x++ + 1; It could be interpreted as the compilers like BUT the expression below is said to be clearly a well defined behaviour in C++11 x = ++x + 1; So, if the above expression is well defined, what is the "fate" of this? array[x] = ++x; It seems the evaluation of a post-increment and post-decrement is not defined but the pre-increment and the pre-decrement is defined. NOTE: This is not used in a real-life code. Clang 3.4 and GCC 4.8 clearly warns about both the pre- and post-increment sequence point.

    Read the article

  • IXRepository and test problems

    - by Ridermansb
    Recently had a doubt about how and where to test repository methods. Let the following situation: I have an interface IRepository like this: public interface IRepository<T> where T: class, IEntity { IQueryable<T> Query(Expression<Func<T, bool>> expression); // ... Omitted } And a generic implementation of IRepository public class Repository<T> : IRepository<T> where T : class, IEntity { public IQueryable<T> Query(Expression<Func<T, bool>> expression) { return All().Where(expression).AsQueryable(); } } This is an implementation base that can be used by any repository. It contains the basic implementation of my ORM. Some repositories have specific filters, in which case we will IEmployeeRepository with a specific filter: public interface IEmployeeRepository : IRepository<Employee> { IQueryable<Employee> GetInactiveEmployees(); } And the implementation of IEmployeeRepository: public class EmployeeRepository : Repository<Employee>, IEmployeeRepository // TODO: I have a dependency with ORM at this point in Repository<Employee>. How to solve? How to test the GetInactiveEmployees method { public IQueryable<Employee> GetInactiveEmployees() { return Query(p => p.Status != StatusEmployeeEnum.Active || p.StartDate < DateTime.Now); } } Questions Is right to inherit Repository<Employee>? The goal is to reuse code once all implementing IRepository already been made. If EmployeeRepository inherit only IEmployeeRepository, I have to literally copy and paste the code of Repository<T>. In our example, in EmployeeRepository : Repository<Employee> our Repository lies in our ORM layer. We have a dependency here with our ORM impossible to perform some unit test. How to create a unit test to ensure that the filter GetInactiveEmployees return all Employees in which the Status != Active and StartDate < DateTime.Now. I can not create a Fake/Mock of IEmployeeRepository because I would be testing? Need to test the actual implementation of GetInactiveEmployees. The complete code can be found on Github

    Read the article

  • Embarrassingly parallel workflow creates too many output files

    - by Hooked
    On a Linux cluster I run many (N > 10^6) independent computations. Each computation takes only a few minutes and the output is a handful of lines. When N was small I was able to store each result in a separate file to be parsed later. With large N however, I find that I am wasting storage space (for the file creation) and simple commands like ls require extra care due to internal limits of bash: -bash: /bin/ls: Argument list too long. Each computation is required to run through a qsub scheduling algorithm so I am unable to create a master program which simply aggregates the output data to a single file. The simple solution of appending to a single fails when two programs finish at the same time and interleave their output. I have no admin access to the cluster, so installing a system-wide database is not an option. How can I collate the output data from embarrassingly parallel computation before it gets unmanageable?

    Read the article

  • Way to kill python thread from inside thread?

    - by user859434
    I have some python code that currently performs expensive computation by performing the computation in parallel through many threads. For a given time period, many threads are created and started on the fly that share the same code which is explicitly stated within the run method of the thread. My question is how do I stop/kill a thread at the end of its run method? (the run is only called once) I need to do this in order to create more threads for the next batch of computation. #Example class someThread(threading.Thread): def __init__(self): #some init code def run(self): #Explicitly Stated Code without constant loops #Something performed to stop/kill this thread

    Read the article

  • A ToDynamic() Extension Method For Fluent Reflection

    - by Dixin
    Recently I needed to demonstrate some code with reflection, but I felt it inconvenient and tedious. To simplify the reflection coding, I created a ToDynamic() extension method. The source code can be downloaded from here. Problem One example for complex reflection is in LINQ to SQL. The DataContext class has a property Privider, and this Provider has an Execute() method, which executes the query expression and returns the result. Assume this Execute() needs to be invoked to query SQL Server database, then the following code will be expected: using (NorthwindDataContext database = new NorthwindDataContext()) { // Constructs the query. IQueryable<Product> query = database.Products.Where(product => product.ProductID > 0) .OrderBy(product => product.ProductName) .Take(2); // Executes the query. Here reflection is required, // because Provider, Execute(), and ReturnValue are not public members. IEnumerable<Product> results = database.Provider.Execute(query.Expression).ReturnValue; // Processes the results. foreach (Product product in results) { Console.WriteLine("{0}, {1}", product.ProductID, product.ProductName); } } Of course, this code cannot compile. And, no one wants to write code like this. Again, this is just an example of complex reflection. using (NorthwindDataContext database = new NorthwindDataContext()) { // Constructs the query. IQueryable<Product> query = database.Products.Where(product => product.ProductID > 0) .OrderBy(product => product.ProductName) .Take(2); // database.Provider PropertyInfo providerProperty = database.GetType().GetProperty( "Provider", BindingFlags.NonPublic | BindingFlags.GetProperty | BindingFlags.Instance); object provider = providerProperty.GetValue(database, null); // database.Provider.Execute(query.Expression) // Here GetMethod() cannot be directly used, // because Execute() is a explicitly implemented interface method. Assembly assembly = Assembly.Load("System.Data.Linq"); Type providerType = assembly.GetTypes().SingleOrDefault( type => type.FullName == "System.Data.Linq.Provider.IProvider"); InterfaceMapping mapping = provider.GetType().GetInterfaceMap(providerType); MethodInfo executeMethod = mapping.InterfaceMethods.Single(method => method.Name == "Execute"); IExecuteResult executeResult = executeMethod.Invoke(provider, new object[] { query.Expression }) as IExecuteResult; // database.Provider.Execute(query.Expression).ReturnValue IEnumerable<Product> results = executeResult.ReturnValue as IEnumerable<Product>; // Processes the results. foreach (Product product in results) { Console.WriteLine("{0}, {1}", product.ProductID, product.ProductName); } } This may be not straight forward enough. So here a solution will implement fluent reflection with a ToDynamic() extension method: IEnumerable<Product> results = database.ToDynamic() // Starts fluent reflection. .Provider.Execute(query.Expression).ReturnValue; C# 4.0 dynamic In this kind of scenarios, it is easy to have dynamic in mind, which enables developer to write whatever code after a dot: using (NorthwindDataContext database = new NorthwindDataContext()) { // Constructs the query. IQueryable<Product> query = database.Products.Where(product => product.ProductID > 0) .OrderBy(product => product.ProductName) .Take(2); // database.Provider dynamic dynamicDatabase = database; dynamic results = dynamicDatabase.Provider.Execute(query).ReturnValue; } This throws a RuntimeBinderException at runtime: 'System.Data.Linq.DataContext.Provider' is inaccessible due to its protection level. Here dynamic is able find the specified member. So the next thing is just writing some custom code to access the found member. .NET 4.0 DynamicObject, and DynamicWrapper<T> Where to put the custom code for dynamic? The answer is DynamicObject’s derived class. I first heard of DynamicObject from Anders Hejlsberg's video in PDC2008. It is very powerful, providing useful virtual methods to be overridden, like: TryGetMember() TrySetMember() TryInvokeMember() etc.  (In 2008 they are called GetMember, SetMember, etc., with different signature.) For example, if dynamicDatabase is a DynamicObject, then the following code: dynamicDatabase.Provider will invoke dynamicDatabase.TryGetMember() to do the actual work, where custom code can be put into. Now create a type to inherit DynamicObject: public class DynamicWrapper<T> : DynamicObject { private readonly bool _isValueType; private readonly Type _type; private T _value; // Not readonly, for value type scenarios. public DynamicWrapper(ref T value) // Uses ref in case of value type. { if (value == null) { throw new ArgumentNullException("value"); } this._value = value; this._type = value.GetType(); this._isValueType = this._type.IsValueType; } public override bool TryGetMember(GetMemberBinder binder, out object result) { // Searches in current type's public and non-public properties. PropertyInfo property = this._type.GetTypeProperty(binder.Name); if (property != null) { result = property.GetValue(this._value, null).ToDynamic(); return true; } // Searches in explicitly implemented properties for interface. MethodInfo method = this._type.GetInterfaceMethod(string.Concat("get_", binder.Name), null); if (method != null) { result = method.Invoke(this._value, null).ToDynamic(); return true; } // Searches in current type's public and non-public fields. FieldInfo field = this._type.GetTypeField(binder.Name); if (field != null) { result = field.GetValue(this._value).ToDynamic(); return true; } // Searches in base type's public and non-public properties. property = this._type.GetBaseProperty(binder.Name); if (property != null) { result = property.GetValue(this._value, null).ToDynamic(); return true; } // Searches in base type's public and non-public fields. field = this._type.GetBaseField(binder.Name); if (field != null) { result = field.GetValue(this._value).ToDynamic(); return true; } // The specified member is not found. result = null; return false; } // Other overridden methods are not listed. } In the above code, GetTypeProperty(), GetInterfaceMethod(), GetTypeField(), GetBaseProperty(), and GetBaseField() are extension methods for Type class. For example: internal static class TypeExtensions { internal static FieldInfo GetBaseField(this Type type, string name) { Type @base = type.BaseType; if (@base == null) { return null; } return @base.GetTypeField(name) ?? @base.GetBaseField(name); } internal static PropertyInfo GetBaseProperty(this Type type, string name) { Type @base = type.BaseType; if (@base == null) { return null; } return @base.GetTypeProperty(name) ?? @base.GetBaseProperty(name); } internal static MethodInfo GetInterfaceMethod(this Type type, string name, params object[] args) { return type.GetInterfaces().Select(type.GetInterfaceMap).SelectMany(mapping => mapping.TargetMethods) .FirstOrDefault( method => method.Name.Split('.').Last().Equals(name, StringComparison.Ordinal) && method.GetParameters().Count() == args.Length && method.GetParameters().Select( (parameter, index) => parameter.ParameterType.IsAssignableFrom(args[index].GetType())).Aggregate( true, (a, b) => a && b)); } internal static FieldInfo GetTypeField(this Type type, string name) { return type.GetFields( BindingFlags.GetField | BindingFlags.Instance | BindingFlags.Static | BindingFlags.Public | BindingFlags.NonPublic).FirstOrDefault( field => field.Name.Equals(name, StringComparison.Ordinal)); } internal static PropertyInfo GetTypeProperty(this Type type, string name) { return type.GetProperties( BindingFlags.GetProperty | BindingFlags.Instance | BindingFlags.Static | BindingFlags.Public | BindingFlags.NonPublic).FirstOrDefault( property => property.Name.Equals(name, StringComparison.Ordinal)); } // Other extension methods are not listed. } So now, when invoked, TryGetMember() searches the specified member and invoke it. The code can be written like this: dynamic dynamicDatabase = new DynamicWrapper<NorthwindDataContext>(ref database); dynamic dynamicReturnValue = dynamicDatabase.Provider.Execute(query.Expression).ReturnValue; This greatly simplified reflection. ToDynamic() and fluent reflection To make it even more straight forward, A ToDynamic() method is provided: public static class DynamicWrapperExtensions { public static dynamic ToDynamic<T>(this T value) { return new DynamicWrapper<T>(ref value); } } and a ToStatic() method is provided to unwrap the value: public class DynamicWrapper<T> : DynamicObject { public T ToStatic() { return this._value; } } In the above TryGetMember() method, please notice it does not output the member’s value, but output a wrapped member value (that is, memberValue.ToDynamic()). This is very important to make the reflection fluent. Now the code becomes: IEnumerable<Product> results = database.ToDynamic() // Here starts fluent reflection. .Provider.Execute(query.Expression).ReturnValue .ToStatic(); // Unwraps to get the static value. With the help of TryConvert(): public class DynamicWrapper<T> : DynamicObject { public override bool TryConvert(ConvertBinder binder, out object result) { result = this._value; return true; } } ToStatic() can be omitted: IEnumerable<Product> results = database.ToDynamic() .Provider.Execute(query.Expression).ReturnValue; // Automatically converts to expected static value. Take a look at the reflection code at the beginning of this post again. Now it is much much simplified! Special scenarios In 90% of the scenarios ToDynamic() is enough. But there are some special scenarios. Access static members Using extension method ToDynamic() for accessing static members does not make sense. Instead, DynamicWrapper<T> has a parameterless constructor to handle these scenarios: public class DynamicWrapper<T> : DynamicObject { public DynamicWrapper() // For static. { this._type = typeof(T); this._isValueType = this._type.IsValueType; } } The reflection code should be like this: dynamic wrapper = new DynamicWrapper<StaticClass>(); int value = wrapper._value; int result = wrapper.PrivateMethod(); So accessing static member is also simple, and fluent of course. Change instances of value types Value type is much more complex. The main problem is, value type is copied when passing to a method as a parameter. This is why ref keyword is used for the constructor. That is, if a value type instance is passed to DynamicWrapper<T>, the instance itself will be stored in this._value of DynamicWrapper<T>. Without the ref keyword, when this._value is changed, the value type instance itself does not change. Consider FieldInfo.SetValue(). In the value type scenarios, invoking FieldInfo.SetValue(this._value, value) does not change this._value, because it changes the copy of this._value. I searched the Web and found a solution for setting the value of field: internal static class FieldInfoExtensions { internal static void SetValue<T>(this FieldInfo field, ref T obj, object value) { if (typeof(T).IsValueType) { field.SetValueDirect(__makeref(obj), value); // For value type. } else { field.SetValue(obj, value); // For reference type. } } } Here __makeref is a undocumented keyword of C#. But method invocation has problem. This is the source code of TryInvokeMember(): public override bool TryInvokeMember(InvokeMemberBinder binder, object[] args, out object result) { if (binder == null) { throw new ArgumentNullException("binder"); } MethodInfo method = this._type.GetTypeMethod(binder.Name, args) ?? this._type.GetInterfaceMethod(binder.Name, args) ?? this._type.GetBaseMethod(binder.Name, args); if (method != null) { // Oops! // If the returnValue is a struct, it is copied to heap. object resultValue = method.Invoke(this._value, args); // And result is a wrapper of that copied struct. result = new DynamicWrapper<object>(ref resultValue); return true; } result = null; return false; } If the returned value is of value type, it will definitely copied, because MethodInfo.Invoke() does return object. If changing the value of the result, the copied struct is changed instead of the original struct. And so is the property and index accessing. They are both actually method invocation. For less confusion, setting property and index are not allowed on struct. Conclusions The DynamicWrapper<T> provides a simplified solution for reflection programming. It works for normal classes (reference types), accessing both instance and static members. In most of the scenarios, just remember to invoke ToDynamic() method, and access whatever you want: StaticType result = someValue.ToDynamic()._field.Method().Property[index]; In some special scenarios which requires changing the value of a struct (value type), this DynamicWrapper<T> does not work perfectly. Only changing struct’s field value is supported. The source code can be downloaded from here, including a few unit test code.

    Read the article

  • Weblogic JMS System Error

    - by Jeune
    We're getting a JMS error which we don't have a lot to go with: org.springframework.jms.UncategorizedJmsException: Uncategorized exception occured during JMS processing; nested exception is weblogic.jms.common.JMSException:[JMSClientExceptions:055039] A system error has occurred. The error is java.lang.NullPointerException; nested exception is java.lang.NullPointerException at com.pg.ecom.jms.service.ProducerServices.SendMessageSync(ProducerServices.java:131) at com.pg.ecom.jms.service.ProducerServices.SendMessageSync(ProducerServices.java:115) at com.pg.ecom.jms.producer.FormsCRRProducer.sendMessage(FormsCRRProducer.java:56) at com.pg.ecom.cpgt.processruleagent.managerbean.forms.GenerateFormsManagerBean.useNewGetTemplateData(GenerateFormsManagerBean.java:522) at com.pg.ecom.cpgt.processruleagent.managerbean.forms.GenerateFormsManagerBean.doService(GenerateFormsManagerBean.java:114) at com.pg.ecom.fw.processcontainer.AbstractManagerBean.doServiceWrapper(AbstractManagerBean.java:175) at com.pg.ecom.fw.processcontainer.AbstractManagerBean.doServiceRequest(AbstractManagerBean.java:151) at com.pg.ecom.fw.processcontainer.AbstractServlet.doManagerBeanServiceAndPresentation(AbstractServlet.java:1911) at com.pg.ecom.cpgt.processunit.servlet.CportalParamServlet.doService(CportalParamServlet.java:107) at com.pg.ecom.fw.processcontainer.AbstractServlet.service(AbstractServlet.java:983) at javax.servlet.http.HttpServlet.service(HttpServlet.java:856) at weblogic.servlet.internal.StubSecurityHelper$ServletServiceAction.run(StubSecurityHelper.java:227) at weblogic.servlet.internal.StubSecurityHelper.invokeServlet(StubSecurityHelper.java:125) at weblogic.servlet.internal.ServletStubImpl.execute(ServletStubImpl.java:283) at weblogic.servlet.internal.TailFilter.doFilter(TailFilter.java:26) at weblogic.servlet.internal.FilterChainImpl.doFilter(FilterChainImpl.java:42) at com.pg.ecom.cpgt.processunit.filter.UploadMultipartFilter.doFilter(UploadMultipartFilter.java:28) at weblogic.servlet.internal.FilterChainImpl.doFilter(FilterChainImpl.java:42) at weblogic.servlet.internal.WebAppServletContext$ServletInvocationAction.run(WebAppServletContext.java:3229) at weblogic.security.acl.internal.AuthenticatedSubject.doAs(AuthenticatedSubject.java:321) at weblogic.security.service.SecurityManager.runAs(SecurityManager.java:121) at weblogic.servlet.internal.WebAppServletContext.securedExecute(WebAppServletContext.java:2002) at weblogic.servlet.internal.WebAppServletContext.execute(WebAppServletContext.java:1908) at weblogic.servlet.internal.ServletRequestImpl.run(ServletRequestImpl.java:1362) at weblogic.work.ExecuteThread.execute(ExecuteThread.java:209) at weblogic.work.ExecuteThread.run(ExecuteThread.java:181) The only lead I have is line 127 in the code which is indicated by this error: Caused by: weblogic.jms.common.JMSException: [JMSClientExceptions:055039]A system error has occurred. The error is java.lang.Nul lPointerException at weblogic.jms.client.JMSSession.handleException(JMSSession.java:2853) at weblogic.jms.client.JMSConsumer.receive(JMSConsumer.java:629) at weblogic.jms.client.JMSConsumer.receive(JMSConsumer.java:488) at weblogic.jms.client.WLConsumerImpl.receive(WLConsumerImpl.java:155) at org.springframework.jms.core.JmsTemplate.doReceive(JmsTemplate.java:734) at org.springframework.jms.core.JmsTemplate.doReceive(JmsTemplate.java:706) at org.springframework.jms.core.JmsTemplate$9.doInJms(JmsTemplate.java:681) at org.springframework.jms.core.JmsTemplate.execute(JmsTemplate.java:447) at org.springframework.jms.core.JmsTemplate.receiveSelected(JmsTemplate.java:679) at org.springframework.jms.core.JmsTemplate.receiveSelectedAndConvert(JmsTemplate.java:784) at com.pg.ecom.jms.service.ProducerServices.SendMessageSync(ProducerServices.java:127) ... 25 more This is line 127: try { Thread.yield(); //line 127 below status=(StatusMessageBean)getJmsTemplate.receiveSelectedAndConvert(statusDestination, "JMSCorrelationID='"+ producerMsg.getProcessID() +"'"); Thread.yield(); } catch (Exception e) { Thread.yield(); loggingInterface.doErrorLogging(e.fillInStackTrace()); } According to the BEA documentation, we should contact BEA about error 055039 but I would like to try asking here first before bringing this to them? Some more errors: Caused by: java.lang.NullPointerException at weblogic.jms.common.JMSVariableBinder$JMSCorrelationIDVariable.get(JMSVariableBinder.java:127) at weblogic.utils.expressions.Expression.evaluateExpr(Expression.java:271) at weblogic.utils.expressions.Expression.evaluateExpr(Expression.java:298) at weblogic.utils.expressions.Expression.evaluateBoolean(Expression.java:209) at weblogic.utils.expressions.Expression.evaluate(Expression.java:167) at weblogic.jms.common.JMSSQLFilter$Exp.evaluate(JMSSQLFilter.java:304) at weblogic.messaging.common.SQLFilter.match(SQLFilter.java:158) at weblogic.messaging.kernel.internal.MessageList.findNextVisible(MessageList.java:274) at weblogic.messaging.kernel.internal.QueueImpl.nextFromIteratorOrGroup(QueueImpl.java:441) at weblogic.messaging.kernel.internal.QueueImpl.nextMatchFromIteratorOrGroup(QueueImpl.java:350) at weblogic.messaging.kernel.internal.QueueImpl.get(QueueImpl.java:233) at weblogic.messaging.kernel.internal.QueueImpl.addReader(QueueImpl.java:1069) at weblogic.messaging.kernel.internal.ReceiveRequestImpl.start(ReceiveRequestImpl.java:178) at weblogic.messaging.kernel.internal.ReceiveRequestImpl.<init>(ReceiveRequestImpl.java:86) at weblogic.messaging.kernel.internal.QueueImpl.receive(QueueImpl.java:820) at weblogic.jms.backend.BEConsumerImpl.blockingReceiveStart(BEConsumerImpl.java:1172) at weblogic.jms.backend.BEConsumerImpl.receive(BEConsumerImpl.java:1383) at weblogic.jms.backend.BEConsumerImpl.invoke(BEConsumerImpl.java:1088) at weblogic.messaging.dispatcher.Request.wrappedFiniteStateMachine(Request.java:759) at weblogic.messaging.dispatcher.DispatcherImpl.dispatchAsyncInternal(DispatcherImpl.java:129) at weblogic.messaging.dispatcher.DispatcherImpl.dispatchAsync(DispatcherImpl.java:112) at weblogic.messaging.dispatcher.Request.dispatchAsync(Request.java:1046) at weblogic.jms.dispatcher.Request.dispatchAsync(Request.java:72) at weblogic.jms.frontend.FEConsumer.receive(FEConsumer.java:557) at weblogic.jms.frontend.FEConsumer.invoke(FEConsumer.java:806) at weblogic.messaging.dispatcher.Request.wrappedFiniteStateMachine(Request.java:759) at weblogic.messaging.dispatcher.DispatcherServerRef.invoke(DispatcherServerRef.java:276) at weblogic.messaging.dispatcher.DispatcherServerRef.handleRequest(DispatcherServerRef.java:141) at weblogic.messaging.dispatcher.DispatcherServerRef.access$000(DispatcherServerRef.java:36) at weblogic.messaging.dispatcher.DispatcherServerRef$2.run(DispatcherServerRef.java:112) ... 2 more Any ideas?

    Read the article

  • Problem with single quotes in man pages

    - by Peter
    When I ssh into my Debian Lenny server and open a man page, single quotes appear to be messed up. Example from the man page of apt-get: If no package matches the given expression and the expression contains one of ´.´, ´?´ or ´*´ then it is assumed to be a POSIX regular expression, and it is applied to all package names in the database. Any matches are then installed (or removed). Note that matching is done by substring so ´lo.*´ matches ´how-lo´ and ´lowest´. If this is undesired, anchor the regular expression with a ´^´ or ´$´ character, or create a more specific regular expression. I'm on Mac OS X and using xterm. If I use Terminal, the problem doesn't happen. My locale is configured correctly as far as I can see: $ locale LANG=en_US.UTF-8 LC_CTYPE="en_US.UTF-8" LC_NUMERIC="en_US.UTF-8" LC_TIME="en_US.UTF-8" LC_COLLATE="en_US.UTF-8" LC_MONETARY="en_US.UTF-8" LC_MESSAGES="en_US.UTF-8" LC_PAPER="en_US.UTF-8" LC_NAME="en_US.UTF-8" LC_ADDRESS="en_US.UTF-8" LC_TELEPHONE="en_US.UTF-8" LC_MEASUREMENT="en_US.UTF-8" LC_IDENTIFICATION="en_US.UTF-8" LC_ALL= I'm not sure what's wrong with my environment, and I have no idea what to check next. I'd appreciate help.

    Read the article

  • Add constant value to numeric XML attribute

    - by Dave Jarvis
    Background Add a constant value to numbers matched with a regular expression, using vim (gvim). Problem The following regular expression will match width="32": /width="\([0-9]\{2\}\)" Question How do you replace the numeric value of the width attribute with the results from a mathematical expression that uses the attribute's value? For example, I would like to perform the following global replacement: :%s/width="\([0-9]\{2\}\)"/width="\1+10"/g That would produce width="42" for width="32" and width="105" for width="95". Thank you!

    Read the article

  • Adding a hyperlink in a client report definition file (RDLC)

    - by rajbk
    This post shows you how to add a hyperlink to your RDLC report. In a previous post, I showed you how to create an RDLC report. We have been given the requirement to the report we created earlier, the Northwind Product report, to add a column that will contain hyperlinks which are unique per row.  The URLs will be RESTful with the ProductID at the end. Clicking on the URL will take them to a website like so: http://localhost/products/3  where 3 is the primary key of the product row clicked on. To start off, open the RDLC and add a new column to the product table.   Add text to the header (Details) and row (Product Website). Right click on the row (not header) and select “TextBox properties” Select Action – Go to URL. You could hard code a URL here but what we need is a URL that changes based on the ProductID.   Click on the expression button (fx) The expression builder gives you access to several functions and constants including the fields in your dataset. See this reference for more details: Common Expressions for ReportViewer Reports. Add the following expression: = "http://localhost/products/" & Fields!ProductID.Value Click OK to exit the Expression Builder. The report will not render because hyperlinks are disabled by default in the ReportViewer control. To enable it, add the following in your page load event (where rvProducts is the ID of your ReportViewerControl): protected void Page_Load(object sender, EventArgs e) { if (!IsPostBack) { rvProducts.LocalReport.EnableHyperlinks = true; } } We want our links to open in a new window so set the HyperLinkTarget property of the ReportViewer control to “_blank”   We are done adding hyperlinks to our report. Clicking on the links for each product pops open a new windows. The URL has the ProductID added at the end. Enjoy!

    Read the article

  • ASP.NET 4.0- Html Encoded Expressions

    - by Jalpesh P. Vadgama
    We all know <%=expression%> features in asp.net. We can print any string on page from there. Mostly we are using them in asp.net mvc. Now we have one new features with asp.net 4.0 that we have HTML Encoded Expressions and this prevent Cross scripting attack as we are html encoding them. ASP.NET 4.0 introduces a new expression syntax <%: expression %> which automatically convert string into html encoded. Let’s take an example for that. I have just created an hello word protected method which will return a simple string which contains characters that needed to be HTML Encoded. Below is code for that. protected static string HelloWorld() { return "Hello World!!! returns from function()!!!>>>>>>>>>>>>>>>>>"; } Now let’s use the that hello world in our page html like below. I am going to use both expression to give you exact difference. <form id="form1" runat="server"> <div> <strong><%: HelloWorld()%></strong> </div> <div> <strong><%= HelloWorld()%></strong> </div> </form> Now let’s run the application and you can see in browser both look similar. But when look into page source html in browser like below you can clearly see one is HTML Encoded and another one is not. That’s it.. It’s cool.. Stay tuned for more.. Happy Programming Technorati Tags: ASP.NET 4.0,HTMLEncode,C#4.0

    Read the article

  • What is the best book on Silverlight 4?

    - by mbcrump
    Silverlight/Expression 4 Books! I recently stumbled upon a post asking, “What is the best book on Silverlight 4?” In the age of the internet, it can be hard for anyone searching for a good book to actually find it. I have read a few Silverlight 4/Expression books in 2010 and decided to post the “best of” collection. Instead of reading multiple books, you can cut your list down to whatever category that you fit in. With Silverlight 5 coming soon, now is the time to get up to speed with what Silverlight 4 can offer. Be sure to read the full review at the bottom of each section. For the “Beginner” Silverlight Developer: Both of these books contains very simple applications and will get you started very fast. and Book Review: Microsoft Silverlight 4 Step by Step For the guy/gal that wants to “Master” Expression Blend 4: This is a hands-on kind of book. Victor get you started early on with some sample application and quickly deep dives into Storyboard and other Animations. If you want to learn Blend 4 then this is the place to start. Book Review: Foundation Expression Blend 4 by Victor Gaudioso If you are aiming to learn more about the Business side of Silverlight then check out the following two books: and Finally, For the Silverlight 4 guy/gal that wants to “Master” Silverlight 4, it really boils down to the following two books: and   Book Review: Silverlight 4 Unleashed by Laurent Bugnion Book Review: Silverlight 4 in Action by Pete Brown I can’t describe how much that I’ve actually learned from both of these books. I would also recommend you read these books if you are preparing for your Silverlight 4 Certification. For a complete list of all Silverlight 4 books then check out http://www.silverlight.net/learn/books/ and don’t forget to subscribe to my blog.  Subscribe to my feed CodeProject

    Read the article

  • MVVM Project and Item Templates

    - by Timmy Kokke
    Intro This is the first in a series of small articles about what is new in Silverlight 4 and Expression Blend 4. The series is build around a open source demo application SilverAmp which is available on http://SilverAmp.CodePlex.com.   MVVM Project and Item Templates Expression Blend has got a new project template to get started with a Model-View-ViewModel project  easily. The template provides you with a View and a ViewModel bound together. It also adds the ViewModel to the SampleData of your project. It is available for both Silverlight and Wpf. To get going, start a new project in Expression Blend and select Silverlight DataBound Application from the Silverlight project type. In this case I named the project DemoTest1. The solution now contains several folders: SampleData; which contains a data to show in Blend ViewModels; starts with one file, MainViewModel.cs Views; containing MainView.xaml with codebehind used for binding with the MainViewModel class. and your regular App.xaml and MainPage.xaml The MainViewModel class contains a sample property and a sample method. Both the property and the method are used in the MainView control. The MainView control is a regular UserControl and is placed in the MainPage. You can continue on building your applicaition by adding your own properties and methods to the ViewModel and adding controls to the View. Adding Views with ViewModels is very easy too. The guys at Microsoft where nice enough to add a new Item template too: a UserControl with ViewModel. If you add this new item to the root of your solution it will add the .xaml file to the views folder and a .cs file to the ViewModels folder. Conclusion The databound Application project type is a great to get your MVVM based project started. It also functions a great source of information about how to connect it all together.   Technorati Tags: Silverlight,Wpf,Expression Blend,MVVM

    Read the article

  • Dynamic filter expressions in an OpenAccess LINQ query

    We had some support questions recently where our customers had the need to combine multiple smaller predicate expressions with either an OR or an AND  logical operators (these will be the || and && operators if you are using C#). And because the code from the answer that we sent to these customers is very interesting, and can easily be refactorred into something reusable, we decided to write this blog post. The key thing that one must know is that if you want your predicate to be translated by OpenAccess ORM to SQL and executed on the server you must have a LINQ Expression that is not compiled. So, let’s say that you have these smaller predicate expressions: Expression<Func<Customer, bool>> filter1 = c => c.City.StartsWith("S");Expression<Func<Customer, bool>> filter2 = c => c.City.StartsWith("M");Expression<Func<Customer, bool>> filter3 = c => c.ContactTitle == "Owner"; And ...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Imperative Programming v/s Declarative Programming v/s Functional Programming

    - by kaleidoscope
    Imperative Programming :: Imperative programming is a programming paradigm that describes computation in terms of statements that change a program state. In much the same way as the imperative mood in natural languages expresses commands to take action, imperative programs define sequences of commands for the computer to perform. The focus is on what steps the computer should take rather than what the computer will do (ex. C, C++, Java). Declarative Programming :: Declarative programming is a programming paradigm that expresses the logic of a computation without describing its control flow. It attempts to minimize or eliminate side effects by describing what the program should accomplish, rather than describing how to go about accomplishing it. The focus is on what the computer should do rather than how it should do it (ex. SQL). A  C# example of declarative v/s. imperative programming is LINQ. With imperative programming, you tell the compiler what you want to happen, step by step. For example, let's start with this collection, and choose the odd numbers: List<int> collection = new List<int> { 1, 2, 3, 4, 5 }; With imperative programming, we'd step through this, and decide what we want: List<int> results = new List<int>(); foreach(var num in collection) {     if (num % 2 != 0)           results.Add(num); } Here’s what we are doing: *Create a result collection *Step through each number in the collection *Check the number, if it's odd, add it to the results With declarative programming, on the other hand, we write the code that describes what you want, but not necessarily how to get it var results = collection.Where( num => num % 2 != 0); Here, we're saying "Give us everything where it's odd", not "Step through the collection. Check this item, if it's odd, add it to a result collection." Functional Programming :: Functional programming is a programming paradigm that treats computation as the evaluation of mathematical functions and avoids state and mutable data. It emphasizes the application of functions.Functional programming has its roots in the lambda calculus. It is a subset of declarative languages that has heavy focus on recursion. Functional programming can be a mind-bender, which is one reason why Lisp, Scheme, and Haskell have never really surpassed C, C++, Java and COBOL in commercial popularity. But there are benefits to the functional way. For one, if you can get the logic correct, functional programming requires orders of magnitude less code than imperative programming. That means fewer points of failure, less code to test, and a more productive (and, many would say, happier) programming life. As systems get bigger, this has become more and more important. To know more : http://stackoverflow.com/questions/602444/what-is-functional-declarative-and-imperative-programming http://msdn.microsoft.com/en-us/library/bb669144.aspx http://en.wikipedia.org/wiki/Imperative_programming   Technorati Tags: Ranjit,Imperative Programming,Declarative programming,Functional Programming

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Gracefully terminate a request based service on server

    - by Jatin
    In our web application, for each http-request there is a lot of computation that happens on back end. Output can vary from 10 sec - 1 Hour. In the mean time when it is computed, "Waiting.." is shown on the website for the respective user. But it so happens, that a user might cut down the service in between. So what all can be done on the back end so that the computation can be stopped in between to save resources? What different tactics can be applied here? And if better (instead of killing the thread directly), then a graceful termination policy should make wonders.

    Read the article

  • Result class dependency

    - by Stefano Borini
    I have an object containing the results of a computation. This computation is performed in a function which accepts an input object and returns the result object. The result object has a print method. This print method must print out the results, but in order to perform this operation I need the original input object. I cannot pass the input object at printing because it would violate the signature of the print function. One solution I am using right now is to have the result object hold a pointer to the original input object, but I don't like this dependency between the two, because the input object is mutable. How would you design for such case ?

    Read the article

  • Is there such a concept as "pseudo implementation" in software development?

    - by MachuPichu
    I'm looking for a label to describe the practice of using human-based computation methods or other means of "faking" an algorithm for the sake of getting a product or demo off the ground quickly without spending the time to develop an technical/scalable/analytical solution? Eg: using Amazon Turk to count the number of empty tables in a restaurant. I'm also looking to learn more about this subject, but not sure what to search for. Human-based computation is only one method, I'm interested in the general idea of pseudo-implementation. Any ideas, recommended reading? Thanks

    Read the article

  • ASP.NET MVC 3: Implicit and Explicit code nuggets with Razor

    - by ScottGu
    This is another in a series of posts I’m doing that cover some of the new ASP.NET MVC 3 features: New @model keyword in Razor (Oct 19th) Layouts with Razor (Oct 22nd) Server-Side Comments with Razor (Nov 12th) Razor’s @: and <text> syntax (Dec 15th) Implicit and Explicit code nuggets with Razor (today) In today’s post I’m going to discuss how Razor enables you to both implicitly and explicitly define code nuggets within your view templates, and walkthrough some code examples of each of them.  Fluid Coding with Razor ASP.NET MVC 3 ships with a new view-engine option called “Razor” (in addition to the existing .aspx view engine).  You can learn more about Razor, why we are introducing it, and the syntax it supports from my Introducing Razor blog post. Razor minimizes the number of characters and keystrokes required when writing a view template, and enables a fast, fluid coding workflow. Unlike most template syntaxes, you do not need to interrupt your coding to explicitly denote the start and end of server blocks within your HTML. The Razor parser is smart enough to infer this from your code. This enables a compact and expressive syntax which is clean, fast and fun to type. For example, the Razor snippet below can be used to iterate a collection of products and output a <ul> list of product names that link to their corresponding product pages: When run, the above code generates output like below: Notice above how we were able to embed two code nuggets within the content of the foreach loop.  One of them outputs the name of the Product, and the other embeds the ProductID within a hyperlink.  Notice that we didn’t have to explicitly wrap these code-nuggets - Razor was instead smart enough to implicitly identify where the code began and ended in both of these situations.  How Razor Enables Implicit Code Nuggets Razor does not define its own language.  Instead, the code you write within Razor code nuggets is standard C# or VB.  This allows you to re-use your existing language skills, and avoid having to learn a customized language grammar. The Razor parser has smarts built into it so that whenever possible you do not need to explicitly mark the end of C#/VB code nuggets you write.  This makes coding more fluid and productive, and enables a nice, clean, concise template syntax.  Below are a few scenarios that Razor supports where you can avoid having to explicitly mark the beginning/end of a code nugget, and instead have Razor implicitly identify the code nugget scope for you: Property Access Razor allows you to output a variable value, or a sub-property on a variable that is referenced via “dot” notation: You can also use “dot” notation to access sub-properties multiple levels deep: Array/Collection Indexing: Razor allows you to index into collections or arrays: Calling Methods: Razor also allows you to invoke methods: Notice how for all of the scenarios above how we did not have to explicitly end the code nugget.  Razor was able to implicitly identify the end of the code block for us. Razor’s Parsing Algorithm for Code Nuggets The below algorithm captures the core parsing logic we use to support “@” expressions within Razor, and to enable the implicit code nugget scenarios above: Parse an identifier - As soon as we see a character that isn't valid in a C# or VB identifier, we stop and move to step 2 Check for brackets - If we see "(" or "[", go to step 2.1., otherwise, go to step 3  Parse until the matching ")" or "]" (we track nested "()" and "[]" pairs and ignore "()[]" we see in strings or comments) Go back to step 2 Check for a "." - If we see one, go to step 3.1, otherwise, DO NOT ACCEPT THE "." as code, and go to step 4 If the character AFTER the "." is a valid identifier, accept the "." and go back to step 1, otherwise, go to step 4 Done! Differentiating between code and content Step 3.1 is a particularly interesting part of the above algorithm, and enables Razor to differentiate between scenarios where an identifier is being used as part of the code statement, and when it should instead be treated as static content: Notice how in the snippet above we have ? and ! characters at the end of our code nuggets.  These are both legal C# identifiers – but Razor is able to implicitly identify that they should be treated as static string content as opposed to being part of the code expression because there is whitespace after them.  This is pretty cool and saves us keystrokes. Explicit Code Nuggets in Razor Razor is smart enough to implicitly identify a lot of code nugget scenarios.  But there are still times when you want/need to be more explicit in how you scope the code nugget expression.  The @(expression) syntax allows you to do this: You can write any C#/VB code statement you want within the @() syntax.  Razor will treat the wrapping () characters as the explicit scope of the code nugget statement.  Below are a few scenarios where we could use the explicit code nugget feature: Perform Arithmetic Calculation/Modification: You can perform arithmetic calculations within an explicit code nugget: Appending Text to a Code Expression Result: You can use the explicit expression syntax to append static text at the end of a code nugget without having to worry about it being incorrectly parsed as code: Above we have embedded a code nugget within an <img> element’s src attribute.  It allows us to link to images with URLs like “/Images/Beverages.jpg”.  Without the explicit parenthesis, Razor would have looked for a “.jpg” property on the CategoryName (and raised an error).  By being explicit we can clearly denote where the code ends and the text begins. Using Generics and Lambdas Explicit expressions also allow us to use generic types and generic methods within code expressions – and enable us to avoid the <> characters in generics from being ambiguous with tag elements. One More Thing….Intellisense within Attributes We have used code nuggets within HTML attributes in several of the examples above.  One nice feature supported by the Razor code editor within Visual Studio is the ability to still get VB/C# intellisense when doing this. Below is an example of C# code intellisense when using an implicit code nugget within an <a> href=”” attribute: Below is an example of C# code intellisense when using an explicit code nugget embedded in the middle of a <img> src=”” attribute: Notice how we are getting full code intellisense for both scenarios – despite the fact that the code expression is embedded within an HTML attribute (something the existing .aspx code editor doesn’t support).  This makes writing code even easier, and ensures that you can take advantage of intellisense everywhere. Summary Razor enables a clean and concise templating syntax that enables a very fluid coding workflow.  Razor’s ability to implicitly scope code nuggets reduces the amount of typing you need to perform, and leaves you with really clean code. When necessary, you can also explicitly scope code expressions using a @(expression) syntax to provide greater clarity around your intent, as well as to disambiguate code statements from static markup. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Automating Form Login

    - by Greg_Gutkin
    Introduction A common task in configuring a web application for proxying in Pagelet Producer is setting up form autologin. PP provides a wizard-like tool for detecting the login form fields, but this is usually only the first step in configuring this feature. If the generated configuration doesn't seem to work, some additional manual modifications will be needed to complete the setup. This article will try to guide you through this process while steering you away from common pitfalls. For the purposes of this article, let's assume the following characteristics about your environment: Web Application Base URL: http://host/app (configured as Resource Source URL in PP) Pagelet Producer Base URL: http://pp/pagelets Form Field Auto-Detection Form Autologin is configured in the PP Admin UI under resource_name/Autologin/Form Login. First, you'll enter the URL to the login form under "Login Form Identification". This will enable the admin wizard to connect to and display the login page. Caution: RedirectsMake sure the entered URL matches what you see in the browser's address bar, when the application login page is displayed. For example, even though you may be able to reach the login page by simply typing http://host/app, the URL you end up on may change to http://host/app/login via browser redirect(s).The second URL is the one you will want to use. Caution: External Login ServersThe login page may actually come from a different server than the application you are trying to proxy. For example, you may notice that the login page URL changes to http://hostB/appB. This is common when external SSO products are involved. There are two ways of dealing with this situation. One is to configure Pagelet Producer to participate in SSO. This approach is out of scope of this article and is discussed in a separate whitepaper (TODO add link). The second approach is to use the autologin feature to provide stored credentials to the SSO login form. Since the login form URL is not an extension of the application base URL (PP resource URL), you will need to add a new PP resource for the SSO server and configure the login form on that resource instead of the original application resource. One side benefit of this additional resource is that it can reused for other applications relying on the same SSO server for login. After entering the login page URL (make sure dropdown says "URL"), click "Automatically Detect Form Fields". This will bring up the web app's login page in a new browser window. Fill it out and submit it as you would normally. If everything goes right, Pagelet Producer will intercept the submitted values and fill out all the needed configuration data in the Admin UI. If the login form window doesn't close or configuration data doesn't get filled in, you may have not entered the login page URL correctly. Review the two cautionary notes above and make any necessary changes. If the form fields got filled automatically, it's time to save the configuration and test it out. If you can access a protected area of the backend application via a proxied PP URL without filling out its login form, then you are pretty much done with login form configuration. The only other step you will need to complete before declaring this aspect of configuration production ready is configuring form field source. You may skip to that section below. Manual Login Form Identification Let's take a closer look at Login Form Identification. This determines how Pagelet Producer recognizes login forms as such. URL The most efficient way of detecting login forms is by looking at the page URL. This method can only be used under the following conditions: Login page URL must be different from the post login application URLs. Login page URL must stay constant regardless of the path it takes to reach the page. For example, reaching the login page by going to the application base URL or to a specific protected URL must result in a redirect to the same login page URL (query string excluded). If only the query string parameters change, just leave out the query string from the configured login page URL. If either of these conditions is not fullfilled, you must switch to the RegEx approach below. RegEx If the login page URL is not uniform enough across all scenarios or is indistinguishable from other page locations, PP can be configured to recognize it by looking at the page markup itself. This is accomplished by changing the dropdown to "RegEx". If regular expressions scare you, take comfort from the fact that in most cases you won't need to enter any special regex characters. Let's look at an example: Say you have a login form that looks like <form id='loginForm' action='login?from=pageA' > <input id='user'> <input id='pass'> </form> Since this form has an id attribute, you can be reasonably sure that this login form can be uniquely identified across the web application by this snippet: "id='loginForm'". (Unless, of course your backend web application contains login forms to other apps). Since no wildcards are needed to find this snippet, you can just enter it as is into the RegEx field - no special regular expression characters needed! If the web developer who created the form wasn't kind enough to provide a unique id, you will need to look for other snippets of the page to uniquely identify it. It could be the action URL, an input field id, or some other markup fragment. You should abstain from using UI text as an identifier it may change in translated versions of the page and prevent the login page logic from working for international users. You may need to turn to regular expression wildcard syntax if no simple matches work. For more information on regular expression, refer to the Resources section. Form Submit Location Now we'll look at the form submit location. If the captured URL contains query string parameters that will likely change from one form submission to the next, you will need to change its type to RegEx. This type will tell Pagelet Producer to parse the login page for the action URL and submit to the value found. The regular expression needs to point at the actual action URL with its first grouping expression. Taking the example form definition above, the form submit location regex would be: action='(.*?)' The parentheses are used to identify the actual action URL, while the rest of the expression provides the context for finding it. Expression .*? is a so-called reluctant wildcard that matches any character excluding the single quote that follows. See Resources section below for further information on regular expressions. Manual Form Field Detection If the Admin UI form field detection wizard fails to populate login form configuration page, you will have to enter the fields by hand. Use a built-in browser developer tool or addon (e.g. Firebug) to inspect the form element and its children input elements. For each input element (including hidden elements), create an entry under Form Fields. Change its Source according to the next section. Form Field Source Change the source of any of the fields not exposed to the users of the login form (i.e. hidden fields) to "Generated". This means Pagelet Producer will just use the values returned by the web app rather than supplying values it stored. For fields that contain sensitive data or vary from user to user (e.g. username & password), change the source to User (Credential) Vault. Logging Support To help you troubleshoot you autologin configuration, PP provides some useful logging support. To turn on detailed logging for the autologin feature, navigate to Settings in Admin UI. Under Logging, change the log level for AutoLogin to Finest. Known Limitations Autologin feature may not work as expected if login form fields (not just the values, but the DOM elements themselves) are generated dynamically by client side JavaScript. Resources RegEx RegEx Reference from Java RegEx Test Tool

    Read the article

< Previous Page | 58 59 60 61 62 63 64 65 66 67 68 69  | Next Page >