Search Results

Search found 1086 results on 44 pages for 'representation'.

Page 8/44 | < Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >

  • Enum.HasFlag

    - by Scott Dorman
    An enumerated type, also called an enumeration (or just an enum for short), is simply a way to create a numeric type restricted to a predetermined set of valid values with meaningful names for those values. While most enumerations represent discrete values, or well-known combinations of those values, sometimes you want to combine values in an arbitrary fashion. These enumerations are known as flags enumerations because the values represent flags which can be set or unset. To combine multiple enumeration values, you use the logical OR operator. For example, consider the following: public enum FileAccess { None = 0, Read = 1, Write = 2, }   class Program { static void Main(string[] args) { FileAccess access = FileAccess.Read | FileAccess.Write; Console.WriteLine(access); } } The output of this simple console application is: The value 3 is the numeric value associated with the combination of FileAccess.Read and FileAccess.Write. Clearly, this isn’t the best representation. What you really want is for the output to look like: To achieve this result, you simply add the Flags attribute to the enumeration. The Flags attribute changes how the string representation of the enumeration value is displayed when using the ToString() method. Although the .NET Framework does not require it, enumerations that will be used to represent flags should be decorated with the Flags attribute since it provides a clear indication of intent. One “problem” with Flags enumerations is determining when a particular flag is set. The code to do this isn’t particularly difficult, but unless you use it regularly it can be easy to forget. To test if the access variable has the FileAccess.Read flag set, you would use the following code: (access & FileAccess.Read) == FileAccess.Read Starting with .NET 4, a HasFlag static method has been added to the Enum class which allows you to easily perform these tests: access.HasFlag(FileAccess.Read) This method follows one of the “themes” for the .NET Framework 4, which is to simplify and reduce the amount of boilerplate code like this you must write. Technorati Tags: .NET,C# 4

    Read the article

  • 2D non-tile based map editor

    - by Jonesy
    I am currently developing a relatively simple 2D, topdown oriented adventure game for the iPhone and was wondering what would be the easiest way to create the maps for my game. I figured I would need some kind of visual editor that would give me immediate feedback and would allow me to place all objects in the world exactly where I want them. I could then load the saved representation of the world I create in the editor in my game. So, I am looking for a simple map editor that allows me to do this. All the objects in my game are simply textured rectangles build up from two triangles. All I need to be able to do is position different rectangles/objects in the map, and give them a texture. I am using texture atlases, so it would be useful to be able to assign portions of textures to the objects. I then need to be able to extract all the objects from the saved representation of my maps, together with the name/identifier of the texture(atlas) they use, and the area of the texture atlas. I have looked at some tile-based map editors like Tiled and Ogmo, but they don't seem to be able to do what I want. Any suggestions? EDIT: a more concrete example: something like the GameMaker level editor, but then with added export functionality in a handy format.

    Read the article

  • 2D non-tile based map editor

    - by user5468
    I am currently developing a relatively simple 2D, topdown oriented adventure game for the iPhone and was wondering what would be the easiest way to create the maps for my game. I figured I would need some kind of visual editor that would give me immediate feedback and would allow me to place all objects in the world exactly where I want them. I could then load the saved representation of the world I create in the editor in my game. So, I am looking for a simple map editor that allows me to do this. All the objects in my game are simply textured rectangles build up from two triangles. All I need to be able to do is position different rectangles/objects in the map, and give them a texture. I am using texture atlases, so it would be useful to be able to assign portions of textures to the objects. I then need to be able to extract all the objects from the saved representation of my maps, together with the name/identifier of the texture(atlas) they use, and the area of the texture atlas. I have looked at some tile-based map editors like Tiled and Ogmo, but they don't seem to be able to do what I want. Any suggestions? EDIT: a more concrete example: something like the GameMaker level editor, but then with added export functionality in a handy format.

    Read the article

  • Changes to the LINQ-to-StreamInsight Dialect

    - by Roman Schindlauer
    In previous versions of StreamInsight (1.0 through 2.0), CepStream<> represents temporal streams of many varieties: Streams with ‘open’ inputs (e.g., those defined and composed over CepStream<T>.Create(string streamName) Streams with ‘partially bound’ inputs (e.g., those defined and composed over CepStream<T>.Create(Type adapterFactory, …)) Streams with fully bound inputs (e.g., those defined and composed over To*Stream – sequences or DQC) The stream may be embedded (where Server.Create is used) The stream may be remote (where Server.Connect is used) When adding support for new programming primitives in StreamInsight 2.1, we faced a choice: Add a fourth variety (use CepStream<> to represent streams that are bound the new programming model constructs), or introduce a separate type that represents temporal streams in the new user model. We opted for the latter. Introducing a new type has the effect of reducing the number of (confusing) runtime failures due to inappropriate uses of CepStream<> instances in the incorrect context. The new types are: IStreamable<>, which logically represents a temporal stream. IQStreamable<> : IStreamable<>, which represents a queryable temporal stream. Its relationship to IStreamable<> is analogous to the relationship of IQueryable<> to IEnumerable<>. The developer can compose temporal queries over remote stream sources using this type. The syntax of temporal queries composed over IQStreamable<> is mostly consistent with the syntax of our existing CepStream<>-based LINQ provider. However, we have taken the opportunity to refine certain aspects of the language surface. Differences are outlined below. Because 2.1 introduces new types to represent temporal queries, the changes outlined in this post do no impact existing StreamInsight applications using the existing types! SelectMany StreamInsight does not support the SelectMany operator in its usual form (which is analogous to SQL’s “CROSS APPLY” operator): static IEnumerable<R> SelectMany<T, R>(this IEnumerable<T> source, Func<T, IEnumerable<R>> collectionSelector) It instead uses SelectMany as a convenient syntactic representation of an inner join. The parameter to the selector function is thus unavailable. Because the parameter isn’t supported, its type in StreamInsight 1.0 – 2.0 wasn’t carefully scrutinized. Unfortunately, the type chosen for the parameter is nonsensical to LINQ programmers: static CepStream<R> SelectMany<T, R>(this CepStream<T> source, Expression<Func<CepStream<T>, CepStream<R>>> streamSelector) Using Unit as the type for the parameter accurately reflects the StreamInsight’s capabilities: static IQStreamable<R> SelectMany<T, R>(this IQStreamable<T> source, Expression<Func<Unit, IQStreamable<R>>> streamSelector) For queries that succeed – that is, queries that do not reference the stream selector parameter – there is no difference between the code written for the two overloads: from x in xs from y in ys select f(x, y) Top-K The Take operator used in StreamInsight causes confusion for LINQ programmers because it is applied to the (unbounded) stream rather than the (bounded) window, suggesting that the query as a whole will return k rows: (from win in xs.SnapshotWindow() from x in win orderby x.A select x.B).Take(k) The use of SelectMany is also unfortunate in this context because it implies the availability of the window parameter within the remainder of the comprehension. The following compiles but fails at runtime: (from win in xs.SnapshotWindow() from x in win orderby x.A select win).Take(k) The Take operator in 2.1 is applied to the window rather than the stream: Before After (from win in xs.SnapshotWindow() from x in win orderby x.A select x.B).Take(k) from win in xs.SnapshotWindow() from b in     (from x in win     orderby x.A     select x.B).Take(k) select b Multicast We are introducing an explicit multicast operator in order to preserve expression identity, which is important given the semantics about moving code to and from StreamInsight. This also better matches existing LINQ dialects, such as Reactive. This pattern enables expressing multicasting in two ways: Implicit Explicit var ys = from x in xs          where x.A > 1          select x; var zs = from y1 in ys          from y2 in ys.ShiftEventTime(_ => TimeSpan.FromSeconds(1))          select y1 + y2; var ys = from x in xs          where x.A > 1          select x; var zs = ys.Multicast(ys1 =>     from y1 in ys1     from y2 in ys1.ShiftEventTime(_ => TimeSpan.FromSeconds(1))     select y1 + y2; Notice the product translates an expression using implicit multicast into an expression using the explicit multicast operator. The user does not see this translation. Default window policies Only default window policies are supported in the new surface. Other policies can be simulated by using AlterEventLifetime. Before After xs.SnapshotWindow(     WindowInputPolicy.ClipToWindow,     SnapshotWindowInputPolicy.Clip) xs.SnapshotWindow() xs.TumblingWindow(     TimeSpan.FromSeconds(1),     HoppingWindowOutputPolicy.PointAlignToWindowEnd) xs.TumblingWindow(     TimeSpan.FromSeconds(1)) xs.TumblingWindow(     TimeSpan.FromSeconds(1),     HoppingWindowOutputPolicy.ClipToWindowEnd) Not supported … LeftAntiJoin Representation of LASJ as a correlated sub-query in the LINQ surface is problematic as the StreamInsight engine does not support correlated sub-queries (see discussion of SelectMany). The current syntax requires the introduction of an otherwise unsupported ‘IsEmpty()’ operator. As a result, the pattern is not discoverable and implies capabilities not present in the server. The direct representation of LASJ is used instead: Before After from x in xs where     (from y in ys     where x.A > y.B     select y).IsEmpty() select x xs.LeftAntiJoin(ys, (x, y) => x.A > y.B) from x in xs where     (from y in ys     where x.A == y.B     select y).IsEmpty() select x xs.LeftAntiJoin(ys, x => x.A, y => y.B) ApplyWithUnion The ApplyWithUnion methods have been deprecated since their signatures are redundant given the standard SelectMany overloads: Before After xs.GroupBy(x => x.A).ApplyWithUnion(gs => from win in gs.SnapshotWindow() select win.Count()) xs.GroupBy(x => x.A).SelectMany(     gs =>     from win in gs.SnapshotWindow()     select win.Count()) xs.GroupBy(x => x.A).ApplyWithUnion(gs => from win in gs.SnapshotWindow() select win.Count(), r => new { r.Key, Count = r.Payload }) from x in xs group x by x.A into gs from win in gs.SnapshotWindow() select new { gs.Key, Count = win.Count() } Alternate UDO syntax The representation of UDOs in the StreamInsight LINQ dialect confuses cardinalities. Based on the semantics of user-defined operators in StreamInsight, one would expect to construct queries in the following form: from win in xs.SnapshotWindow() from y in MyUdo(win) select y Instead, the UDO proxy method is referenced within a projection, and the (many) results returned by the user code are automatically flattened into a stream: from win in xs.SnapshotWindow() select MyUdo(win) The “many-or-one” confusion is exemplified by the following example that compiles but fails at runtime: from win in xs.SnapshotWindow() select MyUdo(win) + win.Count() The above query must fail because the UDO is in fact returning many values per window while the count aggregate is returning one. Original syntax New alternate syntax from win in xs.SnapshotWindow() select win.UdoProxy(1) from win in xs.SnapshotWindow() from y in win.UserDefinedOperator(() => new Udo(1)) select y -or- from win in xs.SnapshotWindow() from y in win.UdoMacro(1) select y Notice that this formulation also sidesteps the dynamic type pitfalls of the existing “proxy method” approach to UDOs, in which the type of the UDO implementation (TInput, TOuput) and the type of its constructor arguments (TConfig) need to align in a precise and non-obvious way with the argument and return types for the corresponding proxy method. UDSO syntax UDSO currently leverages the DataContractSerializer to clone initial state for logical instances of the user operator. Initial state will instead be described by an expression in the new LINQ surface. Before After xs.Scan(new Udso()) xs.Scan(() => new Udso()) Name changes ShiftEventTime => AlterEventStartTime: The alter event lifetime overload taking a new start time value has been renamed. CountByStartTimeWindow => CountWindow

    Read the article

  • How can I separate the user interface from the business logic while still maintaining efficiency?

    - by Uri
    Let's say that I want to show a form that represents 10 different objects on a combobox. For example, I want the user to pick one hamburguer from 10 different ones that contain tomatoes. Since I want to separate UI and logic, I'd have to pass the form a string representation of the hamburguers in order to display them on the combobox. Otherwise, the UI would have to dig into the objects fields. Then the user would pick a hamburguer from the combobox, and submit it back to the controller. Now the controller would have to find again said hamburguer based on the string representation used by the form (maybe an ID?). Isn't that incredibly inefficient? You already had the objects you wanted to pick one from. If you submited to the form the whole objects, and then returned a specific object, you wouldn't have to refind it later on since the form already returned a reference to that object. Moreover, if I'm wrong and you actually should send the whole object to the form, how can I isolate UI from logic?

    Read the article

  • Why isn't there a typeclass for functions?

    - by Steve314
    I already tried this on Reddit, but there's no sign of a response - maybe it's the wrong place, maybe I'm too impatient. Anyway... In a learning problem I've been messing around with, I realised I needed a typeclass for functions with operations for applying, composing etc. Reasons... It can be convenient to treat a representation of a function as if it were the function itself, so that applying the function implicitly uses an interpreter, and composing functions derives a new description. Once you have a typeclass for functions, you can have derived typeclasses for special kinds of functions - in my case, I want invertible functions. For example, functions that apply integer offsets could be represented by an ADT containing an integer. Applying those functions just means adding the integer. Composition is implemented by adding the wrapped integers. The inverse function has the integer negated. The identity function wraps zero. The constant function cannot be provided because there's no suitable representation for it. Of course it doesn't need to spell things as if it the values were genuine Haskell functions, but once I had the idea, I thought a library like that must already exist and maybe even using the standard spellings. But I can't find such a typeclass in the Haskell library. I found the Data.Function module, but there's no typeclass - just some common functions that are also available from the Prelude. So - why isn't there a typeclass for functions? Is it "just because there isn't" or "because it's not so useful as you think"? Or maybe there's a fundamental problem with the idea? The biggest possible problem I've thought of so far is that function application on actual functions would probably have to be special-cased by the compiler to avoid a looping problem - in order to apply this function I need to apply the function application function, and to do that I need to call the function application function, and to do that...

    Read the article

  • Changes to the LINQ-to-StreamInsight Dialect

    - by Roman Schindlauer
    In previous versions of StreamInsight (1.0 through 2.0), CepStream<> represents temporal streams of many varieties: Streams with ‘open’ inputs (e.g., those defined and composed over CepStream<T>.Create(string streamName) Streams with ‘partially bound’ inputs (e.g., those defined and composed over CepStream<T>.Create(Type adapterFactory, …)) Streams with fully bound inputs (e.g., those defined and composed over To*Stream – sequences or DQC) The stream may be embedded (where Server.Create is used) The stream may be remote (where Server.Connect is used) When adding support for new programming primitives in StreamInsight 2.1, we faced a choice: Add a fourth variety (use CepStream<> to represent streams that are bound the new programming model constructs), or introduce a separate type that represents temporal streams in the new user model. We opted for the latter. Introducing a new type has the effect of reducing the number of (confusing) runtime failures due to inappropriate uses of CepStream<> instances in the incorrect context. The new types are: IStreamable<>, which logically represents a temporal stream. IQStreamable<> : IStreamable<>, which represents a queryable temporal stream. Its relationship to IStreamable<> is analogous to the relationship of IQueryable<> to IEnumerable<>. The developer can compose temporal queries over remote stream sources using this type. The syntax of temporal queries composed over IQStreamable<> is mostly consistent with the syntax of our existing CepStream<>-based LINQ provider. However, we have taken the opportunity to refine certain aspects of the language surface. Differences are outlined below. Because 2.1 introduces new types to represent temporal queries, the changes outlined in this post do no impact existing StreamInsight applications using the existing types! SelectMany StreamInsight does not support the SelectMany operator in its usual form (which is analogous to SQL’s “CROSS APPLY” operator): static IEnumerable<R> SelectMany<T, R>(this IEnumerable<T> source, Func<T, IEnumerable<R>> collectionSelector) It instead uses SelectMany as a convenient syntactic representation of an inner join. The parameter to the selector function is thus unavailable. Because the parameter isn’t supported, its type in StreamInsight 1.0 – 2.0 wasn’t carefully scrutinized. Unfortunately, the type chosen for the parameter is nonsensical to LINQ programmers: static CepStream<R> SelectMany<T, R>(this CepStream<T> source, Expression<Func<CepStream<T>, CepStream<R>>> streamSelector) Using Unit as the type for the parameter accurately reflects the StreamInsight’s capabilities: static IQStreamable<R> SelectMany<T, R>(this IQStreamable<T> source, Expression<Func<Unit, IQStreamable<R>>> streamSelector) For queries that succeed – that is, queries that do not reference the stream selector parameter – there is no difference between the code written for the two overloads: from x in xs from y in ys select f(x, y) Top-K The Take operator used in StreamInsight causes confusion for LINQ programmers because it is applied to the (unbounded) stream rather than the (bounded) window, suggesting that the query as a whole will return k rows: (from win in xs.SnapshotWindow() from x in win orderby x.A select x.B).Take(k) The use of SelectMany is also unfortunate in this context because it implies the availability of the window parameter within the remainder of the comprehension. The following compiles but fails at runtime: (from win in xs.SnapshotWindow() from x in win orderby x.A select win).Take(k) The Take operator in 2.1 is applied to the window rather than the stream: Before After (from win in xs.SnapshotWindow() from x in win orderby x.A select x.B).Take(k) from win in xs.SnapshotWindow() from b in     (from x in win     orderby x.A     select x.B).Take(k) select b Multicast We are introducing an explicit multicast operator in order to preserve expression identity, which is important given the semantics about moving code to and from StreamInsight. This also better matches existing LINQ dialects, such as Reactive. This pattern enables expressing multicasting in two ways: Implicit Explicit var ys = from x in xs          where x.A > 1          select x; var zs = from y1 in ys          from y2 in ys.ShiftEventTime(_ => TimeSpan.FromSeconds(1))          select y1 + y2; var ys = from x in xs          where x.A > 1          select x; var zs = ys.Multicast(ys1 =>     from y1 in ys1     from y2 in ys1.ShiftEventTime(_ => TimeSpan.FromSeconds(1))     select y1 + y2; Notice the product translates an expression using implicit multicast into an expression using the explicit multicast operator. The user does not see this translation. Default window policies Only default window policies are supported in the new surface. Other policies can be simulated by using AlterEventLifetime. Before After xs.SnapshotWindow(     WindowInputPolicy.ClipToWindow,     SnapshotWindowInputPolicy.Clip) xs.SnapshotWindow() xs.TumblingWindow(     TimeSpan.FromSeconds(1),     HoppingWindowOutputPolicy.PointAlignToWindowEnd) xs.TumblingWindow(     TimeSpan.FromSeconds(1)) xs.TumblingWindow(     TimeSpan.FromSeconds(1),     HoppingWindowOutputPolicy.ClipToWindowEnd) Not supported … LeftAntiJoin Representation of LASJ as a correlated sub-query in the LINQ surface is problematic as the StreamInsight engine does not support correlated sub-queries (see discussion of SelectMany). The current syntax requires the introduction of an otherwise unsupported ‘IsEmpty()’ operator. As a result, the pattern is not discoverable and implies capabilities not present in the server. The direct representation of LASJ is used instead: Before After from x in xs where     (from y in ys     where x.A > y.B     select y).IsEmpty() select x xs.LeftAntiJoin(ys, (x, y) => x.A > y.B) from x in xs where     (from y in ys     where x.A == y.B     select y).IsEmpty() select x xs.LeftAntiJoin(ys, x => x.A, y => y.B) ApplyWithUnion The ApplyWithUnion methods have been deprecated since their signatures are redundant given the standard SelectMany overloads: Before After xs.GroupBy(x => x.A).ApplyWithUnion(gs => from win in gs.SnapshotWindow() select win.Count()) xs.GroupBy(x => x.A).SelectMany(     gs =>     from win in gs.SnapshotWindow()     select win.Count()) xs.GroupBy(x => x.A).ApplyWithUnion(gs => from win in gs.SnapshotWindow() select win.Count(), r => new { r.Key, Count = r.Payload }) from x in xs group x by x.A into gs from win in gs.SnapshotWindow() select new { gs.Key, Count = win.Count() } Alternate UDO syntax The representation of UDOs in the StreamInsight LINQ dialect confuses cardinalities. Based on the semantics of user-defined operators in StreamInsight, one would expect to construct queries in the following form: from win in xs.SnapshotWindow() from y in MyUdo(win) select y Instead, the UDO proxy method is referenced within a projection, and the (many) results returned by the user code are automatically flattened into a stream: from win in xs.SnapshotWindow() select MyUdo(win) The “many-or-one” confusion is exemplified by the following example that compiles but fails at runtime: from win in xs.SnapshotWindow() select MyUdo(win) + win.Count() The above query must fail because the UDO is in fact returning many values per window while the count aggregate is returning one. Original syntax New alternate syntax from win in xs.SnapshotWindow() select win.UdoProxy(1) from win in xs.SnapshotWindow() from y in win.UserDefinedOperator(() => new Udo(1)) select y -or- from win in xs.SnapshotWindow() from y in win.UdoMacro(1) select y Notice that this formulation also sidesteps the dynamic type pitfalls of the existing “proxy method” approach to UDOs, in which the type of the UDO implementation (TInput, TOuput) and the type of its constructor arguments (TConfig) need to align in a precise and non-obvious way with the argument and return types for the corresponding proxy method. UDSO syntax UDSO currently leverages the DataContractSerializer to clone initial state for logical instances of the user operator. Initial state will instead be described by an expression in the new LINQ surface. Before After xs.Scan(new Udso()) xs.Scan(() => new Udso()) Name changes ShiftEventTime => AlterEventStartTime: The alter event lifetime overload taking a new start time value has been renamed. CountByStartTimeWindow => CountWindow

    Read the article

  • Is the way I'm implementing my genetic algorithm right?

    - by Mhjr
    In my graduation project, I am asked to use a genetic algorithm (any variation of it can be chosen) to generate valid timetables. What I did was make a simple program that generates unique sequences representing genes, the sequence is described below: (sorry if it's mathematically incorrect) The only variable in the sequence is the room element, so basically the program takes a tree that goes like this: [Course] -(contains)-> [Units] -(contains)-> [Offerings] -(contains)-> [Instructors] -(contains)-> [Rooms] Each course can have n units (duplicates). Each unit can have n offerings (lectures,lab session, excercises,...). Each offering has only 1 instructor. Each instructor (or the whole lecture composed from the four elements of the sequence) has multiple rooms. When a timetable is initialized, one of these sequences that differ in rooms will be taken into the timetable, so the difference in genes (sequences) of each timetable will be just the rooms random choice and the difference between chromosomes (timetables) will be time placements of these genes (sequences). My question is, before I proceed in implementing what I described, is it valid? Is the representation used here for chromosomes a permutation representation?

    Read the article

  • What exactly are Link Relation Values?

    - by bckpwrld
    From REST in Practice: Hypermedia and Systems Architecture: For computer-to-computer interactions, we advertise protocol information by embedding links in representations, much as we do with the human Web. To describe a link's purpose, we annotate it. Annotations indicate what the linked resource means to the current resource: “status of your coffee order” “payment” and so on. We call such annotated links hypermedia controls, reflecting their enhanced capabilities over raw URIs. ... link relation values, which describe the roles of linked resources ... Link relation values help consumers understand why they might want to activate a hypermedia control. They do so by indicating the role of the linked resource in the context of the current representation. I interpret the above quotes as saying that Hypermedia control contains both a link to a resource and an annotation describing the role of linked resource in the context of the current representation. And we call this annotation ( which describes the role of linked resource ) a link relation value. Is my assumption correct or does the term link relation value actually describe something different? Thank you

    Read the article

  • Chart Control in ASP.Net 4 – Second Part

    - by sreejukg
      Couple of weeks before, I have written an introduction about the chart control available in .Net framework. In that article, I explained the basic usage of the chart control with a simple example. You can read that article from the url http://weblogs.asp.net/sreejukg/archive/2010/12/31/getting-started-with-chart-control-in-asp-net-4-0.aspx. In this article I am going to demonstrate how one can generate various types of charts that can be generated easily using the ASP.Net chart control. Let us recollect the data sample we were working in the previous sample. The following is the data I used in the previous article. id SaleAmount SalesPerson SaleType SaleDate CompletionStatus (%) 1 1000 Jack Development 2010-01-01 100 2 300 Mills Consultancy 2010-04-14 90 3 4000 Mills Development 2010-05-15 80 4 2500 Mike eMarketting 2010-06-15 40 5 1080 Jack Development 2010-07-15 30 6 6500 Mills Consultancy 2010-08-24 65 In this article I am going to demonstrate various graphical reports generated from this data with the help of chart control. The following are the reports I am going to generate 1. Representation of share of Sales by each Sales person. 2. Representation of share of sales data according to sale type 3. Representation of sales progress over time period I am going to demonstrate how to bind the chart control programmatically. In order to facilitate this, I created an aspx page named “SalesAnalysis.Aspx” to my project. In the page I added the following controls 1. Dropdownlist control – with id ddlAnalysisType, user will use this to choose the type of chart they want to see. 2. A Button control – with id btnSubmit , by clicking this button, the chart based on the dropdownlist selection will be shown to the user 3. A label Control – with id lblMessage, to display the message to the user, initially this will ask the user to select an option and click on the button. 4. Chart control – with id chrtAnalysis, by default, I set visible = false so that during the page load the chart will be hidden to the users. The following is the initial output of the page. Generating chart for salesperson share Now from Visual Studio, I have double clicked on the button; it created the event handler btnSubmit_Click. In the button Submit event handler, I am using a switch case to execute the corresponding SQL statement and bind it to the chart control. The below is the code for generating the sales person share chart using a pie chart. The above code produces the following output The steps for creating the above chart can be summarized as follows. You specify a chart area, then a series and bind the chart to some x and y values. That is it. If you want to control the chart size and position, you can set the properties for the ChartArea.Position element. For e.g. in the previous code, after instantiating the chart area, setting the below code will give you a bigger pie chart. c.Position.Width = 100; c.Position.Height = 100; The width and height values are in percentage. In this case the chart will be generated by utilizing all the width and height of the chart object. See the output updated with the width and height set to 100% each. Generate Chart for sales type share Now for generating the chart according to the sales type, you just need to change the SQL query and x and y values of the chart. The Sql query used is “SELECT SUM(saleAmount) amount, SaleType from SalesData group by SaleType” and the X-Value is amount and Y-Values is SaleType. s.XValueMember = "SaleType"; s.YValueMembers = "amount"; After modifying the above code with these, the following output is generated. Generate Chart for sales progress over time period For generating the progress of sale chart against sales amount / period, line chart is the ideal tool. In order to facilitate the line chart, you can use Chart Type as System.Web.UI.DataVisualization.Charting.SeriesChartType.Line. Also we need to retrieve the amount and sales date from the data source. I have used the following query to facilitate this. “SELECT SaleAmount, SaleDate FROM SalesData” The output for the line chart is as follows Now you have seen how easily you can build various types of charts. Chart control is an excellent one that helps you to bring business intelligence to your applications. What I demonstrated in only a small part of what you can do with the chart control. Refer http://msdn.microsoft.com/en-us/library/dd456632.aspx for further reading. If you want to get the project files in zip format, post your email below. Hope you enjoyed reading this article.

    Read the article

  • SQL SERVER – SSMS: Top Object and Batch Execution Statistics Reports

    - by Pinal Dave
    The month of June till mid of July has been the fever of sports. First, it was Wimbledon Tennis and then the Soccer fever was all over. There is a huge number of fan followers and it is great to see the level at which people sometimes worship these sports. Being an Indian, I cannot forget to mention the India tour of England later part of July. Following these sports and as the events unfold to the finals, there are a number of ways the statisticians can slice and dice the numbers. Cue from soccer I can surely say there is a team performance against another team and then there is individual member fairs against a particular opponent. Such statistics give us a fair idea to how a team in the past or in the recent past has fared against each other, head-to-head stats during World cup and during other neutral venue games. All these statistics are just pointers. In reality, they don’t reflect the calibre of the current team because the individuals who performed in each of these games are totally different (Typical example being the Brazil Vs Germany semi-final match in FIFA 2014). So at times these numbers are misleading. It is worth investigating and get the next level information. Similar to these statistics, SQL Server Management studio is also equipped with a number of reports like a) Object Execution Statistics report and b) Batch Execution Statistics reports. As discussed in the example, the team scorecard is like the Batch Execution statistics and individual stats is like Object Level statistics. The analogy can be taken only this far, trust me there is no correlation between SQL Server functioning and playing sports – It is like I think about diet all the time except while I am eating. Performance – Batch Execution Statistics Let us view the first report which can be invoked from Server Node -> Reports -> Standard Reports -> Performance – Batch Execution Statistics. Most of the values that are displayed in this report come from the DMVs sys.dm_exec_query_stats and sys.dm_exec_sql_text(sql_handle). This report contains 3 distinctive sections as outline below.   Section 1: This is a graphical bar graph representation of Average CPU Time, Average Logical reads and Average Logical Writes for individual batches. The Batch numbers are indicative and the details of individual batch is available in section 3 (detailed below). Section 2: This represents a Pie chart of all the batches by Total CPU Time (%) and Total Logical IO (%) by batches. This graphical representation tells us which batch consumed the highest CPU and IO since the server started, provided plan is available in the cache. Section 3: This is the section where we can find the SQL statements associated with each of the batch Numbers. This also gives us the details of Average CPU / Average Logical Reads and Average Logical Writes in the system for the given batch with object details. Expanding the rows, I will also get the # Executions and # Plans Generated for each of the queries. Performance – Object Execution Statistics The second report worth a look is Object Execution statistics. This is a similar report as the previous but turned on its head by SQL Server Objects. The report has 3 areas to look as above. Section 1 gives the Average CPU, Average IO bar charts for specific objects. The section 2 is a graphical representation of Total CPU by objects and Total Logical IO by objects. The final section details the various objects in detail with the Avg. CPU, IO and other details which are self-explanatory. At a high-level both the reports are based on queries on two DMVs (sys.dm_exec_query_stats and sys.dm_exec_sql_text) and it builds values based on calculations using columns in them: SELECT * FROM    sys.dm_exec_query_stats s1 CROSS APPLY sys.dm_exec_sql_text(sql_handle) AS s2 WHERE   s2.objectid IS NOT NULL AND DB_NAME(s2.dbid) IS NOT NULL ORDER BY  s1.sql_handle; This is one of the simplest form of reports and in future blogs we will look at more complex reports. I truly hope that these reports can give DBAs and developers a hint about what is the possible performance tuning area. As a closing point I must emphasize that all above reports pick up data from the plan cache. If a particular query has consumed a lot of resources earlier, but plan is not available in the cache, none of the above reports would show that bad query. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: SQL, SQL Authority, SQL Query, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL Tagged: SQL Reports

    Read the article

  • Java SWIFT Library

    - by jkl
    I'm looking for a Java library for SWIFT messages. I want to parse SWIFT messages into an object model validate SWIFT messages (including SWIFT network validation rules) build / change SWIFT messages by using an object model Theoretically, I need to support all SWIFT message types. But at the moment I need MT103+, MT199, MT502, MT509, MT515 and MT535. So far I've looked at two libraries AnaSys Message Objects (link text) Datamation SWIFT Message Suite (link text) Both libraries allow to accomplish the tasks mentioned above but in both cases I'm not really happy. AnaSys uses a internal XML representation for all SWIFT messages which you need to know in order to access the fields of a message. And you need to operate on the DOM of the XML representation, there is no way to say "get the contents of field '50K' of the SWIFT message". And the Datamation library seems to have the nicer API but does not find all errors. So does anyone know other SWIFT libraries to use?

    Read the article

  • How to GET a read-only vs editable resource in REST style?

    - by Val
    I'm fairly familiar with REST principles, and have read the relevant dissertation, Wikipedia entry, a bunch of blog posts and StackOverflow questions on the subject, but still haven't found a straightforward answer to a common case: I need to request a resource to display. Depending on the resource's state, I need to render either a read-only or an editable representation. In both cases, I need to GET the resource. How do I construct a URL to get the read-only or editable version? If my user follows a link to GET /resource/<id>, that should suffice to indicate to me that s/he needs the read-only representation. But if I need to server up an editable form, what does that URL look like? GET /resource/<id>/edit is obvious, but it contains a verb in the URL. Changing that to GET /resource/<id>/editable solves that problem, but at a seemingly superficial level. Is that all there is to it -- change verbs to adjectives? If instead I use POST to retrieve the editable version, then how do I distinguish between the POST that initially retrieves it, vs the POST that saves it? My (weak) excuse for using POST would be that retrieving an editable version would cause a change of state on the server: locking the resource. But that only holds if my requirements are to implement such a lock, which is not always the case. PUT fails for the same reason, plus PUT is not enabled by default on the Web servers I'm running, so there are practical reasons not to use it (and DELETE). Note that even in the editable state, I haven't made any changes yet; presumably when I submit the resource to the Web server again, I'd POST it. But to get something that I can later POST, the server has to first serve up a particular representation. I guess another approach would be to have separate resources at the collection level: GET /read-only/resource/<id> and GET /editable/resource/<id> or GET /resource/read-only/<id> and GET /resource/editable/<id> ... but that looks pretty ugly to me. Thoughts?

    Read the article

  • How to make a memory dump in .net?

    - by SDReyes
    How do you obtain a memory dump from a given memory address in the format: Address | Hexadecimal representation | ASCII representation --------------------------------------------------------------------------------------- 0x637132687 | 00 00 00 00 00 00 00 00 45 21 65 78 32 F5 12 6C | ....... ahsnfdas 0x637132703 | 00 00 00 00 00 00 00 00 45 21 65 78 32 F5 12 6C | ....... ahsnfdas 0x637132719 | 00 00 00 00 00 00 00 00 45 21 65 78 32 F5 12 6C | ....... ahsnfdas 0x637132735 | 00 00 00 00 00 00 00 00 45 21 65 78 32 F5 12 6C | ....... ahsnfdas Do you know any API/framework/tool for the work?

    Read the article

  • Code Golf: Seven Segments

    - by LiraNuna
    The challenge The shortest code by character count to generate seven segment display representation of a given hex number. Input Input is made out of digits [0-9] and hex characters in both lower and upper case [a-fA-F] only. There is no need to handle special cases. Output Output will be the seven segment representation of the input, using those ASCII faces: _ _ _ _ _ _ _ _ _ _ _ _ | | | _| _| |_| |_ |_ | |_| |_| |_| |_ | _| |_ |_ |_| | |_ _| | _| |_| | |_| _| | | |_| |_ |_| |_ | Restrictions The use of the following is forbidden: eval, exec, system, figlet, toilet and external libraries. Test cases: Input: deadbeef Output: _ _ _ _ _ _||_ |_| _||_ |_ |_ |_ |_||_ | ||_||_||_ |_ | Input: 4F790D59 Output: _ _ _ _ _ _ |_||_ ||_|| | _||_ |_| || | _||_||_| _| _| Code count includes input/output (i.e full program).

    Read the article

  • Visualizing an AST created with ANTLR (in a .Net environment)

    - by Benjamin Podszun
    Hi there. For a pet project I started to fiddle with ANTLR. After following some tutorials I'm now trying to create the grammar for my very own language and to generate an AST. For now I'm messing around in ANTLRWorks mostly, but now that I have validated that the parse tree seems to be fine I'd like to (iteratively, because I'm still learning and still need to make some decisions regarding the final structure of the tree) create the AST. It seems that antlrworks won't visualize it (or at least not using the "Interpreter" feature, Debug's not working on any of my machines). Bottom line: Is the only way to visualize the AST the manual way, traversing/showing it or printing the tree in string representation to a console? What I'm looking for is a simple way to go from input, grammar - visual AST representation a la the "Interpreter" feature of ANTLRWorks. Any ideas?

    Read the article

  • Android getWifiState to String

    - by ahsteele
    I am attempting to get the string representation of an Android device's current WiFi state. I am using the getWifiState() method of the WiFiManager and am getting an integer returned depending on the current state. This makes total sense as getWifiState() is supposed to return an integer. The method's documentation indicates that the possible return values translate to one of the following constant values 0 WIFI_STATE_DISABLING 1 WIFI_STATE_DISABLED 2 WIFI_STATE_ENABLING 3 WIFI_STATE_ENABLED 4 WIFI_STATE_UNKNOWN Is there an easy way to translate the integer returned from getWiFiState() to a string representation? I've looked at getIntExtra but am unsure of its use.

    Read the article

  • Is that a RESTFUL MVC Web Service?

    - by vsj
    I am aware of Web Services and WCF but I have generic question with services.I have a ASP.NET MVC Application which does some basic functionality. I just have a controller in which I am passing it the records and serializing the information to XML using XML Serializer. Then I return this information to the browser and it displays me the XML i got from the Controller Action. So I get the XML representation of my Class(Database Object) in XML and I am to give the URL of this application to the client and access and pull the information. Is this a Service then? I mean in the end all the Clients need is the Xml representation through services also right? I am not that experienced and probably being very silly but please help me out...if I provide xml this way to the client is that a Service ? Or is there something I need to undersatand here?.

    Read the article

  • How to change handedness of coordinates?

    - by 742
    How to convert from Euler's coordinates E1 = (x1, y1, z1, yaw1, pitch1, roll1) to E2 = (x2, y2, z2, yaw2, pitch2, roll2) where x, y, z are the coordinates of a point and yaw, pitch, roll the direction/orientation of a vector which origin is the point. yaw is around y, pitch around x, roll around z. They are performed in that order. Yaw 0 is normal to the plan xy (opposite to z in E1 and equal to z in E2). E1 uses a right handed space and E2 a left handed space. Both have the same origin, the same direction for y (top) and z (into the screen). They differ by x which is to the left on E1 and to the right on E2. They also differ by their direction of positive rotations. I've a custom type to hold the scalar representation and to convert from and to the equivalent WPF Matrix3d representation.

    Read the article

  • Algorithm for finding symmetries of a tree

    - by Paxinum
    I have n sectors, enumerated 0 to n-1 counterclockwise. The boundaries between these sectors are infinite branches (n of them). The sectors live in the complex plane, and for n even, sector 0 and n/2 are bisected by the real axis, and the sectors are evenly spaced. These branches meet at certain points, called junctions. Each junction is adjacent to a subset of the sectors (at least 3 of them). Specifying the junctions, (in pre-fix order, lets say, starting from junction adjacent to sector 0 and 1), and the distance between the junctions, uniquely describes the tree. Now, given such a representation, how can I see if it is symmetric wrt the real axis? For example, n=6, the tree (0,1,5)(1,2,4,5)(2,3,4) have three junctions on the real line, so it is symmetric wrt the real axis. If the distances between (015) and (1245) is equal to distance from (1245) to (234), this is also symmetric wrt the imaginary axis. The tree (0,1,5)(1,2,5)(2,4,5)(2,3,4) have 4 junctions, and this is never symmetric wrt either imaginary or real axis, but it has 180 degrees rotation symmetry if the distance between the first two and the last two junctions in the representation are equal. Edit: This is actually for my research. I have posted the question at mathoverflow as well, but my days in competition programming tells me that this is more like an IOI task. Code in mathematica would be excellent, but java, python, or any other language readable by a human suffices. Here are some examples (pretend the double edges are single and we have a tree) http://www2.math.su.se/~per/files.php?file=contr_ex_1.pdf http://www2.math.su.se/~per/files.php?file=contr_ex_2.pdf http://www2.math.su.se/~per/files.php?file=contr_ex_5.pdf Example 1 is described as (0,1,4)(1,2,4)(2,3,4)(0,4,5) with distances (2,1,3). Example 2 is described as (0,1,4)(1,2,4)(2,3,4)(0,4,5) with distances (2,1,1). Example 5 is described as (0,1,4,5)(1,2,3,4) with distances (2). So, given the description/representation, I want to find some algorithm to decide if it is symmetric wrt real, imaginary, and rotation 180 degrees. The last example have 180 degree symmetry. (These symmetries corresponds to special kinds of potential in the Schroedinger equation, which has nice properties in quantum mechanics.)

    Read the article

  • How to activate new page on some event in MVVM-WPF?

    - by Naresh Goradara
    Hi, I have a list page which list records in graphical representation. On clicking a some graphical portion or some button-which is added runtime on page- i want to activate new page by passing a some data as a parameter. Eg. I have Category list page, the UI representation is done at runtime. So clicking on some category I want to list its related Product on another page, I am getting its-CategoryID, Now, my problem is activating/displaying new page in MVVM patern in WPF. Just like Response.Redirect in ASP.Net Thanks in advance for your valuable suggestion.

    Read the article

  • How can I remove sensitive data from the debug_backtrace function?

    - by RenderIn
    I am using print_r(debug_backtrace(), true) to retrieve a string representation of the debug backtrace. This works fine, as print_r handles recursion. When I tried to recursively iterate through the debug_backtrace() return array before turning it into a string it ran into recursion and never ended. Is there some simple way I can remove certain sensitive key/value pairs from the backtrace array? Perhaps some way to turn the array to a string using print_r, then back to an array with the recursive locations changed to the string RECURSION, which I could the iterate through. I don't want to execute regular expressions on the string representation if possible.

    Read the article

  • Where are the static methods in gcc's dump file.c.135r.jump

    - by Customizer
    When I run gcc with the parameter -fdump-rtl-jump, I get a dump file with the name file.c.135r.jump, where I can read some information about the intermediate representation of the methods in my C or C++ file. I just recently discovered, that the static methods of a project are missing in this dump file. Do you know, why they are missing in that representation and if there is a possibility to include the static methods in this file, too. Update (some additional information): The test program, I'm using here, is the Hybrid OpenMP MPI Benchmark. Update2: I just reproduced the problem with a serial application, so it has nothing to do with parallel sections.

    Read the article

  • NSStrings, C strings, pathnames and encodings in iPhone

    - by iter
    I am using libxml2 in my iPhone app. I have an NSString that holds the pathname to an XML file. The pathname may include non-ASCII characters. I want to get a C string representation of the NSString for to pass to xmlReadFile(). It appears that cStringUsingEncoding gives me the representation I seek. I am not clear on which encoding to use. I wonder if there is a "default" encoding in iPhone OS that I can use here and ensure that I can roundtrip non-ASCII pathnames.

    Read the article

< Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >