Search Results

Search found 1961 results on 79 pages for 'ideal'.

Page 69/79 | < Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >

  • Joins in single-table queries

    - by Rob Farley
    Tables are only metadata. They don’t store data. I’ve written something about this before, but I want to take a viewpoint of this idea around the topic of joins, especially since it’s the topic for T-SQL Tuesday this month. Hosted this time by Sebastian Meine (@sqlity), who has a whole series on joins this month. Good for him – it’s a great topic. In that last post I discussed the fact that we write queries against tables, but that the engine turns it into a plan against indexes. My point wasn’t simply that a table is actually just a Clustered Index (or heap, which I consider just a special type of index), but that data access always happens against indexes – never tables – and we should be thinking about the indexes (specifically the non-clustered ones) when we write our queries. I described the scenario of looking up phone numbers, and how it never really occurs to us that there is a master list of phone numbers, because we think in terms of the useful non-clustered indexes that the phone companies provide us, but anyway – that’s not the point of this post. So a table is metadata. It stores information about the names of columns and their data types. Nullability, default values, constraints, triggers – these are all things that define the table, but the data isn’t stored in the table. The data that a table describes is stored in a heap or clustered index, but it goes further than this. All the useful data is going to live in non-clustered indexes. Remember this. It’s important. Stop thinking about tables, and start thinking about indexes. So let’s think about tables as indexes. This applies even in a world created by someone else, who doesn’t have the best indexes in mind for you. I’m sure you don’t need me to explain Covering Index bit – the fact that if you don’t have sufficient columns “included” in your index, your query plan will either have to do a Lookup, or else it’ll give up using your index and use one that does have everything it needs (even if that means scanning it). If you haven’t seen that before, drop me a line and I’ll run through it with you. Or go and read a post I did a long while ago about the maths involved in that decision. So – what I’m going to tell you is that a Lookup is a join. When I run SELECT CustomerID FROM Sales.SalesOrderHeader WHERE SalesPersonID = 285; against the AdventureWorks2012 get the following plan: I’m sure you can see the join. Don’t look in the query, it’s not there. But you should be able to see the join in the plan. It’s an Inner Join, implemented by a Nested Loop. It’s pulling data in from the Index Seek, and joining that to the results of a Key Lookup. It clearly is – the QO wouldn’t call it that if it wasn’t really one. It behaves exactly like any other Nested Loop (Inner Join) operator, pulling rows from one side and putting a request in from the other. You wouldn’t have a problem accepting it as a join if the query were slightly different, such as SELECT sod.OrderQty FROM Sales.SalesOrderHeader AS soh JOIN Sales.SalesOrderDetail as sod on sod.SalesOrderID = soh.SalesOrderID WHERE soh.SalesPersonID = 285; Amazingly similar, of course. This one is an explicit join, the first example was just as much a join, even thought you didn’t actually ask for one. You need to consider this when you’re thinking about your queries. But it gets more interesting. Consider this query: SELECT SalesOrderID FROM Sales.SalesOrderHeader WHERE SalesPersonID = 276 AND CustomerID = 29522; It doesn’t look like there’s a join here either, but look at the plan. That’s not some Lookup in action – that’s a proper Merge Join. The Query Optimizer has worked out that it can get the data it needs by looking in two separate indexes and then doing a Merge Join on the data that it gets. Both indexes used are ordered by the column that’s indexed (one on SalesPersonID, one on CustomerID), and then by the CIX key SalesOrderID. Just like when you seek in the phone book to Farley, the Farleys you have are ordered by FirstName, these seek operations return the data ordered by the next field. This order is SalesOrderID, even though you didn’t explicitly put that column in the index definition. The result is two datasets that are ordered by SalesOrderID, making them very mergeable. Another example is the simple query SELECT CustomerID FROM Sales.SalesOrderHeader WHERE SalesPersonID = 276; This one prefers a Hash Match to a standard lookup even! This isn’t just ordinary index intersection, this is something else again! Just like before, we could imagine it better with two whole tables, but we shouldn’t try to distinguish between joining two tables and joining two indexes. The Query Optimizer can see (using basic maths) that it’s worth doing these particular operations using these two less-than-ideal indexes (because of course, the best indexese would be on both columns – a composite such as (SalesPersonID, CustomerID – and it would have the SalesOrderID column as part of it as the CIX key still). You need to think like this too. Not in terms of excusing single-column indexes like the ones in AdventureWorks2012, but in terms of having a picture about how you’d like your queries to run. If you start to think about what data you need, where it’s coming from, and how it’s going to be used, then you will almost certainly write better queries. …and yes, this would include when you’re dealing with regular joins across multiples, not just against joins within single table queries.

    Read the article

  • 3 Ways to Make Steam Even Faster

    - by Chris Hoffman
    Have you ever noticed how slow Steam’s built-in web browser can be? Do you struggle with slow download speeds? Or is Steam just slow in general? These tips will help you speed it up. Steam isn’t a game itself, so there are no 3D settings to change to achieve maximum performance. But there are some things you can do to speed it up dramatically. Speed Up the Steam Web Browser Steam’s built-in web browser — used in both the Steam store and in Steam’s in-game overlay to provide a web browser you can quickly use within games – can be frustratingly slow on many systems. Rather than the typical speed we’ve come to expect from Chrome, Firefox, or even Internet Explorer, Steam seems to struggle. When you click a link or go to a new page, there’s a noticeable delay before the new page appears — something that doesn’t happen in desktop browsers. Many people seem to have made peace with this slowness, accepting that Steam’s built-in browser is just bad. However, there’s a trick that will eliminate this delay on many systems and make the Steam web browser fast. This problem seems to arise from an incompatibility with the Automatically Detect Proxy Settings option, which is enabled by default on Windows. This is a compatibility option that very few people should actually need, so it’s safe to disable it. To disable this option, open the Internet Options dialog — press the Windows key to access the Start menu or Start screen, type Internet Options, and click the Internet Options shortcut. Select the Connections tab in the Internet Options window and click the LAN settings button. Uncheck the Automatically detect settings option here, then click OK to save your settings. If you experienced a significant delay every time a web page loaded in Steam’s web browser, it should now be gone. In the unlikely event that you encounter some sort of problem with your network connection, you could always re-enable this option. Increase Steam’s Game Download Speed Steam attempts to automatically select the nearest download server to your location. However, it may not always select the ideal download server. Or, in the case of high-traffic events like big seasonal sales and huge game launches, you may benefit from selecting a less-congested server. To do this, open Steam’s settings by clicking the Steam menu in Steam and selecting Settings. Click over to the Downloads tab and select the closest download server from the Download Region box. You should also ensure that Steam’s download bandwidth isn’t limited from here. You may want to restart Steam and see if your download speeds improve after changing this setting. In some cases, the closest server might not be the fastest. One a bit farther away could be faster if your local server is more congested, for example. Steam once provided information about content server load, which allowed you to select a regional server that wasn’t under high-load, but this information no longer seems to be available. Steam still provides a page that shows you the amount of download activity happening in different regions, including statistics about the difference in download speeds in different US states, but this information isn’t as useful. Accelerate Steam and Your Games One way to speed up all your games — and Steam itself —  is by getting a solid-state drive and installing Steam to it. Steam allows you to easily move your Steam folder — at C:\Program Files (x86)\Steam by default — to another hard drive. Just move it like you would any other folder. You can then launch the Steam.exe program as if you had never moved Steam’s files. Steam also allows you to configure multiple game library folders. This means that you can set up a Steam library folder on a solid-state drive and one on your larger magnetic hard drive. Install your most frequently played games to the solid-state drive for maximum speed and your less frequently played ones to the slower magnetic hard drive to save SSD space. To set up additional library folders, open Steam’s Settings window and click the Downloads tab. You’ll find the Steam Library Folders option here. Click the Add Library Folder button and create a new game library on another hard drive. When you install a game in Steam, you’ll be asked which library folder you want to install it to. With the proxy compatibility option disabled, the correct download server chosen, and Steam installed to a fast SSD, it should be a speed demon. There’s not much more you can do to speed up Steam, short of upgrading other hardware like your computer’s CPU. Image Credit: Andrew Nash on Flickr     

    Read the article

  • How to Use Steam In-Home Streaming

    - by Chris Hoffman
    Steam’s In-Home Streaming is now available to everyone, allowing you to stream PC games from one PC to another PC on the same local network. Use your gaming PC to power your laptops and home theater system. This feature doesn’t allow you to stream games over the Internet, only the same local network. Even if you tricked Steam, you probably wouldn’t get good streaming performance over the Internet. Why Stream? When you use Steam In-Home streaming, one PC sends its video and audio to another PC. The other PC views the video and audio like it’s watching a movie, sending back mouse, keyboard, and controller input to the other PC. This allows you to have a fast gaming PC power your gaming experience on slower PCs. For example, you could play graphically demanding games on a laptop in another room of your house, even if that laptop has slower integrated graphics. You could connect a slower PC to your television and use your gaming PC without hauling it into a different room in your house. Streaming also enables cross-platform compatibility. You could have a Windows gaming PC and stream games to a Mac or Linux system. This will be Valve’s official solution for compatibility with old Windows-only games on the Linux (Steam OS) Steam Machines arriving later this year. NVIDIA offers their own game streaming solution, but it requires certain NVIDIA graphics hardware and can only stream to an NVIDIA Shield device. How to Get Started In-Home Streaming is simple to use and doesn’t require any complex configuration — or any configuration, really. First, log into the Steam program on a Windows PC. This should ideally be a powerful gaming PC with a powerful CPU and fast graphics hardware. Install the games you want to stream if you haven’t already — you’ll be streaming from your PC, not from Valve’s servers. (Valve will eventually allow you to stream games from Mac OS X, Linux, and Steam OS systems, but that feature isn’t yet available. You can still stream games to these other operating systems.) Next, log into Steam on another computer on the same network with the same Steam username. Both computers have to be on the same subnet of the same local network. You’ll see the games installed on your other PC in the Steam client’s library. Click the Stream button to start streaming a game from your other PC. The game will launch on your host PC, and it will send its audio and video to the PC in front of you. Your input on the client will be sent back to the server. Be sure to update Steam on both computers if you don’t see this feature. Use the Steam > Check for Updates option within Steam and install the latest update. Updating to the latest graphics drivers for your computer’s hardware is always a good idea, too. Improving Performance Here’s what Valve recommends for good streaming performance: Host PC: A quad-core CPU for the computer running the game, minimum. The computer needs enough processor power to run the game, compress the video and audio, and send it over the network with low latency. Streaming Client: A GPU that supports hardware-accelerated H.264 decoding on the client PC. This hardware is included on all recent laptops and PCs. Ifyou have an older PC or netbook, it may not be able to decode the video stream quickly enough. Network Hardware: A wired network connection is ideal. You may have success with wireless N or AC networks with good signals, but this isn’t guaranteed. Game Settings: While streaming a game, visit the game’s setting screen and lower the resolution or turn off VSync to speed things up. In-Home Steaming Settings: On the host PC, click Steam > Settings and select In-Home Streaming to view the In-Home Streaming settings. You can modify your streaming settings to improve performance and reduce latency. Feel free to experiment with the options here and see how they affect performance — they should be self-explanatory. Check Valve’s In-Home Streaming documentation for troubleshooting information. You can also try streaming non-Steam games. Click Games > Add a Non-Steam Game to My Library on your host PC and add a PC game you have installed elsewhere on your system. You can then try streaming it from your client PC. Valve says this “may work but is not officially supported.” Image Credit: Robert Couse-Baker on Flickr, Milestoned on Flickr

    Read the article

  • Keep it Professional &ndash; Multiple Environments

    - by AjarnMark
    I have certainly been reading blogs a whole lot more than writing them the last several weeks, and it’s about time I got back to writing.  I have been collecting several topics and references for blog posts…some of which will probably just never get written as the timeliness of the topics fade over time.  Nonetheless, I’m back, and I think it is time to revive my Doing Business Right series, this time coming from the slant of managing a development team rather than the previous angle of being self-employed.  First up: separating Dev, Test, and Prod. A few months ago, Colin Stasiuk (@BenchmarkIT) wrote a great post about separating your Dev, Test/UAT, and Prod environments.  This post covers all the important points such as removing Developer access from both PROD and UAT, and the importance of proper deployment (a.k.a. promotion) procedures.  I won’t repeat it all here, go read the original!  But what I do want to address is what I believe to be the #1 excuse people use for not having separate environments:  Money.  I discussed this briefly in my comment on Colin’s post at the time, but let me repeat it here and expand on it a bit. Don’t let the size of your company or the size of its budget dictate whether you do things professionally or not.  I am convinced that most developers and development teams would agree that it is a best practice to have separate environments for development, testing, and production (a.k.a. Live).  So why don’t they?  Because they think that it means separate servers which means more money.  While having separate physical servers for the different environments would be ideal, it is not an absolute requirement in order to make this work.  Here are a few ideas: Use multiple instances of SQL Server and multiple Web Sites with Headers or Ports.  For no additional fees* you can install multiple instances of SQL Server on the same machine.  This gives you a nice separation, allowing you to even use the same database names as will appear in PROD, yet isolating the data and security access.  And in IIS, you can create multiple Web Sites on the same server just by using Host Headers or different port numbers to separate them.  This approach does still pose the risk of non-Prod environments impacting performance on Prod, but when your application is busy enough for that to be a concern, you can probably afford one of the other options. Use desktop PCs instead of servers.  Instead of investing in full server-grade hardware, you can mimic the separate environments on old desktop PCs and at least get functional equivalency, if not performance matching.  The last I checked, Microsoft did not require separate licensing for SQL Server if that installation was used exclusively for dev or test purposes*.  There may be some version or performance differences between this approach and what you have in Prod, but you have isolated test from impacting Prod resources this way. Virtualization.  This is of course one of the hot topics of the day, and I would be remiss if I did not suggest this.  It is quite easy these days to setup virtual machines so that, again, your environments are fairly isolated from one another, and you retain all the security and procedural benefits of having separate environments. So the point is, keep your high professional standards intact.  You don’t need to compromise on using proper procedure just because you work in a small company with a small budget.  Keep doing things the right way! By the way, where I work, our DEV environment is not on a server.  All development is done on the developer’s individual workstation where it can be isolated from other developers’ work for the duration of writing the code, but also where the developers have to reconcile (merge) differences in code under concurrent development.  This usually means that each change is executed multiple times (once per developer to update their environments with the latest changes from others) giving us an extra, informal. test deployment before even going to the Test/UAT server.  It also means that if the network goes down, the developers can continue to hum along because they are not dependent on networked resources.  In fact, they will likely be even more productive because they aren’t being interrupted by email…but that’s another post I need to write. * I am not a lawyer, nor a licensing specialist, but it appeared to be so the last time I checked.  When in doubt, consult an expert on the topic.

    Read the article

  • Common usecases and techniques when integrating a 3rd party application with Oracle Sales Cloud

    - by asantaga
    Over the last year or so I've see a lot of partners migrating and integrate their applications with Oracle Sales Cloud. Interestingly I'd say 60% of the partners use the same set of design patterns over and over again. Most of the time I see that they want to embed their application into Oracle Sales Cloud, within a tab usually, perhaps click on a link to their application (passing some piece of data + credentials) and then within their application update sales cloud again using webservices. Here are some examples of the different use-cases I've seen , and how partners are embedding their applications into Sales Cloud, NB : The following examples use the "Desktop" User Interface rather than the Newer "Simplified User Interface", I'll update the sample application soon but the integration patterns are precisely the same Use Case 1 :  Navigator "Link out" to third party application This is an example of where the developer has added a link to the global navigator and this links out to the 3rd Party Application. Typically one doesn't pass any contextual data with the exception of perhaps user credentials, or better still JWT Token. Techniques Used   Adding Link to Menu Item Using JWT Token in Sales Cloud Use Case 2 : Application Embedded within the Sales Cloud Dashboard Within the Oracle Sales Cloud application there is a tab called "Sales", within this tab its possible to embed a SubTab and embed a iFrame pointing to your application. To do this the developer simply needs to edit the page in customization mode, add the tab and then add the iFrame, simples! The developer can pass credentials/JWT Token and some other pieces of data but not object data (ie the current OpportunityID etc)  Techniques Used Adding a page to the dashboard  Using JWT Token in Sales Cloud  Use Case 3 : Embedding a Tab and Context Linking out from a Sales Cloud object to the 3rd party application In this usecase the developer embeds two components into Oracle Sales Cloud. The first is a SubTab showing summary data to the user (a quote in our case) and then secondly a hyperlink, (although it could be a button) which when clicked navigates the user to the 3rd party application. In this case the developer almost always passes context specific data (i.e. the opportunityId) and a security token (username password combo or JWT Token). The third party application usually takes the data, perhaps queries more data using the Sales Cloud SOAP/WebService interface and then displays the resulting mashup to the user for further processing. When the user has finished their work in the 3rd party application they normally navigate back to Oracle Sales Cloud using what's called a "DeepLink", ie taking them back to the object [opportunity in our case] they came from. This image visually shows a "Happy Path" a user may follow, and combines linking out to an application , webservice calls and deep linking back to Sales Cloud. Techniques Used Extending a SalesCloud application with a custom button Using JWT Token in Sales Cloud Extending Oracle Sales Cloud [Opportnity] with a custom tab exposing External Content Retrieving Data from Oracle Sales cloud using WebServices Coding some groovy script to generate the URLs required (Doc 1571200.1 on MyOracle Support) DeepLinking to specific Oracle Sales Cloud Pages (Doc 1516151.1 on My Oracle Support) Use-Case 4 :  Server Side processing/synchronization This usecase focuses on the Server Side processing of data, in this case synchronizing data. Here the 3rd party application is running on a "timer", e.g. cron or similar, and when triggered it queries data from Oracle Sales Cloud, then it queries data from the 3rd party application, determines the deltas and then inserts the data where required. Specifically here we are calling Oracle Sales Cloud using SOAP/WebServices and the 3rd party application is being communicated to using the REST API, for Oracle Sales Cloud one would use standard JAX-WS WebService calls and for REST one would use the JAX-RS api and perhap the Jackson api for managing JSON objects.. This is a very common use case and one which specifically lends itself to using the Oracle Java Cloud Service as the ideal application server where to host the mediator between the two applications.  Techniques Used Using JWT Token in Sales Cloud Integrating with the Oracle Java Cloud Service Retrieving Data from Oracle Sales cloud using WebServices General Resources The above is just a small set of techniques and use-cases which are used today. There are plenty of other sources of documentation and resources available on the internet but to get you started here are a few of my favourite places  Sales Cloud General Documentation Sales Cloud Customize Tab is useful for general customization of Sales Cloud Sales Cloud Integration Tab focuses on the 3rd party integration techniques  Official Oracle Fusion Developer Relations Blog Official Oracle Fusion Developer Relations YouTube Channel Enjoy integrating! 

    Read the article

  • Adventures in Windows 8: Understanding and debugging design time data in Expression Blend

    - by Laurent Bugnion
    One of my favorite features in Expression Blend is the ability to attach a Visual Studio debugger to Blend. First let’s start by answering the question: why exactly do you want to do that? Note: If you are familiar with the creation and usage of design time data, feel free to scroll down to the paragraph titled “When design time data fails”. Creating design time data for your app When a designer works on an app, he needs to see something to design. For “static” UI such as buttons, backgrounds, etc, the user interface elements are going to show up in Blend just fine. If however the data is fetched dynamically from a service (web, database, etc) or created dynamically, most probably Blend is going to show just an empty element. The classical way to design at that stage is to run the application, navigate to the screen that is under construction (which can involve delays, need to log in, etc…), to measure what is on the screen (colors, margins, width and height, etc) using various tools, going back to Blend, editing the properties of the elements, running again, etc. Obviously this is not ideal. The solution is to create design time data. For more information about the creation of design time data by mocking services, you can refer to two talks of mine “Deep dive MVVM” and “MVVM Applied From Silverlight to Windows Phone to Windows 8”. The source code for these talks is here and here. Design time data in MVVM Light One of the main reasons why I developed MVVM Light is to facilitate the creation of design time data. To illustrate this, let’s create a new MVVM Light application in Visual Studio. Install MVVM Light from here: http://mvvmlight.codeplex.com (use the MSI in the Download section). After installing, make sure to read the Readme that opens up in your favorite browser, you will need one more step to install the Project Templates. Start Visual Studio 2012. Create a new MvvmLight (Win8) app. Run the application. You will see a string showing “Welcome to MVVM Light”. In the Solution explorer, right click on MainPage.xaml and select Open in Blend. Now you should see “Welcome to MVVM Light [Design]” What happens here is that Expression Blend runs different code at design time than the application runs at runtime. To do this, we use design-time detection (as explained in a previous article) and use that information to initialize a different data service at design time. To understand this better, open the ViewModelLocator.cs file in the ViewModel folder and see how the DesignDataService is used at design time, while the DataService is used at runtime. In a real-life applicationm, DataService would be used to connect to a web service, for instance. When design time data fails Sometimes however, the creation of design time data fails. It can be very difficult to understand exactly what is happening. Expression Blend is not giving a lot of information about what happened. Thankfully, we can use a trick: Attaching a debugger to Expression Blend and debug the design time code. In WPF and Silverlight (including Windows Phone 7), you could simply attach the debugger to Blend.exe (using the “Managed (v4.5, v4.0) code” option even for Silverlight!!) In Windows 8 however, things are just a bit different. This is because the designer that renders the actual representation of the Windows 8 app runs in its own process. Let’s illustrate that: Open the file DesignDataService in the Design folder. Modify the GetData method to look like this: public void GetData(Action<DataItem, Exception> callback) { throw new Exception(); // Use this to create design time data var item = new DataItem("Welcome to MVVM Light [design]"); callback(item, null); } Go to Blend and build the application. The build succeeds, but now the page is empty. The creation of the design time data failed, but we don’t get a warning message. We need to investigate what’s wrong. Close MainPage.xaml Go to Visual Studio and select the menu Debug, Attach to Process. Update: Make sure that you select “Managed (v4.5, v4.0) code” in the “Attach to” field. Find the process named XDesProc.exe. You should have at least two, one for the Visual Studio 2012 designer surface, and one for Expression Blend. Unfortunately in this screen it is not obvious which is which. Let’s find out in the Task Manager. Press Ctrl-Alt-Del and select Task Manager Go to the Details tab and sort the processes by name. Find the one that says “Blend for Microsoft Visual Studio 2012 XAML UI Designer” and write down the process ID. Go back to the Attach to Process dialog in Visual Studio. sort the processes by ID and attach the debugger to the correct instance of XDesProc.exe. Open the MainViewModel (in the ViewModel folder) Place a breakpoint on the first line of the MainViewModel constructor. Go to Blend and open the MainPage.xaml again. At this point, the debugger breaks in Visual Studio and you can execute your code step by step. Simply step inside the dataservice call, and find the exception that you had placed there. Visual Studio gives you additional information which helps you to solve the issue. More info and Conclusion I want to thank the amazing people on the Expression Blend team for being very fast in guiding me in that matter and encouraging me to blog about it. More information about the XDesProc.exe process can be found here. I had to work on a Windows 8 app for a few days without design time data because of an Exception thrown somewhere in the code, and it was really painful. With the debugger, finding the issue was a simple matter of stepping into the code until it threw the exception.   Laurent Bugnion (GalaSoft) Subscribe | Twitter | Facebook | Flickr | LinkedIn

    Read the article

  • SQL SERVER – Weekly Series – Memory Lane – #053 – Final Post in Series

    - by Pinal Dave
    It has been a fantastic journey to write memory lane series for an entire year. This series gave me the opportunity to go back and see what I have contributed to this blog throughout the last 7 years. This was indeed fantastic series as this provided me the opportunity to witness how technology has grown throughout the year and how I have progressed in my career while writing this blog post. This series was indeed fantastic experience readers as many joined during the last few years and were not sure what they have missed in recent years. Let us continue with the final episode of the Memory Lane Series. Here is the list of selected articles of SQLAuthority.com across all these years. Instead of just listing all the articles I have selected a few of my most favorite articles and have listed them here with additional notes below it. Let me know which one of the following is your favorite article from memory lane. 2007 Get Current User – Get Logged In User Here is the straight script which list logged in SQL Server users. Disable All Triggers on a Database – Disable All Triggers on All Servers Question : How to disable all the triggers for a database? Additionally, how to disable all the triggers for all servers? For answer execute the script in the blog post. Importance of Master Database for SQL Server Startup I have received following questions many times. I will list all the questions here and answer them together. What is the purpose of Master database? Should our backup Master database? Which database is must have database for SQL Server for startup? Which are the default system database created when SQL Server 2005 is installed for the first time? What happens if Master database is corrupted? Answers to all of the questions are very much related. 2008 DECLARE Multiple Variables in One Statement SQL Server is a great product and it has many features which are very unique to SQL Server. Regarding feature of SQL Server where multiple variable can be declared in one statement, it is absolutely possible to do. 2009 How to Enable Index – How to Disable Index – Incorrect syntax near ‘ENABLE’ Many times I have seen that the index is disabled when there is a large update operation on the table. Bulk insert of very large file updates in any table using SSIS is usually preceded by disabling the index and followed by enabling the index. I have seen many developers running the following query to disable the index. 2010 List of all the Views from Database Many emails I received suggesting that they have hundreds of the view and now have no clue what is going on and how many of them have indexes and how many does not have an index. Some even asked me if there is any way they can get a list of the views with the property of Index along with it. Here is the quick script which does exactly the same. You can also include many other columns from the same view. Minimum Maximum Memory – Server Memory Options I was recently reading about SQL Server Memory Options over here. While reading this one line really caught my attention is minimum value allowed for maximum memory options. The default setting for min server memory is 0, and the default setting for max server memory is 2147483647. The minimum amount of memory you can specify for max server memory is 16 megabytes (MB). 2011 Fundamentals of Columnstore Index There are two kinds of storage in a database. Row Store and Column Store. Row store does exactly as the name suggests – stores rows of data on a page – and column store stores all the data in a column on the same page. These columns are much easier to search – instead of a query searching all the data in an entire row whether the data are relevant or not, column store queries need only to search a much lesser number of the columns. How to Ignore Columnstore Index Usage in Query In summary the question in simple words “How can we ignore using the column store index in selective queries?” Very interesting question – you can use I can understand there may be the cases when the column store index is not ideal and needs to be ignored the same. You can use the query hint IGNORE_NONCLUSTERED_COLUMNSTORE_INDEX to ignore the column store index. The SQL Server Engine will use any other index which is best after ignoring the column store index. 2012 Storing Variable Values in Temporary Array or Temporary List SQL Server does not support arrays or a dynamic length storage mechanism like list. Absolutely there are some clever workarounds and few extra-ordinary solutions but everybody can;t come up with such solution. Additionally, sometime the requirements are very simple that doing extraordinary coding is not required. Here is the simple case. Move Database Files MDF and LDF to Another Location It is not common to keep the Database on the same location where OS is installed. Usually Database files are in SAN, Separate Disk Array or on SSDs. This is done usually for performance reason and manageability perspective. Now the challenges comes up when database which was installed at not preferred default location and needs to move to a different location. Here is the quick tutorial how you can do it. UNION ALL and ORDER BY – How to Order Table Separately While Using UNION ALL If your requirement is such that you want your top and bottom query of the UNION resultset independently sorted but in the same result set you can add an additional static column and order by that column. Let us re-create the same scenario. Copy Data from One Table to Another Table – SQL in Sixty Seconds #031 – Video http://www.youtube.com/watch?v=FVWIA-ACMNo Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: Memory Lane, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • The first day of JavaOne is already over!

    - by delabassee
    In the past Sunday used to be a more relaxing day with ‘just’ some JavaOne activities going on. Sunday used to be a soft day to prepare yourself for an exhausting week. This is now over as JavaOne is expanding; Sunday is now an integral part of the conference. One of the side effect of this extra day is that some activities related to JavaOne and OpenWorld such as MySQL Connect are being push to start a day earlier on Saturday (can you spot the pattern here?). On the GlassFish front, Sunday was a very busy day! It started at the Moscone Center with the annual GlassFish Community Event where the Java EE 7 and GF 4 roadmaps were presented and discussed. During the event, different GlassFish users such as ZeroTurnaround (the JRebel guys), Grupo RBS and IDR Solutions shared their views on GF, why they like GF but also what could be improved. The event was also a forum for the GF community to exchange with some of the key Java EE / GlassFish Oracle Executives and the different GF team members. The Strategy keynote and the Technical keynote were held in the Masonic Auditorium later in the after-noon. Oracle executives have presented the plans for Java SE, Java FX and Java EE. As on-demand replays will be available soon, I will not summarize several hours of content but here are some personal takeaways from those keynotes. Modularity Modularity is a big deal. We know by now that Project Jigsaw will not be ready for Java SE 8 but in any case, it is already possible (and encouraged) to test Jigsaw today. In the future, Java EE plan to rely on the modularity features provided by Java SE, so Project Jigsaw is also relevant for Java EE developers. Shorter term, to cover some of the modular requirements, Java SE will adopt the approach that was used for Java EE 6 and the notion of Profiles. This approach does not define a module system per say; Profiles is a way to clearly define different subsets of Java SE to fulfill different needs (e.g. the full JRE is not required for a headless application). The introduction of different Profiles, from the Base profile (10mb) to the Full Profile (+50mb), has been proposed for Java SE 8. Embedded Embedded is a strong theme going forward for the Java Plaform. There is now a dedicated program : Java Embedded @ JavaOne Java by nature (e.g. platform independence, built-in security, ability easily talks to any back-end systems, large set of skills available on the market, etc.) is probably the most suited platform for the Internet of Things. You can quickly be up-to-speed and develop services and applications for that space just by using your current Java skills. All you need to start developing on ARM is a 35$ Raspberry Pi ARM board (25$ if you are cheap and can live without an ethernet connection) and the recently released JDK for Linux/ARM. Obviously, GlassFish runs on Raspberry Pi. If you wan to go further in the embedded space, you should take a look Java SE Embedded, an optimized, low footprint, Java environment that support the major embedded architectures (ARM, PPC and x86). Finally, Oracle has recently introduced Java Embedded Suite, a new solution that brings modern middleware capabilities to the embedded space. Java Embedded Suite is an optimized solution that leverage Java SE Embedded but also GlassFish, Jersey and JavaDB to deploy advanced value added capabilities (eg. sensor data filtering and) deeper in the network, closer to the devices. JavaFX JavaFX is going strong! Starting from Java SE 7u6, JavaFX is bundled with the JDK. JavaFX is now available for all the major desktop platforms (Windows, Linux and Mac OS X). JavaFX is now also available, in developer preview, for low end device running Linux/ARM. During the keynote, JavaFX was shown running on a Raspberry Pi! And as announced during the keynote, JavaFX should be fully open-sourced by the end of the year; contributions are welcome!. There is a strong momentum around JavaFX, it’s the ideal client solution for the Java platform. A client layer that works perfectly with GlassFish on the back-end. If you were not convince by JavaFX, it’s time to reconsider it! As an old Chinese proverb say “One tweet is worth a thousand words!” HTML5, Project Avatar and Java EE 7 HTML5 got a lot of airtime too, it was covered during the Java EE 7 section of the keynote. Some details about Project Avatar, Oracle’s incubator project for a TSA (Thin Server Architecture) solution, were diluted and shown during the keynote. On the tooling side, Project Easel running on NetBeans 7.3 beta was demo’ed, including a cool NetBeans debugging session running in Chrome! HTML 5, Project Avatar and Java EE 7 deserve separate posts... Feedback We need your feedback! There are many projects, JSRs and products cooking : GlassFish 4, Project Jigsaw, Concurrency Utilities for Java EE (JSR 236), OpenJFX, OpenJDK to name just a few. Those projects, those specifications will have a profound impact on the Java platform for the years to come! So if you have the opportunity, download, install, learn, tests them and give feedback! Remember, you can "Make the Future Java!" Finally, the traditional GlassFish Party at the Thirsty Bear concluded the first JavaOne day. This party is another place where the community can freely exchange with the GlassFish team in a more relaxed, more friendly (but sometime more noisy) atmosphere. Arun has posted a set of pictures to reflect the atmosphere of the keynotes and the GlassFish party. You can find more details on the others Java EE and GlassFish activities here.

    Read the article

  • Design Pattern for Complex Data Modeling

    - by Aaron Hayman
    I'm developing a program that has a SQL database as a backing store. As a very broad description, the program itself allows a user to generate records in any number of user-defined tables and make connections between them. As for specs: Any record generated must be able to be connected to any other record in any other user table (excluding itself...the record, not the table). These "connections" are directional, and the list of connections a record has is user ordered. Moreover, a record must "know" of connections made from it to others as well as connections made to it from others. The connections are kind of the point of this program, so there is a strong possibility that the number of connections made is very high, especially if the user is using the software as intended. A record's field can also include aggregate information from it's connections (like obtaining average, sum, etc) that must be updated on change from another record it's connected to. To conserve memory, only relevant information must be loaded at any one time (can't load the entire database in memory at load and go from there). I cannot assume the backing store is local. Right now it is, but eventually this program will include syncing to a remote db. Neither the user tables, connections or records are known at design time as they are user generated. I've spent a lot of time trying to figure out how to design the backing store and the object model to best fit these specs. In my first design attempt on this, I had one object managing all a table's records and connections. I attempted this first because it kept the memory footprint smaller (records and connections were simple dicts), but maintaining aggregate and link information between tables became....onerous (ie...a huge spaghettified mess). Tracing dependencies using this method almost became impossible. Instead, I've settled on a distributed graph model where each record and connection is 'aware' of what's around it by managing it own data and connections to other records. Doing this increases my memory footprint but also let me create a faulting system so connections/records aren't loaded into memory until they're needed. It's also much easier to code: trace dependencies, eliminate cycling recursive updates, etc. My biggest problem is storing/loading the connections. I'm not happy with any of my current solutions/ideas so I wanted to ask and see if anybody else has any ideas of how this should be structured. Connections are fairly simple. They contain: fromRecordID, fromTableID, fromRecordOrder, toRecordID, toTableID, toRecordOrder. Here's what I've come up with so far: Store all the connections in one big table. If I do this, either I load all connections at once (one big db call) or make a call every time a user table is loaded. The big issue here: the size of the connections table has the potential to be huge, and I'm afraid it would slow things down. Store in separate tables all the outgoing connections for each user table. This is probably the worst idea I've had. Now my connections are 'spread out' over multiple tables (one for each user table), which means I have to make a separate DB called to each table (or make a huge join) just to find all the incoming connections for a particular user table. I've avoided making "one big ass table", but I'm not sure the cost is worth it. Store in separate tables all outgoing AND incoming connections for each user table (using a flag to distinguish between incoming vs outgoing). This is the idea I'm leaning towards, but it will essentially double the total DB storage for all the connections (as each connection will be stored in two tables). It also means I have to make sure connection information is kept in sync in both places. This is obviously not ideal but it does mean that when I load a user table, I only need to load one 'connection' table and have all the information I need. This also presents a separate problem, that of connection object creation. Since each user table has a list of all connections, there are two opportunities for a connection object to be made. However, connections objects (designed to facilitate communication between records) should only be created once. This means I'll have to devise a common caching/factory object to make sure only one connection object is made per connection. Does anybody have any ideas of a better way to do this? Once I've committed to a particular design pattern I'm pretty much stuck with it, so I want to make sure I've come up with the best one possible.

    Read the article

  • Anatomy of a .NET Assembly - CLR metadata 2

    - by Simon Cooper
    Before we look any further at the CLR metadata, we need a quick diversion to understand how the metadata is actually stored. Encoding table information As an example, we'll have a look at a row in the TypeDef table. According to the spec, each TypeDef consists of the following: Flags specifying various properties of the class, including visibility. The name of the type. The namespace of the type. What type this type extends. The field list of this type. The method list of this type. How is all this data actually represented? Offset & RID encoding Most assemblies don't need to use a 4 byte value to specify heap offsets and RIDs everywhere, however we can't hard-code every offset and RID to be 2 bytes long as there could conceivably be more than 65535 items in a heap or more than 65535 fields or types defined in an assembly. So heap offsets and RIDs are only represented in the full 4 bytes if it is required; in the header information at the top of the #~ stream are 3 bits indicating if the #Strings, #GUID, or #Blob heaps use 2 or 4 bytes (the #US stream is not accessed from metadata), and the rowcount of each table. If the rowcount for a particular table is greater than 65535 then all RIDs referencing that table throughout the metadata use 4 bytes, else only 2 bytes are used. Coded tokens Not every field in a table row references a single predefined table. For example, in the TypeDef extends field, a type can extend another TypeDef (a type in the same assembly), a TypeRef (a type in a different assembly), or a TypeSpec (an instantiation of a generic type). A token would have to be used to let us specify the table along with the RID. Tokens are always 4 bytes long; again, this is rather wasteful of space. Cutting the RID down to 2 bytes would make each token 3 bytes long, which isn't really an optimum size for computers to read from memory or disk. However, every use of a token in the metadata tables can only point to a limited subset of the metadata tables. For the extends field, we only need to be able to specify one of 3 tables, which we can do using 2 bits: 0x0: TypeDef 0x1: TypeRef 0x2: TypeSpec We could therefore compress the 4-byte token that would otherwise be needed into a coded token of type TypeDefOrRef. For each type of coded token, the least significant bits encode the table the token points to, and the rest of the bits encode the RID within that table. We can work out whether each type of coded token needs 2 or 4 bytes to represent it by working out whether the maximum RID of every table that the coded token type can point to will fit in the space available. The space available for the RID depends on the type of coded token; a TypeOrMethodDef coded token only needs 1 bit to specify the table, leaving 15 bits available for the RID before a 4-byte representation is needed, whereas a HasCustomAttribute coded token can point to one of 18 different tables, and so needs 5 bits to specify the table, only leaving 11 bits for the RID before 4 bytes are needed to represent that coded token type. For example, a 2-byte TypeDefOrRef coded token with the value 0x0321 has the following bit pattern: 0 3 2 1 0000 0011 0010 0001 The first two bits specify the table - TypeRef; the other bits specify the RID. Because we've used the first two bits, we've got to shift everything along two bits: 000000 1100 1000 This gives us a RID of 0xc8. If any one of the TypeDef, TypeRef or TypeSpec tables had more than 16383 rows (2^14 - 1), then 4 bytes would need to be used to represent all TypeDefOrRef coded tokens throughout the metadata tables. Lists The third representation we need to consider is 1-to-many references; each TypeDef refers to a list of FieldDef and MethodDef belonging to that type. If we were to specify every FieldDef and MethodDef individually then each TypeDef would be very large and a variable size, which isn't ideal. There is a way of specifying a list of references without explicitly specifying every item; if we order the MethodDef and FieldDef tables by the owning type, then the field list and method list in a TypeDef only have to be a single RID pointing at the first FieldDef or MethodDef belonging to that type; the end of the list can be inferred by the field list and method list RIDs of the next row in the TypeDef table. Going back to the TypeDef If we have a look back at the definition of a TypeDef, we end up with the following reprensentation for each row: Flags - always 4 bytes Name - a #Strings heap offset. Namespace - a #Strings heap offset. Extends - a TypeDefOrRef coded token. FieldList - a single RID to the FieldDef table. MethodList - a single RID to the MethodDef table. So, depending on the number of entries in the heaps and tables within the assembly, the rows in the TypeDef table can be as small as 14 bytes, or as large as 24 bytes. Now we've had a look at how information is encoded within the metadata tables, in the next post we can see how they are arranged on disk.

    Read the article

  • Day 1 - Finding Like Minds

    - by dapostolov
    So, is being a Game Developer any different from being an IT Developer? I picture a poorly lit environment where I get to purchase my own desk lamp; I'm thinking one of those huge lava lamps that pump out so much heat you could fry an egg on it. To my right: a "great wall" of empty coke cans dwarf me. Eating my last slice of pizza I look across my desk to see a fellow developer with a smug look on his face;  he's just coded his latest module for the game and it looks like he's in nirvana. My duty, of course, is to remind him to keep focused on the job at hand. So, picking up my trusty elastic and aerodynamically crafted paper bullet I begin a 10 minute war of welts and laughter which is promptly abrupted by our Project Manager demanding more details from our morning Scrum meeting. After providing about 5 minutes of geek speak and several words of comfort to make his eyes glaze over...it hits me, the idea for the module...beckoning my developer friend over, we quickly shoo the Project Manager away and begin our brainstorming frenzy ... now, where'd I put that full can of coke? OK. OK. This isn't probably the most ideal game developer environment, but it definitely sounds fun to me...and from what I gather is nothing like most game development companies. But I'm not doing this blog series to "go pro"; like I stated in my first post I want to make a 2D game from an idea my best friend and I drummed up long, long ago. I'm in this for the passion AND I want to see how easy it is for us .Net Developers to create a game. So where do I start? Where can I find like minded individuals? What technologies are there? What do I need to make a video game? The questions are endless....AND...since I already have an idea ... lets start with ... Technology (yes, I'm a geek, live with it...) Technology OK. Predominantly, games are still made in C++ or even C. I'm not sure how much assembly code is floating around lately, however, that is not my concern. I do know C / C++ from my past, enough to even get me by, but I'm mainly interested in a recent, not-so-new, technology called XNA. What is XNA? XNA allows us .Net Developers to make 2D / 3D games for windows, Xbox*, and Windows Mobile 7*. * = for a nominal fee *cough* The following link is your one stop shop to XNA game development: http://creators.xna.com/en-US/education/gettingstarted The above site hosts information such as: - getting started - a sample/instructional shooter game in 2D / 3D with code (if I'm taking too long for you in this blog series) - downloads - starter kits... http://creators.xna.com/en-US/education/starterkits/ And of course...forums. You can also subscribe and pay for their premium membership which gets you some pretty awesome tutorials, resources, downloads, and premium community support. Some general Wiki information about XNA: http://en.wikipedia.org/wiki/XNA_%28Microsoft%29 Community Support OK. Let's move on to industry and community support. Apart from XNA, there are some really cool sites out there, I just haven't found all of them yet. However, I found a really cool Game Development website called Gamastura. You can click on the following link to get you there: http://www.gamasutra.com/ The site is 100% dedicated to "The Art & Business of Making Games". Armed with blogs, twitter, jobs/resumes and most importantly industry news; one could subscribe to the feed and got lost in the wealth of information it provides. On a side note: I remember Gamasutra being around when my best friend and I wanted to make a video game...meaning, they've been around for a while now. I think the most beneficial aspect of this site is to understand the industry you want to get into. Otherwise, it's just a cool site to keep up to date with the industry in general. Another Community Support option is LinkedIn. Amongst the land of extremely bloated achievements and responsibilities lay 3 groups (that I have found) that deal with game development.: http://www.linkedin.com/groups?gid=59205 - Game Developers http://www.linkedin.com/groups?gid=824817 - DirectX Game Developer Network http://www.linkedin.com/groups?gid=756587 - DirectX Developers The Game Developers group in LinkedIn is by far the most active of the three and could possibly provide a wealth of support. What I've done thus far: - I lightly researched the XNA technology - I looked around for some community sites to assist me - I downloaded the XNA Game Studio 3.1 on my PC and installed it on my IDE - I even tried both tutorials! http://creators.xna.com/en-US/education/gettingstarted/bgintro/chapter1   Best Regards D.

    Read the article

  • Extending Blend for Visual Studio 2013

    - by Chris Skardon
    Originally posted on: http://geekswithblogs.net/cskardon/archive/2013/11/01/extending-blend-for-visual-studio-2013.aspxSo, I got a comment yesterday on my post about Extending Blend 4 and Blend for Visual Studio 2012 asking if I knew how to get it working for Blend for Visual Studio 2013.. My initial thoughts were, just change the location to get the blend dlls from Visual Studio 11.0 to 12.0 and you’re all set, so I went to do that, only to discover that the dlls I normally reference, well – they don’t exist. So… I’ve made a presumption that the actual process of using MEF etc is still the same. I was wrong. So, the route to discovery – required DotPeek and opening a few of blends dlls.. Browsing through the Blend install directory (./Microsoft Visual Studio 12.0/Blend/) I notice the .addin files: So I decide to peek into the SketchFlow dll, then promptly remember SketchFlow is quite a big thing, and hunting through there is not ideal, luckily there is another dll using an .addin file, ‘Microsoft.Expression.Importers.Host’, so we’ll go for that instead. We can see it’s still using the ‘IPackage’ formula, but where is that sucker? Well, we just press F12 on the ‘IPackage’ bit and DotPeek takes us there, with a very handy comment at the top: // Type: Microsoft.Expression.Framework.IPackage // Assembly: Microsoft.Expression.Framework, Version=12.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a // MVID: E092EA54-4941-463C-BD74-283FD36478E2 // Assembly location: C:\Program Files (x86)\Microsoft Visual Studio 12.0\Blend\Microsoft.Expression.Framework.dll Now we know where the IPackage interface is defined, so let’s just try writing a control. Last time I did a separate dll for the control, this time I’m not, but it still works if you want to do it that way. Let’s build a control! STEP 1 Create a new WPF application Naming doesn’t matter any more! I have gone with ‘Hello2013’ (see what I did there?) STEP 2 Delete: App.Config App.xaml MainWindow.xaml We won’t be needing them STEP 3 Change your application to be a Class Library instead. (You might also want to delete the ‘vshost’ stuff in your output directory now, as they only exist for hosting the WPF app, and just cause clutter) STEP 4 Add a reference to the ‘Microsoft.Expression.Framework.dll’ (which you can find in ‘C:\Program Files\Microsoft Visual Studio 12.0\Blend’ – that’s Program Files (x86) if you’re on an x64 machine!). STEP 5 Add a User Control, I’m going with ‘Hello2013Control’, and following from last time, it’s just a TextBlock in a Grid: <UserControl x:Class="Hello2013.Hello2013Control" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" mc:Ignorable="d" d:DesignHeight="300" d:DesignWidth="300"> <Grid> <TextBlock>Hello Blend for VS 2013</TextBlock> </Grid> </UserControl> STEP 6 Add a class to load the package – I’ve called it – yes you guessed – Hello2013Package, which will look like this: namespace Hello2013 { using Microsoft.Expression.Framework; using Microsoft.Expression.Framework.UserInterface; public class Hello2013Package : IPackage { private Hello2013Control _hello2013Control; private IWindowService _windowService; public void Load(IServices services) { _windowService = services.GetService<IWindowService>(); Initialize(); } private void Initialize() { _hello2013Control = new Hello2013Control(); if (_windowService.PaletteRegistry["HelloPanel"] == null) _windowService.RegisterPalette("HelloPanel", _hello2013Control, "Hello Window"); } public void Unload(){} } } You might note that compared to the 2012 version we’re no longer [Exporting(typeof(IPackage))]. The file you create in STEP 7 covers this for us. STEP 7 Add a new file called: ‘<PROJECT_OUTPUT_NAME>.addin’ – in reality you can call it anything and it’ll still read it in just fine, it’s just nicer if it all matches up, so I have ‘Hello2013.addin’. Content wise, we need to have: <?xml version="1.0" encoding="utf-8"?> <AddIn AssemblyFile="Hello2013.dll" /> obviously, replacing ‘Hello2013.dll’ with whatever your dll is called. STEP 8 We set the ‘addin’ file to be copied to the output directory: STEP 9 Build! STEP 10 Go to your output directory (./bin/debug) and copy the 3 files (Hello2013.dll, Hello2013.pdb, Hello2013.addin) and then paste into the ‘Addins’ folder in your Blend directory (C:\Program Files\Microsoft Visual Studio 12.0\Blend\Addins) STEP 11 Start Blend for Visual Studio 2013 STEP 12 Go to the ‘Window’ menu and select ‘Hello Window’ STEP 13 Marvel at your new control! Feel free to email me / comment with any problems!

    Read the article

  • JavaOne 2012 Sunday Strategy Keynote

    - by Janice J. Heiss
    At the Sunday Strategy Keynote, held at the Masonic Auditorium, Hasan Rizvi, EVP, Middleware and Java Development, stated that the theme for this year's JavaOne is: “Make the future Java”-- meaning that Java continues in its role as the most popular, complete, productive, secure, and innovative development platform. But it also means, he qualified, the process by which we make the future Java -- an open, transparent, collaborative, and community-driven evolution. "Many of you have bet your businesses and your careers on Java, and we have bet our business on Java," he said.Rizvi detailed the three factors they consider critical to the success of Java--technology innovation, community participation, and Oracle's leadership/stewardship. He offered a scorecard in these three realms over the past year--with OS X and Linux ARM support on Java SE, open sourcing of JavaFX by the end of the year, the release of Java Embedded Suite 7.0 middleware platform, and multiple releases on the Java EE side. The JCP process continues, with new JSR activity, and JUGs show a 25% increase in participation since last year. Oracle, meanwhile, continues its commitment to both technology and community development/outreach--with four regional JavaOne conferences last year in various part of the world, as well as the release of Java Magazine, with over 120,000 current subscribers. Georges Saab, VP Development, Java SE, next reviewed features of Java SE 7--the first major revision to the platform under Oracle's stewardship, which has included near-monthly update releases offering hundreds of fixes, performance enhancements, and new features. Saab indicated that developers, ISVs, and hosting providers have all been rapid adopters of the platform. He also noted that Oracle's entire Fusion middleware stack is supported on SE 7. The supported platforms for SE 7 has also increased--from Windows, Linux, and Solaris, to OS X, Linux ARM, and the emerging ARM micro-server market. "In the last year, we've added as many new platforms for Java, as were added in the previous decade," said Saab.Saab also explored the upcoming JDK 8 release--including Project Lambda, Project Nashorn (a modern implementation of JavaScript running on the JVM), and others. He noted that Nashorn functionality had already been used internally in NetBeans 7.3, and announced that they were planning to contribute the implementation to OpenJDK. Nandini Ramani, VP Development, Java Client, ME and Card, discussed the latest news pertaining to JavaFX 2.0--releases on Windows, OS X, and Linux, release of the FX Scene Builder tool, the JavaFX WebView component in NetBeans 7.3, and an OpenJFX project in OpenJDK. Nandini announced, as of Sunday, the availability for download of JavaFX on Linux ARM (developer preview), as well as Scene Builder on Linux. She noted that for next year's JDK 8 release, JavaFX will offer 3D, as well as third-party component integration. Avinder Brar, Senior Software Engineer, Navis, and Dierk König, Canoo Fellow, next took the stage and demonstrated all that JavaFX offers, with a feature-rich, animation-rich, real-time cargo management application that employs Canoo's just open-sourced Dolphin technology.Saab also explored Java SE 9 and beyond--Jigsaw modularity, Penrose Project for interoperability with OSGi, improved multi-tenancy for Java in the cloud, and Project Sumatra. Phil Rogers, HSA Foundation President and AMD Corporate Fellow, explored heterogeneous computing platforms that combine the CPU and the parallel processor of the GPU into a single piece of silicon and shared memory—a hardware technology driven by such advanced functionalities as HD video, face recognition, and cloud workloads. Project Sumatra is an OpenJDK project targeted at bringing Java to such heterogeneous platforms--with hardware and software experts working together to modify the JVM for these advanced applications and platforms.Ramani next discussed the latest with Java in the embedded space--"the Internet of things" and M2M--declaring this to be "the next IT revolution," with Java as the ideal technology for the ecosystem. Last week, Oracle released Java ME Embedded 3.2 (for micro-contollers and low-power devices), and Java Embedded Suite 7.0 (a middleware stack based on Java SE 7). Axel Hansmann, VP Strategy and Marketing, Cinterion, explored his company's use of Java in M2M, and their new release of EHS5, the world's smallest 3G-capable M2M module, running Java ME Embedded. Hansmaan explained that Java offers them the ability to create a "simple to use, scalable, coherent, end-to-end layer" for such diverse edge devices.Marc Brule, Chief Financial Office, Royal Canadian Mint, also explored the fascinating use-case of JavaCard in his country's MintChip e-cash technology--deployable on smartphones, USB device, computer, tablet, or cloud. In parting, Ramani encouraged developers to download the latest releases of Java Embedded, and try them out.Cameron Purdy, VP, Fusion Middleware Development and Java EE, summarized the latest developments and announcements in the Enterprise space--greater developer productivity in Java EE6 (with more on the way in EE 7), portability between platforms, vendors, and even cloud-to-cloud portability. The earliest version of the Java EE 7 SDK is now available for download--in GlassFish 4--with WebSocket support, better JSON support, and more. The final release is scheduled for April of 2013. Nicole Otto, Senior Director, Consumer Digital Technology, Nike, explored her company's Java technology driven enterprise ecosystem for all things sports, including the NikeFuel accelerometer wrist band. Looking beyond Java EE 7, Purdy mentioned NoSQL database functionality for EE 8, the concurrency utilities (possibly in EE 7), some of the Avatar projects in EE 7, some in EE 8, multi-tenancy for the cloud, supporting SaaS applications, and more.Rizvi ended by introducing Dr. Robert Ballard, oceanographer and National Geographic Explorer in Residence--part of Oracle's philanthropic relationship with the National Geographic Society to fund K-12 education around ocean science and conservation. Ballard is best known for having discovered the wreckage of the Titanic. He offered a fascinating video and overview of the cutting edge technology used in such deep-sea explorations, noting that in his early days, high-bandwidth exploration meant that you’d go down in a submarine and "stick your face up against the window." Now, it's a remotely operated, technology telepresence--"I think of my Hercules vehicle as my equivalent of a Na'vi. When I go beneath the sea, I actually send my spirit." Using high bandwidth satellite links, such amazing explorations can now occur via smartphone, laptop, or whatever platform. Ballard’s team regularly offers live feeds and programming out to schools and the world, spanning 188 countries--with embedding educators as part of the expeditions. It's technology at its finest, inspiring the next-generation of scientists and explorers!

    Read the article

  • Silverlight Reporting Application Part 3.5 - Prism Background and WCF RIA [Series Intermission]

    Taking a step back before I dive into the details and full-on coding fun, I wanted to once again respond to a comment on my last post to clear up some things in regards to how I'm setting up my project and some of the choices I've made. Aka, thanks Ben. :) Prism Project Setup For starters, I'm not the ideal use case for a Prism application. In most cases where you've got a one-man team, Prism can be overkill as it is more intended for large teams who are geographically dispersed or in applications that have a larger scale than my Recruiting application in which you'll greatly benefit from modularity, delayed loading of xaps, etc. What Prism offers, though, is a manner for handling UI, commands, and events with the idea that, through a modular approach in which no parts really need to know about one another, I can update this application bit by bit as hiring needs change or requirements differ between offices without having to worry that changing something in the Jobs module will break something in, say, the Scheduling module. All that being said, here's a look at how our project breakdown for Recruit (MVVM/Prism implementation) looks: This could be a little misleading though, as each of those modules is actually another project in the overall Recruit solution. As far as what the projects actually are, that looks a bit like this: Recruiting Solution Recruit (Shell up there) - Main Silverlight Application .Web - Default .Web application to host the Silverlight app Infrastructure - Silverlight Class Library Project Modules - Silverlight Class Library Projects Infrastructure &Modules The Infrastructure project is probably something you'll see to some degree in any composite application. In this application, it is going to contain custom commands (you'll see the joy of these in a post or two down the road), events, helper classes, and any custom classes I need to share between different modules. Think of this as a handy little crossroad between any parts of your application. Modules on the other hand are the bread and butter of this application. Besides the shell, which holds the UI skeleton, and the infrastructure, which holds all those shared goodies, the modules are self-contained bundles of functionality to handle different concerns. In my scenario, I need a way to look up and edit Jobs, Applicants, and Schedule interviews, a Notification module to handle telling the user when different things are happening (i.e., loading from database), and a Menu to control interaction and moving between different views. All modules are going to follow the following pattern: The module class will inherit from IModule and handle initialization and loading the correct view into the correct region, whereas the Views and ViewModels folders will contain paired Silverlight user controls and ViewModel class backings. WCF RIA Services Since we've got all the projects in a single solution, we did not have to go the route of creating a WCR RIA Services Class Library. Every module has it's WCF RIA link back to the main .Web project, so the single Linq-2-SQL (yes, I said Linq-2-SQL, but I'll soon be switching to OpenAccess due to the new visual designer) context I'm using there works nicely with the scope of my project. If I were going for completely separating this project out and doing different, dynamically loaded elements, I'd probably go for the separate class library. Hope that clears that up. In the future though, I will be using that in a project that I've got in the "when I've got enough time to work on this" pipeline, so we'll get into that eventually- and hopefully when WCF RIA is in full release! Why Not use Silverlight Navigation/Business Template? The short answer- I'm a creature of habit, and having used Silverlight for a few years now, I'm used to doing lots of things manually. :) Plus, starting with a blank slate of a project I'm able to set up things exactly as I want them to be. In this case, rather than the navigation frame we would see in one of the templates, the MainRegion/ContentControl is working as our main navigation window. In many cases I will use theSilverlight navigation template to start things off, however in this case I did not need those features so I opted out of using that. Next time when I actually hit post #4, we're going to get into the modules and starting to get functionality into this application. Next week is also release week for the Q1 2010 release, so be sure to check out our annualWebinar Week (I might be biased, but Wednesday is my favorite out of the group). Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Migrating Core Data to new UIManagedDocument in iOS 5

    - by samerpaul
    I have an app that has been on the store since iOS 3.1, so there is a large install base out there that still uses Core Data loaded up in my AppDelegate. In the most recent set of updates, I raised the minimum version to 4.3 but still kept the same way of loading the data. Recently, I decided it's time to make the minimum version 5.1 (especially with 6 around the corner), so I wanted to start using the new fancy UIManagedDocument way of using Core Data. The issue with this though is that the old database file is still sitting in the iOS app, so there is no migrating to the new document. You have to basically subclass UIManagedDocument with a new model class, and override a couple of methods to do it for you. Here's a tutorial on what I did for my app TimeTag.  Step One: Add a new class file in Xcode and subclass "UIManagedDocument" Go ahead and also add a method to get the managedObjectModel out of this class. It should look like:   @interface TimeTagModel : UIManagedDocument   - (NSManagedObjectModel *)managedObjectModel;   @end   Step two: Writing the methods in the implementation file (.m) I first added a shortcut method for the applicationsDocumentDirectory, which returns the URL of the app directory.  - (NSURL *)applicationDocumentsDirectory {     return [[[NSFileManagerdefaultManager] URLsForDirectory:NSDocumentDirectoryinDomains:NSUserDomainMask] lastObject]; }   The next step was to pull the managedObjectModel file itself (.momd file). In my project, it's called "minimalTime". - (NSManagedObjectModel *)managedObjectModel {     NSString *path = [[NSBundlemainBundle] pathForResource:@"minimalTime"ofType:@"momd"];     NSURL *momURL = [NSURL fileURLWithPath:path];     NSManagedObjectModel *managedObjectModel = [[NSManagedObjectModel alloc] initWithContentsOfURL:momURL];          return managedObjectModel; }   After that, I need to check for a legacy installation and migrate it to the new UIManagedDocument file instead. This is the overridden method: - (BOOL)configurePersistentStoreCoordinatorForURL:(NSURL *)storeURL ofType:(NSString *)fileType modelConfiguration:(NSString *)configuration storeOptions:(NSDictionary *)storeOptions error:(NSError **)error {     // If legacy store exists, copy it to the new location     NSURL *legacyPersistentStoreURL = [[self applicationDocumentsDirectory] URLByAppendingPathComponent:@"minimalTime.sqlite"];          NSFileManager* fileManager = [NSFileManagerdefaultManager];     if ([fileManager fileExistsAtPath:legacyPersistentStoreURL.path])     {         NSLog(@"Old db exists");         NSError* thisError = nil;         [fileManager replaceItemAtURL:storeURL withItemAtURL:legacyPersistentStoreURL backupItemName:niloptions:NSFileManagerItemReplacementUsingNewMetadataOnlyresultingItemURL:nilerror:&thisError];     }          return [superconfigurePersistentStoreCoordinatorForURL:storeURL ofType:fileType modelConfiguration:configuration storeOptions:storeOptions error:error]; }   Basically what's happening above is that it checks for the minimalTime.sqlite file inside the app's bundle on the iOS device.  If the file exists, it tells you inside the console, and then tells the fileManager to replace the storeURL (inside the method parameter) with the legacy URL. This basically gives your app access to all the existing data the user has generated (otherwise they would load into a blank app, which would be disastrous). It returns a YES if successful (by calling it's [super] method). Final step: Actually load this database Due to how my app works, I actually have to load the database at launch (instead of shortly after, which would be ideal). I call a method called loadDatabase, which looks like this: -(void)loadDatabase {     static dispatch_once_t onceToken;          // Only do this once!     dispatch_once(&onceToken, ^{         // Get the URL         // The minimalTimeDB name is just something I call it         NSURL *url = [[selfapplicationDocumentsDirectory] URLByAppendingPathComponent:@"minimalTimeDB"];         // Init the TimeTagModel (our custom class we wrote above) with the URL         self.timeTagDB = [[TimeTagModel alloc] initWithFileURL:url];           // Setup the undo manager if it's nil         if (self.timeTagDB.undoManager == nil){             NSUndoManager *undoManager = [[NSUndoManager  alloc] init];             [self.timeTagDB setUndoManager:undoManager];         }                  // You have to actually check to see if it exists already (for some reason you can't just call "open it, and if it's not there, create it")         if ([[NSFileManagerdefaultManager] fileExistsAtPath:[url path]]) {             // If it does exist, try to open it, and if it doesn't open, let the user (or at least you) know!             [self.timeTagDB openWithCompletionHandler:^(BOOL success){                 if (!success) {                     // Handle the error.                     NSLog(@"Error opening up the database");                 }                 else{                     NSLog(@"Opened the file--it already existed");                     [self refreshData];                 }             }];         }         else {             // If it doesn't exist, you need to attempt to create it             [self.timeTagDBsaveToURL:url forSaveOperation:UIDocumentSaveForCreatingcompletionHandler:^(BOOL success){                 if (!success) {                     // Handle the error.                     NSLog(@"Error opening up the database");                 }                 else{                     NSLog(@"Created the file--it did not exist");                     [self refreshData];                 }             }];         }     }); }   If you're curious what refreshData looks like, it sends out a NSNotification that the database has been loaded: -(void)refreshData {     NSNotification* refreshNotification = [NSNotificationnotificationWithName:kNotificationCenterRefreshAllDatabaseData object:self.timeTagDB.managedObjectContext  userInfo:nil];     [[NSNotificationCenter defaultCenter] postNotification:refreshNotification];     }   The kNotificationCenterRefreshAllDatabaseData is just a constant I have defined elsewhere that keeps track of all the NSNotification names I use. I pass the managedObjectContext of the newly created file so that my view controllers can have access to it, and start passing it around to one another. The reason we do this as a Notification is because this is being run in the background, so we can't know exactly when it finishes. Make sure you design your app for this! Have some kind of loading indicator, or make sure your user can't attempt to create a record before the database actually exists, because it will crash the app.

    Read the article

  • Most efficient way to implement delta time

    - by Starkers
    Here's one way to implement delta time: /// init /// var duration = 5000, currentTime = Date.now(); // and create cube, scene, camera ect ////// function animate() { /// determine delta /// var now = Date.now(), deltat = now - currentTime, currentTime = now, scalar = deltat / duration, angle = (Math.PI * 2) * scalar; ////// /// animate /// cube.rotation.y += angle; ////// /// update /// requestAnimationFrame(render); ////// } Could someone confirm I know how it works? Here what I think is going on: Firstly, we set duration at 5000, which how long the loop will take to complete in an ideal world. With a computer that is slow/busy, let's say the animation loop takes twice as long as it should, so 10000: When this happens, the scalar is set to 2.0: scalar = deltat / duration scalar = 10000 / 5000 scalar = 2.0 We now times all animation by twice as much: angle = (Math.PI * 2) * scalar; angle = (Math.PI * 2) * 2.0; angle = (Math.PI * 4) // which is 2 rotations When we do this, the cube rotation will appear to 'jump', but this is good because the animation remains real-time. With a computer that is going too quickly, let's say the animation loop takes half as long as it should, so 2500: When this happens, the scalar is set to 0.5: scalar = deltat / duration scalar = 2500 / 5000 scalar = 0.5 We now times all animation by a half: angle = (Math.PI * 2) * scalar; angle = (Math.PI * 2) * 0.5; angle = (Math.PI * 1) // which is half a rotation When we do this, the cube won't jump at all, and the animation remains real time, and doesn't speed up. However, would I be right in thinking this doesn't alter how hard the computer is working? I mean it still goes through the loop as fast as it can, and it still has render the whole scene, just with different smaller angles! So this a bad way to implement delta time, right? Now let's pretend the computer is taking exactly as long as it should, so 5000: When this happens, the scalar is set to 1.0: angle = (Math.PI * 2) * scalar; angle = (Math.PI * 2) * 1; angle = (Math.PI * 2) // which is 1 rotation When we do this, everything is timsed by 1, so nothing is changed. We'd get the same result if we weren't using delta time at all! My questions are as follows Mostly importantly, have I got the right end of the stick here? How do we know to set the duration to 5000 ? Or can it be any number? I'm a bit vague about the "computer going too quickly". Is there a way loop less often rather than reduce the animation steps? Seems like a better idea. Using this method, do all of our animations need to be timesed by the scalar? Do we have to hunt down every last one and times it? Is this the best way to implement delta time? I think not, due to the fact the computer can go nuts and all we do is divide each animation step and because we need to hunt down every step and times it by the scalar. Not a very nice DSL, as it were. So what is the best way to implement delta time? Below is one way that I do not really get but may be a better way to implement delta time. Could someone explain please? // Globals INV_MAX_FPS = 1 / 60; frameDelta = 0; clock = new THREE.Clock(); // In the animation loop (the requestAnimationFrame callback)… frameDelta += clock.getDelta(); // API: "Get the seconds passed since the last call to this method." while (frameDelta >= INV_MAX_FPS) { update(INV_MAX_FPS); // calculate physics frameDelta -= INV_MAX_FPS; } How I think this works: Firstly we set INV_MAX_FPS to 0.01666666666 How we will use this number number does not jump out at me. We then intialize a frameDelta which stores how long the last loop took to run. Come the first loop frameDelta is not greater than INV_MAX_FPS so the loop is not run (0 = 0.01666666666). So nothing happens. Now I really don't know what would cause this to happen, but let's pretend that the loop we just went through took 2 seconds to complete: We set frameDelta to 2: frameDelta += clock.getDelta(); frameDelta += 2.00 Now we run an animation thanks to update(0.01666666666). Again what is relevance of 0.01666666666?? And then we take away 0.01666666666 from the frameDelta: frameDelta -= INV_MAX_FPS; frameDelta = frameDelta - INV_MAX_FPS; frameDelta = 2 - 0.01666666666 frameDelta = 1.98333333334 So let's go into the second loop. Let's say it took 2(? Why not 2? Or 12? I am a bit confused): frameDelta += clock.getDelta(); frameDelta = frameDelta + clock.getDelta(); frameDelta = 1.98333333334 + 2 frameDelta = 3.98333333334 This time we enter the while loop because 3.98333333334 = 0.01666666666 We run update We take away 0.01666666666 from frameDelta again: frameDelta -= INV_MAX_FPS; frameDelta = frameDelta - INV_MAX_FPS; frameDelta = 3.98333333334 - 0.01666666666 frameDelta = 3.96666666668 Now let's pretend the loop is super quick and runs in just 0.1 seconds and continues to do this. (Because the computer isn't busy any more). Basically, the update function will be run, and every loop we take away 0.01666666666 from the frameDelta untill the frameDelta is less than 0.01666666666. And then nothing happens until the computer runs slowly again? Could someone shed some light please? Does the update() update the scalar or something like that and we still have to times everything by the scalar like in the first example?

    Read the article

  • How to handle updated configuration when it's already been cloned for editing

    - by alexrussell
    Really sorry about the title that probably doesn't make much sense. Hopefully I can explain myself better here as it's something that's kinda bugged me for ages, and is now becoming a pressing concern as I write a bit of software with configuration. Most software comes with default configuration options stored in the app itself, and then there's a configuration file (let's say) that a user can edit. Once created/edited for the first time, subsequent updates to the application can not (easily) modify this configuration file for fear of clobbering the user's own changes to the default configuration. So my question is, if my application adds a new configurable parameter, what's the best way to aid discoverability of the setting and allow the user (developer) to override it as nicely as possible given the following constraints: I actually don't have a canonical default config in the application per se, it's more of a 'cascading filesystem'-like affair - the config template is stored in default/config.json and when the user wishes to edit the configuration, it's copied to user/config.json. If a user config is found it is used - there is no automatic overriding of a subset of keys, the whole new file is used and that's that. If there's no user config the default config is used. When a user wishes to edit the config they run a command to 'generate' it for them (which simply copies the config.json file from the default to the user directory). There is no UI for the configuration options as it's not appropriate to the userbase (think of my software as a library or something, the users are developers, the config is done in the user/config.json file). Due to my software being library-like there's no simple way to, on updating of the software, run some tasks automatically (so any ideas of look at the current config, compare to template config, add ing missing keys) aren't appropriate. The only solution I can think of right now is to say "there's a new config setting X" in release notes, but this doesn't seem ideal to me. If you want any more information let me know. The above specifics are not actually 100% true to my situation, but they represent the problem equally well with lower complexity. If you do want specifics, however, I can explain the exact setup. Further clarification of the type of configuration I mean: think of the Atom code editor. There appears to be a default 'template' config file somewhere, but as soon as a configuration option is edited ~/.atom/config.cson is generated and the setting goes in there. From now on is Atom is updated and gets a new configuration key, this file cannot be overwritten by Atom without a lot of effort to ensure that the addition/modification of the key does not clobber. In Atom's case, because there is a GUI for editing settings, they can get away with just adding the UI for the new setting into the UI to aid 'discoverability' of the new setting. I don't have that luxury. Clarification of my constraints and what I'm actually looking for: The software I'm writing is actually a package for a larger system. This larger system is what provides the configuration, and the way it works is kinda fixed - I just do a config('some.key') kinda call and it knows to look to see if the user has a config clone and if so use it, otherwise use the default config which is part of my package. Now, while I could make my application edit the user's configuration files (there is a convention about where they're stored), it's generally not done, so I'd like to live with the constraints of the system I'm using if possible. And it's not just about discoverability either, one large concern is that the addition of a configuration key won't actually work as soon as the user has their own copy of the original template. Adding the key to the template won't make a difference as that file is never read. As such, I think this is actually quite a big flaw in the design of the configuration cascading system and thus needs to be taken up with my upstream. So, thinking about it, based on my constraints, I don't think there's going to be a good solution save for either editing the user's configuration or using a new config file every time there are updates to the default configuration. Even the release notes idea from above isn't doable as, if the user does not follow the advice, suddenly I have a config key with no value (user-defined or default). So the new question is this: what is the general way to solve the problem of having a default configuration in template config files and allowing a user to make user-specific version of these in order to override the defaults? A per-key cascade (rather than per-file cascade) where the user only specifies their overrides? In this case, what happens if a configuration value is an array - do we replace or append to the default (or, more realistically, how does the user specify whether they wish to replace or append to)? It seems like configuration is kinda hard, so how is it solved in the wild?

    Read the article

  • Easiest, most fun way to program 2D games? Flash? XNA? Some other engine?

    - by Maxi
    Hi, this is a post detailing my search for the most enjoyable way for a hobbyist game programmer to sweeten his free time with making a game. My requirements: I looked at Flash first, I made a couple of small games but I'm doubtful of the performance. I would like to make a fairly large strategy game, with several hundred units fighting simultaneously, explosions and animations included. Also zoomable maps. I saw that Adobe has a new 3D API for Flash, but I don't know if that improves 2D performance aswell, I couldn't find anything related to that question on their MAX10 sessions. Would you say that Flash is a good technology for making large 2D games easily? I really like Actionscript, and I love how easy everything is in Flash. There are several engines available which make it even easier. I just do this for fun, and it would be even better if there were proper animation/particle editors available and if the engine I were to use, would be available for multiple platforms. (so more people can play my game once finished). I'd like to have it available on many mobile platforms aswell. (because I love touch input for some reason) I do know the XNA framework pretty well, but there are no good engines available for it, and it will only run on Windows, which is a huge turn off. Even bigger is, that you need to install the XNA redistributable each time you want to give the game to someone. If I use XNA, I would have to make all the tools myself, and I'd probably have to make them with WPF. (I'd love to make tools with Adobe AIR, but unfortunately the API's for image manipulation etc. are far worse in Flash, than they are in XNA/WPF.) Now, I'm aware that I could make my own engine that supports each of those platforms, but quite frankly, that would be too much work plowing through APIs. After all, I want to make a game, not an engine. So the question becomes: Is there maybe a cross platform (free or free to develop?) engine available that I could use for 2D development? I prefer: C#, Actionscript. I don't mind using c++ if the toolset is above average, but I highly doubt that there is something out there like that. Please prove me wrong :) So summary: I'd like to use Flash, but I don't know if it scales well enough. I'm not a scripter, I want some real APIs that I can work with inside a proper IDE. Just for information, I looked at several alternatives, I'm actually looking for a long time already. You'd help me a lot to make a decision finally. Feature-wise the Flatredball engine would be ideal. But I tried their tools, and quite frankly, they are horrible. Absolutely unusable, I'd need to make my own for sure. I didn't look at their API, but if their tools are so bad, I'm not inclined to look further. Unity3D. This one is quite nice, but I really don't need 3D, and it is quite ...a lot of work to learn. I also don't like that it is so expensive to use for different platforms and that I can only code for it through scripting. You have to buy each platform separately. The editor usability is average, the product overall is good enough for most purposes, but learning it myself would be overkill. Shiva 3D. It looks good enough, but again: I don't really need 3D. The editor usability is a little worse than Unity3D in my opinion and it wasn't clear to me how to start programming. I think it requires C++ for coding, so that's a negative too. I want to have fun, and c# is fun ;) SDL. Quite frankly, I'd still need to port to all those different SDL implementations. And I don't like OpenGL style programming, it's just plain ugly. And it needs c++, I know that there might be some wrappers available, but I don't like to use wrappers, because... Irrlicht. A lot of features, but support seems to be low and it is aimed at enthusiasts. C# bindings get dropped repeatedly. I'm not an engine enthusiast, I just want to make a game. I don't see this happening with Irrlicht. Ogre3D. Way too much work, it's just a graphics engine. Also no multiple platform support and c++. Torque2D. Costs something to use, and I didn't hear a lot of good things about support and documentation. Also costs extra for each platform.

    Read the article

  • CPU Usage in Very Large Coherence Clusters

    - by jpurdy
    When sizing Coherence installations, one of the complicating factors is that these installations (by their very nature) tend to be application-specific, with some being large, memory-intensive caches, with others acting as I/O-intensive transaction-processing platforms, and still others performing CPU-intensive calculations across the data grid. Regardless of the primary resource requirements, Coherence sizing calculations are inherently empirical, in that there are so many permutations that a simple spreadsheet approach to sizing is rarely optimal (though it can provide a good starting estimate). So we typically recommend measuring actual resource usage (primarily CPU cycles, network bandwidth and memory) at a given load, and then extrapolating from those measurements. Of course there may be multiple types of load, and these may have varying degrees of correlation -- for example, an increased request rate may drive up the number of objects "pinned" in memory at any point, but the increase may be less than linear if those objects are naturally shared by concurrent requests. But for most reasonably-designed applications, a linear resource model will be reasonably accurate for most levels of scale. However, at extreme scale, sizing becomes a bit more complicated as certain cluster management operations -- while very infrequent -- become increasingly critical. This is because certain operations do not naturally tend to scale out. In a small cluster, sizing is primarily driven by the request rate, required cache size, or other application-driven metrics. In larger clusters (e.g. those with hundreds of cluster members), certain infrastructure tasks become intensive, in particular those related to members joining and leaving the cluster, such as introducing new cluster members to the rest of the cluster, or publishing the location of partitions during rebalancing. These tasks have a strong tendency to require all updates to be routed via a single member for the sake of cluster stability and data integrity. Fortunately that member is dynamically assigned in Coherence, so it is not a single point of failure, but it may still become a single point of bottleneck (until the cluster finishes its reconfiguration, at which point this member will have a similar load to the rest of the members). The most common cause of scaling issues in large clusters is disabling multicast (by configuring well-known addresses, aka WKA). This obviously impacts network usage, but it also has a large impact on CPU usage, primarily since the senior member must directly communicate certain messages with every other cluster member, and this communication requires significant CPU time. In particular, the need to notify the rest of the cluster about membership changes and corresponding partition reassignments adds stress to the senior member. Given that portions of the network stack may tend to be single-threaded (both in Coherence and the underlying OS), this may be even more problematic on servers with poor single-threaded performance. As a result of this, some extremely large clusters may be configured with a smaller number of partitions than ideal. This results in the size of each partition being increased. When a cache server fails, the other servers will use their fractional backups to recover the state of that server (and take over responsibility for their backed-up portion of that state). The finest granularity of this recovery is a single partition, and the single service thread can not accept new requests during this recovery. Ordinarily, recovery is practically instantaneous (it is roughly equivalent to the time required to iterate over a set of backup backing map entries and move them to the primary backing map in the same JVM). But certain factors can increase this duration drastically (to several seconds): large partitions, sufficiently slow single-threaded CPU performance, many or expensive indexes to rebuild, etc. The solution of course is to mitigate each of those factors but in many cases this may be challenging. Larger clusters also lead to the temptation to place more load on the available hardware resources, spreading CPU resources thin. As an example, while we've long been aware of how garbage collection can cause significant pauses, it usually isn't viewed as a major consumer of CPU (in terms of overall system throughput). Typically, the use of a concurrent collector allows greater responsiveness by minimizing pause times, at the cost of reducing system throughput. However, at a recent engagement, we were forced to turn off the concurrent collector and use a traditional parallel "stop the world" collector to reduce CPU usage to an acceptable level. In summary, there are some less obvious factors that may result in excessive CPU consumption in a larger cluster, so it is even more critical to test at full scale, even though allocating sufficient hardware may often be much more difficult for these large clusters.

    Read the article

  • Taking the Plunge - or Dipping Your Toe - into the Fluffy IAM Cloud by Paul Dhanjal (Simeio Solutions)

    - by Greg Jensen
    In our last three posts, we’ve examined the revolution that’s occurring today in identity and access management (IAM). We looked at the business drivers behind the growth of cloud-based IAM, the shortcomings of the old, last-century IAM models, and the new opportunities that federation, identity hubs and other new cloud capabilities can provide by changing the way you interact with everyone who does business with you. In this, our final post in the series, we’ll cover the key things you, the enterprise architect, should keep in mind when considering moving IAM to the cloud. Invariably, what starts the consideration process is a burning business need: a compliance requirement, security vulnerability or belt-tightening edict. Many on the business side view IAM as the “silver bullet” – and for good reason. You can almost always devise a solution using some aspect of IAM. The most critical question to ask first when using IAM to address the business need is, simply: is my solution complete? Typically, “business” is not focused on the big picture. Understandably, they’re focused instead on the need at hand: Can we be HIPAA compliant in 6 months? Can we tighten our new hire, employee transfer and termination processes? What can we do to prevent another password breach? Can we reduce our service center costs by the end of next quarter? The business may not be focused on the complete set of services offered by IAM but rather a single aspect or two. But it is the job – indeed the duty – of the enterprise architect to ensure that all aspects are being met. It’s like remodeling a house but failing to consider the impact on the foundation, the furnace or the zoning or setback requirements. While the homeowners may not be thinking of such things, the architect, of course, must. At Simeio Solutions, the way we ensure that all aspects are being taken into account – to expose any gaps or weaknesses – is to assess our client’s IAM capabilities against a five-step maturity model ranging from “ad hoc” to “optimized.” The model we use is similar to Capability Maturity Model Integration (CMMI) developed by the Software Engineering Institute (SEI) at Carnegie Mellon University. It’s based upon some simple criteria, which can provide a visual representation of how well our clients fair when evaluated against four core categories: ·         Program Governance ·         Access Management (e.g., Single Sign-On) ·         Identity and Access Governance (e.g., Identity Intelligence) ·         Enterprise Security (e.g., DLP and SIEM) Often our clients believe they have a solution with all the bases covered, but the model exposes the gaps or weaknesses. The gaps are ideal opportunities for the cloud to enter into the conversation. The complete process is straightforward: 1.    Look at the big picture, not just the immediate need – what is our roadmap and how does this solution fit? 2.    Determine where you stand with respect to the four core areas – what are the gaps? 3.    Decide how to cover the gaps – what role can the cloud play? Returning to our home remodeling analogy, at some point, if gaps or weaknesses are discovered when evaluating the complete impact of the proposed remodel – if the existing foundation wouldn’t support the new addition, for example – the owners need to decide if it’s time to move to a new house instead of trying to remodel the old one. However, with IAM it’s not an either-or proposition – i.e., either move to the cloud or fix the existing infrastructure. It’s possible to use new cloud technologies just to cover the gaps. Many of our clients start their migration to the cloud this way, dipping in their toe instead of taking the plunge all at once. Because our cloud services offering is based on the Oracle Identity and Access Management Suite, we can offer a tremendous amount of flexibility in this regard. The Oracle platform is not a collection of point solutions, but rather a complete, integrated, best-of-breed suite. Yet it’s not an all-or-nothing proposition. You can choose just the features and capabilities you need using a pay-as-you-go model, incrementally turning on and off services as needed. Better still, all the other capabilities are there, at the ready, whenever you need them. Spooling up these cloud-only services takes just a fraction of the time it would take a typical organization to deploy internally. SLAs in the cloud may be higher than on premise, too. And by using a suite of software that’s complete and integrated, you can dramatically lower cost and complexity. If your in-house solution cannot be migrated to the cloud, you might consider using hardware appliances such as Simeio’s Cloud Interceptor to extend your enterprise out into the network. You might also consider using Expert Managed Services. Cost is usually the key factor – not just development costs but also operational sustainment costs. Talent or resourcing issues often come into play when thinking about sustaining a program. Expert Managed Services such as those we offer at Simeio can address those concerns head on. In a cloud offering, identity and access services lend to the new paradigms described in my previous posts. Most importantly, it allows us all to focus on what we're meant to do – provide value, lower costs and increase security to our respective organizations. It’s that magic “silver bullet” that business knew you had all along. If you’d like to talk more, you can find us at simeiosolutions.com.

    Read the article

  • Understanding the 'High Performance' meaning in Extreme Transaction Processing

    - by kyap
    Despite my previous blogs entries on SOA/BPM and Identity Management, the domain where I'm the most passionated is definitely the Extreme Transaction Processing, commonly called XTP.I came across XTP back to 2007 while I was still FMW Product Manager in EMEA. At that time Oracle acquired a company called Tangosol, which owned an unique product called Coherence that we renamed to Oracle Coherence. Beside this innovative renaming of the product, to be honest, I didn't know much about it, except being a "distributed in-memory cache for Extreme Transaction Processing"... not very helpful still.In general when people doesn't fully understand a technology or a concept, they tend to find some shortcuts, either correct or not, to justify their lack-of understanding... and of course I was part of this category of individuals. And the shortcut was "Oracle Coherence Cache helps to improve Performance". Excellent marketing slogan... but not very meaningful still. By chance I was able to get away quickly from that group in July 2007* at Thames Valley Park (UK), after I attended one of the most interesting workshops, in my 10 years career in Oracle, delivered by Brian Oliver. The biggest mistake I made was to assume that performance improvement with Coherence was related to the response time. Which can be considered as legitimus at that time, because after-all caches help to reduce latency on cached data access, hence reduce the response-time. But like all caches, you need to define caching and expiration policies, thinking about the cache-missed strategy, and most of the time you have to re-write partially your application in order to work with the cache. At a result, the expected benefit vanishes... so, not very useful then?The key mistake I made was my perception or obsession on how performance improvement should be driven, but I strongly believe this is still a common problem to most of the developers. In fact we all know the that the performance of a system is generally presented by the Capacity (or Throughput), with the 2 important dimensions Speed (response-time) and Volume (load) :Capacity (TPS) = Volume (T) / Speed (S)To increase the Capacity, we can either reduce the Speed(in terms of response-time), or to increase the Volume. However we tend to only focus on reducing the Speed dimension, perhaps it is more concrete and tangible to measure, and nicer to present to our management because there's a direct impact onto the end-users experience. On the other hand, we assume the Volume can be addressed by the underlying hardware or software stack, so if we need more capacity (scale out), we just add more hardware or software. Unfortunately, the reality proves that IT is never as ideal as we assume...The challenge with Speed improvement approach is that it is generally difficult and costly to make things already fast... faster. And by adding Coherence will not necessarily help either. Even though we manage to do so, the Capacity can not increase forever because... the Speed can be influenced by the Volume. For all system, we always have a performance illustration as follow: In all traditional system, the increase of Volume (Transaction) will also increase the Speed (Response-Time) as some point. The reason is simple: most of the time the Application logics were not designed to scale. As an example, if you have a while-loop in your application, it is natural to conceive that parsing 200 entries will require double execution-time compared to 100 entries. If you need to "Speed-up" the execution, you can only upgrade your hardware (scale-up) with faster CPU and/or network to reduce network latency. It is technically limited and economically inefficient. And this is exactly where XTP and Coherence kick in. The primary objective of XTP is about designing applications which can scale-out for increasing the Volume, by applying coding techniques to keep the execution-time as constant as possible, independently of the number of runtime data being manipulated. It is actually not just about having an application running as fast as possible, but about having a much more predictable system, with constant response-time and linearly scale, so we can easily increase throughput by adding more hardwares in parallel. It is in general combined with the Low Latency Programming model, where we tried to optimize the network usage as much as possible, either from the programmatic angle (less network-hoops to complete a task), and/or from a hardware angle (faster network equipments). In this picture, Oracle Coherence can be considered as software-level XTP enabler, via the Distributed-Cache because it can guarantee: - Constant Data Objects access time, independently from the number of Objects and the Coherence Cluster size - Data Objects Distribution by Affinity for in-memory data grouping - In-place Data Processing for parallel executionTo summarize, Oracle Coherence is indeed useful to improve your application performance, just not in the way we commonly think. It's not about the Speed itself, but about the overall Capacity with Extreme Load while keeping consistant Speed. In the future I will keep adding new blog entries around this topic, with some sample codes experiences sharing that I capture in the last few years. In the meanwhile if you want to know more how Oracle Coherence, I strongly suggest you to start with checking how our worldwide customers are using Oracle Coherence first, then you can start playing with the product through our tutorial.Have Fun !

    Read the article

  • Developing Schema Compare for Oracle (Part 6): 9i Query Performance

    - by Simon Cooper
    All throughout the EAP and beta versions of Schema Compare for Oracle, our main request was support for Oracle 9i. After releasing version 1.0 with support for 10g and 11g, our next step was then to get version 1.1 of SCfO out with support for 9i. However, there were some significant problems that we had to overcome first. This post will concentrate on query execution time. When we first tested SCfO on a 9i server, after accounting for various changes to the data dictionary, we found that database registration was taking a long time. And I mean a looooooong time. The same database that on 10g or 11g would take a couple of minutes to register would be taking upwards of 30 mins on 9i. Obviously, this is not ideal, so a poke around the query execution plans was required. As an example, let's take the table population query - the one that reads ALL_TABLES and joins it with a few other dictionary views to get us back our list of tables. On 10g, this query takes 5.6 seconds. On 9i, it takes 89.47 seconds. The difference in execution plan is even more dramatic - here's the (edited) execution plan on 10g: -------------------------------------------------------------------------------| Id | Operation | Name | Bytes | Cost |-------------------------------------------------------------------------------| 0 | SELECT STATEMENT | | 108K| 939 || 1 | SORT ORDER BY | | 108K| 939 || 2 | NESTED LOOPS OUTER | | 108K| 938 ||* 3 | HASH JOIN RIGHT OUTER | | 103K| 762 || 4 | VIEW | ALL_EXTERNAL_LOCATIONS | 2058 | 3 ||* 20 | HASH JOIN RIGHT OUTER | | 73472 | 759 || 21 | VIEW | ALL_EXTERNAL_TABLES | 2097 | 3 ||* 34 | HASH JOIN RIGHT OUTER | | 39920 | 755 || 35 | VIEW | ALL_MVIEWS | 51 | 7 || 58 | NESTED LOOPS OUTER | | 39104 | 748 || 59 | VIEW | ALL_TABLES | 6704 | 668 || 89 | VIEW PUSHED PREDICATE | ALL_TAB_COMMENTS | 2025 | 5 || 106 | VIEW | ALL_PART_TABLES | 277 | 11 |------------------------------------------------------------------------------- And the same query on 9i: -------------------------------------------------------------------------------| Id | Operation | Name | Bytes | Cost |-------------------------------------------------------------------------------| 0 | SELECT STATEMENT | | 16P| 55G|| 1 | SORT ORDER BY | | 16P| 55G|| 2 | NESTED LOOPS OUTER | | 16P| 862M|| 3 | NESTED LOOPS OUTER | | 5251G| 992K|| 4 | NESTED LOOPS OUTER | | 4243M| 2578 || 5 | NESTED LOOPS OUTER | | 2669K| 1440 ||* 6 | HASH JOIN OUTER | | 398K| 302 || 7 | VIEW | ALL_TABLES | 342K| 276 || 29 | VIEW | ALL_MVIEWS | 51 | 20 ||* 50 | VIEW PUSHED PREDICATE | ALL_TAB_COMMENTS | 2043 | ||* 66 | VIEW PUSHED PREDICATE | ALL_EXTERNAL_TABLES | 1777K| ||* 80 | VIEW PUSHED PREDICATE | ALL_EXTERNAL_LOCATIONS | 1744K| ||* 96 | VIEW | ALL_PART_TABLES | 852K| |------------------------------------------------------------------------------- Have a look at the cost column. 10g's overall query cost is 939, and 9i is 55,000,000,000 (or more precisely, 55,496,472,769). It's also having to process far more data. What on earth could be causing this huge difference in query cost? After trawling through the '10g New Features' documentation, we found item 1.9.2.21. Before 10g, Oracle advised that you do not collect statistics on data dictionary objects. From 10g, it advised that you do collect statistics on the data dictionary; for our queries, Oracle therefore knows what sort of data is in the dictionary tables, and so can generate an efficient execution plan. On 9i, no statistics are present on the system tables, so Oracle has to use the Rule Based Optimizer, which turns most LEFT JOINs into nested loops. If we force 9i to use hash joins, like 10g, we get a much better plan: -------------------------------------------------------------------------------| Id | Operation | Name | Bytes | Cost |-------------------------------------------------------------------------------| 0 | SELECT STATEMENT | | 7587K| 3704 || 1 | SORT ORDER BY | | 7587K| 3704 ||* 2 | HASH JOIN OUTER | | 7587K| 822 ||* 3 | HASH JOIN OUTER | | 5262K| 616 ||* 4 | HASH JOIN OUTER | | 2980K| 465 ||* 5 | HASH JOIN OUTER | | 710K| 432 ||* 6 | HASH JOIN OUTER | | 398K| 302 || 7 | VIEW | ALL_TABLES | 342K| 276 || 29 | VIEW | ALL_MVIEWS | 51 | 20 || 50 | VIEW | ALL_PART_TABLES | 852K| 104 || 78 | VIEW | ALL_TAB_COMMENTS | 2043 | 14 || 93 | VIEW | ALL_EXTERNAL_LOCATIONS | 1744K| 31 || 106 | VIEW | ALL_EXTERNAL_TABLES | 1777K| 28 |------------------------------------------------------------------------------- That's much more like it. This drops the execution time down to 24 seconds. Not as good as 10g, but still an improvement. There are still several problems with this, however. 10g introduced a new join method - a right outer hash join (used in the first execution plan). The 9i query optimizer doesn't have this option available, so forcing a hash join means it has to hash the ALL_TABLES table, and furthermore re-hash it for every hash join in the execution plan; this could be thousands and thousands of rows. And although forcing hash joins somewhat alleviates this problem on our test systems, there's no guarantee that this will improve the execution time on customers' systems; it may even increase the time it takes (say, if all their tables are partitioned, or they've got a lot of materialized views). Ideally, we would want a solution that provides a speedup whatever the input. To try and get some ideas, we asked some oracle performance specialists to see if they had any ideas or tips. Their recommendation was to add a hidden hook into the product that allowed users to specify their own query hints, or even rewrite the queries entirely. However, we would prefer not to take that approach; as well as a lot of new infrastructure & a rewrite of the population code, it would have meant that any users of 9i would have to spend some time optimizing it to get it working on their system before they could use the product. Another approach was needed. All our population queries have a very specific pattern - a base table provides most of the information we need (ALL_TABLES for tables, or ALL_TAB_COLS for columns) and we do a left join to extra subsidiary tables that fill in gaps (for instance, ALL_PART_TABLES for partition information). All the left joins use the same set of columns to join on (typically the object owner & name), so we could re-use the hash information for each join, rather than re-hashing the same columns for every join. To allow us to do this, along with various other performance improvements that could be done for the specific query pattern we were using, we read all the tables individually and do a hash join on the client. Fortunately, this 'pure' algorithmic problem is the kind that can be very well optimized for expected real-world situations; as well as storing row data we're not using in the hash key on disk, we use very specific memory-efficient data structures to store all the information we need. This allows us to achieve a database population time that is as fast as on 10g, and even (in some situations) slightly faster, and a memory overhead of roughly 150 bytes per row of data in the result set (for schemas with 10,000 tables in that means an extra 1.4MB memory being used during population). Next: fun with the 9i dictionary views.

    Read the article

  • CS, SE, HCI, Information Science, Please recommendation for further education of the former performing art manager seeking career in IT industries? [on hold]

    - by Baek Seungjoo
    IT specialists there J Thank you very much for your collective efforts here, and I got huge help reading your professional comments and advices on each questions I have searched so far! This time, I would like to ask for your practical advices or recommendation on what I am struggling on at this moment. I am currently seeking higher education for my career transition from performing art manager and director to “IT software and/or service development and management specialist”. However, as this field is quite new to me, and there are lots of different work positions, I have no idea which grad major I better pursue in order to get qualification. Of course I know this question could sounds wired as it is kind of personal choice. But my lack of understanding on how IT software companies work in general, your practical and experience-based advice will be great help to me, who spent more than two months of self-research on net. OK. Before my question, here is my plan and history, which are quite different from those currently in IT industry I think… 1) Target Firstly, get career transition into IT service or products companies and get experiences. Eventually, pursue IT entrepreneurship in combination with my arts and cultural production and business expertise. 2) Background Career: performing arts director and manager in theatre-based scale opera and musical Art education in youth BA in literature and Chinese studies (Art & Humanities) MA in Cultural & Creative Industries (Art & Humanities) – dissertation with focus on digital prosumption and the lived experience of the prosumer. (a qualitative research on the agents in the digital world) 2) Personally Huge interest in IT hardware and software, and their trend. Skills to build up, repair, tune PCs -of course this is no more than personal hobby, but shows my interests in this field. 4) Problem Encounter a question “So, what do you think you can contribute practically in this position”. This question turn me down everytime I go through job interviews, and I decided more education in the relevant area. Here are my questions. 1) In terms of work positions in IT software companies, I wonder if I can put the comparison of what “Artists” is to “Arts Manager or Director” is what “Developer” is to “Product Manager”. (Of course, this stereotypical division of Artist-Art Manager is out of sense because the domain overlaps to some extent, and is blurring at least in my field, and they are in different contexts, but just speaking easily.) Normally, artist comes with special arts educations, and they live in their own world of artistic inspiration and creation, and they feel alive in practice and on stages. Meanwhile, from the point of staging and managing productions, the role of art manager is critical as well. Our role cares how the production appeals to the audience in effective way, how to make profit and future sustainable management through that, how to set up future strategy in consideration of the external conditions such as political and social circumstances, audience trend and level, other production trends from on-going and historical perspectives, how and what the production make voice to the society from political, economic, humanitarian stances. So, we need keen eyes on economic, political, and societal environment, have to understand human-being and their desires, must know how to make presentation and attract investors, must have sense in managing and fighting over the limited financial resource, how to extend networking and so on. It is common that the two agents create productions in collaboration (normally not in that ideal way but in conflict and fight though J ). So, we need to know each other’s expertise to some extent, for better production. What are the work positions in IT software industries equivalent to the role of “art manager” in performing arts? From my view, considering developers come with special education in the world of computer science, software engineering, or others (self-education sometimes), and they express themselves with the arts of coding, computer languages on the black screen, and make sort of their artistic production online to the audience, I guess there might be someone who collaborate with developers in creating, managing, and launching IT services or products. 2) Which education among CS, SE, HCI, Information Science, is needed for those seeking such work position? Especially for person like me. (At this moment, Information Science has the highest possibility to get in, since I lack Calculus and Math in undergrad educaiton. But please let me know irrespective of this concern, I think there are ways to back it up if CS or SE education needed in my case) 3) Which field between Information Science and HCI can be more practical background regarding job hungting? And which of them have more demands in job market? AS I checked, HCI is more close to CS than IS in its focus of study area. Thank you very much for your patience reading such a long inquiry, and I appreciate to your efforts in advance. Have a nice day in this beautiful summer.

    Read the article

  • Oracle Cloud Applications: The Right Ingredients Baked In

    - by yaldahhakim
    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Normal 0 false false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} Oracle Cloud Applications: The Right Ingredients Baked In Eggs, flour, milk, and sugar. The magic happens when you mix these ingredients together. The same goes for the hottest technologies fast changing how IT impacts our organizations today: cloud, social, mobile, and big data. By themselves they’re pretty good; combining them with a great recipe is what unlocks real transformation power. Choosing the right cloud can be very similar to choosing the right cake. First consider comparing the core ingredients that go into baking a cake and the core design principles in building a cloud-based application. For instance, if flour is the base ingredient of a cake, then rich functionality that spans complete business processes is the base of an enterprise-grade cloud. Cloud computing is more than just consuming an "application as service", and having someone else manage it for you. Rather, the value of cloud is about making your business more agile in the marketplace, and shortening the time it takes to deliver and adopt new innovation. It’s also about improving not only the efficiency at which we communicate but the actual quality of the information shared as well. Data from different systems, like ingredients in a cake, must also be blended together effectively and evaluated through a consolidated lens. When this doesn’t happen, for instance when data in your sales cloud doesn't seamlessly connect with your order management and other “back office” applications, the speed and quality of information can decrease drastically. It’s like mixing ingredients in a strainer with a straw – you just can’t bring it all together without losing something. Mixing ingredients is similar to bringing clouds together, and co-existing cloud applications with traditional on premise applications. This is where a shared services  platform built on open standards and Service Oriented Architecture (SOA) is critical. It’s essentially a cloud recipe that calls for not only great ingredients, but also ingredients you can get locally or most likely already have in your kitchen (or IT shop.) Open standards is the best way to deliver a cost effective, durable application integration strategy – regardless of where your apps are deployed. It’s also the best way to build your own cloud applications, or extend the ones you consume from a third party. Just like using standard ingredients and tools you already have in your kitchen, a standards based cloud enables your IT resources to ensure a cloud works easily with other systems. Your IT staff can also make changes using tools they are already familiar with. Or even more ideal, enable business users to actually tailor their experience without having to call upon IT for help at all. This frees IT resources to focus more on developing new innovative services for the organization vs. run and maintain. Carrying the cake analogy forward, you need to add all the ingredients in before you bake it. The same is true with a modern cloud. To harness the full power of cloud, you can’t leave out some of the most important ingredients and just layer them on top later. This is what a lot of our niche competitors have done when it comes to social, mobile, big data and analytics, and other key technologies impacting the way we do business. The transformational power of these technology trends comes from having a strategy from the get-go that combines them into a winning recipe, and delivers them in a unified way. In looking at ways Oracle’s cloud is different from other clouds – not only is breadth of functionality rich across functional pillars like CRM, HCM, ERP, etc. but it embeds social, mobile, and rich intelligence capabilities where they make the most sense across business processes. This strategy enables the Oracle Cloud to uniquely deliver on all three of these dimensions to help our customers unlock the full power of these transformational technologies.

    Read the article

  • Contricted A* problem

    - by Ragekit
    I've got a little problem with an A* algorithm that I need to constrict a little bit. Basically : I use an A* to find the shortest path between 2 randomly placed room in 3D space, and then build a corridor between them. The problem I found is that sometimes it makes chimney like corridors that are not ideal, so I constrict the A* so that if the last movement was up or down, you go sideways. Everything is fine, but in some corner cases, it fails to find a path (when there is obviously one). Like here between the blue and red dot : (i'm in unity btw, but i don't think it matters) Here is the code of the actual A* (a bit long, and some redundency) while(current != goal) { //add stair up / stair down foreach(Node<GridUnit> test in current.Neighbors) { if(!test.Data.empty && test != goal) continue; //bug at arrival; if(test == goal && penul !=null) { Vector3 currentDiff = current.Data.bounds.center - test.Data.bounds.center; if(!Mathf.Approximately(currentDiff.y,0)) { //wanna drop on the last if(!coplanar(test.Data.bounds.center,current.Data.bounds.center,current.Data.parentUnit.bounds.center,to.Data.bounds.center)) { continue; } else { if(Mathf.Approximately(to.Data.bounds.center.x, current.Data.parentUnit.bounds.center.x) && Mathf.Approximately(to.Data.bounds.center.z, current.Data.parentUnit.bounds.center.z)) { continue; } } } } if(current.Data.parentUnit != null) { Vector3 previousDiff = current.Data.parentUnit.bounds.center - current.Data.bounds.center; Vector3 currentDiff = current.Data.bounds.center - test.Data.bounds.center; if(!Mathf.Approximately(previousDiff.y,0)) { if(!Mathf.Approximately(currentDiff.y,0)) { //you wanna drop now : continue; } if(current.Data.parentUnit.parentUnit != null) { if(!coplanar(test.Data.bounds.center,current.Data.bounds.center,current.Data.parentUnit.bounds.center,current.Data.parentUnit.parentUnit.bounds.center)) { continue; }else { if(Mathf.Approximately(test.Data.bounds.center.x, current.Data.parentUnit.parentUnit.bounds.center.x) && Mathf.Approximately(test.Data.bounds.center.z, current.Data.parentUnit.parentUnit.bounds.center.z)) { continue; } } } } } g = current.Data.g + HEURISTIC(current.Data,test.Data); h = HEURISTIC(test.Data,goal.Data); f = g + h; if(open.Contains(test) || closed.Contains(test)) { if(test.Data.f > f) { //found a shorter path going passing through that point test.Data.f = f; test.Data.g = g; test.Data.h = h; test.Data.parentUnit = current.Data; } } else { //jamais rencontré test.Data.f = f; test.Data.h = h; test.Data.g = g; test.Data.parentUnit = current.Data; open.Add(test); } } closed.Add (current); if(open.Count == 0) { Debug.Log("nothingfound"); //nothing more to test no path found, stay to from; List<GridUnit> r = new List<GridUnit>(); r.Add(from.Data); return r; } //sort open from small to biggest travel cost open.Sort(delegate(Node<GridUnit> x, Node<GridUnit> y) { return (int)(x.Data.f-y.Data.f); }); //get the smallest travel cost node; Node<GridUnit> smallest = open[0]; current = smallest; open.RemoveAt(0); } //build the path going backward; List<GridUnit> ret = new List<GridUnit>(); if(penul != null) { ret.Insert(0,to.Data); } GridUnit cur = goal.Data; ret.Insert(0,cur); do{ cur = cur.parentUnit; ret.Insert(0,cur); } while(cur != from.Data); return ret; You see at the start of the foreach i constrict the A* like i said. If you have any insight it would be cool. Thanks

    Read the article

< Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >