Search Results

Search found 1086 results on 44 pages for 'representation'.

Page 9/44 | < Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >

  • How to calculate the maximum block length in C of a binary number

    - by user1664272
    I want to reiterate the fact that I am not asking for direct code to my problem rather than wanting information on how to reach that solution. I asked a problem earlier about counting specific integers in binary code. Now I would like to ask how one comes about counting the maximum block length within binary code. I honestly just want to know where to get started and what exactly the question means by writing code to figure out the "Maximum block length" of an inputted integers binary representation. Ex: Input 456 Output: 111001000 Number of 1's: 4 Maximum Block Length: ? Here is my code so far for reference if you need to see where I'm coming from. #include <stdio.h> int main(void) { int integer; // number to be entered by user int i, b, n; unsigned int ones; printf("Please type in a decimal integer\n"); // prompt fflush(stdout); scanf("%d", &integer); // read an integer if(integer < 0) { printf("Input value is negative!"); // if integer is less than fflush(stdout); return; // zero, print statement } else{ printf("Binary Representation:\n", integer); fflush(stdout);} //if integer is greater than zero, print statement for(i = 31; i >= 0; --i) //code to convert inputted integer to binary form { b = integer >> i; if(b&1){ printf("1"); fflush(stdout); } else{ printf("0"); fflush(stdout); } } printf("\n"); fflush(stdout); ones = 0; //empty value to store how many 1's are in binary code while(integer) //while loop to count number of 1's within binary code { ++ones; integer &= integer - 1; } printf("Number of 1's in Binary Representation: %d\n", ones); // prints number fflush(stdout); //of ones in binary code printf("Maximum Block Length: \n"); fflush(stdout); printf("\n"); fflush(stdout); return 0; }//end function main

    Read the article

  • What wording in the C++ standard allows static_cast<non-void-type*>(malloc(N)); to work?

    - by ben
    As far as I understand the wording in 5.2.9 Static cast, the only time the result of a void*-to-object-pointer conversion is allowed is when the void* was a result of the inverse conversion in the first place. Throughout the standard there is a bunch of references to the representation of a pointer, and the representation of a void pointer being the same as that of a char pointer, and so on, but it never seems to explicitly say that casting an arbitrary void pointer yields a pointer to the same location in memory, with a different type, much like type-punning is undefined where not punning back to an object's actual type. So while malloc clearly returns the address of suitable memory and so on, there does not seem to be any way to actually make use of it, portably, as far as I have seen.

    Read the article

  • Standard (cross-platform) way for bit manipulation

    - by Kiril Kirov
    As are are different binary representation of the numbers (for example, take big/little endian), is this cross-platform: some_unsigned_type variable = some_number; // set n-th bit, starting from 1, // right-to-left (least significant-to most significant) variable |= ( 1 << ( n - 1 ) ); // clear the same bit: variable &= ~( 1 << ( n - 1 ) ); In other words, does the compiler always take care of the different binary representation of the unsigned numbers, or it's platform-specific? And what if variable is signed integral type (for example, int) and its value is zero positive negative? What does the Standard say about this? P.S. And, yes, I'm interesting in both - C and C++, please don't tell me they are different languages, because I know this :) I can paste real example, if needed, but the post will become too long

    Read the article

  • Nice network diagram editor?

    - by Nicolas Raoul
    Writing a commercial proposal, I want to create a nice graphic showing the clients the architecture I thought of for their IT network, with servers, network connections, firewall, load-balancing, etc. For years I have been using dia, but I am tired of it, the results are not satisfying, very few network elements are available, and each element's graphic representation is really ugly. Question: How to create nice network diagrams? If a better set of elements was available for dia, that would be a solution.

    Read the article

  • WCF – interchangeable data-contract types

    - by nmarun
    In a WSDL based environment, unlike a CLR-world, we pass around the ‘state’ of an object and not the reference of an object. Well firstly, what does ‘state’ mean and does this also mean that we can send a struct where a class is expected (or vice-versa) as long as their ‘state’ is one and the same? Let’s see. So I have an operation contract defined as below: 1: [ServiceContract] 2: public interface ILearnWcfServiceExtend : ILearnWcfService 3: { 4: [OperationContract] 5: Employee SaveEmployee(Employee employee); 6: } 7:  8: [ServiceBehavior] 9: public class LearnWcfService : ILearnWcfServiceExtend 10: { 11: public Employee SaveEmployee(Employee employee) 12: { 13: employee.EmployeeId = 123; 14: return employee; 15: } 16: } Quite simplistic operation there (which translates to ‘absolutely no business value’). Now, the data contract Employee mentioned above is a struct. 1: public struct Employee 2: { 3: public int EmployeeId { get; set; } 4:  5: public string FName { get; set; } 6: } After compilation and consumption of this service, my proxy (in the Reference.cs file) looks like below (I’ve ignored the rest of the details just to avoid unwanted confusion): 1: public partial struct Employee : System.Runtime.Serialization.IExtensibleDataObject, System.ComponentModel.INotifyPropertyChanged I call the service with the code below: 1: private static void CallWcfService() 2: { 3: Employee employee = new Employee { FName = "A" }; 4: Console.WriteLine("IsValueType: {0}", employee.GetType().IsValueType); 5: Console.WriteLine("IsClass: {0}", employee.GetType().IsClass); 6: Console.WriteLine("Before calling the service: {0} - {1}", employee.EmployeeId, employee.FName); 7: employee = LearnWcfServiceClient.SaveEmployee(employee); 8: Console.WriteLine("Return from the service: {0} - {1}", employee.EmployeeId, employee.FName); 9: } The output is: I now change my Employee type from a struct to a class in the proxy class and run the application: 1: public partial class Employee : System.Runtime.Serialization.IExtensibleDataObject, System.ComponentModel.INotifyPropertyChanged { The output this time is: The state of an object implies towards its composition, the properties and the values of these properties and not based on whether it is a reference type (class) or a value type (struct). And as shown above, we’re actually passing an object by its state and not by reference. Continuing on the same topic of ‘type-interchangeability’, WCF treats two data contracts as equivalent if they have the same ‘wire-representation’. We can do so using the DataContract and DataMember attributes’ Name property. 1: [DataContract] 2: public struct Person 3: { 4: [DataMember] 5: public int Id { get; set; } 6:  7: [DataMember] 8: public string FirstName { get; set; } 9: } 10:  11: [DataContract(Name="Person")] 12: public class Employee 13: { 14: [DataMember(Name = "Id")] 15: public int EmployeeId { get; set; } 16:  17: [DataMember(Name="FirstName")] 18: public string FName { get; set; } 19: } I’ve created two data contracts with the exact same wire-representation. Just remember that the names and the types of data members need to match to be considered equivalent. The question then arises as to what gets generated in the proxy class. Despite us declaring two data contracts (Person and Employee), only one gets emitted – Person. This is because we’re saying that the Employee type has the same wire-representation as the Person type. Also that the signature of the SaveEmployee operation gets changed on the proxy side: 1: [System.CodeDom.Compiler.GeneratedCodeAttribute("System.ServiceModel", "4.0.0.0")] 2: [System.ServiceModel.ServiceContractAttribute(ConfigurationName="ServiceProxy.ILearnWcfServiceExtend")] 3: public interface ILearnWcfServiceExtend 4: { 5: [System.ServiceModel.OperationContractAttribute(Action="http://tempuri.org/ILearnWcfServiceExtend/SaveEmployee", ReplyAction="http://tempuri.org/ILearnWcfServiceExtend/SaveEmployeeResponse")] 6: ClientApplication.ServiceProxy.Person SaveEmployee(ClientApplication.ServiceProxy.Person employee); 7: } But, on the service side, the SaveEmployee still accepts and returns an Employee data contract. 1: [ServiceBehavior] 2: public class LearnWcfService : ILearnWcfServiceExtend 3: { 4: public Employee SaveEmployee(Employee employee) 5: { 6: employee.EmployeeId = 123; 7: return employee; 8: } 9: } Despite all these changes, our output remains the same as the last one: This is type-interchangeability at work! Here’s one more thing to ponder about. Our Person type is a struct and Employee type is a class. Then how is it that the Person type got emitted as a ‘class’ in the proxy? It’s worth mentioning that WSDL describes a type called Employee and does not say whether it is a class or a struct (see the SOAP message below): 1: <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 2: xmlns:tem="http://tempuri.org/" 3: xmlns:ser="http://schemas.datacontract.org/2004/07/ServiceApplication"> 4: <soapenv:Header/> 5: <soapenv:Body> 6: <tem:SaveEmployee> 7: <!--Optional:--> 8: <tem:employee> 9: <!--Optional:--> 10: <ser:EmployeeId>?</ser:EmployeeId> 11: <!--Optional:--> 12: <ser:FName>?</ser:FName> 13: </tem:employee> 14: </tem:SaveEmployee> 15: </soapenv:Body> 16: </soapenv:Envelope> There are some differences between how ‘Add Service Reference’ and the svcutil.exe generate the proxy class, but turns out both do some kind of reflection and determine the type of the data contract and emit the code accordingly. So since the Employee type is a class, the proxy ‘Person’ type gets generated as a class. In fact, reflecting on svcutil.exe application, you’ll see that there are a couple of places wherein a flag actually determines a type as a class or a struct. One example is in the ExportISerializableDataContract method in the System.Runtime.Serialization.CodeExporter class. Seems like these flags have a say in deciding whether the type gets emitted as a struct or a class. This behavior is different if you use the WSDL tool though. WSDL tool does not do any kind of reflection of the data contract / serialized type, it emits the type as a class by default. You can check this using the two command lines below:   Note to self: Remember ‘state’ and type-interchangeability when traversing through the WSDL planet!

    Read the article

  • What do you do before you start programming?

    - by SterAllures
    Heya, I'm not sure this question belongs here, it's not so much I problem I'm having with programming but rather a problem of what to do before I start programming. I want a visual representation of what variables I need and what classes have what methods.I know there is UML but I'm not sure if that is the best way, so what do you guys use before you start programming, which method? I don't want to start a flamewar about what is better just what are several approaches?

    Read the article

  • Anatomy of a .NET Assembly - Custom attribute encoding

    - by Simon Cooper
    In my previous post, I covered how field, method, and other types of signatures are encoded in a .NET assembly. Custom attribute signatures differ quite a bit from these, which consequently affects attribute specifications in C#. Custom attribute specifications In C#, you can apply a custom attribute to a type or type member, specifying a constructor as well as the values of fields or properties on the attribute type: public class ExampleAttribute : Attribute { public ExampleAttribute(int ctorArg1, string ctorArg2) { ... } public Type ExampleType { get; set; } } [Example(5, "6", ExampleType = typeof(string))] public class C { ... } How does this specification actually get encoded and stored in an assembly? Specification blob values Custom attribute specification signatures use the same building blocks as other types of signatures; the ELEMENT_TYPE structure. However, they significantly differ from other types of signatures, in that the actual parameter values need to be stored along with type information. There are two types of specification arguments in a signature blob; fixed args and named args. Fixed args are the arguments to the attribute type constructor, named arguments are specified after the constructor arguments to provide a value to a field or property on the constructed attribute type (PropertyName = propValue) Values in an attribute blob are limited to one of the basic types (one of the number types, character, or boolean), a reference to a type, an enum (which, in .NET, has to use one of the integer types as a base representation), or arrays of any of those. Enums and the basic types are easy to store in a blob - you simply store the binary representation. Strings are stored starting with a compressed integer indicating the length of the string, followed by the UTF8 characters. Array values start with an integer indicating the number of elements in the array, then the item values concatentated together. Rather than using a coded token, Type values are stored using a string representing the type name and fully qualified assembly name (for example, MyNs.MyType, MyAssembly, Version=1.0.0.0, Culture=neutral, PublicKeyToken=0123456789abcdef). If the type is in the current assembly or mscorlib then just the type name can be used. This is probably done to prevent direct references between assemblies solely because of attribute specification arguments; assemblies can be loaded in the reflection-only context and attribute arguments still processed, without loading the entire assembly. Fixed and named arguments Each entry in the CustomAttribute metadata table contains a reference to the object the attribute is applied to, the attribute constructor, and the specification blob. The number and type of arguments to the constructor (the fixed args) can be worked out by the method signature referenced by the attribute constructor, and so the fixed args can simply be concatenated together in the blob without any extra type information. Named args are different. These specify the value to assign to a field or property once the attribute type has been constructed. In the CLR, fields and properties can be overloaded just on their type; different fields and properties can have the same name. Therefore, to uniquely identify a field or property you need: Whether it's a field or property (indicated using byte values 0x53 and 0x54, respectively) The field or property type The field or property name After the fixed arg values is a 2-byte number specifying the number of named args in the blob. Each named argument has the above information concatenated together, mostly using the basic ELEMENT_TYPE values, in the same way as a method or field signature. A Type argument is represented using the byte 0x50, and an enum argument is represented using the byte 0x55 followed by a string specifying the name and assembly of the enum type. The named argument property information is followed by the argument value, using the same encoding as fixed args. Boxed objects This would be all very well, were it not for object and object[]. Arguments and properties of type object allow a value of any allowed argument type to be specified. As a result, more information needs to be specified in the blob to interpret the argument bytes as the correct type. So, the argument value is simple prepended with the type of the value by specifying the ELEMENT_TYPE or name of the enum the value represents. For named arguments, a field or property of type object is represented using the byte 0x51, with the actual type specified in the argument value. Some examples... All property signatures start with the 2-byte value 0x0001. Similar to my previous post in the series, names in capitals correspond to a particular byte value in the ELEMENT_TYPE structure. For strings, I'll simply give the string value, rather than the length and UTF8 encoding in the actual blob. I'll be using the following enum and attribute types to demonstrate specification encodings: class AttrAttribute : Attribute { public AttrAttribute() {} public AttrAttribute(Type[] tArray) {} public AttrAttribute(object o) {} public AttrAttribute(MyEnum e) {} public AttrAttribute(ushort x, int y) {} public AttrAttribute(string str, Type type1, Type type2) {} public int Prop1 { get; set; } public object Prop2 { get; set; } public object[] ObjectArray; } enum MyEnum : int { Val1 = 1, Val2 = 2 } Now, some examples: Here, the the specification binds to the (ushort, int) attribute constructor, with fixed args only. The specification blob starts off with a prolog, followed by the two constructor arguments, then the number of named arguments (zero): [Attr(42, 84)] 0x0001 0x002a 0x00000054 0x0000 An example of string and type encoding: [Attr("MyString", typeof(Array), typeof(System.Windows.Forms.Form))] 0x0001 "MyString" "System.Array" "System.Windows.Forms.Form, System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" 0x0000 As you can see, the full assembly specification of a type is only needed if the type isn't in the current assembly or mscorlib. Note, however, that the C# compiler currently chooses to fully-qualify mscorlib types anyway. An object argument (this binds to the object attribute constructor), and two named arguments (a null string is represented by 0xff and the empty string by 0x00) [Attr((ushort)40, Prop1 = 12, Prop2 = "")] 0x0001 U2 0x0028 0x0002 0x54 I4 "Prop1" 0x0000000c 0x54 0x51 "Prop2" STRING 0x00 Right, more complicated now. A type array as a fixed argument: [Attr(new[] { typeof(string), typeof(object) })] 0x0001 0x00000002 // the number of elements "System.String" "System.Object" 0x0000 An enum value, which is simply represented using the underlying value. The CLR works out that it's an enum using information in the attribute constructor signature: [Attr(MyEnum.Val1)] 0x0001 0x00000001 0x0000 And finally, a null array, and an object array as a named argument: [Attr((Type[])null, ObjectArray = new object[] { (byte)2, typeof(decimal), null, MyEnum.Val2 })] 0x0001 0xffffffff 0x0001 0x53 SZARRAY 0x51 "ObjectArray" 0x00000004 U1 0x02 0x50 "System.Decimal" STRING 0xff 0x55 "MyEnum" 0x00000002 As you'll notice, a null object is encoded as a null string value, and a null array is represented using a length of -1 (0xffffffff). How does this affect C#? So, we can now explain why the limits on attribute arguments are so strict in C#. Attribute specification blobs are limited to basic numbers, enums, types, and arrays. As you can see, this is because the raw CLR encoding can only accommodate those types. Special byte patterns have to be used to indicate object, string, Type, or enum values in named arguments; you can't specify an arbitary object type, as there isn't a generalised way of encoding the resulting value in the specification blob. In particular, decimal values can't be encoded, as it isn't a 'built-in' CLR type that has a native representation (you'll notice that decimal constants in C# programs are compiled as several integer arguments to DecimalConstantAttribute). Jagged arrays also aren't natively supported, although you can get around it by using an array as a value to an object argument: [Attr(new object[] { new object[] { new Type[] { typeof(string) } }, 42 })] Finally... Phew! That was a bit longer than I thought it would be. Custom attribute encodings are complicated! Hopefully this series has been an informative look at what exactly goes on inside a .NET assembly. In the next blog posts, I'll be carrying on with the 'Inside Red Gate' series.

    Read the article

  • Les nombres flottants et leurs pièges, un article de Bruce Dawson traduit par Léo Gaspard

    Une partie des erreurs que l'on retrouve régulièrement en C++ vient d'une connaissance superficielle de la manipulation des nombres réels en informatique. Dans la série d'articles "flotting point", Bruce Dawson aborde en détail les problématiques liées à la représentation des nombres à virgule flottante. Ce premier article pose les bases et explore le monde étrange et merveilleux des mathématiques à virgule flottante. Les nombres flottants et leurs pièges Quels sont les principales difficultés que vous avez déjà rencontrées en manipulant les nombres à virgule flottant ?

    Read the article

  • Nice network diagram editor?

    - by Nicolas Raoul
    Writing a commercial proposal, I want to create a nice graphic showing the clients the architecture I thought of for their IT network, with servers, network connections, firewall, load-balancing, etc. For years I have been using dia, but I am tired of it because: the results are not satisfying, very few network elements are available, and each element's graphic representation is really ugly. Question: How to create nice network diagrams? If a better set of elements was available for dia, that would be a solution.

    Read the article

  • Are factors such as Intellisense support and strong typing enough to justify the use of an 'Anaemic Domain Model'?

    - by David Osborne
    It's easy to accept that objects should be used in all layers except a layer nominated as a data layer. However, it's just as easy to end-up with an 'anaemic domain model' that is just an object representation of data with no real functionality ( http://martinfowler.com/bliki/AnemicDomainModel.html ). However, using objects in this fashion brings the benefit of factors such as Intellisense support, strong typing, readability, discoverability, etc. Are these factors strong arguments for an otherwise, anaemic domain model?

    Read the article

  • Token based Authentication and Claims for Restful Services

    - by Your DisplayName here!
    WIF as it exists today is optimized for web applications (passive/WS-Federation) and SOAP based services (active/WS-Trust). While there is limited support for WCF WebServiceHost based services (for standard credential types like Windows and Basic), there is no ready to use plumbing for RESTful services that do authentication based on tokens. This is not an oversight from the WIF team, but the REST services security world is currently rapidly changing – and that’s by design. There are a number of intermediate solutions, emerging protocols and token types, as well as some already deprecated ones. So it didn’t make sense to bake that into the core feature set of WIF. But after all, the F in WIF stands for Foundation. So just like the WIF APIs integrate tokens and claims into other hosts, this is also (easily) possible with RESTful services. Here’s how. HTTP Services and Authentication Unlike SOAP services, in the REST world there is no (over) specified security framework like WS-Security. Instead standard HTTP means are used to transmit credentials and SSL is used to secure the transport and data in transit. For most cases the HTTP Authorize header is used to transmit the security token (this can be as simple as a username/password up to issued tokens of some sort). The Authorize header consists of the actual credential (consider this opaque from a transport perspective) as well as a scheme. The scheme is some string that gives the service a hint what type of credential was used (e.g. Basic for basic authentication credentials). HTTP also includes a way to advertise the right credential type back to the client, for this the WWW-Authenticate response header is used. So for token based authentication, the service would simply need to read the incoming Authorization header, extract the token, parse and validate it. After the token has been validated, you also typically want some sort of client identity representation based on the incoming token. This is regardless of how technology-wise the actual service was built. In ASP.NET (MVC) you could use an HttpModule or an ActionFilter. In (todays) WCF, you would use the ServiceAuthorizationManager infrastructure. The nice thing about using WCF’ native extensibility points is that you get self-hosting for free. This is where WIF comes into play. WIF has ready to use infrastructure built-in that just need to be plugged into the corresponding hosting environment: Representation of identity based on claims. This is a very natural way of translating a security token (and again I mean this in the widest sense – could be also a username/password) into something our applications can work with. Infrastructure to convert tokens into claims (called security token handler) Claims transformation Claims-based authorization So much for the theory. In the next post I will show you how to implement that for WCF – including full source code and samples. (Wanna learn more about federation, WIF, claims, tokens etc.? Click here.)

    Read the article

  • 5 Key Factors That Make Your Logo Design Great

    Everything your business stands for can simply be conveyed by your company logo. It';s basically the visual representation of your unique selling proposition, key benefits, and products or services of... [Author: Leo Blanco - Web Design and Development - April 03, 2010]

    Read the article

  • Virtual Grocery Store

    - by David Dorf
    Because South Korean's are so busy, Tesco decided that its Homeplus grocery chain should offer a virtual alternative in subways.  As you can see in the video below, shoppers passing through a subway station can see a virtual representation of the store and scan items with their mobile phones.  This builds a shopping list which is delivered to their homes later that day. This is a very cool example of leveraging technology to offer a shopping experience that's different from bricks and clicks.

    Read the article

  • What Makes an Interesting Custom Logo Design

    As we all know that a custom logo design is an essential and crucial part of an effective brand identity and marketing strategy. Since it acts like the visual representation of the brand or the busin... [Author: Emily Matthew - Web Design and Development - March 31, 2010]

    Read the article

  • Need help identifing what resources (eg. In MIT OpenCourseWare) can help me prepare for a test [closed]

    - by jiewmeng
    I am entering uni soon. I can sit for a placement test to see if I elegible for exemptions. The details are http://www.comp.nus.edu.sg/undergraduates/TestScope11_12.html Or CS2100 Computer Organisation (please click title) The objective of this module is to familiarise students with the fundamentals of computing devices. Through this module students will understand the basics of data representation, and how the various parts of a computer work, separately and with each other. This allows students to understand the issues in computing devices, and how these issues affect the implementation of solutions. Topics covered include data representation systems, combinational and sequential circuit design techniques, assembly language, processor execution cycles, pipelining, memory hierarchy and input/output systems. Recommended Textbooks Digital Design: Principles and Practices [DDPP] by John F. Wakerly, Prentice-Hall. ISBN 0-13-324500-4. Computer Organizations and Design (The hardware/software interface) by David A. Patterson and John L. Hennessy. CS2105 Introduction to Computer Networks (please click title) This course aims to provide a broad introduction to computer networks and some appreciations of network application programming. It covers a range of topics including basic data communication and computer network concepts, protocols, networked computing concepts and principles, network applications development and network security. The emphasis of teaching is on the working principles and application of computer networks. As an integral part of the course, tutorials and practical assignments enforcing learning will also be given. These assignments provide an early exposure in network application programming and they should be able to complete by using personal computers and school's network facilities. Topics included: An overview of computer networks and the Internet Basic data communications Application layer Transport layer Network layer and routing Link layer and local area networks Recommended Textbook James F. Kurose & Keith W. Ross, Computer networking: A top-down approach featuring internet, Addison Wesley, 2001 I am wondering what resources eg. MIT OpenCourseWare or other universities resources are available to help he perpare for these particular modubles. I am thinking does the Networking one look like CCNA? The computer oragization. Its like electronics, assembly etc? I learnt some electronics in Poly but looking at the sample papers, uni looks very different... I have about 1 month to prepare if I want any chance of exempting from these modules :) any help?

    Read the article

  • Connect Digest : 2012-07-06

    - by AaronBertrand
    I've filed a few Connect items recently that I think are important. In #752210 , I complain that the documentation for DDL triggers suggests that they can prevent certain DDL from being run, which is not the case at all. http://connect.microsoft.com/SQLServer/feedback/details/752210/doc-ddl-trigger-topic-suggests-that-rollbacks-run-before-action In #745796 , I complain that scripting datetime data in Management Studio yields output that contains a binary representation instead of a human-readable...(read more)

    Read the article

  • Is there a library that handles hexagon tiled 2D maps?

    - by Pete Mancini
    It would represent a map that is semi-square of arbitrary size. It would have a simple system for representation of the map coordinates such as 0101 (first column, 1st hex). I'd want the map to be able to tell me the distance between two points, and what other hexes lay between those two points as a list or array. I don't care as much about the language but c# or python would be ideal. Does one exist?

    Read the article

  • Does MVC apply only to web

    - by Deeptechtons
    It is almost and instantaneous whenever I talk to developers about Model View Controller (MVC) they say you make a request to a url the server builds a entity (MODEL) and provides you with visual representation of that model. So does this mean MVC is only for the web or have I been meeting people who are just developers who employ MVC for writing web applications? Are there usages for MVC on desktop style applications? I for one am new to paradigm and would like to know of any super-set to MVC

    Read the article

  • There is Hidden Value in a Nofollow Link

    Not to be quickly discounted, every carefully planned link building campaign should have a fair representation; of nofollow links. Although they do not pass on any link power, website credibility or result influence, they do work tirelessly to associate your website; with carefully selected anchor text.

    Read the article

  • File system with chained clusters

    - by Maki Maki
    I'm trying to create school file system with partitions on disks, every partition has its cluster for her representation. typedef unsigned long ClusterNo; const unsigned long ClusterSize = 2048; int x, y ;//x ,y are entries for two-chained lists of clusters if (endOfFile<maxsize// { ... { pointer = KernelFS::searchFreeCluster(partitionPointer->letter) " How can I initialize the beginning for two clusters, their pointers to be 32 bits?

    Read the article

  • Connect Digest : 2012-07-06

    - by AaronBertrand
    I've filed a few Connect items recently that I think are important. In #752210 , I complain that the documentation for DDL triggers suggests that they can prevent certain DDL from being run, which is not the case at all. http://connect.microsoft.com/SQLServer/feedback/details/752210/doc-ddl-trigger-topic-suggests-that-rollbacks-run-before-action In #745796 , I complain that scripting datetime data in Management Studio yields output that contains a binary representation instead of a human-readable...(read more)

    Read the article

  • When to use Euler vs Axis angles vs Quaternions?

    - by manning18
    I understand the theory behind each but I was wondering if people could share their experiences in when one would use one over the other For instance, if you were implementing a chase camera, a FPS-style mouse look or writing some kinematic routine, what would be the factors you consider to go with one type over the other and when might you need to convert from one form of representation to the other? Are there certain things that only one system can do that the others can't? (eg smooth interpolation with quaternions)

    Read the article

  • Java chute sur les indices Tiobe et PyPL, Developpez.com sacre C#, tandis que GitHub couronne JavaScript

    Java chute sur les indices Tiobe et PyPl Developpez.com sacre C#, tandis que GitHub couronne JavaScriptLes indices de popularité des langages de programmation Tiobe et PyPL pour le mois de novembre sont disponibles avec leur lot de surprises.Très souvent critiqués par nos lecteurs parce qu'ils ne fournissent pas une représentation proche de la réalité, nous avons trouvé opportun d'ajouter à ces indices le classement sur GitHub et les résultats du dernier sondage sur Developpez.com (lancé en juin...

    Read the article

< Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >