Search Results

Search found 5491 results on 220 pages for 'sound scheme'.

Page 73/220 | < Previous Page | 69 70 71 72 73 74 75 76 77 78 79 80  | Next Page >

  • SEHException throw using Microsoft XACT Audio Framework (XACT3)

    - by Sweta Dwivedi
    I have been developing a game using Kinect + XNA and using Microsoft Audio Creation tool (XACT3) for managing my sound files and music, however in the code an SEHException is thrown whenever it tries to get the wave file from the wave Bank . . Sometimes the code works magically and all of a sudden it will start throwing this exception randomly ..I need a help on solving this exception /*Declaring Audio Engine for music*/ AudioEngine engine; SoundBank soundBank; WaveBank waveBank; Cue cue; /*Declaring Audio engine for sound effects*/ AudioEngine engine1; SoundBank soundbank; WaveBank wavebank; Cue effect; engine = new AudioEngine(@"Content\therapy.xgs"); soundBank = new SoundBank(engine, @"Content\Sound Bank.xsb"); **waveBank = new WaveBank(engine, @"Content\Wave Bank.xwb");** cue = null; engine1 = new AudioEngine(@"Content\Music_Manager\Sound_effects.xgs"); soundbank = new SoundBank(engine1, @"Content\Music_Manager\Sound1.xsb"); **wavebank = new WaveBank(engine1, @"Content\Music_Manager\Wave1.xwb");** effect = null; cue = soundBank.GetCue("hypnotizing"); cue.Play();

    Read the article

  • Dell xps 15z fan issue in ubuntu 12.04

    - by Paxinum
    I just updated to ubuntu 12.04 on my Dell laptop xps 15z. The trouble is that I hear a slight ticking sound every 3rd second, probably from a fan. This is a new issue in this ubuntu version. I use the recommended boot options for grub, i.e. acpi_backlight=vendor, but I do not use any acpi=off or acpi=noirq. Is there a way to fix this issue from ubuntu, by maybe controlling the fans somehow? EDIT: Notice, the sound goes away as the fan speeds up, (when doing calculations or such), so it is really a fan issue. EDIT2: I have located the issue: If I use conky 1.9, together with the command execpi for a python application, then the sound appears, and the noise syncs with the update interval for conky (NOT for the update interval for execpi!). The noise seems to be proportional to the complexity of the drawing that is needed. This is very strange, as this issue was not in the prev. version of conky I used. The solution was to increase the update interval for conky from 0.5 to 3, i.e. update every 3rd second instead of twice a second.

    Read the article

  • Ubuntu 12.10: Installing proprietary Nvidia driver causes freeze at boot

    - by Greg
    Ok, so I just installed Ubuntu on my laptop, and I immediately encountered an issue: the HDMI audio output won't work. Yes, I know about the sound settings thing where you have to select the HDMI option, but even when it's selected I get no sound out of the TV I'm hooking it up to. This is a dealbreaker for me, because my laptop speakers are terrible, it's one of the big reasons I use my TV monitor. So I decided to work on solving the problem by upgrading my Nvidia drivers. I switched to one of the propriety drivers offered in that software updating utility that comes with the OS, the one option that said (tested). Viola, sound over the HDMI is now working. Unfortunately, this now brings me to my next problem: when I reboot Ubuntu with this or any other proprietary driver installed, it freezes when it tries to load my desktop. As in I can see my wallpaper, but no icons or options of any kind. The system is totally frozen, and gives me one of those "we've experienced an error, do you want to report it messages." So there's my bind. I need HDMI audio out, that's a total dealbreaker for me, but installing the drivers that give me that capability crash the system. Does anyone have any idea what's causing this

    Read the article

  • ActionScript 2: Event doesn't fire?

    - by Pascal Schuster
    So I have a soundHandler class that's supposed to play sounds and then point back to a function on the timeline when the sound has completed playing. But somehow, only one of the sounds plays when I try it out. EDIT: After that sound plays, nothing happens, even though I have EventHandlers set up that are supposed to do something. Here's the code: import mx.events.EventDispatcher; class soundHandler { private var dispatchEvent:Function; public var addEventListener:Function; public var removeEventListener:Function; var soundToPlay; var soundpath:String; var soundtype:String; var prefix:String; var mcname:String; public function soundHandler(soundpath:String, prefix:String, soundtype:String, mcname:String) { EventDispatcher.initialize(this); _root.createEmptyMovieClip(mcname, 1); this.soundpath = soundpath; this.soundtype = soundtype; this.prefix = prefix; this.mcname = mcname; } function playSound(file, callbackfunc) { _root.soundToPlay = new Sound(_root.mcname); _global.soundCallbackfunc = callbackfunc; _root.soundToPlay.onLoad = function(success:Boolean) { if (success) { _root.soundToPlay.start(); } }; _root.soundToPlay.onSoundComplete = function():Void { trace("Sound Complete: "+this.soundtype+this.prefix+this.file+".mp3"); trace(arguments.caller); dispatchEvent({type:_global.soundCallbackfunc}); trace(this.toString()); trace(this.callbackfunction); }; _root.soundToPlay.loadSound("../sound/"+soundpath+"/"+soundtype+prefix+file+".mp3", true); _root.soundToPlay.stop(); } } Here's the code from the .fla file: var playSounds:soundHandler = new soundHandler("signup", "su", "s", "mcs1"); var file = "000"; playSounds.addEventListener("sixtyseconds", this); playSounds.addEventListener("transition", this); function sixtyseconds() { trace("I am being called! Sixtyseconds"); var phase = 1; var file = random(6); if (file == 0) { file = 1; } if (file<10) { file = "0"+file; } file = phase+file; playSounds.playSound(file, "transition"); } function transition() { trace("this works"); } playSounds.playSound(file, "sixtyseconds"); I'm at a total loss for this one. Have been wasting hours to figure it out already. Any help will be deeply appreciated.

    Read the article

  • Release Management as Orchestra

    - by ericajanine
    I read an excellent, concise article (http://www.buildmeister.com/articles/software_release_management_best_practices) on the basics of release management practices. In the article, it states "Release Management is often likened to the conductor of an orchestra, with the individual changes to be implemented the various instruments within it." I played in music ensembles for years, so this is especially close to my heart as example. I learned most of my discipline from hours and hours of practice at the hand of a very skilled conductor and leader. I also learned that the true magic in symphonic performance is one where everyone involved is focused on one sound, one goal. In turn, that solid focus creates a sound and experience bigger than just mechanics alone accomplish. In symphony, a conductor's true purpose is to make you, a performer, better so the overall sound and end product is better. The big picture (the performance of the composition) is the end-game, and all musicians in the orchestra know without question their part makes up an important but incomplete piece of that performance. A good conductor works with each section (e.g. group) to ensure their individual pieces are solid. Let's restate: The conductor leads and is responsible for ensuring those pieces are solid. While the performers themselves are doing the work, the conductor is the final authority on when the pieces are ready or not. If not, the conductor initiates the efforts to get them ready or makes the decision to scrap their parts altogether for the sake of an overall performance. Let it sink in, because it's clear--It is not the performer's call if they play their part as agreed, it's the conductor's final call to allow it. In comparison, if a software release manager is a conductor, the only way for that manager to be effective is to drive the overarching process and execution of individual pieces of a software development lifecycle. It does not mean the release manager performs each and every piece, it means the release manager has oversight and influence because the end-game is a successful software enhancin a useable environment. It means the release manager, not the developer or development manager, has the final call if something goes into a software release. Of course, this is not a process of autocracy or dictation of absolute rule, it's cooperative effort. But the release manager must have the final authority to make a decision if something is ready to be added to the bigger piece, the overall symphony of software changes being considered for package and release. It also goes without saying a release manager, like a conductor, must have full autonomy and isolation from other software groups. A conductor is the one on the podium waving a little stick at the each section and cueing them for their parts, not yelling from the back of the room while also playing a tuba and taking direction from the horn section. I have personally seen where release managers are relegated to being considered little more than coordinators, red-tapers to "satisfy" the demands of an audit group without being bothered to actually respect all that a release manager gives a group willing to employ them fully. In this dysfunctional scenario, development managers, project managers, business users, and other stakeholders have been given nearly full clearance to demand and push their agendas forward, causing a tail-wagging-the-dog scenario where an inherent conflict will ensue. Depending on the strength, determination for peace, and willingness to overlook a built-in expectation that is wrong, the release manager here must face the crafted conflict head-on and diffuse it as quickly as possible. Then, the release manager must clearly make a case why a change cannot be released without negative impact to all parties involved. If a political agenda is solely driving a software release, there IS no symphony, there is no "software lifecycle". It's just out-of-tune noise. More importantly, there is no real conductor. Sometimes, just wanting to make a beautiful sound is not enough. If you are a release manager, are you freed up enough to move, to conduct the sections of software creation to ensure a solid release performance is possible? If not, it's time to take stock in what your role actually is and see if that is what you truly want to achieve in your position. If you are, then you can successfully build your career and that of the people in your groups to create truly beautiful software (music) together.

    Read the article

  • No external microphone Acer AO722

    - by Leeghwater
    The ACER AO722 comes with an external mic input, and this input is not recognised by Alsa mixer or Sound (in System Settings). There are various comments on this problem, but no real solutions. For example External Mic not working but Internal Mic works on an Acer Aspiron AO722. Using the internal mic is not an option, as I need to use skype professionally. I have tried everything in alsamixer (accessible through the Terminal Ctrl+Alt+t, command: alsamixer), and in Sound (under System Settings). I have also installed Pulseaudio. But to no avail. The headset is working normally under Skype in Windows. My AO722 came with Windows 7 on it, so I have installed Skype there too. My headset has separate connectors for ears and mic, and these go into the respective output and input on the right side of the laptop. This location: http://bernaerts.dyndns.org/linux/202-ubuntu-acer-ao722 sounds like an effective solution but it is for Ubuntu Natty 11.04. The solution suggested sounds drastic to me: replace the kernel 2.6.38-13 with version 2.6.38-12. I use Ubuntu 12.04, and my kernel is 3.2.0-30-generic-pae. Question: could I try this solution with Ubuntu 12.04? Is this a risky thing to do? I have found harware work around this problem. The audio output seems to be a combi output with also a microphone connection. I have made an adapter for this output. I used a 4 contacts 3,5 mm audio jack plug. To this plug I have soldered 2 female (common stereo) connectors, one for ears and one for the mic of my headset. The 4 contacts jack, which goes into the laptop (in audio OUTput) is wired as follows: tip = hot audio right; first sleeve after tip = hot audio left; second sleeve = common earth (for both ears and microphone); the 3rd sleeve = microphone signal input. In the connector which I could buy, the 3rd sleeve is not so much a sleeve, but part of the metal base of the connector; normally you would expect this one to be connect to earth. But connecting the mic signal to it works. Maybe ready made adapters of this kind and even headsets with a combi jack can simply be purchased; I didn't check. When I plug in the 4 contacts jack, Sound and Alsamixer immediately recognise an external microphone (even if no mic is connected to the adapter). In Sound, under the Input tab, 'Settings for internal microphone' changes into 'Setting for microphone'. The microphone comes through loud and clear, however there is a constant noise in the background. Others have reported this too. If I disconnect the external mic from the adapter, or shortcircuit the external microphone, the noise gets less but does not disappear. Therefore, it is not background noise from the room, but it comes from the computer itself. However, if you talk directly in the microphone of the headset, the noise level is acceptable for VOIP. The headset of my mobile phone Nokia C1 mobile comes wwith a 4 contacts combi 3,5mm jack plug. However, this one works (ear and mic) with the AO722 only if not inserted fully. Possibly the wiring of this headset jack is different. I cannot find detailed specs of the AO722, and don't know whether the audio 'output' was actually designed as a combi input/output. I have seen that at least one other AO model has a combi connector only. In any case, I do not believe that connecting your headset in this way will harm your computer. I would still appreciate a software solution. This must be possible, because the proper microphone input connector works under MS Windows.

    Read the article

  • Why is this beat detection code failing to register some beats properly?

    - by Quincy
    I made this SoundAnalyzer class to detect beats in songs: class SoundAnalyzer { public SoundBuffer soundData; public Sound sound; public List<double> beatMarkers = new List<double>(); public SoundAnalyzer(string path) { soundData = new SoundBuffer(path); sound = new Sound(soundData); } // C = threshold, N = size of history buffer / 1024 B = bands public void PlaceBeatMarkers(float C, int N, int B) { List<double>[] instantEnergyList = new List<double>[B]; GetEnergyList(B, ref instantEnergyList); for (int i = 0; i < B; i++) { PlaceMarkers(instantEnergyList[i], N, C); } beatMarkers.Sort(); } private short[] getRange(int begin, int end, short[] array) { short[] result = new short[end - begin]; for (int i = 0; i < end - begin; i++) { result[i] = array[begin + i]; } return result; } // get a array of with a list of energy for each band private void GetEnergyList(int B, ref List<double>[] instantEnergyList) { for (int i = 0; i < B; i++) { instantEnergyList[i] = new List<double>(); } short[] samples = soundData.Samples; float timePerSample = 1 / (float)soundData.SampleRate; int sampleIndex = 0; int nextSamples = 1024; int samplesPerBand = nextSamples / B; // for the whole song while (sampleIndex + nextSamples < samples.Length) { complex[] FFT = FastFourier.Calculate(getRange(sampleIndex, nextSamples + sampleIndex, samples)); // foreach band for (int i = 0; i < B; i++) { double energy = 0; for (int j = 0; j < samplesPerBand; j++) energy += FFT[i * samplesPerBand + j].GetMagnitude(); energy /= samplesPerBand; instantEnergyList[i].Add(energy); } if (sampleIndex + nextSamples >= samples.Length) nextSamples = samples.Length - sampleIndex - 1; sampleIndex += nextSamples; samplesPerBand = nextSamples / B; } } // place the actual markers private void PlaceMarkers(List<double> instantEnergyList, int N, float C) { double timePerSample = 1 / (double)soundData.SampleRate; int index = N; int numInBuffer = index; double historyBuffer = 0; //Fill the history buffer with n * instant energy for (int i = 0; i < index; i++) { historyBuffer += instantEnergyList[i]; } // If instantEnergy / samples in buffer < instantEnergy for the next sample then add beatmarker. while (index + 1 < instantEnergyList.Count) { if(instantEnergyList[index + 1] > (historyBuffer / numInBuffer) * C) beatMarkers.Add((index + 1) * 1024 * timePerSample); historyBuffer -= instantEnergyList[index - numInBuffer]; historyBuffer += instantEnergyList[index + 1]; index++; } } } For some reason it's only detecting beats from 637 sec to around 641 sec, and I have no idea why. I know the beats are being inserted from multiple bands since I am finding duplicates, and it seems that it's assigning a beat to each instant energy value in between those values. It's modeled after this: http://www.flipcode.com/misc/BeatDetectionAlgorithms.pdf So why won't the beats register properly?

    Read the article

  • AVAudioPlayer making noise when playing multiple sounds at the same time

    - by Rob
    I am having an issue where AVAudioPlayer is introducing noise into playback ONLY when I play multiple sound files at the same time. If I play them each individually, they all sound perfect. But, if I play sound clip B while sound clip A is still playing, the speakers start crackling like there is noise. I have tried both m4a files AND caf files and both make the same noise, so it has to be something with how I am implementing this method or a quirk with AVAudioPlayer. Any insights? code I am using: UITouch* touch = [[event allTouches] anyObject]; NSString* filename = [soundArray objectAtIndex:[touch view].tag]; NSString *path = [[NSBundle mainBundle] pathForResource:filename ofType:@"m4a"]; AVAudioPlayer * newAudio=[[AVAudioPlayer alloc] initWithContentsOfURL:[NSURL fileURLWithPath:path] error:NULL]; self.theAudio = newAudio; // automatically retain audio and dealloc old file if new m4a file is loaded [newAudio release]; // release the audio safely theAudio.delegate = self; [theAudio prepareToPlay]; [theAudio setNumberOfLoops:0]; [theAudio setVolume: volumeLevel]; [theAudio play];

    Read the article

  • flash as3 document class and event listeners

    - by Lee
    I think i have this document class concept entirly wrong now, i was wondering if someone mind explaining it.. I assumed that the above class would be instantiated within the first frame on scene one of a movie. I also assumed that when changing scenes the state of the class would remain constant so any event listeners would still be running.. Scene 1: I have a movieclip named ui_mc, that has a button in for muting sound. Scene 2: I have the same movie clip with the same button. Now the eventListener picks it up in the first scene, however it does not in the second. I am wondering for every scene do the event listeners need to be resetup? If that is the case if their an event listener to listen for the change in scene, so i can set them back up again lol.. Thanks in advance.. package { import flash.display.MovieClip; import flash.events.MouseEvent; import flash.media.Sound; import flash.media.SoundChannel; public class game extends MovieClip { public var snd_state:Boolean = true; public function game() { ui_setup(); } public function ui_setup():void { ui_mc.toggleMute_mc.addEventListener(MouseEvent.CLICK, snd_toggle); } private function snd_toggle(event:MouseEvent):void { // 0 = No Sound, 1 = Full Sound trace("Toggle"); } } }

    Read the article

  • Cocos2d shake/accelerometer issue.

    - by Ryan Poolos
    So I a little backstory. I wanted to implement a particle effect and sound effect that both last about 3 sec or so when the user shakes their iDevice. But first issue arrived when the build in UIEvent for shakes refused to work. So I took the advice of a few Cocos veterans to just use some script to get "violent" accelerometer inputs as shakes. Worked great until now. The problem is that if you keep shaking it just stacks the particle and sounds over and over. Now this wouldn't be that big of a deal except it happens even if you are careful to try and not do so. So what I am hoping to do is disable the accelerometer when the particle effect/sound effect start and then reenable it as soon as they finish. Now I don't know if I should do this by schedule, NStimer, or some other function. I am open to ALL suggestions. here is my current "shake" code. - (void)accelerometer:(UIAccelerometer *)accelerometer didAccelerate:(UIAcceleration *)acceleration { const float violence = 1; static BOOL beenhere; BOOL shake = FALSE; if (beenhere) return; beenhere = TRUE; if (acceleration.x > violence * 1.5 || acceleration.x < (-1.5* violence)) shake = TRUE; if (acceleration.y > violence * 2 || acceleration.y < (-2 * violence)) shake = TRUE; if (acceleration.z > violence * 3 || acceleration.z < (-3 * violence)) shake = TRUE; if (shake) { id particleSystem = [CCParticleSystemQuad particleWithFile:@"particle.plist"]; [self addChild: particleSystem]; // Super simple Audio playback for sound effects! [[SimpleAudioEngine sharedEngine] playEffect:@"Sound.mp3"]; shake = FALSE; } beenhere = FALSE; }

    Read the article

  • SoundChannel, removeEventHandler, AS3

    - by pixelGreaser
    Is there a better way to use the sound channel is AS3? This works, but I hate it when I tap the play button twice and it starts doubling. Please advise. var mySound:Sound = new Sound(); playButton.addEventListener (MouseEvent.CLICK, myPlayButtonHandler); var myChannel:SoundChannel = new SoundChannel(); function myPlayButtonHandler (e:MouseEvent):void { myChannel = mySound.play(); } stopButton.addEventListener(MouseEvent.CLICK, onClickStop); function onClickStop(e:MouseEvent):void{ myChannel.stop(); } /*-----------------------------------------------------------------*/ //global sound buttons, add instance of 'killswitch' and 'onswitch' to stage killswitch.addEventListener(MouseEvent.CLICK, clipKillSwitch); function clipKillSwitch(e:MouseEvent):void{ var transform1:SoundTransform=new SoundTransform(); transform1.volume=0; flash.media.SoundMixer.soundTransform=transform1; } onswitch.addEventListener(MouseEvent.CLICK, clipOnSwitch); function clipOnSwitch(e:MouseEvent):void{ var transform1_:SoundTransform=new SoundTransform(); transform1_.volume=1; flash.media.SoundMixer.soundTransform=transform1_; }

    Read the article

  • SoundChannel, Flash AS3

    - by pixelGreaser
    Is there a better way to use the sound channel is AS3? This works, but I hate it when I tap the play button twice and it starts doubling. Please advise. var mySound:Sound = new Sound(); playButton.addEventListener (MouseEvent.CLICK, myPlayButtonHandler); var myChannel:SoundChannel = new SoundChannel(); function myPlayButtonHandler (e:MouseEvent):void { myChannel = mySound.play(); } stopButton.addEventListener(MouseEvent.CLICK, onClickStop); function onClickStop(e:MouseEvent):void{ myChannel.stop(); } /*-----------------------------------------------------------------*/ //global sound buttons, add instance of 'killswitch' and 'onswitch' to stage killswitch.addEventListener(MouseEvent.CLICK, clipKillSwitch); function clipKillSwitch(e:MouseEvent):void{ var transform1:SoundTransform=new SoundTransform(); transform1.volume=0; flash.media.SoundMixer.soundTransform=transform1; } onswitch.addEventListener(MouseEvent.CLICK, clipOnSwitch); function clipOnSwitch(e:MouseEvent):void{ var transform1_:SoundTransform=new SoundTransform(); transform1_.volume=1; flash.media.SoundMixer.soundTransform=transform1_; }

    Read the article

  • How To Delete Built-in Windows 7 Power Plans (and Why You Probably Shouldn’t)

    - by The Geek
    Do you actually use the Windows 7 power management features? If so, have you ever wanted to just delete one of the built-in power plans? Here’s how you can do so, and why you probably should leave it alone. Just in case you’re new to the party, we’re talking about the power plans that you see when you click on the battery/plug icon in the system tray. The problem is that one of the built-in plans always shows up there, even if you only use custom plans. When you go to “More power options” on the menu there, you’ll be taken to a list of them, but you’ll be unable to get rid of any of the built-in ones, even if you have your own. You can actually delete the power plans, but it will probably cause problems, so we highly recommend against it. If you still want to proceed, keep reading. Delete Built-in Power Plans in Windows 7 Open up an Administrator mod command prompt by right-clicking on the command prompt and choosing “Run as Administrator”, then type in the following command, which will show you a whole list of the plans. powercfg list Do you see that really long GUID code in the middle of each listing? That’s what we’re going to need for the next step. To make it easier, we’ll provide the codes here, just in case you don’t know how to copy to the clipboard from the command prompt. Power Scheme GUID: 381b4222-f694-41f0-9685-ff5bb260df2e  (Balanced) Power Scheme GUID: 8c5e7fda-e8bf-4a96-9a85-a6e23a8c635c  (High performance)Power Scheme GUID: a1841308-3541-4fab-bc81-f71556f20b4a  (Power saver) Before you do any deleting, what you’re going to want to do is export the plan to a file using the –export parameter. For some unknown reason, I used the .xml extension when I did this, though the file isn’t in XML format. Moving on… here’s the syntax of the command: powercfg –export balanced.xml 381b4222-f694-41f0-9685-ff5bb260df2e This will export the Balanced plan to the file balanced.xml. And now, we can delete the plan by using the –delete parameter, and the same GUID.  powercfg –delete 381b4222-f694-41f0-9685-ff5bb260df2e If you want to import the plan again, you can use the -import parameter, though it has one weirdness—you have to specify the full path to the file, like this: powercfg –import c:\balanced.xml Using what you’ve learned, you can export each of the plans to a file, and then delete the ones you want to delete. Why Shouldn’t You Do This? Very simple. Stuff will break. On my test machine, for example, I removed all of the built-in plans, and then imported them all back in, but I’m still getting this error anytime I try to access the panel to choose what the power buttons do: There’s a lot more error messages, but I’m not going to waste your time with all of them. So if you want to delete the plans, do so at your own peril. At least you’ve been warned! Similar Articles Productive Geek Tips Learning Windows 7: Manage Power SettingsCreate a Shortcut or Hotkey to Switch Power PlansDisable Power Management on Windows 7 or VistaChange the Windows 7 or Vista Power Buttons to Shut Down/Sleep/HibernateDisable Windows Vista’s Built-in CD/DVD Burning Features TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Gadfly is a cool Twitter/Silverlight app Enable DreamScene in Windows 7 Microsoft’s “How Do I ?” Videos Home Networks – How do they look like & the problems they cause Check Your IMAP Mail Offline In Thunderbird Follow Finder Finds You Twitter Users To Follow

    Read the article

  • Process Is The New App by Leon Smiers

    - by JuergenKress
    Process-on-the-Fly #2 - Process is the New App The next generation of business process management and business rules management tools is so powerful that it actually can be seen as the successor to custom-built applications. Being able to define detailed process, flows, decision trees and business helps on both the business and IT side to create powerful, differentiating solutions that would have required extensive custom coding in the past. Now much of the definition can be done ‘on the fly,’ using visual models and (semi) natural language in the nearest proximity to the business. Over the years, ERP systems have been customized to enter organization-specific functionality into the ERP application. This leads to better support for the business, but at the same time involves higher costs for maintenance, high dependency on the personnel involved in this customization, long timelines to deliver change to the system and increased risk involved in upgrading the ERP system. However, the best of both worlds can be created by bringing back the functionality to out-of-the-box usage of the ERP system and at the same time introducing change and flexibility by means of externalized 'Process Apps' in direct connection with the ERP system. The ERP system (or legacy bespoke system, for that matter) is used as originally intended and designed, resulting in more predictable behavior of the system related to usage and performance, and clearly can be maintained in a more standardized and cost-effective way. The Prrocess App externalizes the needed functionality into a highly customizable application outside the ERP for which it is supported by rules engines, task inboxes and can be delivered to different channels. The reasons for needing Process Apps may include the following: The ERP system just doesn't deliver this functionality in a specific industry; the volatility of changing certain functionality is high; or an umbrella type of functionality across (ERP) silos is needed. An example of bringing all this together is around the hiring process for a new employee at a university. Oracle PeopleSoft HCM could be used as the HR system to store all employee details. In the hiring process, an authorization scheme is involved for getting the approval to create a contract for the employee-to-be. In the university world, this authorization scheme is complex and involves faculties/colleges (with different organizational structures) and cross-faculty organizational structures. Including such an authorization scheme into PeopleSoft would require a lot of customization. By adding a handle inside PeopleSoft towards an externalized authorization Process App, the execution of the authorization of the employee is done outside the ERP: in a tool that is aimed to deliver approval schemes via a worklist-type of application. The Process App here works as an add-on to the PeopleSoft system, but can also be extended to support the full lifecycle of the end-to-end hiring process with the possibility to involve multiple applications. The actual core functionality is kept in the supporting ERP systems, while at the same time the Process App acts as an umbrella function to control the end-to-end flow and give insight into the efficiency of the end-to-end process. How to get there? Read the complete article here. SOA & BPM Partner Community For regular information on Oracle SOA Suite become a member in the SOA & BPM Partner Community for registration please visit www.oracle.com/goto/emea/soa (OPN account required) If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Facebook Wiki Technorati Tags: Capgemini,Leon Smiers,SOA Community,Oracle SOA,Oracle BPM,Community,OPN,Jürgen Kress

    Read the article

  • Tips for XNA WP7 Developers

    - by Michael B. McLaughlin
    There are several things any XNA developer should know/consider when coming to the Windows Phone 7 platform. This post assumes you are familiar with the XNA Framework and with the changes between XNA 3.1 and XNA 4.0. It’s not exhaustive; it’s simply a list of things I’ve gathered over time. I may come back and add to it over time, and I’m happy to add anything anyone else has experienced or learned as well. Display · The screen is either 800x480 or 480x800. · But you aren’t required to use only those resolutions. · The hardware scaler on the phone will scale up from 240x240. · One dimension will be capped at 800 and the other at 480; which depends on your code, but you cannot have, e.g., an 800x600 back buffer – that will be created as 800x480. · The hardware scaler will not normally change aspect ratio, though, so no unintended stretching. · Any dimension (width, height, or both) below 240 will be adjusted to 240 (without any aspect ratio adjustment such that, e.g. 200x240 will be treated as 240x240). · Dimensions below 240 will be honored in terms of calculating whether to use portrait or landscape. · If dimensions are exactly equal or if height is greater than width then game will be in portrait. · If width is greater than height, the game will be in landscape. · Landscape games will automatically flip if the user turns the phone 180°; no code required. · Default landscape is top = left. In other words a user holding a phone who starts a landscape game will see the first image presented so that the “top” of the screen is along the right edge of his/her phone, such that the natural behavior would be to turn the phone 90° so that the top of the phone will be held in the user’s left hand and the bottom would be held in the user’s right hand. · The status bar (where the clock, battery power, etc., are found) is hidden when the Game-derived class sets GraphicsDeviceManager.IsFullScreen = true. It is shown when IsFullScreen = false. The default value is false (i.e. the status bar is shown). · You should have a good reason for hiding the status bar. Users find it helpful to know what time it is, how much charge their battery has left, and whether or not their phone is in service range. This is especially true for casual games that you expect someone to play for a few minutes at a time, e.g. while waiting for some event to start, for a phone call to come in, or for a train, bus, or subway to arrive. · In portrait mode, the status bar occupies 32 pixels of space. This means that a game with a back buffer of 480x800 will be scaled down to occupy approximately 461x768 screen pixels. Setting the back buffer to 480x768 (or some resolution with the same 0.625 aspect ratio) will avoid this scaling. · In landscape mode, the status bar occupies 72 pixels of space. This means that a game with a back buffer of 800x480 will be scaled down to occupy approximately 728x437 screen pixels. Setting the back buffer to 728x480 (or some resolution with the same 1.51666667 aspect ratio) will avoid this scaling. Input · Touch input is scaled with screen size. · So if your back buffer is 600x360, a tap in the bottom right corner will come in as (599,359). You don’t need to do anything special to get this automatic scaling of touch behavior. · If you do not use full area of the screen, any touch input outside the area you use will still register as a touch input. For example, if you set a portrait resolution of 240x240, it would be scaled up to occupy a 480x480 area, centered in the screen. If you touch anywhere above this area, you will get a touch input of (X,0) where X is a number from 0 to 239 (in accordance with your 240 pixel wide back buffer). Any touch below this area will give a touch input of (X,239). · If you keep the status bar visible, touches within its area will not be passed to your game. · In general, a screen measurement is the diagonal. So a 3.5” screen is 3.5” long from the bottom right corner to the top left corner. With an aspect ratio of 0.6 (480/800 = 0.6), this means that a phone with a 3.5” screen is only approximately 1.8” wide by 3” tall. So there are approximately 267 pixels in an inch on a 3.5” screen. · Again, this time in metric! 3.5 inches is approximately 8.89 cm. So an 8.89 cm screen is 8.89 cm long from the bottom right corner to the top left corner. With an aspect ratio of 0.6, this means that a phone with an 8.89 cm screen is only approximately 4.57 cm wide by 7.62 cm tall. So there are approximately 105 pixels in a centimeter on an 8.89 cm screen. · Think about the size of your finger tip. If you do not have large hands, think about the size of the fingertip of someone with large hands. Consider that when you are sizing your touch input. Especially consider that when you are spacing two touch targets near one another. You need to judge it for yourself, but items that are next to each other and are each 100x100 should be fine when it comes to selecting items individually. Smaller targets than that are ok provided that you leave space between them. · You want your users to have a pleasant experience. Making touch controls too small or too close to one another will make them nervous about whether they will touch the right target. Take this into account when you plan out your game initially. If possible, do some quick size mockups on an actual phone using colored rectangles that you position and size where you plan to have your game controls. Adjust as necessary. · People do not have transparent hands! Nor are their hands the size of a mouse pointer icon. Consider leaving a dedicated space for input rather than forcing the user to cover up to one-third of the screen with a finger just to play the game. · Another benefit of designing your controls to use a dedicated area is that you’re less likely to have players moving their finger(s) so frantically that they accidentally hit the back button, start button, or search button (many phones have one or more of these on the screen itself – it’s easy to hit one by accident and really annoying if you hit, e.g., the search button and then quickly tap back only to find out that the game didn’t save your progress such that you just wasted all the time you spent playing). · People do not like doing somersaults in order to move something forward with accelerometer-based controls. Test your accelerometer-based controls extensively and get a lot of feedback. Very well-known games from noted publishers have created really bad accelerometer controls and been virtually unplayable as a result. Also be wary of exceptions and other possible failures that the documentation warns about. · When done properly, the accelerometer can add a nice touch to your game (see, e.g. ilomilo where the accelerometer was used to move the background; it added a nice touch without frustrating the user; I also think CarniVale does direct accelerometer controls very well). However, if done poorly, it will make your game an abomination unto the Marketplace. Days, weeks, perhaps even months of development time that you will never get back. I won’t name names; you can search the marketplace for games with terrible reviews and you’ll find them. Graphics · The maximum frame rate is 30 frames per second. This was set as a compromise between battery life and quality. · At least one model of phone is known to have a screen refresh rate that is between 59 and 60 hertz. Because of this, using a fixed time step with a target frame rate of 30 will cause a slight internal delay to build up as the framework is forced to wait slightly for the next refresh. Eventually the delay will get to the point where a draw is skipped in order to recover from the delay. (See Nick's comment below for clarification.) · To deal with that delay, you can either stay with a fixed time step and set the frame rate slightly lower or else you can go to a variable time step and make sure to adjust all of your update data (e.g. player movement distance) to take into account the elapsed time from the last update. A variable time step makes your update logic slightly more complicated but will avoid frame skips entirely. · Currently there are no custom shaders. This might change in the future (there is no hardware limitation preventing it; it simply wasn’t a feature that could be implemented in the time available before launch). · There are five built-in shaders. You can create a lot of nice effects with the built-in shaders. · There is more power on the CPU than there is on the GPU so things you might typically off-load to the GPU will instead make sense to do on the CPU side. · This is a phone. It is not a PC. It is not an Xbox 360. The emulator runs on a PC and uses the full power of your PC. It is very good for testing your code for bugs and doing early prototyping and layout. You should not use it to measure performance. Use actual phone hardware instead. · There are many phone models, each of which has slightly different performance levels for I/O, screen blitting, CPU performance, etc. Do not take your game right to the performance limit on your phone since for some other phones you might be crossing their limits and leaving players with a bad experience. Leave a cushion to account for hardware differences. · Smaller screened phones will have slightly more dots per inch (dpi). Larger screened phones will have slightly less. Either way, the dpi will be much higher than the typical 96 found on most computer screens. Make sure that whoever is doing art for your game takes this into account. · Screens are only required to have 16 bit color (65,536 colors). This is common among smart phones. Using gradients on a 16 bit display can produce an ugly artifact known as banding. Banding is when, rather than a smooth transition from one color to another, you instead see distinct lines. Be careful to avoid this when possible. Banding can be avoided through careful art creation. Its effects can be minimized and even unnoticeable when the texture in question is always moving. You should be careful not to rely on “looks good on my phone” since some phones do have 32-bit displays and thus you’ll find yourself wondering why you’re getting bad reviews that complain about the graphics. Avoid gradients; if you can’t, make sure they are 16-bit safe. Audio · Never rely on sounds as your sole signal to the player that something is happening in the game. They might have the sound off. They might be playing somewhere loud. Etc. · You have to provide controls to disable sound & music. These should be separate. · On at least one model of phone, the volume control API currently has no effect. Players can adjust sound with their hardware volume buttons, but in game selectors simply won’t work. As such, it may not be worth the effort of providing anything beyond on/off switches for sound and music. · MediaPlayer.GameHasControl will return true when a game is hooked up to a PC running Zune. When Zune is running, any attempts to do anything (beyond check GameHasControl) with MediaPlayer will cause an exception to be thrown. If this exception is thrown, catch it and disable music. Exceptions take time to propagate; you don’t want one popping up in every single run of your game’s Update method. · Remember that players can already be listening to music or using the FM radio. In this case GameHasControl will be false and you should handle this appropriately. You can, alternately, ask the player for permission to stop their current music and play your music instead, but the (current) requirement that you restore their music when done is very hard (if not impossible) to deal with. · You can still play sound effects even when the game doesn’t have control of the music, but don’t think this is a backdoor to playing music. Your game will fail certification if your “sound effect” seems to be more like music in scope and length.

    Read the article

  • Register filetype with the browser?

    - by Lord.Quackstar
    In Android, I am trying to make it so that the user downloads a font from the browser, and I am able to view the font when downloaded. After multiple issues, I still have one lingering one: Registering the filetype with the browser. When trying to download with the Emulator (2.1-u1), I get "Cannot download. The content is not supported on this phone". Okay, so maybe its my manifest file. Updated with this: <activity android:name=".MainActivity" android:label="MainActivity"> <intent-filter> <action android:name="android.intent.action.MAIN"/> <category android:name="android.intent.category.LAUNCHER"/> <catagory android:name="android.intent.category.BROWSABLE"/> <data android:scheme="http"/> <data android:scheme="https"/> <data android:scheme="ftp"/> <data android:host="*"/> <data android:mimeType="*/*"/> <data android:pathPattern=".*zip"/> </intent-filter> </activity> Went back to the browser, and fails again. Restart the Emulator, still fails. Note that I got this format from posts here. Any suggestions on what to do?

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • Free space on Dedi' in CentOS

    - by Trance84
    It will sound stupid but i need to figure out how much disk space i have in my dedicated server, it runs CentOS6...the last command i issued was this [root@ks34900 ~]# df -h Filesystem Size Used Avail Use% Mounted on rootfs 9.7G 6.4G 2.9G 69% / /dev/root 9.7G 6.4G 2.9G 69% / none 1000M 288K 1000M 1% /dev /dev/sda2 914G 200M 868G 1% /home But again, stupid as it may sound... i cant figure out how much space i have in "/" folder (root) And is it possible that "/usr" have a different space (partition)?

    Read the article

  • Free, cross-platform screen recording utility

    - by abc
    I am looking for a screen recording (video) utility. Desired features are: It should be free (higher in priority) It should be available for Windows, Linux, and Mac (Mac in lower priority, Linux or Windows will work) It should have mic input facility to record external sound as well as machine's sound. It should have highlighting functionality (lower in priority)

    Read the article

  • Windows recording in Vista

    - by devoured elysium
    I want to record the sound that's coming from my applications in Windows Vista. The problem seems to be that Vista seems to only recognize the microphone as input device. Is there any reason for this? I went to Control Panel Sound and I can only see the microphone as recording device. Im using a TX2000 HP laptop. Thanks

    Read the article

  • Obtaining a list of files from a specific directory

    - by Steve Robathan
    I can get a list of files from a text file from a specific directory, but they are naturally in singles. I need to create a text file that will give the contents, but all in 1 line separated by a space. My batch is here: dir /a /b /-p /o:gen %USERPROFILE%\Desktop\file_list_full.txt As an example, this will give: Hello.exe Help.txt Big.png sound.ogg I need it to be: Hello.exe Help.txt Big.png sound.ogg How can I do this?

    Read the article

  • Screen Recording Utility

    - by abc
    Hello, I want a screen recording(video) utility desired features are : it should be free (higher in priority) it should be available for win,linux,and mac(mac in lower priority,linux or win will work) It should have mic input facility to record external sound as well as machine's sound. It should have highlighting functionality(lower in priority) at last cracked versions are also welcomed. Thanks.

    Read the article

  • No Audio from Windows XP after formatting.

    - by karthik
    Hello folks, I have reinstalled in my Windows XP machine. After it is re-isntalled the audio in my machine has failed. I have installed all the device drivers in my mother board. The Realtek Sound driver is also installed. Note: Sound is working when I test the surround settings test in my RealTek program, but unable to play any audio, tried playing both in my local machine and from the internet. Any clues to troubleshoot?

    Read the article

  • Which connector do I need for a "line level" subwoofer?

    - by Ben Brocka
    I've got a separate pair of speakers and I'm looking at adding a subwoofer (this, specifically). I noticed on the detail page it's inputs are listed as such: Inputs: Speaker level, line level If I'm not mistaken "line level" are the standard 3.5 audio jacks on your motherboard/sound card, right? My motherboard has the standard 6 ports for sound, if I get a subwoofer like this can I simply plug the input into the orange 3.5 jack? My audio software supports up to 7.1 so software-wise, 2.1 wouldn't be a problem.

    Read the article

< Previous Page | 69 70 71 72 73 74 75 76 77 78 79 80  | Next Page >