Search Results

Search found 837 results on 34 pages for 'structured'.

Page 7/34 | < Previous Page | 3 4 5 6 7 8 9 10 11 12 13 14  | Next Page >

  • Is there a standard syntax for encoding structure objects as HTTP GET request parameters?

    - by lexicore
    Imagine we need to pass a a number structured objects to the web application - for instance, locale, layout settings and a definition of some query. This can be easily done with JSON or XML similar to the following fragment: <Locale>en</Locale> <Layout> <Block id="header">hide</Block> <Block id="footer">hide</Block> <Block id="navigation">minimize</Block> </Layout> <Query> <What>water</What> <When> <Start>2010-01-01</Start> </When> </Query> However, passing such structures with HTTP implies (roughly speaking) HTTP POST. Now assume we're limited to HTTP GET. Is there some kind of a standard solution for encoding structured data in HTTP GET request parameters? I can easily imagine something like: Locale=en& Layout.Block.header=hide& Layout.Block.footer=hide& Layout.Block.navigation=minimize& Query.What=water& Query.When.Start=2010-01-01 But what I'm looking for is a "standard" syntax, if there's any. ps. I'm surely aware of the problem with URL length. Please assume that it's not a problem in this case.

    Read the article

  • nginx start failing, says error.log doesn't exist

    - by sososo
    I structured my sites like: /home/www/domain.com/public,private, log, backup In the log folder, I created a blank error.log and access.log. My nginx file in sites-available for the domain looks like: server { access_log /home/www/domain1.com/log/access.log; error_log /home/www/domain1.com/log/error.log; } Trying to start nginx it says: starting nginx: the config file /etc/nginx/nginx/conf syntax is ok [emrg] open() ".../access.log" failed (2: no such file or directory) Is this a permission issue?

    Read the article

  • nginx start failing, says error.log doesn't exist

    - by Blankman
    I structured my sites like: /home/www/domain.com/public,private, log, backup In the log folder, I created a blank error.log and access.log. My nginx file in sites-available for the domain looks like: server { access_log /home/www/domain1.com/log/access.log; error_log /home/www/domain1.com/log/error.log; } Trying to start nginx it says: starting nginx: the config file /etc/nginx/nginx/conf syntax is ok [emrg] open() ".../access.log" failed (2: no such file or directory) Is this a permission issue?

    Read the article

  • structure of ethernet frame (tcp/udp) [closed]

    - by rtmrtm2
    How is an ethernet-frame structured. is it: |MAC | |_______________| | |IP | | |___________| | |TCP | | |_______| | |HTTP| |__________|____| or the other way around? so in words: is the mac wrapped around the ip wrapped around the tcp wrapped arround the http? can someone post an image of the specific 'wrapping'? thanks in advance. regards, rtmrtm2

    Read the article

  • How to document mail setup after hand-over.

    - by BradyKelly
    I've just moved a client's email services over from my host to Google Apps. I would like to hand over a document providing all they (or their agent) need should I not be available etc. How are such documents normally structured, and what level of detail should they contain? I know user names and passwords are essential, and instructions on how to manage domains on Google Apps are over the top, but what is a commonly used middle ground?

    Read the article

  • Disk usage treemap software for headless Linux

    - by CyberShadow
    There are some programs which can display used disk space using a treemap, such as WinDirStat for Windows and KDirStat for KDE/Linux: I'm looking for something similar, but for a headless Linux box. (E.g. run console data collection program on the server, then load the file in a graphical program in a GUI environment.) Alternatively, what are other good ways to get a structured used disk space representation, with just SSH access?

    Read the article

  • How to batch process files with word forms?

    - by Konrads
    Hello, I have a bunch of word forms filled in and I need to get that data to Excel / CSV / anything structured. I've seen solutions on web on how to do it one at a time but are there established methods on how to do it in batch? I wanted to ask before writing a powershell script.

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

  • Silverlight 4 Training Kit

    We recently released a new free Silverlight 4 Training Kit that walks you through building business applications with Silverlight 4.  You can browse the training kit online or alternatively download an entire offline version of the training kit.  The training material is structured on teaching how to use the new Silverlight 4 features to build an end to end business application. The training kit includes 8 modules, 25 videos, and several hands on labs. Below is a breakdown and links...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • New Whitepaper: Advanced Compression 11gR1 Benchmarks with EBS 12

    - by Steven Chan
    In my opinion, if there's any reason to upgrade an E-Business Suite environment to the 11gR1 or 11gR2 database, it's the Advanced Compression database option.  Oracle Advanced Compression was introduced in Oracle Database 11g, and allows you to compress structured data (numbers, characters) as well as unstructured data (documents, spreadsheets, XML and other files).  It provides enhanced compression for database backups and also includes network compression for faster synchronization with standby databases.In other words, the promise of Advanced Compression is that it can make your E-Business Suite database smaller and faster.  But how well does it actually deliver on that promise?Apps 12 + Advanced Compression Benchmarks now availableThree of my colleagues, Uday Moogala, Lester Gutierrez, and Andy Tremayne, have been benchmarking Oracle E-Business Suite Release 12 with Advanced Compression 11gR1.  They've just released a detailed whitepaper with their benchmarking results and recommendations.This whitepaper is available in two locations:Oracle E-Business Suite Release 12.1 with Oracle Database 11g Advanced Compression (Note 1110648.1) (requires My Oracle Support access)Oracle E-Business Suite Release 12.1 with Oracle Database 11g Advanced Compression (Applications Benchmark website, PDF, 500K)

    Read the article

  • Identifier for the “completed” stage of a process: 0, 99, something else?

    - by Arnold Sakhnov
    Say, that you are handling a multi-step process (like a complex registration form, with a number of steps the user has go through in order). You need to be able to save the current state of the process (e.g. so the user can come back to that registration form later and continue form the step where they were left off). Obviously, you’ll probably want to give each “step” an identifier you can refer to: 1, 2, 3, 4, etc. You logic will check for this step_id (or whatever you call it) to render the appropriate data. The question: how would you identify the stage after the final step, like the completed registration state (say, that you have to give that last “step” its own id, that’s how your logic is structured). Would it be a 0, 999, a non-integer value, something else entirely?

    Read the article

  • 3D Huge mesh rendering

    - by Keyhan Asghari
    I am writing a program, that as input, I have a huge 3d mesh (with mostly structured and cubic shaped elements), and I want to realtime render it, but not as real-time as a game. But speed of rendering is somehow important. The most important point is, I don't need any special lighting nor any shadows. Also, the objects to render are static, and they do not move. I've read about ray tracing methods, but I don't know if there is any good libraries for this purpose, or I have to implement everything by myself. Thanks a lot.

    Read the article

  • Writing C# Code Using SOLID Principles

    - by bipinjoshi
    Most of the modern programming languages including C# support objected oriented programming. Features such as encapsulation, inheritance, overloading and polymorphism are code level features. Using these features is just one part of the story. Equally important is to apply some object oriented design principles while writing your C# code. SOLID principles is a set of five such principles--namely Single Responsibility Principle, Open/Closed Principle, Liskov Substitution Principle, Interface Segregation Principle and Dependency Inversion Principle. Applying these time proven principles make your code structured, neat and easy to maintain. This article discusses SOLID principles and also illustrates how they can be applied to your C# code.http://www.binaryintellect.net/articles/7f857089-68f5-4d76-a3b7-57b898b6f4a8.aspx 

    Read the article

  • Real World Java EE Patterns by Adam Bien

    - by JuergenKress
    Rethinking Best Practices, A book about rethinking patterns, best practices, idioms and Java EE Real World Java EE Patterns - Rethinking Best Practices discusses patterns and best practices in a structured way, with code from real world projects. This book covers: an introduction into the core principles and APIs of Java EE 6, principles of transactions, isolation levels, CAP and BASE, remoting, pragmatic modularization and structure of Java EE applications, discussion of superfluous patterns and outdated best practices, patterns for domain driven and service oriented components, custom scopes, asynchronous processing and parallelization, real time HTTP events, schedulers, REST optimizations, plugins and monitoring tools, and fully functional JCA 1.6 implementation. Real World Java EE Night Hacks - Dissecting the Business Tier will not only help experienced developers and architects to write concise code, but especially help you to shrink the codebase to unbelievably small sizes :-). Order here. WebLogic Partner Community For regular information become a member in the WebLogic Partner Community please visit: http://www.oracle.com/partners/goto/wls-emea ( OPN account required). If you need support with your account please contact the Oracle Partner Business Center. BlogTwitterLinkedInMixForumWiki Technorati Tags: Adam Bien,Real World Java,Java,Java EE,WebLogic Community,Oracle,OPN,Jürgen Kress

    Read the article

  • What's wrong with relative imports in Python?

    - by Oddthinking
    I recently upgraded versions of pylint, a popular Python style-checker. It has gone ballistic throughout my code, pointing out places where I import modules in the same package, without specifying the full package path. The new error message is W0403. W0403: Relative import %r, should be %r Used when an import relative to the package directory is detected. Example For example, if my packages are structured like this: /cake /__init__.py /icing.py /sponge.py /drink and in the sponge package I write: import icing instead of import cake.icing I will get this error. While I understand that not all Pylint messages are of equal importance, and I am not afraid to dismiss them, I don't understand why such a practice is considered a poor idea. I was hoping someone could explain the pitfalls, so I could improve my coding style rather than (as I currently plan to do) turning off this apparently spurious warning.

    Read the article

  • What are the benefits and drawback of documentation vs tutorials vs video tutorials [closed]

    - by Cat
    Which types of learning resources do you find the most helpful, for which kinds of learning and/or perhaps at specific times? Some examples of types of learning you could consider: When starting to integrate a new SDK inside an existing codebase When learning a new framework without having to integrate legacy code When digging deeper into an already-used SDK that you may not know very well yet For example - (video) tutorials are usually very easy to follow and tells a story from beginning to end to get results, but will nearly always assume starting from scratch or a previous tutorial. Therefore such a resource is useful for quick learning if you don't have legacy code around, but less so if you have to search for the best-fit to the code you already have. SDK Documentation on the other hand is well-structured but does not tell a story. It is more difficult to get to a specific larger result with documentation alone, but it is a better fit when you do have legacy code around and are searching for perhaps non-obvious ways of employing the SDK or library. Are there other forms of resources that you find useful, such as interactive training?

    Read the article

  • Using VS12 to create and manage an Azure-SQL DB (simple tasks)

    - by Konrad Viltersten
    On occasion, I'm in a project where I need to store some information in an external DB. Usually, I create one in Azure and run some scripts that I adapt (the usual create table, create login etc.). It just struck me that there might (and definitely should) be a tool in VS that allows me to create a project for my DB, pull out some boxes to create a model of a DB schema, execute a script or two on it (possibly virtual or temporary) and then somehow push it up the cloud. Haven't found such a tool. Is there one and how do I get to it? NB. I'm not looking for an optimized or well structured schema (that's what the DB pros are for at a later stage). I'm not a DB guy nor do I aspire to become one (too old, hehe). I'll probably be satisfied with a Q&D approach.

    Read the article

  • Should my URLs be lowercase?

    - by Rowan Freeman
    According to this blog ("Understanding SEO Friendly URL Syntax Practices") I should change http://example.com/Hello-Dolly To http://example.com/hello-dolly The reasons given are: URLs, in general, are case-sensitive it will simplify any case sensitive SEO and analytics reports According to this GIF that I found on Wikipedia's article on URL Normalization I should convert my URLs from any uppercase to all lowercase. However I use ASP.NET MVC4 and by default my URLs are structured like this (CamelCase): http://www.domain.com/Controller/Action/Parameter http://www.greatsite.com/Categories/List/Bicycles I've skimmed through the RFC1738 but I didn't see any definitive answers to this. Should I go out of my way to force the framework to change everything to lower case? Why did Microsoft choose to design their framework like this if everybody is telling me to use lowercase?

    Read the article

  • I'm interested in checking out a stack-oriented programming language. Which one would you recommend?

    - by Anto
    I'm interested in learning a stack-oriented programming language (such as Forth), which one would you recommend? The qualities I want are: You should be able to develop non-trivial software in it, but it mustn't be a great language for that as: I want to learn the language so I can try out a new paradigm (that is, not because I (think) that I will have great use of it). The reason I want to learn another paradigm is that I want to broaden my views on different approaches (learn to think in new ways, different from OOP, functional and structured). The language should let me do that (learn to think differently). The language should have available and good resources to learn from. The resources should also approach stack-oriented programming in a way that you understand the paradigm (after all, I do this for the paradigm).

    Read the article

  • Webcast - Social BPM: Integrating Enterprise 2.0 with Business Applications

    - by peggy.chen
    In today's fast-paced marketplace, successful companies rely on agile business processes and collaborative work environments to stay ahead of the competition. By making your application-based business processes visible, shareable, and flexible through dynamic, process-aware user interfaces, you can ensure that your team's best ideas are heard-and implemented quickly. Join us for this complimentary live Webcast and learn how Oracle's business process management (BPM) solution with integrated Enterprise 2.0 capabilities will enable your team to: Embed ad hoc collaboration into your structured processes and gain a unified view of enterprise information-across business functions-for effective and efficient decision-making Reach out to an expanded network for expert input in resolving exceptions in business workflows Add social feedback loops to your enterprise applications and continuously improve business processes Join us for this LIVE Webcast tomorrow as we discuss how business process management with integrated Enterprise 2.0 collaboration improves business responsiveness and enhances overall enterprise productivity. Take your business to the next level with a unified solution that fosters process-based collaboration between employees, partners, and customers. Register for the webcast now!

    Read the article

  • How to go about unused CSS issues

    - by Saif Bechan
    I am running some speedtests on a blog, and I always get complaints about unused CSS. But this is not CSS that I never use, it is just not used on that particular page. Now I work in a structured way, but there still has to be some CSS in the file that will not be used, because you need it on another page. I do not think that using different CSS files on different pages is the way to go, I think you are much better off just creating one big file that can be cached. Now is there an elegant way of dealing with this, or do you just stick with it.

    Read the article

  • MySQL Connect 9 Days Away – Optimizer Sessions

    - by Bertrand Matthelié
    72 1024x768 Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Following my previous blog post focusing on InnoDB talks at MySQL Connect, let us review today the sessions focusing on the MySQL Optimizer: Saturday, 11.30 am, Room Golden Gate 6: MySQL Optimizer Overview—Olav Sanstå, Oracle The goal of MySQL optimizer is to take a SQL query as input and produce an optimal execution plan for the query. This session presents an overview of the main phases of the MySQL optimizer and the primary optimizations done to the query. These optimizations are based on a combination of logical transformations and cost-based decisions. Examples of optimization strategies the presentation covers are the main query transformations, the join optimizer, the data access selection strategies, and the range optimizer. For the cost-based optimizations, an overview of the cost model and the data used for doing the cost estimations is included. Saturday, 1.00 pm, Room Golden Gate 6: Overview of New Optimizer Features in MySQL 5.6—Manyi Lu, Oracle Many optimizer features have been added into MySQL 5.6. This session provides an introduction to these great features. Multirange read, index condition pushdown, and batched key access will yield huge performance improvements on large data volumes. Structured explain, explain for update/delete/insert, and optimizer tracing will help users analyze and speed up queries. And last but not least, the session covers subquery optimizations in Release 5.6. Saturday, 7.00 pm, Room Golden Gate 4: BoF: Query Optimizations: What Is New and What Is Coming? This BoF presents common techniques for query optimization, covers what is new in MySQL 5.6, and provides a discussion forum in which attendees can tell the MySQL optimizer team which optimizations they would like to see in the future. Sunday, 1.15 pm, Room Golden Gate 8: Query Performance Comparison of MySQL 5.5 and MySQL 5.6—Øystein Grøvlen, Oracle MySQL Release 5.6 contains several improvements in the query optimizer that create improved performance for complex queries. This presentation looks at how MySQL 5.6 improves the performance of many of the queries in the DBT-3 benchmark. Based on the observed improvements, the presentation discusses what makes the specific queries perform better in Release 5.6. It describes the relevant new optimization techniques and gives examples of the types of queries that will benefit from these techniques. Sunday, 4.15 pm, Room Golden Gate 4: Powerful EXPLAIN in MySQL 5.6—Evgeny Potemkin, Oracle The EXPLAIN command of MySQL has long been a very useful tool for understanding how MySQL will execute a query. Release 5.6 of the MySQL database offers several new additions that give more-detailed information about the query plan and make it easier to understand at the same time. This presentation gives an overview of new EXPLAIN features: structured EXPLAIN in JSON format, EXPLAIN for INSERT/UPDATE/DELETE, and optimizer tracing. Examples in the session give insights into how you can take advantage of the new features. They show how these features supplement and relate to each other and to classical EXPLAIN and how and why the MySQL server chooses a particular query plan. You can check out the full program here as well as in the September edition of the MySQL newsletter. Not registered yet? You can still save US$ 300 over the on-site fee – Register Now!

    Read the article

  • Windows Azure Recipe: Enterprise LOBs

    - by Clint Edmonson
    Enterprises are more and more dependent on their specialized internal Line of Business (LOB) applications than ever before. Naturally, the more software they leverage on-premises, the more infrastructure they need manage. It’s frequently the case that our customers simply can’t scale up their hardware purchases and operational staff as fast as internal demand for software requires. The result is that getting new or enhanced applications in the hands of business users becomes slower and more expensive every day. Being able to quickly deliver applications in a rapidly changing business environment while maintaining high standards of corporate security is a challenge that can be met right now by moving enterprise LOBs out into the cloud and leveraging Azure’s Access Control services. In fact, we’re seeing many of our customers (both large and small) see huge benefits from moving their web based business applications such as corporate help desks, expense tracking, travel portals, timesheets, and more to Windows Azure. Drivers Cost Reduction Time to market Security Solution Here’s a sketch of how many Windows Azure Enterprise LOBs are being architected and deployed: Ingredients Web Role – this will host the core of the application. Each web role is a virtual machine hosting an application written in ASP.NET (or optionally php, or node.js). The number of web roles can be scaled up or down as needed to handle peak and non-peak traffic loads. Many Java based applications are also being deployed to Windows Azure with a little more effort. Database – every modern web application needs to store data. SQL Azure databases look and act exactly like their on-premise siblings but are fault tolerant and have data redundancy built in. Access Control – this service is necessary to establish federated identity between the cloud hosted application and an enterprise’s corporate network. It works in conjunction with a secure token service (STS) that is hosted on-premises to establish the corporate user’s identity and credentials. The source code for an on-premises STS is provided in the Windows Azure training kit and merely needs to be customized for the corporate environment and published on a publicly accessible corporate web site. Once set up, corporate users see a near seamless single sign-on experience. Reporting – businesses live and die by their reports and SQL Azure Reporting, based on SQL Server Reporting 2008 R2, can serve up reports with tables, charts, maps, gauges, and more. These reports can be accessed from the Windows Azure Portal, through a web browser, or directly from applications. Service Bus (optional) – if deep integration with other applications and systems is needed, the service bus is the answer. It enables secure service layer communication between applications hosted behind firewalls in on-premises or partner datacenters and applications hosted inside Windows Azure. The Service Bus provides the ability to securely expose just the information and services that are necessary to create a simpler, more secure architecture than opening up a full blown VPN. Data Sync (optional) – in cases where the data stored in the cloud needs to be shared internally, establishing a secure one-way or two-way data-sync connection between the on-premises and off-premises databases is a perfect option. It can be very granular, allowing us to specify exactly what tables and columns to synchronize, setup filters to sync only a subset of rows, set the conflict resolution policy for two-way sync, and specify how frequently data should be synchronized Training Labs These links point to online Windows Azure training labs where you can learn more about the individual ingredients described above. (Note: The entire Windows Azure Training Kit can also be downloaded for offline use.) Windows Azure (16 labs) Windows Azure is an internet-scale cloud computing and services platform hosted in Microsoft data centers, which provides an operating system and a set of developer services which can be used individually or together. It gives developers the choice to build web applications; applications running on connected devices, PCs, or servers; or hybrid solutions offering the best of both worlds. New or enhanced applications can be built using existing skills with the Visual Studio development environment and the .NET Framework. With its standards-based and interoperable approach, the services platform supports multiple internet protocols, including HTTP, REST, SOAP, and plain XML SQL Azure (7 labs) Microsoft SQL Azure delivers on the Microsoft Data Platform vision of extending the SQL Server capabilities to the cloud as web-based services, enabling you to store structured, semi-structured, and unstructured data. Windows Azure Services (9 labs) As applications collaborate across organizational boundaries, ensuring secure transactions across disparate security domains is crucial but difficult to implement. Windows Azure Services provides hosted authentication and access control using powerful, secure, standards-based infrastructure. See my Windows Azure Resource Guide for more guidance on how to get started, including links web portals, training kits, samples, and blogs related to Windows Azure.

    Read the article

  • Reviewing the "Oracle Coherence 3.5" Book

    - by [email protected]
      I received the "Oracle Coherence 3.5" book in ebook format from Packt. I have been going through the ebook and I am really amazed with it. It is definitely a great guide for both experienced users and newbies. It is extremely well structured, and it's easy to read and understand. Additionally, the book contains a lot of useful information, including basic and advanced concepts, best practices, very useful tips and very good examples too.   In summary, if you want to become a Coherence expert, even if you are a Coherence newbie, this book is the way to go!   Further information about the book can be seen at Packt.  

    Read the article

< Previous Page | 3 4 5 6 7 8 9 10 11 12 13 14  | Next Page >