Search Results

Search found 839 results on 34 pages for 'vertex'.

Page 8/34 | < Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >

  • Find unique vertices from a 'triangle-soup'

    - by sum1stolemyname
    I am building a CAD-file converter on top of two libraries (Opencascade and DWF Toolkit). However, my question is plattform agnostic: Given: I have generated a mesh as a list of triangular faces form a model constructed through my application. Each Triangle is defined through three vertexes, which consist of three floats (x, y & z coordinate). Since the triangles form a mesh, most of the vertices are shared by more then one triangle. Goal: I need to find the list of unique vertices, and to generate an array of faces consisting of tuples of three indices in this list. What i want to do is this: //step 1: build a list of unique vertices for each triangle for each vertex in triangle if not vertex in listOfVertices Add vertex to listOfVertices //step 2: build a list of faces for each triangle for each vertex in triangle Get Vertex Index From listOfvertices AddToMap(vertex Index, triangle) While I do have an implementation which does this, step1 (the generation of the list of unique vertices) is really slow in the order of O(n!), since each vertex is compared to all vertices already in the list. I thought "Hey, lets build a hashmap of my vertices' components using std::map, that ought to speed things up!", only to find that generating a unique key from three floating point values is not a trivial task. Here, the experts of stackoverflow come into play: I need some kind of hash-function which works on 3 floats, or any other function generating a unique value from a 3d-vertex position.

    Read the article

  • create graph using adjacency list

    - by sum1needhelp
    #include<iostream> using namespace std; class TCSGraph{ public: void addVertex(int vertex); void display(); TCSGraph(){ head = NULL; } ~TCSGraph(); private: struct ListNode { string name; struct ListNode *next; }; ListNode *head; } void TCSGraph::addVertex(int vertex){ ListNode *newNode; ListNode *nodePtr; string vName; for(int i = 0; i < vertex ; i++ ){ cout << "what is the name of the vertex"<< endl; cin >> vName; newNode = new ListNode; newNode->name = vName; if (!head) head = newNode; else nodePtr = head; while(nodePtr->next) nodePtr = nodePtr->next; nodePtr->next = newNode; } } void TCSGraph::display(){ ListNode *nodePtr; nodePtr = head; while(nodePtr){ cout << nodePtr->name<< endl; nodePtr = nodePtr->next; } } int main(){ int vertex; cout << " how many vertex u wan to add" << endl; cin >> vertex; TCSGraph g; g.addVertex(vertex); g.display(); return 0; }

    Read the article

  • Implementing list position locator in C++?

    - by jfrazier
    I am writing a basic Graph API in C++ (I know libraries already exist, but I am doing it for the practice/experience). The structure is basically that of an adjacency list representation. So there are Vertex objects and Edge objects, and the Graph class contains: list<Vertex *> vertexList list<Edge *> edgeList Each Edge object has two Vertex* members representing its endpoints, and each Vertex object has a list of Edge* members representing the edges incident to the Vertex. All this is quite standard, but here is my problem. I want to be able to implement deletion of Edges and Vertices in constant time, so for example each Vertex object should have a Locator member that points to the position of its Vertex* in the vertexList. The way I first implemented this was by saving a list::iterator, as follows: vertexList.push_back(v); v->locator = --vertexList.end(); Then if I need to delete this vertex later, then rather than searching the whole vertexList for its pointer, I can call: vertexList.erase(v->locator); This works fine at first, but it seems that if enough changes (deletions) are made to the list, the iterators will become out-of-date and I get all sorts of iterator errors at runtime. This seems strange for a linked list, because it doesn't seem like you should ever need to re-allocate the remaining members of the list after deletions, but maybe the STL does this to optimize by keeping memory somewhat contiguous? In any case, I would appreciate it if anyone has any insight as to why this happens. Is there a standard way in C++ to implement a locator that will keep track of an element's position in a list without becoming obsolete? Much thanks, Jeff

    Read the article

  • Light following me around the room. Something is wrong with my shader!

    - by Robinson
    I'm trying to do a spot (Blinn) light, with falloff and attenuation. It seems to be working OK except I have a bit of a space problem. That is, whenever I move the camera the light moves to maintain the same relative position, rather than changing with the camera. This results in the light moving around, i.e. not always falling on the same surfaces. It's as if there's a flashlight attached to the camera. I'm transforming the lights beforehand into view space, so Light_Position and Light_Direction are already in eye space (I hope!). I made a little movie of what it looks like here: My camera rotating around a point inside a box. The light is fixed in the centre up and its "look at" point in a fixed position in front of it. As you can see, as the camera rotates around the origin (always looking at the centre), so don't think the box is rotating (!). The lighting follows it around. To start, some code. This is how I'm transforming the light into view space (it gets passed into the shader already in view space): // Compute eye-space light position. Math::Vector3d eyeSpacePosition = MyCamera->ViewMatrix() * MyLightPosition; MyShaderVariables->Set(MyLightPositionIndex, eyeSpacePosition); // Compute eye-space light direction vector. Math::Vector3d eyeSpaceDirection = Math::Unit(MyLightLookAt - MyLightPosition); MyCamera->ViewMatrixInverseTranspose().TransformNormal(eyeSpaceDirection); MyShaderVariables->Set(MyLightDirectionIndex, eyeSpaceDirection); Can anyone give me a clue as to what I'm doing wrong here? I think the light should remain looking at a fixed point on the box, regardless of the camera orientation. Here are the vertex and pixel shaders: /////////////////////////////////////////////////// // Vertex Shader /////////////////////////////////////////////////// #version 420 /////////////////////////////////////////////////// // Uniform Buffer Structures /////////////////////////////////////////////////// // Camera. layout (std140) uniform Camera { mat4 Camera_View; mat4 Camera_ViewInverseTranspose; mat4 Camera_Projection; }; // Matrices per model. layout (std140) uniform Model { mat4 Model_World; mat4 Model_WorldView; mat4 Model_WorldViewInverseTranspose; mat4 Model_WorldViewProjection; }; // Spotlight. layout (std140) uniform OmniLight { float Light_Intensity; vec3 Light_Position; vec3 Light_Direction; vec4 Light_Ambient_Colour; vec4 Light_Diffuse_Colour; vec4 Light_Specular_Colour; float Light_Attenuation_Min; float Light_Attenuation_Max; float Light_Cone_Min; float Light_Cone_Max; }; /////////////////////////////////////////////////// // Streams (per vertex) /////////////////////////////////////////////////// layout(location = 0) in vec3 attrib_Position; layout(location = 1) in vec3 attrib_Normal; layout(location = 2) in vec3 attrib_Tangent; layout(location = 3) in vec3 attrib_BiNormal; layout(location = 4) in vec2 attrib_Texture; /////////////////////////////////////////////////// // Output streams (per vertex) /////////////////////////////////////////////////// out vec3 attrib_Fragment_Normal; out vec4 attrib_Fragment_Position; out vec2 attrib_Fragment_Texture; out vec3 attrib_Fragment_Light; out vec3 attrib_Fragment_Eye; /////////////////////////////////////////////////// // Main /////////////////////////////////////////////////// void main() { // Transform normal into eye space attrib_Fragment_Normal = (Model_WorldViewInverseTranspose * vec4(attrib_Normal, 0.0)).xyz; // Transform vertex into eye space (world * view * vertex = eye) vec4 position = Model_WorldView * vec4(attrib_Position, 1.0); // Compute vector from eye space vertex to light (light is in eye space already) attrib_Fragment_Light = Light_Position - position.xyz; // Compute vector from the vertex to the eye (which is now at the origin). attrib_Fragment_Eye = -position.xyz; // Output texture coord. attrib_Fragment_Texture = attrib_Texture; // Compute vertex position by applying camera projection. gl_Position = Camera_Projection * position; } and the pixel shader: /////////////////////////////////////////////////// // Pixel Shader /////////////////////////////////////////////////// #version 420 /////////////////////////////////////////////////// // Samplers /////////////////////////////////////////////////// uniform sampler2D Map_Diffuse; /////////////////////////////////////////////////// // Global Uniforms /////////////////////////////////////////////////// // Material. layout (std140) uniform Material { vec4 Material_Ambient_Colour; vec4 Material_Diffuse_Colour; vec4 Material_Specular_Colour; vec4 Material_Emissive_Colour; float Material_Shininess; float Material_Strength; }; // Spotlight. layout (std140) uniform OmniLight { float Light_Intensity; vec3 Light_Position; vec3 Light_Direction; vec4 Light_Ambient_Colour; vec4 Light_Diffuse_Colour; vec4 Light_Specular_Colour; float Light_Attenuation_Min; float Light_Attenuation_Max; float Light_Cone_Min; float Light_Cone_Max; }; /////////////////////////////////////////////////// // Input streams (per vertex) /////////////////////////////////////////////////// in vec3 attrib_Fragment_Normal; in vec3 attrib_Fragment_Position; in vec2 attrib_Fragment_Texture; in vec3 attrib_Fragment_Light; in vec3 attrib_Fragment_Eye; /////////////////////////////////////////////////// // Result /////////////////////////////////////////////////// out vec4 Out_Colour; /////////////////////////////////////////////////// // Main /////////////////////////////////////////////////// void main(void) { // Compute N dot L. vec3 N = normalize(attrib_Fragment_Normal); vec3 L = normalize(attrib_Fragment_Light); vec3 E = normalize(attrib_Fragment_Eye); vec3 H = normalize(L + E); float NdotL = clamp(dot(L,N), 0.0, 1.0); float NdotH = clamp(dot(N,H), 0.0, 1.0); // Compute ambient term. vec4 ambient = Material_Ambient_Colour * Light_Ambient_Colour; // Diffuse. vec4 diffuse = texture2D(Map_Diffuse, attrib_Fragment_Texture) * Light_Diffuse_Colour * Material_Diffuse_Colour * NdotL; // Specular. float specularIntensity = pow(NdotH, Material_Shininess) * Material_Strength; vec4 specular = Light_Specular_Colour * Material_Specular_Colour * specularIntensity; // Light attenuation (so we don't have to use 1 - x, we step between Max and Min). float d = length(-attrib_Fragment_Light); float attenuation = smoothstep(Light_Attenuation_Max, Light_Attenuation_Min, d); // Adjust attenuation based on light cone. float LdotS = dot(-L, Light_Direction), CosI = Light_Cone_Min - Light_Cone_Max; attenuation *= clamp((LdotS - Light_Cone_Max) / CosI, 0.0, 1.0); // Final colour. Out_Colour = (ambient + diffuse + specular) * Light_Intensity * attenuation; }

    Read the article

  • Boggling Direct3D9 dynamic vertex buffer Lock crash/post-lock failure on Intel GMA X3100.

    - by nj
    Hi, For starters I'm a fairly seasoned graphics programmer but as wel all know, everyone makes mistakes. Unfortunately the codebase is a bit too large to start throwing sensible snippets here and re-creating the whole situation in an isolated CPP/codebase is too tall an order -- for which I am sorry, do not have the time. I'll do my best to explain. B.t.w, I will of course supply specific pieces of code if someone wonders how I'm handling this-or-that! As with all resources in the D3DPOOL_DEFAULT pool, when the device context is taken away from you you'll sooner or later will have to reset your resources. I've built a mechanism to handle this for all relevant resources that's been working for years; but that fact nothingwithstanding I've of course checked, asserted and doubted any assumption since this bug came to light. What happens is as follows: I have a rather large dynamic vertex buffer, exact size 18874368 bytes. This buffer is locked (and discarded fully using the D3DLOCK_DISCARD flag) each frame prior to generating dynamic geometry (isosurface-related, f.y.i) to it. This works fine, until, of course, I start to reset. It might take 1 time, it might take 2 or it might take 5 resets to set off a bug that causes an access violation either on the pointer returned by the Lock() operation on the renewed resource or a plain crash -- regarding a somewhat similar address, but without the offset that it has tacked on to it in the first case because in that case we're somewhere halfway writing -- iside the D3D9 dll Lock() call. I've tested this on other hardware, upgraded my GMA X3100 drivers (using a MacBook with BootCamp) to the latest ones, but I can't reproduce it on any other machine and I'm at a loss about what's wrong here. I have tried to reproduce a similar situation with a similar buffer (I've got a large scratch pad of the same type I filled with quads) and beyond a certain amount of bytes it started to behave likewise. I'm not asking for a solution here but I'm very interested if there are other developers here who have battled with the same foe or maybe some who can point me in some insightful direction, maybe ask some questions that might shed a light on what I may or may not be overlooking. Another interesting artifact is that the vertex buffer starts to bug if I supply both D3DLOCK_DISCARD and D3DLOCK_NOOVERWRITE together which, even though not very logical (you're not going to overwrite if you've just discarded all), gives graphics glitches. Thanks and any corrections are more than welcome. Niels p.s - A friend of mine raised the valid point that it is a huge buffer for onboard video RAM and it's being at least double or triple buffered internally due to it's dynamic nature. On the other hand, the debug output (D3D9 debug DLL + max. warning output) remains silent. p.s 2 - Had it tested on more machines and still works -- it's probably a matter of circumstance: the huge dynamic, internally double/trippled buffered buffer, not a lot of memory and drivers that don't complain when they should.. Unless someone has a better suggestion; I'd still love to hear it :)

    Read the article

  • Prim's MST algorithm implementation with Java

    - by user1290164
    I'm trying to write a program that'll find the MST of a given undirected weighted graph with Kruskal's and Prim's algorithms. I've successfully implemented Kruskal's algorithm in the program, but I'm having trouble with Prim's. To be more precise, I can't figure out how to actually build the Prim function so that it'll iterate through all the vertices in the graph. I'm getting some IndexOutOfBoundsException errors during program execution. I'm not sure how much information is needed for others to get the idea of what I have done so far, but hopefully there won't be too much useless information. This is what I have so far: I have a Graph, Edge and a Vertex class. Vertex class mostly just an information storage that contains the name (number) of the vertex. Edge class can create a new Edge that has gets parameters (Vertex start, Vertex end, int edgeWeight). The class has methods to return the usual info like start vertex, end vertex and the weight. Graph class reads data from a text file and adds new Edges to an ArrayList. The text file also tells us how many vertecis the graph has, and that gets stored too. In the Graph class, I have a Prim() -method that's supposed to calculate the MST: public ArrayList<Edge> Prim(Graph G) { ArrayList<Edge> edges = G.graph; // Copies the ArrayList with all edges in it. ArrayList<Edge> MST = new ArrayList<Edge>(); Random rnd = new Random(); Vertex startingVertex = edges.get(rnd.nextInt(G.returnVertexCount())).returnStartingVertex(); // This is just to randomize the starting vertex. // This is supposed to be the main loop to find the MST, but this is probably horribly wrong.. while (MST.size() < returnVertexCount()) { Edge e = findClosestNeighbour(startingVertex); MST.add(e); visited.add(e.returnStartingVertex()); visited.add(e.returnEndingVertex()); edges.remove(e); } return MST; } The method findClosesNeighbour() looks like this: public Edge findClosestNeighbour(Vertex v) { ArrayList<Edge> neighbours = new ArrayList<Edge>(); ArrayList<Edge> edges = graph; for (int i = 0; i < edges.size() -1; ++i) { if (edges.get(i).endPoint() == s.returnVertexID() && !visited(edges.get(i).returnEndingVertex())) { neighbours.add(edges.get(i)); } } return neighbours.get(0); // This is the minimum weight edge in the list. } ArrayList<Vertex> visited and ArrayList<Edges> graph get constructed when creating a new graph. Visited() -method is simply a boolean check to see if ArrayList visited contains the Vertex we're thinking about moving to. I tested the findClosestNeighbour() independantly and it seemed to be working but if someone finds something wrong with it then that feedback is welcome also. Mainly though as I mentioned my problem is with actually building the main loop in the Prim() -method, and if there's any additional info needed I'm happy to provide it. Thank you. Edit: To clarify what my train of thought with the Prim() method is. What I want to do is first randomize the starting point in the graph. After that, I will find the closest neighbor to that starting point. Then we'll add the edge connecting those two points to the MST, and also add the vertices to the visited list for checking later, so that we won't form any loops in the graph. Here's the error that gets thrown: Exception in thread "main" java.lang.IndexOutOfBoundsException: Index: 0, Size: 0 at java.util.ArrayList.rangeCheck(Unknown Source) at java.util.ArrayList.get(Unknown Source) at Graph.findClosestNeighbour(graph.java:203) at Graph.Prim(graph.java:179) at MST.main(MST.java:49) Line 203: return neighbour.get(0); in findClosestNeighbour() Line 179: Edge e = findClosestNeighbour(startingVertex); in Prim()

    Read the article

  • OpenGL index buffer object with additional data

    - by muksie
    I have a large set of lines, which I render from a vertex buffer object using glMultiDrawArrays(GL_LINE_STRIP, ...); This works perfectly well. Now I have lots of vertex pairs which I also have to visualize. Every pair consists of two vertices on two different lines, and the distance between the vertices is small. However, I like to have the ability to draw a line between all vertex pairs with a distance less than a certain value. What I like to have is something like a buffer object with the following structure: i1, j1, r1, i2, j2, r2, i3, j3, r3, ... where the i's and j's are indices pointing to vertices and the r's are the distances between those vertices. Thus every vertex pair is stored as a (i, j, r) tuple. Then I like to have a (vertex) shader which only draws the vertex pairs with r < SOME_VALUE as a line. So my question is, what is the best way to achieve this?

    Read the article

  • Graph Tour with Uniform Cost Search in Java

    - by user324817
    Hi. I'm new to this site, so hopefully you guys don't mind helping a nub. Anyway, I've been asked to write code to find the shortest cost of a graph tour on a particular graph, whose details are read in from file. The graph is shown below: http://img339.imageshack.us/img339/8907/graphr.jpg This is for an Artificial Intelligence class, so I'm expected to use a decent enough search method (brute force has been allowed, but not for full marks). I've been reading, and I think that what I'm looking for is an A* search with constant heuristic value, which I believe is a uniform cost search. I'm having trouble wrapping my head around how to apply this in Java. Basically, here's what I have: Vertex class - ArrayList<Edge> adjacencies; String name; int costToThis; Edge class - final Vertex target; public final int weight; Now at the moment, I'm struggling to work out how to apply the uniform cost notion to my desired goal path. Basically I have to start on a particular node, visit all other nodes, and end on that same node, with the lowest cost. As I understand it, I could use a PriorityQueue to store all of my travelled paths, but I can't wrap my head around how I show the goal state as the starting node with all other nodes visited. Here's what I have so far, which is pretty far off the mark: public static void visitNode(Vertex vertex) { ArrayList<Edge> firstEdges = vertex.getAdjacencies(); for(Edge e : firstEdges) { e.target.costToThis = e.weight + vertex.costToThis; queue.add(e.target); } Vertex next = queue.remove(); visitNode(next); } Initially this takes the starting node, then recursively visits the first node in the PriorityQueue (the path with the next lowest cost). My problem is basically, how do I stop my program from following a path specified in the queue if that path is at the goal state? The queue currently stores Vertex objects, but in my mind this isn't going to work as I can't store whether other vertices have been visited inside a Vertex object. Help is much appreciated! Josh

    Read the article

  • Why does setting a geometry shader cause my sprites to vanish?

    - by ChaosDev
    My application has multiple screens with different tasks. Once I set a geometry shader to the device context for my custom terrain, it works and I get the desired results. But then when I get back to the main menu, all sprites and text disappear. These sprites don't dissappear when I use pixel and vertex shaders. The sprites are being drawn through D3D11, of course, with specified view and projection matrices as well an input layout, vertex, and pixel shader. I'm trying DeviceContext->ClearState() but it does not help. Any ideas? void gGeometry::DrawIndexedWithCustomEffect(gVertexShader*vs,gPixelShader* ps,gGeometryShader* gs=nullptr) { unsigned int offset = 0; auto context = mp_D3D->mp_Context; //set topology context->IASetPrimitiveTopology(m_Topology); //set input layout context->IASetInputLayout(mp_inputLayout); //set vertex and index buffers context->IASetVertexBuffers(0,1,&mp_VertexBuffer->mp_Buffer,&m_VertexStride,&offset); context->IASetIndexBuffer(mp_IndexBuffer->mp_Buffer,mp_IndexBuffer->m_DXGIFormat,0); //send constant buffers to shaders context->VSSetConstantBuffers(0,vs->m_CBufferCount,vs->m_CRawBuffers.data()); context->PSSetConstantBuffers(0,ps->m_CBufferCount,ps->m_CRawBuffers.data()); if(gs!=nullptr) { context->GSSetConstantBuffers(0,gs->m_CBufferCount,gs->m_CRawBuffers.data()); context->GSSetShader(gs->mp_D3DGeomShader,0,0);//after this call all sprites disappear } //set shaders context->VSSetShader( vs->mp_D3DVertexShader, 0, 0 ); context->PSSetShader( ps->mp_D3DPixelShader, 0, 0 ); //draw context->DrawIndexed(m_indexCount,0,0); } //sprites void gSpriteDrawer::Draw(gTexture2D* texture,const RECT& dest,const RECT& source, const Matrix& spriteMatrix,const float& rotation,Vector2d& position,const Vector2d& origin,const Color& color) { VertexPositionColorTexture* verticesPtr; D3D11_MAPPED_SUBRESOURCE mappedResource; unsigned int TriangleVertexStride = sizeof(VertexPositionColorTexture); unsigned int offset = 0; float halfWidth = ( float )dest.right / 2.0f; float halfHeight = ( float )dest.bottom / 2.0f; float z = 0.1f; int w = texture->Width(); int h = texture->Height(); float tu = (float)source.right/(w); float tv = (float)source.bottom/(h); float hu = (float)source.left/(w); float hv = (float)source.top/(h); Vector2d t0 = Vector2d( hu+tu, hv); Vector2d t1 = Vector2d( hu+tu, hv+tv); Vector2d t2 = Vector2d( hu, hv+tv); Vector2d t3 = Vector2d( hu, hv+tv); Vector2d t4 = Vector2d( hu, hv); Vector2d t5 = Vector2d( hu+tu, hv); float ex=(dest.right/2)+(origin.x); float ey=(dest.bottom/2)+(origin.y); Vector4d v4Color = Vector4d(color.r,color.g,color.b,color.a); VertexPositionColorTexture vertices[] = { { Vector3d( dest.right-ex, -ey, z),v4Color, t0}, { Vector3d( dest.right-ex, dest.bottom-ey , z),v4Color, t1}, { Vector3d( -ex, dest.bottom-ey , z),v4Color, t2}, { Vector3d( -ex, dest.bottom-ey , z),v4Color, t3}, { Vector3d( -ex, -ey , z),v4Color, t4}, { Vector3d( dest.right-ex, -ey , z),v4Color, t5}, }; auto mp_context = mp_D3D->mp_Context; // Lock the vertex buffer so it can be written to. mp_context->Map(mp_vertexBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource); // Get a pointer to the data in the vertex buffer. verticesPtr = (VertexPositionColorTexture*)mappedResource.pData; // Copy the data into the vertex buffer. memcpy(verticesPtr, (void*)vertices, (sizeof(VertexPositionColorTexture) * 6)); // Unlock the vertex buffer. mp_context->Unmap(mp_vertexBuffer, 0); //set vertex shader mp_context->IASetVertexBuffers( 0, 1, &mp_vertexBuffer, &TriangleVertexStride, &offset); //set texture mp_context->PSSetShaderResources( 0, 1, &texture->mp_SRV); //set matrix to shader mp_context->UpdateSubresource(mp_matrixBuffer, 0, 0, &spriteMatrix, 0, 0 ); mp_context->VSSetConstantBuffers( 0, 1, &mp_matrixBuffer); //draw sprite mp_context->Draw( 6, 0 ); }

    Read the article

  • problem with loading in .FBX meshes in DirectX 10

    - by N0xus
    I'm trying to load in meshes into DirectX 10. I've created a bunch of classes that handle it and allow me to call in a mesh with only a single line of code in my main game class. How ever, when I run the program this is what renders: In the debug output window the following errors keep appearing: D3D10: ERROR: ID3D10Device::DrawIndexed: Input Assembler - Vertex Shader linkage error: Signatures between stages are incompatible. The reason is that Semantic 'TEXCOORD' is defined for mismatched hardware registers between the output stage and input stage. [ EXECUTION ERROR #343: DEVICE_SHADER_LINKAGE_REGISTERINDEX ] D3D10: ERROR: ID3D10Device::DrawIndexed: Input Assembler - Vertex Shader linkage error: Signatures between stages are incompatible. The reason is that the input stage requires Semantic/Index (POSITION,0) as input, but it is not provided by the output stage. [ EXECUTION ERROR #342: DEVICE_SHADER_LINKAGE_SEMANTICNAME_NOT_FOUND ] The thing is, I've no idea how to fix this. The code I'm using does work and I've simply brought all of that code into a new project of mine. There are no build errors and this only appears when the game is running The .fx file is as follows: float4x4 matWorld; float4x4 matView; float4x4 matProjection; struct VS_INPUT { float4 Pos:POSITION; float2 TexCoord:TEXCOORD; }; struct PS_INPUT { float4 Pos:SV_POSITION; float2 TexCoord:TEXCOORD; }; Texture2D diffuseTexture; SamplerState diffuseSampler { Filter = MIN_MAG_MIP_POINT; AddressU = WRAP; AddressV = WRAP; }; // // Vertex Shader // PS_INPUT VS( VS_INPUT input ) { PS_INPUT output=(PS_INPUT)0; float4x4 viewProjection=mul(matView,matProjection); float4x4 worldViewProjection=mul(matWorld,viewProjection); output.Pos=mul(input.Pos,worldViewProjection); output.TexCoord=input.TexCoord; return output; } // // Pixel Shader // float4 PS(PS_INPUT input ) : SV_Target { return diffuseTexture.Sample(diffuseSampler,input.TexCoord); //return float4(1.0f,1.0f,1.0f,1.0f); } RasterizerState NoCulling { FILLMODE=SOLID; CULLMODE=NONE; }; technique10 Render { pass P0 { SetVertexShader( CompileShader( vs_4_0, VS() ) ); SetGeometryShader( NULL ); SetPixelShader( CompileShader( ps_4_0, PS() ) ); SetRasterizerState(NoCulling); } } In my game, the .fx file and model are called and set as follows: Loading in shader file //Set the shader flags - BMD DWORD dwShaderFlags = D3D10_SHADER_ENABLE_STRICTNESS; #if defined( DEBUG ) || defined( _DEBUG ) dwShaderFlags |= D3D10_SHADER_DEBUG; #endif ID3D10Blob * pErrorBuffer=NULL; if( FAILED( D3DX10CreateEffectFromFile( TEXT("TransformedTexture.fx" ), NULL, NULL, "fx_4_0", dwShaderFlags, 0, md3dDevice, NULL, NULL, &m_pEffect, &pErrorBuffer, NULL ) ) ) { char * pErrorStr = ( char* )pErrorBuffer->GetBufferPointer(); //If the creation of the Effect fails then a message box will be shown MessageBoxA( NULL, pErrorStr, "Error", MB_OK ); return false; } //Get the technique called Render from the effect, we need this for rendering later on m_pTechnique=m_pEffect->GetTechniqueByName("Render"); //Number of elements in the layout UINT numElements = TexturedLitVertex::layoutSize; //Get the Pass description, we need this to bind the vertex to the pipeline D3D10_PASS_DESC PassDesc; m_pTechnique->GetPassByIndex( 0 )->GetDesc( &PassDesc ); //Create Input layout to describe the incoming buffer to the input assembler if (FAILED(md3dDevice->CreateInputLayout( TexturedLitVertex::layout, numElements,PassDesc.pIAInputSignature, PassDesc.IAInputSignatureSize, &m_pVertexLayout ) ) ) { return false; } model loading: m_pTestRenderable=new CRenderable(); //m_pTestRenderable->create<TexturedVertex>(md3dDevice,8,6,vertices,indices); m_pModelLoader = new CModelLoader(); m_pTestRenderable = m_pModelLoader->loadModelFromFile( md3dDevice,"armoredrecon.fbx" ); m_pGameObjectTest = new CGameObject(); m_pGameObjectTest->setRenderable( m_pTestRenderable ); // Set primitive topology, how are we going to interpet the vertices in the vertex buffer md3dDevice->IASetPrimitiveTopology( D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST ); if ( FAILED( D3DX10CreateShaderResourceViewFromFile( md3dDevice, TEXT( "armoredrecon_diff.png" ), NULL, NULL, &m_pTextureShaderResource, NULL ) ) ) { MessageBox( NULL, TEXT( "Can't load Texture" ), TEXT( "Error" ), MB_OK ); return false; } m_pDiffuseTextureVariable = m_pEffect->GetVariableByName( "diffuseTexture" )->AsShaderResource(); m_pDiffuseTextureVariable->SetResource( m_pTextureShaderResource ); Finally, the draw function code: //All drawing will occur between the clear and present m_pViewMatrixVariable->SetMatrix( ( float* )m_matView ); m_pWorldMatrixVariable->SetMatrix( ( float* )m_pGameObjectTest->getWorld() ); //Get the stride(size) of the a vertex, we need this to tell the pipeline the size of one vertex UINT stride = m_pTestRenderable->getStride(); //The offset from start of the buffer to where our vertices are located UINT offset = m_pTestRenderable->getOffset(); ID3D10Buffer * pVB=m_pTestRenderable->getVB(); //Bind the vertex buffer to input assembler stage - md3dDevice->IASetVertexBuffers( 0, 1, &pVB, &stride, &offset ); md3dDevice->IASetIndexBuffer( m_pTestRenderable->getIB(), DXGI_FORMAT_R32_UINT, 0 ); //Get the Description of the technique, we need this in order to loop through each pass in the technique D3D10_TECHNIQUE_DESC techDesc; m_pTechnique->GetDesc( &techDesc ); //Loop through the passes in the technique for( UINT p = 0; p < techDesc.Passes; ++p ) { //Get a pass at current index and apply it m_pTechnique->GetPassByIndex( p )->Apply( 0 ); //Draw call md3dDevice->DrawIndexed(m_pTestRenderable->getNumOfIndices(),0,0); //m_pD3D10Device->Draw(m_pTestRenderable->getNumOfVerts(),0); } Is there anything I've clearly done wrong or are missing? Spent 2 weeks trying to workout what on earth I've done wrong to no avail. Any insight a fresh pair eyes could give on this would be great.

    Read the article

  • Geometry Shader input vertices order

    - by NPS
    MSDN specifies (link) that when using triangleadj type of input to the GS, it should provide me with 6 vertices in specific order: 1st vertex of the triangle processed, vertex of an adjacent triangle, 2nd vertex of the triangle processed, another vertex of an adjacent triangle and so on... So if I wanted to create a pass-through shader (i.e. output the same triangle I got on input and nothing else) I should return vertices 0, 2 and 4. Is that correct? Well, apparently it isn't because I did just that and when I ran my app the vertices were flickering (like changing positions/disappearing/showing again or sth like that). But when I instead output vertices 0, 1 and 2 the app rendered the mesh correctly. I could provide some code but it seems like the problem is in the input vertices order, not the code itself. So what order do input vertices to the GS come in?

    Read the article

  • geomipmapping using displacement mapping (and glVertexAttribDivisor)

    - by Will
    I wake up with a clear vision, but sadly my laptop card doesn't do displacement mapping nor glVertexAttribDivisor so I can't test it out; I'm left sharing here: With geomipmapping, the grid at any factor is transposable - if you pass in an offset - say as a uniform - you can reuse the same vertex and index array again and again. If you also pass in the offset into the heightmap as a uniform, the vertex shader can do displacement mapping. If the displacement map is mipmapped, you get the advantages of trilinear filtering for distant maps. And, if the scenery is closer, rather than exposing that the you have a world made out of quads, you can use your transposable grid vertex array and indices to do vertex-shader interpolation (fancy splines) to do super-smooth infinite zoom? So I have some questions: does it work? In theory, in practice? does anyone do it? Does this technique have a name? Papers, demos, anything I can look at? does glVertexAttribDivisor mean that you can have a single glMultiDrawElementsEXT or similar approach to draw all your terrain tiles in one call rather than setting up the uniforms and emitting each tile? Would this offer any noticeable gains? does a heightmap that is GL_LUMINANCE take just one byte per pixel(=vertex)? (On mainstream cards, obviously. Does storage vary in practice?) Does going to the effort of reusing the same vertices and indices mean that you can basically fill the GPU RAM with heightmap and not a lot else, giving you either bigger landscapes or more detailed landscapes/meshes for the same bang? is mipmapping the displacement map going to work? On future cards? Is it going to introduce unsurmountable inaccuracies if it is enabled?

    Read the article

  • Parenting Opengl with Groups in LibGDX

    - by Rudy_TM
    I am trying to make an object child of a Group, but this object has a draw method that calls opengl to draw in the screen. Its class its this public class OpenGLSquare extends Actor { private static final ImmediateModeRenderer renderer = new ImmediateModeRenderer10(); private static Matrix4 matrix = null; private static Vector2 temp = new Vector2(); public static void setMatrix4(Matrix4 mat) { matrix = mat; } @Override public void draw(SpriteBatch batch, float arg1) { // TODO Auto-generated method stub renderer.begin(matrix, GL10.GL_TRIANGLES); renderer.color(color.r, color.g, color.b, color.a); renderer.vertex(x0, y0, 0f); renderer.color(color.r, color.g, color.b, color.a); renderer.vertex(x0, y1, 0f); renderer.color(color.r, color.g, color.b, color.a); renderer.vertex(x1, y1, 0f); renderer.color(color.r, color.g, color.b, color.a); renderer.vertex(x1, y1, 0f); renderer.color(color.r, color.g, color.b, color.a); renderer.vertex(x1, y0, 0f); renderer.color(color.r, color.g, color.b, color.a); renderer.vertex(x0, y0, 0f); renderer.end(); } } In my screen class I have this, i call it in the constructor MyGroupClass spriteLab = new MyGroupClass(spriteSheetLab); OpenGLSquare square = new OpenGLSquare(); square.setX0(100); square.setY0(200); square.setX1(400); square.setY1(280); square.color.set(Color.BLUE); square.setSize(); //spriteLab.addActorAt(0, clock); spriteLab.addActor(square); stage.addActor(spriteLab); And the render in the screen I have @Override public void render(float arg0) { this.gl.glClear(GL10.GL_COLOR_BUFFER_BIT |GL10.GL_DEPTH_BUFFER_BIT); stage.draw(); stage.act(Gdx.graphics.getDeltaTime()); } The problem its that when i use opengl with parent, it resets all the other chldren to position 0,0 and the opengl renderer paints the square in the exact position of the screen and not relative to the parent. I tried using batch.enableBlending() and batch.disableBlending() that fixes the position problem of the other children, but not the relative position of the opengl drawing and it also puts alpha to the glDrawing. What am i doing wrong?:/

    Read the article

  • OpenGL sprites and point size limitation

    - by Srdan
    I'm developing a simple particle system that should be able to perform on mobile devices (iOS, Andorid). My plan was to use GL_POINT_SPRITE/GL_PROGRAM_POINT_SIZE method because of it's efficiency (GL_POINTS are enough), but after some experimenting, I found myself in a trouble. Sprite size is limited (to usually 64 pixels). I'm calculating size using this formula gl_PointSize = in_point_size * some_factor / distance_to_camera to make particle sizes proportional to distance to camera. But at some point, when camera is close enough, problem with size limitation emerges and whole system starts looking unrealistic. Is there a way to avoid this problem? If no, what's alternative? I was thinking of manually generating billboard quad for each particle. Now, I have some questions about that approach. I guess minimum geometry data would be four vertices per particle and index array to make quads from these vertices (with GL_TRIANGLE_STRIP). Additionally, for each vertex I need a color and texture coordinate. I would put all that in an interleaved vertex array. But as you can see, there is much redundancy. All vertices of same particle share same color value, and four texture coordinates are same for all particles. Because of how glDrawArrays/Elements works, I see no way to optimise this. Do you know of a better approach on how to organise per-particle data? Should I use buffers or vertex arrays, or there is no difference because each time I have to update all particles' data. About particles simulation... Where to do it? On CPU or on a vertex processors? Something tells me that mobile's CPU would do it faster than it's vertex unit (at least today in 2012 :). So, any advice on how to make a simple and efficient particle system without particle size limitation, for mobile device, would be appreciated. (animation of camera passing through particles should be realistic)

    Read the article

  • How does opengl-es 2 assemble primitives?

    - by stephelton
    Two things I'm quite confused about. 1) OpenGL ES 2.0 creates primitives before the vertex shader is invoked. Why, then, does it not automatically provide the vertex shader the position of the vertex? 2) OpenGL ES 2.0 supports glDrawElements(), but it does not support glEnableClientState() or GL_VERTEX_ARRAY, so how can this call possibly be used to construct primitives? NOTE: this is OpenGL ES 2.0, NOT normal OpenGL! Thanks!

    Read the article

  • Why does unity obj import flip my x coordinate?

    - by milkplus
    When I import my wavefront obj model into unity and then draw lines over it with the same coordinates in the obj file, the x coordinate is negated. I don't see any option in the importer that might be doing that. And I'm using the same localToWorldMatrix and the same coordinate data in the .obj file. Hmmm GL.PushMatrix(); GL.MultMatrix(transform.localToWorldMatrix); CreateMaterial(); lineMaterial.SetPass(0); GL.Color(new Color(0, 1, 0)); GL.Begin(GL.LINES); GL.Vertex(p1); GL.Vertex(p2); GL.Vertex(p2); GL.Vertex(p3); //... GL.End(); GL.PopMatrix();

    Read the article

  • How to make other semantics behave like SV_Position?

    - by object
    I'm having a lot of trouble with shadow mapping, and I believe I've found the problem. When passing vectors from the vertex shader to the pixel shader, does the hardware automatically change any of the values based on the semantic? I've compiled a barebones pair of shaders which should illustrate the problem. Vertex shader : struct Vertex { float3 position : POSITION; }; struct Pixel { float4 position : SV_Position; float4 light_position : POSITION; }; cbuffer Matrices { matrix projection; }; Pixel RenderVertexShader(Vertex input) { Pixel output; output.position = mul(float4(input.position, 1.0f), projection); output.light_position = output.position; // We simply pass the same vector in screenspace through different semantics. return output; } And a simple pixel shader to go along with it: struct Pixel { float4 position : SV_Position; float4 light_position : POSITION; }; float4 RenderPixelShader(Pixel input) : SV_Target { // At this point, (input.position.z / input.position.w) is a normal depth value. // However, (input.light_position.z / input.light_position.w) is 0.999f or similar. // If the primitive is touching the near plane, it very quickly goes to 0. return (0.0f).rrrr; } How is it possible to make the hardware treat light_position in the same way which position is being treated between the vertex and pixel shaders? EDIT: Aha! (input.position.z) without dividing by W is the same as (input.light_position.z / input.light_position.w). Not sure why this is.

    Read the article

  • What is the minimum of shader I need to use to run basic calculation on GPU?

    - by Jinxi
    I read, that the Hull Shader, Domain Shader, Geometry Shader and Pixel Shader can be used optional. So, is the Vertex Shader optional too? If no: What does a basic Vertex Shader look like? Just like a simple pass through? Is the Vertex Shader necessary to tell what kind of datastructure (Van Stripes or Meshes) are used? What can I do, with just the vertex shader? Are the fixed functions working without any help of programming a programmable stage?

    Read the article

  • XNA Reach profile with VMWare - Vertex Buffers not working?

    - by Nektarios
    Running XNA app, using Reach profile, in VMWare Fusion host OS Mac OSX, VM is Windows XP SP 3 (my dual-boot OS). Running on MacBook Pro w/NVidia 320M graphics card When I am booted in to XP natively, my code works. The code is drawing cubes that are set up using vertex buffers When another friend runs this same code on Windows 7, it also works for him just fine When I am running my code in the VM, it doesn't work. I have billboarding sprites running in a shader program and this part displays fine. I get no crashing or errors, the geometry just doesn't appear. I tried Debug and Release. This is very basic operation so I'm thinking VMWare isn't the problem, but it's my code.... My init code: var vertexArray = verts.ToArray(); var indexArray = indices.ToArray(); indexBuffer = new IndexBuffer(GraphicsDevice, typeof(Int16), indexArray.Length, BufferUsage.WriteOnly); indexBuffer.SetData(indexArray); vertexBuffer = new VertexBuffer(GraphicsDevice, typeof(VertexPositionColor), vertexArray.Length, BufferUsage.WriteOnly); vertexBuffer.SetData(vertexArray); My Draw code: // problem isn't here, tried no cull GraphicsDevice.RasterizerState = RasterizerState.CullClockwise; GraphicsDevice.BlendState = BlendState.AlphaBlend; GraphicsDevice.DepthStencilState = new DepthStencilState() { DepthBufferEnable = true }; // Update View and Projection TileEffect.View = ((Game1)Game).Camera.View; TileEffect.Projection = ((Game1)Game).Camera.Projection; TileEffect.CurrentTechnique.Passes[0].Apply(); GraphicsDevice.SetVertexBuffer(vertexBuffer); GraphicsDevice.Indices = indexBuffer; GraphicsDevice.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, indices.Count, 0, indices.Count / 3); For LoadContent: TileEffect = new BasicEffect(GraphicsDevice) { World = Matrix.Identity, View = ((Game1)Game).Camera.View, Projection = ((Game1)Game).Camera.Projection, VertexColorEnabled = true };

    Read the article

  • Pointer problem in C for char*

    - by egebilmuh
    Hi guys, i use pointer for holding name and research lab property. But when i print the existing Vertex ,when i print the vertex, i cant see so -called attributes properly. For example though real value of name is "lancelot" , i see it as wrong such as "asdasdasdasd" struct vertex { int value; char*name; char* researchLab; struct vertex *next; struct edge *list; }; void GRAPHinsertV(Graph G, int value,char*name,char*researchLab) { //create new Vertex. Vertex newV = malloc(sizeof newV); // set value of new variable to which belongs the person. newV->value = value; newV->name=name; newV->researchLab=researchLab; newV->next = G->head; newV->list = NULL; G->head = newV; G->V++; } /*** The method creates new person. **/ void createNewPerson(Graph G) { int id; char name[30]; char researchLab[30]; // get requeired variables. printf("Enter id of the person to be added.\n"); scanf("%d",&id); printf("Enter name of the person to be added.\n"); scanf("%s",name); printf("Enter researc lab of the person to be added\n"); scanf("%s",researchLab); // insert the people to the social network. GRAPHinsertV(G,id,name,researchLab); } void ListAllPeople(Graph G) { Vertex tmp; Edge list; for(tmp = G->head;tmp!=NULL;tmp=tmp->next) { fprintf(stdout,"V:%d\t%s\t%s\n",tmp->value,tmp->name,tmp->researchLab); } system("pause"); }

    Read the article

  • Understanding and Implementing a Force based graph layout algorithm

    - by zcourts
    I'm trying to implement a force base graph layout algorithm, based on http://en.wikipedia.org/wiki/Force-based_algorithms_(graph_drawing) My first attempt didn't work so I looked at http://blog.ivank.net/force-based-graph-drawing-in-javascript.html and https://github.com/dhotson/springy I changed my implementation based on what I thought I understood from those two but I haven't managed to get it right and I'm hoping someone can help? JavaScript isn't my strong point so be gentle... If you're wondering why write my own. In reality I have no real reason to write my own I'm just trying to understand how the algorithm is implemented. Especially in my first link, that demo is brilliant. This is what I've come up with //support function.bind - https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/bind#Compatibility if (!Function.prototype.bind) { Function.prototype.bind = function (oThis) { if (typeof this !== "function") { // closest thing possible to the ECMAScript 5 internal IsCallable function throw new TypeError("Function.prototype.bind - what is trying to be bound is not callable"); } var aArgs = Array.prototype.slice.call(arguments, 1), fToBind = this, fNOP = function () {}, fBound = function () { return fToBind.apply(this instanceof fNOP ? this : oThis || window, aArgs.concat(Array.prototype.slice.call(arguments))); }; fNOP.prototype = this.prototype; fBound.prototype = new fNOP(); return fBound; }; } (function() { var lastTime = 0; var vendors = ['ms', 'moz', 'webkit', 'o']; for(var x = 0; x < vendors.length && !window.requestAnimationFrame; ++x) { window.requestAnimationFrame = window[vendors[x]+'RequestAnimationFrame']; window.cancelAnimationFrame = window[vendors[x]+'CancelAnimationFrame'] || window[vendors[x]+'CancelRequestAnimationFrame']; } if (!window.requestAnimationFrame) window.requestAnimationFrame = function(callback, element) { var currTime = new Date().getTime(); var timeToCall = Math.max(0, 16 - (currTime - lastTime)); var id = window.setTimeout(function() { callback(currTime + timeToCall); }, timeToCall); lastTime = currTime + timeToCall; return id; }; if (!window.cancelAnimationFrame) window.cancelAnimationFrame = function(id) { clearTimeout(id); }; }()); function Graph(o){ this.options=o; this.vertices={}; this.edges={};//form {vertexID:{edgeID:edge}} } /** *Adds an edge to the graph. If the verticies in this edge are not already in the *graph then they are added */ Graph.prototype.addEdge=function(e){ //if vertex1 and vertex2 doesn't exist in this.vertices add them if(typeof(this.vertices[e.vertex1])==='undefined') this.vertices[e.vertex1]=new Vertex(e.vertex1); if(typeof(this.vertices[e.vertex2])==='undefined') this.vertices[e.vertex2]=new Vertex(e.vertex2); //add the edge if(typeof(this.edges[e.vertex1])==='undefined') this.edges[e.vertex1]={}; this.edges[e.vertex1][e.id]=e; } /** * Add a vertex to the graph. If a vertex with the same ID already exists then * the existing vertex's .data property is replaced with the @param v.data */ Graph.prototype.addVertex=function(v){ if(typeof(this.vertices[v.id])==='undefined') this.vertices[v.id]=v; else this.vertices[v.id].data=v.data; } function Vertex(id,data){ this.id=id; this.data=data?data:{}; //initialize to data.[x|y|z] or generate random number for each this.x = this.data.x?this.data.x:-100 + Math.random()*200; this.y = this.data.y?this.data.y:-100 + Math.random()*200; this.z = this.data.y?this.data.y:-100 + Math.random()*200; //set initial velocity to 0 this.velocity = new Point(0, 0, 0); this.mass=this.data.mass?this.data.mass:Math.random(); this.force=new Point(0,0,0); } function Edge(vertex1ID,vertex2ID){ vertex1ID=vertex1ID?vertex1ID:Math.random() vertex2ID=vertex2ID?vertex2ID:Math.random() this.id=vertex1ID+"->"+vertex2ID; this.vertex1=vertex1ID; this.vertex2=vertex2ID; } function Point(x, y, z) { this.x = x; this.y = y; this.z = z; } Point.prototype.plus=function(p){ this.x +=p.x this.y +=p.y this.z +=p.z } function ForceLayout(o){ this.repulsion = o.repulsion?o.repulsion:200; this.attraction = o.attraction?o.attraction:0.06; this.damping = o.damping?o.damping:0.9; this.graph = o.graph?o.graph:new Graph(); this.total_kinetic_energy =0; this.animationID=-1; } ForceLayout.prototype.draw=function(){ //vertex velocities initialized to (0,0,0) when a vertex is created //vertex positions initialized to random position when created cc=0; do{ this.total_kinetic_energy =0; //for each vertex for(var i in this.graph.vertices){ var thisNode=this.graph.vertices[i]; // running sum of total force on this particular node var netForce=new Point(0,0,0) //for each other node for(var j in this.graph.vertices){ if(thisNode!=this.graph.vertices[j]){ //net-force := net-force + Coulomb_repulsion( this_node, other_node ) netForce.plus(this.CoulombRepulsion( thisNode,this.graph.vertices[j])) } } //for each spring connected to this node for(var k in this.graph.edges[thisNode.id]){ //(this node, node its connected to) //pass id of this node and the node its connected to so hookesattraction //can update the force on both vertices and return that force to be //added to the net force this.HookesAttraction(thisNode.id, this.graph.edges[thisNode.id][k].vertex2 ) } // without damping, it moves forever // this_node.velocity := (this_node.velocity + timestep * net-force) * damping thisNode.velocity.x=(thisNode.velocity.x+thisNode.force.x)*this.damping; thisNode.velocity.y=(thisNode.velocity.y+thisNode.force.y)*this.damping; thisNode.velocity.z=(thisNode.velocity.z+thisNode.force.z)*this.damping; //this_node.position := this_node.position + timestep * this_node.velocity thisNode.x=thisNode.velocity.x; thisNode.y=thisNode.velocity.y; thisNode.z=thisNode.velocity.z; //normalize x,y,z??? //total_kinetic_energy := total_kinetic_energy + this_node.mass * (this_node.velocity)^2 this.total_kinetic_energy +=thisNode.mass*((thisNode.velocity.x+thisNode.velocity.y+thisNode.velocity.z)* (thisNode.velocity.x+thisNode.velocity.y+thisNode.velocity.z)) } cc+=1; }while(this.total_kinetic_energy >0.5) console.log(cc,this.total_kinetic_energy,this.graph) this.cancelAnimation(); } ForceLayout.prototype.HookesAttraction=function(v1ID,v2ID){ var a=this.graph.vertices[v1ID] var b=this.graph.vertices[v2ID] var force=new Point(this.attraction*(b.x - a.x),this.attraction*(b.y - a.y),this.attraction*(b.z - a.z)) // hook's attraction a.force.x += force.x; a.force.y += force.y; a.force.z += force.z; b.force.x += this.attraction*(a.x - b.x); b.force.y += this.attraction*(a.y - b.y); b.force.z += this.attraction*(a.z - b.z); return force; } ForceLayout.prototype.CoulombRepulsion=function(vertex1,vertex2){ //http://en.wikipedia.org/wiki/Coulomb's_law // distance squared = ((x1-x2)*(x1-x2)) + ((y1-y2)*(y1-y2)) + ((z1-z2)*(z1-z2)) var distanceSquared = ( (vertex1.x-vertex2.x)*(vertex1.x-vertex2.x)+ (vertex1.y-vertex2.y)*(vertex1.y-vertex2.y)+ (vertex1.z-vertex2.z)*(vertex1.z-vertex2.z) ); if(distanceSquared==0) distanceSquared = 0.001; var coul = this.repulsion / distanceSquared; return new Point(coul * (vertex1.x-vertex2.x),coul * (vertex1.y-vertex2.y), coul * (vertex1.z-vertex2.z)); } ForceLayout.prototype.animate=function(){ if(this.animating) this.animationID=requestAnimationFrame(this.animate.bind(this)); this.draw(); } ForceLayout.prototype.cancelAnimation=function(){ cancelAnimationFrame(this.animationID); this.animating=false; } ForceLayout.prototype.redraw=function(){ this.animating=true; this.animate(); } $(document).ready(function(){ var g= new Graph(); for(var i=0;i<=100;i++){ var v1=new Vertex(Math.random(), {}) var v2=new Vertex(Math.random(), {}) var e1= new Edge(v1.id,v2.id); g.addEdge(e1); } console.log(g); var l=new ForceLayout({ graph:g }); l.redraw(); });

    Read the article

  • How to read the 3D chart data with directX?

    - by MemoryLeak
    I am reading a open source project, and I found there is a function which read 3D data(let's say a character) from obj file, and draw it . the source code: List<Vertex3f> verts=new List<Vertex3f>(); List<Vertex3f> norms=new List<Vertex3f>(); Groups=new List<ToothGroup>(); //ArrayList ALf=new ArrayList();//faces always part of a group List<Face> faces=new List<Face>(); MemoryStream stream=new MemoryStream(buffer); using(StreamReader sr = new StreamReader(stream)){ String line; Vertex3f vertex; string[] items; string[] subitems; Face face; ToothGroup group=null; while((line = sr.ReadLine()) != null) { if(line.StartsWith("#")//comment || line.StartsWith("mtllib")//material library. We build our own. || line.StartsWith("usemtl")//use material || line.StartsWith("o")) {//object. There's only one object continue; } if(line.StartsWith("v ")) {//vertex items=line.Split(new char[] { ' ' }); vertex=new Vertex3f();//float[3]; if(flipHorizontally) { vertex.X=-Convert.ToSingle(items[1],CultureInfo.InvariantCulture); } else { vertex.X=Convert.ToSingle(items[1],CultureInfo.InvariantCulture); } vertex.Y=Convert.ToSingle(items[2],CultureInfo.InvariantCulture); vertex.Z=Convert.ToSingle(items[3],CultureInfo.InvariantCulture); verts.Add(vertex); continue; } And why it need to read the data manually in directX? As far as I know, in XDA programming, we just need to call a function a load the resource. Is this because it is in DirectX, there is no function to read resource? If yes, then how to prepare the 3D resource ? in XDA we just need to use other software draw the 3D picture and then export. but what should I do in DirectX?

    Read the article

  • Reading and writing C++ vector to a file

    - by JB
    For some graphics work I need to read in a large amount of data as quickly as possible and would ideally like to directly read and write the data structures to disk. Basically I have a load of 3d models in various file formats which take too long to load so I want to write them out in their "prepared" format as a cache that will load much faster on subsequent runs of the program. Is it safe to do it like this? My worries are around directly reading into the data of the vector? I've removed error checking, hard coded 4 as the size of the int and so on so that i can give a short working example, I know it's bad code, my question really is if it is safe in c++ to read a whole array of structures directly into a vector like this? I believe it to be so, but c++ has so many traps and undefined behavour when you start going low level and dealing directly with raw memory like this. I realise that number formats and sizes may change across platforms and compilers but this will only even be read and written by the same compiler program to cache data that may be needed on a later run of the same program. #include <fstream> #include <vector> using namespace std; struct Vertex { float x, y, z; }; typedef vector<Vertex> VertexList; int main() { // Create a list for testing VertexList list; Vertex v1 = {1.0f, 2.0f, 3.0f}; list.push_back(v1); Vertex v2 = {2.0f, 100.0f, 3.0f}; list.push_back(v2); Vertex v3 = {3.0f, 200.0f, 3.0f}; list.push_back(v3); Vertex v4 = {4.0f, 300.0f, 3.0f}; list.push_back(v4); // Write out a list to a disk file ofstream os ("data.dat", ios::binary); int size1 = list.size(); os.write((const char*)&size1, 4); os.write((const char*)&list[0], size1 * sizeof(Vertex)); os.close(); // Read it back in VertexList list2; ifstream is("data.dat", ios::binary); int size2; is.read((char*)&size2, 4); list2.resize(size2); // Is it safe to read a whole array of structures directly into the vector? is.read((char*)&list2[0], size2 * sizeof(Vertex)); }

    Read the article

  • BFS Shortest Path: Edge weight either 1 or 2

    - by Hackster
    I am trying to implement a shortest path algorithm using BFS. That is I am trying to find the shortest path from a specified vertex to every other vertex. However, its a special case where all edge weights are either 1 or 2. I know it could be done with Dijkstra's algorithm but I must use Breadth First Search. So far I have a working version of BFS that searches first for a vertex connected with an edge of weight 1. If it cannot find it, then returns a vertex connected with an edge of weight 2. After thinking about it, this is not the correct way to find the shortest path. The problem is I cannot think of any reasoning why BFS would work with weights 1 or 2, as opposed to any weight. Here is the code: public void addEdge(int start, int end, int weight) { adjMat[start][end] = 1; adjMat[end][start] = 1; edge_weight[start][end] = weight; edge_weight[end][start] = weight; } // ------------------------------------------------------------- public void bfs() // breadth-first search { // begin at vertex 0 vertexList[0].wasVisited = true; // mark it displayVertex(0); // display it theQueue.insert(0); // insert at tail int v2; while( !theQueue.isEmpty() ) // until queue empty, { int v1 = theQueue.remove(); // remove vertex at head // until it has no unvisited neighbors while( (v2=getAdjUnvisitedVertex(v1)) != -1 ){// get one, vertexList[v2].wasVisited = true; // mark it displayVertex(v2); // display it theQueue.insert(v2); // insert it } } // end while(queue not empty) // queue is empty, so we're done for(int j=0; j<nVerts; j++) // reset flags vertexList[j].wasVisited = false; } // end bfs() // ------------------------------------------------------------- // returns an unvisited vertex adj to v -- ****WITH WEIGHT 1**** public int getAdjUnvisitedVertex(int v) { for (int j = 0; j < nVerts; j++) if (adjMat[v][j] == 1 && vertexList[j].wasVisited == false && edge_weight[v][j] == 1){ //System.out.println("Vertex found with 1:"+ vertexList[j].label); return j; } for (int k = 0; k < nVerts; k++) if (adjMat[v][k] == 1 && vertexList[k].wasVisited == false && edge_weight[v][k] == 2){ //System.out.println("Vertex found with 2:"+vertexList[k].label); return k; } return -1; } // end getAdjUnvisitedVertex() // ------------------------------------------------------------- } //////////////////////////////////////////////////////////////// public class BFS{ public static void main(String[] args) { Graph theGraph = new Graph(); theGraph.addVertex('A'); // 0 (start for bfs) theGraph.addVertex('B'); // 1 theGraph.addVertex('C'); // 2 theGraph.addEdge(0, 1,2); // AB theGraph.addEdge(1, 2,1); // BC theGraph.addEdge(2, 0,1); // AD System.out.print("Visits: "); theGraph.bfs(); // breadth-first search System.out.println(); } // end main() } The problem then is, that I don't know why BFS can work for the shortest path problem with edges of weight 1 or 2 as opposed to any edges of any weight. Any help is appreciated. Thanks!

    Read the article

< Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >