Search Results

Search found 29422 results on 1177 pages for 'port scanning service'.

Page 84/1177 | < Previous Page | 80 81 82 83 84 85 86 87 88 89 90 91  | Next Page >

  • Configuring IHS server to direct traffic to the Netty component bound to a port

    - by rbot
    I have a Server Component ( based on Jboss-Netty, which could maintain & handle persistent connections ) deployed in WAS. This component when deployed & initiated within the WAS environment, binds to a port & listens for incoming HTTP connection. [ Why i had to deploy a Netty HTTP Server within WAS is another story - management requirement !! Netty is deployed in WAS as a spring bean which when initiated runs on a port in the machine, independent of WAS ] Clients (mobile app) were able to establish persistent HTTP connections (to the above URL::Port) with this netty component & send/receive requests. Now, I have to replicate this feature in our Production Environment where a IHS Server (Web Server) which sits before the WAS. What i expected is to get a IHS URL which could redirect the incoming packets to the specific PORT on WAS, so that the Client apps can establish a similar persistent http connection. Our Server Admin tried a few combinations and we are not able to identify how to proceed further on this. Your expert ideas would be highly appreciated.

    Read the article

  • Service design or access to another process

    - by hotyi
    I have a cache service,it's works as .net remoting, i want to create another windows service to clean up the that cache service by transfer the objects from cache to files. because they are in separate process, is their any way i could access that cache service or do i have to expose a method from the cache service to do that clean up work? the "clean up" means i want to serialize the object from Cache to file and these saved file will be used for further process. let me explain this application more detail. the application is mainly a log service to log all the coming request and these request will be saved to db for further data mining. we have 2 design for this log system 1) use MSMQ, but seems it's performance is not good enough, we don't use it. 2) we design a cache service, each request will be saved into the cache, and we need another function to clean up the cache by serialize the object to file.

    Read the article

  • how to recieve text sms to specific port..

    - by Umesh
    recieve text sms to specific port.. I have been looking for an answer to this question but but to no avail. This question has been popped a few times but nobody seems to have a clear answer. my code is as follows.. --MANIFEST FILE-- <receiver android:name=".SMSRecieve" android:enabled="true" <intent-filter <action android:name="android.intent.action.DATA_SMS_RECEIVED"/ <data android:scheme="sms" / <data android:host="localhost" / <data android:port="15005" / </intent-filter </receiver --SMS sending method-- String messageText = msgTxt.getText().toString(); short SMS_PORT = 15005; SmsManager smsManager = SmsManager.getDefault(); smsManager.sendDataMessage("5556", null, SMS_PORT, messageText.getBytes(), null, null); --Broadcast Reciever code-- static final String ACTION = "android.intent.action.DATA_SMS_RECEIVED"; //static final String ACTION = "android.provider.Telephony.SMS_RECEIVED";(tried this too, but failed) if (intent.getAction().equals(SMSNotifyExample.ACTION)) { ...do some work.. } I also tried to replace android:name to "android.provider.Telephony.SMS_RECEIVED" but the result is the same. my application does not recieve the SMS on the specified port. Once i remove the following line its works fine <data android:scheme="sms" / <data android:host="localhost" / <data android:port="15005" / could you suggest me what am i missing??

    Read the article

  • How to Read Device Data From serial port

    - by Aamir Khurshid
    I have one device which sends data on COM port say on COM13. Now i want to read that data and display it in the RichTextBox or in any text control. I have written the application with the help of IO and IO.Ports but comport.DataRecived event does not fire, even though device is sending data on that port. I have some software on which i define the port number and it successfully display data, which insure me that data is receiving on the Port but i am unable to receive. Is there any way i can read data? comm.Parity = cboParity.Text;//None comm.StopBits = cboStop.Text;//One comm.DataBits = cboData.Text;//8 comm.BaudRate = cboBaud.Text;//9600 comm.DisplayWindow = rtbDisplay;//Null comm.PortName = "COM13"; comm.OpenPort(); cmdOpen.Enabled = false; cmdClose.Enabled = true; cmdSend.Enabled = true; public bool OpenPort() { if (comPort.IsOpen) { comPort.Close(); } comPort.DataReceived += new SerialDataReceivedEventHandler(comPort_DataReceived); comPort.PortName = _portName; comPort.Open();return true; }

    Read the article

  • how to create Cross domain asp.net web service

    - by Prithvi Raj Nandiwal
    i have create a web service. i want to access this web service using Ajax jqury. i am able to access on same domain. but i want to access thia web service to another domain. Have any one idea. how to create cross domain web service in asp.net. any setting in web,config file so that i access it on another domain. my webservice [WebService(Namespace = "http://tempuri.org/")] [System.Web.Script.Services.ScriptService] public class Service : System.Web.Services.WebService { public Service () { } [WebMethod] public string SetName(string name) { return "hello my dear friend " + name; } } JavaScript $.ajax({ type: "GET", url:'http://192.168.1.119/Service/SetName.asmx?name=pr', ContentType: "application/x-www-form-urlencoded", cache: false, dataType: "jsonp", success: onSuccess });

    Read the article

  • Process-to-port mapping with SNMP and/or wmi/wmic in java

    - by Niddy888
    I'm trying to use SNMP to map outgoing ports on my host computer with the application running on the computer that is responsible for that communication. When running "netstat -ano" I get access to Protocol, Local Address (with port), Foreign Address (with port), State and PID. But I want to do this entirely without having to execute "cmd" from Java. By using SNMP OID: .1.3.6.1.2.1.25.4 (.iso.org.dod.internet.mgmt.mib-2.host.hrSWRun) I get access to PID (ex. 1704), Name (ex. cmd.exe), Path (ex. C:\Windows\system32) among others. There is an SNMP OID: .1.3.6.1.2.1.6.13 (.iso.org.dod.internet.mgmt.mib-2.tcp.tcpConnTable) that give you access to TCP connection state, local address, local port, remote address, remote port. But NO PID. So to sum up. My question again: Is there a way to "map" these tables together? Either directly in SNMP with other OID's or in conjunction with WMI / WMIC?

    Read the article

  • My C# program running as Windows Service is blocking Windows XP from hibernation

    - by sherpa
    I have Windows Service written in C#. It starts two threads, one is pooling a Web Service, second is waiting on a Monitor object for a new job to arrive. Besides that, the main thread acts as a WCF service host using NetNamedPipeBinding. It lets the client application to register a callback and then sends notifications back. The problem I have is that when this Windows Service is running, I cannot hibernate or Standby my computer which is running on Windows XP, SP3. When I set Windows to hibernate or standby, nothing happens. Then, at the moment when I go to Service Manager and stop the service, the system hibernation starts immediately. The service class extending the ServiceBase has properties like CanHandlePowerEvent, CanPauseAndContinue, etc. set to true... That didn't make any difference. The question is: what can be blocking the Hibernation/Standby from proceeding? What should I take care about to avoid it?

    Read the article

  • Scaling-out Your Services by Message Bus based WCF Transport Extension &ndash; Part 1 &ndash; Background

    - by Shaun
    Cloud computing gives us more flexibility on the computing resource, we can provision and deploy an application or service with multiple instances over multiple machines. With the increment of the service instances, how to balance the incoming message and workload would become a new challenge. Currently there are two approaches we can use to pass the incoming messages to the service instances, I would like call them dispatcher mode and pulling mode.   Dispatcher Mode The dispatcher mode introduces a role which takes the responsible to find the best service instance to process the request. The image below describes the sharp of this mode. There are four clients communicate with the service through the underlying transportation. For example, if we are using HTTP the clients might be connecting to the same service URL. On the server side there’s a dispatcher listening on this URL and try to retrieve all messages. When a message came in, the dispatcher will find a proper service instance to process it. There are three mechanism to find the instance: Round-robin: Dispatcher will always send the message to the next instance. For example, if the dispatcher sent the message to instance 2, then the next message will be sent to instance 3, regardless if instance 3 is busy or not at that moment. Random: Dispatcher will find a service instance randomly, and same as the round-robin mode it regardless if the instance is busy or not. Sticky: Dispatcher will send all related messages to the same service instance. This approach always being used if the service methods are state-ful or session-ful. But as you can see, all of these approaches are not really load balanced. The clients will send messages at any time, and each message might take different process duration on the server side. This means in some cases, some of the service instances are very busy while others are almost idle. For example, if we were using round-robin mode, it could be happened that most of the simple task messages were passed to instance 1 while the complex ones were sent to instance 3, even though instance 1 should be idle. This brings some problem in our architecture. The first one is that, the response to the clients might be longer than it should be. As it’s shown in the figure above, message 6 and 9 can be processed by instance 1 or instance 2, but in reality they were dispatched to the busy instance 3 since the dispatcher and round-robin mode. Secondly, if there are many requests came from the clients in a very short period, service instances might be filled by tons of pending tasks and some instances might be crashed. Third, if we are using some cloud platform to host our service instances, for example the Windows Azure, the computing resource is billed by service deployment period instead of the actual CPU usage. This means if any service instance is idle it is wasting our money! Last one, the dispatcher would be the bottleneck of our system since all incoming messages must be routed by the dispatcher. If we are using HTTP or TCP as the transport, the dispatcher would be a network load balance. If we wants more capacity, we have to scale-up, or buy a hardware load balance which is very expensive, as well as scaling-out the service instances. Pulling Mode Pulling mode doesn’t need a dispatcher to route the messages. All service instances are listening to the same transport and try to retrieve the next proper message to process if they are idle. Since there is no dispatcher in pulling mode, it requires some features on the transportation. The transportation must support multiple client connection and server listening. HTTP and TCP doesn’t allow multiple clients are listening on the same address and port, so it cannot be used in pulling mode directly. All messages in the transportation must be FIFO, which means the old message must be received before the new one. Message selection would be a plus on the transportation. This means both service and client can specify some selection criteria and just receive some specified kinds of messages. This feature is not mandatory but would be very useful when implementing the request reply and duplex WCF channel modes. Otherwise we must have a memory dictionary to store the reply messages. I will explain more about this in the following articles. Message bus, or the message queue would be best candidate as the transportation when using the pulling mode. First, it allows multiple application to listen on the same queue, and it’s FIFO. Some of the message bus also support the message selection, such as TIBCO EMS, RabbitMQ. Some others provide in memory dictionary which can store the reply messages, for example the Redis. The principle of pulling mode is to let the service instances self-managed. This means each instance will try to retrieve the next pending incoming message if they finished the current task. This gives us more benefit and can solve the problems we met with in the dispatcher mode. The incoming message will be received to the best instance to process, which means this will be very balanced. And it will not happen that some instances are busy while other are idle, since the idle one will retrieve more tasks to make them busy. Since all instances are try their best to be busy we can use less instances than dispatcher mode, which more cost effective. Since there’s no dispatcher in the system, there is no bottleneck. When we introduced more service instances, in dispatcher mode we have to change something to let the dispatcher know the new instances. But in pulling mode since all service instance are self-managed, there no extra change at all. If there are many incoming messages, since the message bus can queue them in the transportation, service instances would not be crashed. All above are the benefits using the pulling mode, but it will introduce some problem as well. The process tracking and debugging become more difficult. Since the service instances are self-managed, we cannot know which instance will process the message. So we need more information to support debug and track. Real-time response may not be supported. All service instances will process the next message after the current one has done, if we have some real-time request this may not be a good solution. Compare with the Pros and Cons above, the pulling mode would a better solution for the distributed system architecture. Because what we need more is the scalability, cost-effect and the self-management.   WCF and WCF Transport Extensibility Windows Communication Foundation (WCF) is a framework for building service-oriented applications. In the .NET world WCF is the best way to implement the service. In this series I’m going to demonstrate how to implement the pulling mode on top of a message bus by extending the WCF. I don’t want to deep into every related field in WCF but will highlight its transport extensibility. When we implemented an RPC foundation there are many aspects we need to deal with, for example the message encoding, encryption, authentication and message sending and receiving. In WCF, each aspect is represented by a channel. A message will be passed through all necessary channels and finally send to the underlying transportation. And on the other side the message will be received from the transport and though the same channels until the business logic. This mode is called “Channel Stack” in WCF, and the last channel in the channel stack must always be a transport channel, which takes the responsible for sending and receiving the messages. As we are going to implement the WCF over message bus and implement the pulling mode scaling-out solution, we need to create our own transport channel so that the client and service can exchange messages over our bus. Before we deep into the transport channel, let’s have a look on the message exchange patterns that WCF defines. Message exchange pattern (MEP) defines how client and service exchange the messages over the transportation. WCF defines 3 basic MEPs which are datagram, Request-Reply and Duplex. Datagram: Also known as one-way, or fire-forgot mode. The message sent from the client to the service, and no need any reply from the service. The client doesn’t care about the message result at all. Request-Reply: Very common used pattern. The client send the request message to the service and wait until the reply message comes from the service. Duplex: The client sent message to the service, when the service processing the message it can callback to the client. When callback the service would be like a client while the client would be like a service. In WCF, each MEP represent some channels associated. MEP Channels Datagram IInputChannel, IOutputChannel Request-Reply IRequestChannel, IReplyChannel Duplex IDuplexChannel And the channels are created by ChannelListener on the server side, and ChannelFactory on the client side. The ChannelListener and ChannelFactory are created by the TransportBindingElement. The TransportBindingElement is created by the Binding, which can be defined as a new binding or from a custom binding. For more information about the transport channel mode, please refer to the MSDN document. The figure below shows the transport channel objects when using the request-reply MEP. And this is the datagram MEP. And this is the duplex MEP. After investigated the WCF transport architecture, channel mode and MEP, we finally identified what we should do to extend our message bus based transport layer. They are: Binding: (Optional) Defines the channel elements in the channel stack and added our transport binding element at the bottom of the stack. But we can use the build-in CustomBinding as well. TransportBindingElement: Defines which MEP is supported in our transport and create the related ChannelListener and ChannelFactory. This also defines the scheme of the endpoint if using this transport. ChannelListener: Create the server side channel based on the MEP it’s. We can have one ChannelListener to create channels for all supported MEPs, or we can have ChannelListener for each MEP. In this series I will use the second approach. ChannelFactory: Create the client side channel based on the MEP it’s. We can have one ChannelFactory to create channels for all supported MEPs, or we can have ChannelFactory for each MEP. In this series I will use the second approach. Channels: Based on the MEPs we want to support, we need to implement the channels accordingly. For example, if we want our transport support Request-Reply mode we should implement IRequestChannel and IReplyChannel. In this series I will implement all 3 MEPs listed above one by one. Scaffold: In order to make our transport extension works we also need to implement some scaffold stuff. For example we need some classes to send and receive message though out message bus. We also need some codes to read and write the WCF message, etc.. These are not necessary but would be very useful in our example.   Message Bus There is only one thing remained before we can begin to implement our scaling-out support WCF transport, which is the message bus. As I mentioned above, the message bus must have some features to fulfill all the WCF MEPs. In my company we will be using TIBCO EMS, which is an enterprise message bus product. And I have said before we can use any message bus production if it’s satisfied with our requests. Here I would like to introduce an interface to separate the message bus from the WCF. This allows us to implement the bus operations by any kinds bus we are going to use. The interface would be like this. 1: public interface IBus : IDisposable 2: { 3: string SendRequest(string message, bool fromClient, string from, string to = null); 4:  5: void SendReply(string message, bool fromClient, string replyTo); 6:  7: BusMessage Receive(bool fromClient, string replyTo); 8: } There are only three methods for the bus interface. Let me explain one by one. The SendRequest method takes the responsible for sending the request message into the bus. The parameters description are: message: The WCF message content. fromClient: Indicates if this message was came from the client. from: The channel ID that this message was sent from. The channel ID will be generated when any kinds of channel was created, which will be explained in the following articles. to: The channel ID that this message should be received. In Request-Reply and Duplex MEP this is necessary since the reply message must be received by the channel which sent the related request message. The SendReply method takes the responsible for sending the reply message. It’s very similar as the previous one but no “from” parameter. This is because it’s no need to reply a reply message again in any MEPs. The Receive method takes the responsible for waiting for a incoming message, includes the request message and specified reply message. It returned a BusMessage object, which contains some information about the channel information. The code of the BusMessage class is 1: public class BusMessage 2: { 3: public string MessageID { get; private set; } 4: public string From { get; private set; } 5: public string ReplyTo { get; private set; } 6: public string Content { get; private set; } 7:  8: public BusMessage(string messageId, string fromChannelId, string replyToChannelId, string content) 9: { 10: MessageID = messageId; 11: From = fromChannelId; 12: ReplyTo = replyToChannelId; 13: Content = content; 14: } 15: } Now let’s implement a message bus based on the IBus interface. Since I don’t want you to buy and install the TIBCO EMS or any other message bus products, I will implement an in process memory bus. This bus is only for test and sample purpose. It can only be used if the service and client are in the same process. Very straightforward. 1: public class InProcMessageBus : IBus 2: { 3: private readonly ConcurrentDictionary<Guid, InProcMessageEntity> _queue; 4: private readonly object _lock; 5:  6: public InProcMessageBus() 7: { 8: _queue = new ConcurrentDictionary<Guid, InProcMessageEntity>(); 9: _lock = new object(); 10: } 11:  12: public string SendRequest(string message, bool fromClient, string from, string to = null) 13: { 14: var entity = new InProcMessageEntity(message, fromClient, from, to); 15: _queue.TryAdd(entity.ID, entity); 16: return entity.ID.ToString(); 17: } 18:  19: public void SendReply(string message, bool fromClient, string replyTo) 20: { 21: var entity = new InProcMessageEntity(message, fromClient, null, replyTo); 22: _queue.TryAdd(entity.ID, entity); 23: } 24:  25: public BusMessage Receive(bool fromClient, string replyTo) 26: { 27: InProcMessageEntity e = null; 28: while (true) 29: { 30: lock (_lock) 31: { 32: var entity = _queue 33: .Where(kvp => kvp.Value.FromClient == fromClient && (kvp.Value.To == replyTo || string.IsNullOrWhiteSpace(kvp.Value.To))) 34: .FirstOrDefault(); 35: if (entity.Key != Guid.Empty && entity.Value != null) 36: { 37: _queue.TryRemove(entity.Key, out e); 38: } 39: } 40: if (e == null) 41: { 42: Thread.Sleep(100); 43: } 44: else 45: { 46: return new BusMessage(e.ID.ToString(), e.From, e.To, e.Content); 47: } 48: } 49: } 50:  51: public void Dispose() 52: { 53: } 54: } The InProcMessageBus stores the messages in the objects of InProcMessageEntity, which can take some extra information beside the WCF message itself. 1: public class InProcMessageEntity 2: { 3: public Guid ID { get; set; } 4: public string Content { get; set; } 5: public bool FromClient { get; set; } 6: public string From { get; set; } 7: public string To { get; set; } 8:  9: public InProcMessageEntity() 10: : this(string.Empty, false, string.Empty, string.Empty) 11: { 12: } 13:  14: public InProcMessageEntity(string content, bool fromClient, string from, string to) 15: { 16: ID = Guid.NewGuid(); 17: Content = content; 18: FromClient = fromClient; 19: From = from; 20: To = to; 21: } 22: }   Summary OK, now I have all necessary stuff ready. The next step would be implementing our WCF message bus transport extension. In this post I described two scaling-out approaches on the service side especially if we are using the cloud platform: dispatcher mode and pulling mode. And I compared the Pros and Cons of them. Then I introduced the WCF channel stack, channel mode and the transport extension part, and identified what we should do to create our own WCF transport extension, to let our WCF services using pulling mode based on a message bus. And finally I provided some classes that need to be used in the future posts that working against an in process memory message bus, for the demonstration purpose only. In the next post I will begin to implement the transport extension step by step.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Windows Update can't install Windows Vista SP1

    - by Harry Johnston
    If you install Windows Vista RTM and run Windows Update, many updates are offered and will successfully install. Once all other updates are installed, Windows Vista service pack 1 is offered. When you attempt to install Windows Vista service pack 1, the service pack installation wizard appears, presenting the license agreement and so on. However, shortly after the installation starts the wizard disappears. Windows Update says that the update was installed successfully. However, service pack 1 is not in fact installed, and will be detected as needed again on the next update check. Repeat ad nauseum. On checking the Windows Update log, error 0x80190194 appears near the beginning of an update check, associated with the URL http://update.microsoft.com/vista/windowsupdate/redir/vistawuredir.cab. Why won't service pack 1 install properly and how do I fix it?

    Read the article

  • SAT Thread and Process output capture in c#

    - by alex
    Hi: This is a strange problem I encountered. I have an window application written in c# to do testing. It has a MDI parent form that is hosting a few children forms. One of the forms launch test cripts by creating processes and capture the scripts output to a text box. Another form open serial port and monitoring the status of the device I am working on(like a shell). If I ran both of them together, the output of the script seems only appear in the text box after the test is done. However, If I don't open the serial port form, the output of the script is captured in real time. Does anyone knows what's causing the problem? I notice the onDataReceived even handler for serial port form has a [SAThread] header to it. Will this cause the serial port thread having higher priority than other processes? Thanks in advance.

    Read the article

  • Port forwarding DD-WRT

    - by Pawel
    Hi, I'am runing locally service on port 81 (192.168.1.101) I would like to access server from outside MY.WAN.IP.ADDR:81. Everything is working fine on my local network, However can't access it from outside. Below iptables rules on the router. I am using dd-wrt and asus rt-n16 (everything is setup through standard port range forwarding in dd-wrt ) It might be something obvious, but I don't have any experience with routing. Any help will be really appreciated. Thanks. #iptables -t nat -vnL Chain PREROUTING (policy ACCEPT 1285 packets, 148K bytes) pkts bytes target prot opt in out source destination 3 252 DNAT icmp -- * * 0.0.0.0/0 MY.WAN.IP.ADDR to:192.168.1.1 5 300 DNAT tcp -- * * 0.0.0.0/0 MY.WAN.IP.ADDR tcp dpt:81 to:192.168.1.101 0 0 DNAT udp -- * * 0.0.0.0/0 MY.WAN.IP.ADDR udp dpt:81 to:192.168.1.101 298 39375 TRIGGER 0 -- * * 0.0.0.0/0 MY.WAN.IP.ADDR TRIGGER type:dnat match:0 relate:0 Chain POSTROUTING (policy ACCEPT 7 packets, 433 bytes) pkts bytes target prot opt in out source destination 747 91318 SNAT 0 -- * vlan2 0.0.0.0/0 0.0.0.0/0 to:MY.WAN.IP.ADDR 0 0 RETURN 0 -- * br0 0.0.0.0/0 0.0.0.0/0 PKTTYPE = broadcast Chain OUTPUT (policy ACCEPT 86 packets, 5673 bytes) pkts bytes target prot opt in out source destination # iptables -L Chain INPUT (policy ACCEPT) target prot opt source destination DROP tcp -- anywhere anywhere tcp dpt:webcache DROP tcp -- anywhere anywhere tcp dpt:www DROP tcp -- anywhere anywhere tcp dpt:https DROP tcp -- anywhere anywhere tcp dpt:69 DROP tcp -- anywhere anywhere tcp dpt:ssh DROP tcp -- anywhere anywhere tcp dpt:ssh DROP tcp -- anywhere anywhere tcp dpt:telnet DROP tcp -- anywhere anywhere tcp dpt:telnet Chain FORWARD (policy ACCEPT) target prot opt source destination ACCEPT 0 -- anywhere anywhere TCPMSS tcp -- anywhere anywhere tcp flags:SYN,RST/SYN TCPMSS clamp to PMTU lan2wan 0 -- anywhere anywhere ACCEPT 0 -- anywhere anywhere state RELATED,ESTABLISHED logaccept tcp -- anywhere pawel-ubuntu tcp dpt:81 logaccept udp -- anywhere pawel-ubuntu udp dpt:81 TRIGGER 0 -- anywhere anywhere TRIGGER type:in match:0 relate:0 trigger_out 0 -- anywhere anywhere logaccept 0 -- anywhere anywhere state NEW Chain OUTPUT (policy ACCEPT) target prot opt source destination Chain advgrp_1 (0 references) target prot opt source destination Chain advgrp_10 (0 references) target prot opt source destination Chain advgrp_2 (0 references) target prot opt source destination Chain advgrp_3 (0 references) target prot opt source destination Chain advgrp_4 (0 references) target prot opt source destination Chain advgrp_5 (0 references) target prot opt source destination Chain advgrp_6 (0 references) target prot opt source destination Chain advgrp_7 (0 references) target prot opt source destination Chain advgrp_8 (0 references) target prot opt source destination Chain advgrp_9 (0 references) target prot opt source destination Chain grp_1 (0 references) target prot opt source destination Chain grp_10 (0 references) target prot opt source destination Chain grp_2 (0 references) target prot opt source destination Chain grp_3 (0 references) target prot opt source destination Chain grp_4 (0 references) target prot opt source destination Chain grp_5 (0 references) target prot opt source destination Chain grp_6 (0 references) target prot opt source destination Chain grp_7 (0 references) target prot opt source destination Chain grp_8 (0 references) target prot opt source destination Chain grp_9 (0 references) target prot opt source destination Chain lan2wan (1 references) target prot opt source destination Chain logaccept (3 references) target prot opt source destination ACCEPT 0 -- anywhere anywhere Chain logdrop (0 references) target prot opt source destination DROP 0 -- anywhere anywhere Chain logreject (0 references) target prot opt source destination REJECT tcp -- anywhere anywhere tcp reject-with tcp-reset Chain trigger_out (1 references) target prot opt source destination #iptables -vnL FORWARD Chain FORWARD (policy ACCEPT 130 packets, 5327 bytes) pkts bytes target prot opt in out source destination 15 900 ACCEPT 0 -- br0 br0 0.0.0.0/0 0.0.0.0/0 390 20708 TCPMSS tcp -- * * 0.0.0.0/0 0.0.0.0/0 tcp flags:0x06/0x02 TCPMSS clamp to PMTU 182K 130M lan2wan 0 -- * * 0.0.0.0/0 0.0.0.0/0 179K 129M ACCEPT 0 -- * * 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED 0 0 logaccept tcp -- * * 0.0.0.0/0 192.168.1.101 tcp dpt:81 0 0 logaccept udp -- * * 0.0.0.0/0 192.168.1.101 udp dpt:81 0 0 TRIGGER 0 -- vlan2 br0 0.0.0.0/0 0.0.0.0/0 TRIGGER type:in match:0 relate:0 2612 768K trigger_out 0 -- br0 * 0.0.0.0/0 0.0.0.0/0 2482 762K logaccept 0 -- br0 * 0.0.0.0/0 0.0.0.0/0 state NEW

    Read the article

  • ssms cannot connect to default sql server instance without specifying port number

    - by Oliver
    I have multiple SQL Server 2005 instances on a box. From SSMS on my desktop I can connect to that box's named instances with no problem. After some recent network configuration changes, when I want to connect to the default instance from SSMS on my desktop, I have to specify the port number. Before the network changes, I did not have to specify the port number of the default instance. If I remote to any other box (including the one in question), and use that box's SSMS to connect to that default instance, success. From my desktop, and only from my desktop, I have to specify the port number. Is it a SQL Server configuration that I've missed? Is it possible something in my PC's configuration is getting in the way? Where would I look, or what could I pass on to the network folks to help them resolve this? Any help is appreciated.

    Read the article

  • Getting Serial Port Information in C#

    - by Jim Fell
    I have some code that loads the serial ports into a combo-box: List<String> tList = new List<String>(); comboBoxComPort.Items.Clear(); foreach (string s in SerialPort.GetPortNames()) { tList.Add(s); } tList.Sort(); comboBoxComPort.Items.Add("Select COM port..."); comboBoxComPort.Items.AddRange(tList.ToArray()); comboBoxComPort.SelectedIndex = 0; I would like to add the port descriptions (similar to what are shown for the COM ports in the Device Manager) to the list and sort the items in the list that are after index 0 (solved: see above snippet). Does anyone have any suggestions for adding the port descriptions? I am using Microsoft Visual C# 2008 Express Edition (.NET 2.0). Any thoughts you may have would be appreciated. Thanks.

    Read the article

  • STAThread and Process output capture in c#

    - by alex
    Hi: This is a strange problem I encountered. I have an window application written in c# to do testing. It has a MDI parent form that is hosting a few children forms. One of the forms launch test cripts by creating processes and capture the scripts output to a text box. Another form open serial port and monitoring the status of the device I am working on(like a shell). If I ran both of them together, the output of the script seems only appear in the text box after the test is done. However, If I don't open the serial port form, the output of the script is captured in real time. Does anyone knows what's causing the problem? I notice the onDataReceived even handler for serial port form has a [STAThread] header to it. Will this cause the serial port thread having higher priority than other processes? Thanks in advance.

    Read the article

  • Add / remove a port number to/from a URL with REGEX in PHP

    - by SuperDuck
    Hello guys, I've searched but was unable to find an existing regex function. Has anybody done this before? I wish to add a port number, or remove a potantially existing one from a url in php. To use in some functions which translate a given url to the secure one, unsecure one, etc. Now I need a second SSL secured site on the server so I need to dynamically add a port number while converting http to https, and remove any port number while converting from https to http. Thanks, Duck

    Read the article

  • TcpListener.Start() does not open the port

    - by SoMoS
    Hello, I have a class that inherits from the TcpListener, this class Shadows the Start method just to call the base Start() and the base BeginAcceptTcpClient(). From time to time the method is called but the port is not opened (netstat does not show the port open). The class looks like this Public Class ExtendedTcpListener Inherits System.Net.Sockets.TcpListener Public Shadows Sub Start() SyncLock (m_stopLock) MyBase.Start() MyBase.BeginAcceptTcpClient(AddressOf Me.CompleteAcceptTcpClient, Me) My.Application.Log.WriteEntry("Extended Tcp Listener started ...", TraceEventType.Verbose) End SyncLock End Sub Any idea on what's happening or how to debug the issue? As the Start() is called without exception I expected to find the port always opened (the log is always written). Extra information: when the Start method works fine it works each time until app is restarted. When the Start method does not work it won't work again until the app is restarted.

    Read the article

  • Don&rsquo;t Miss &ldquo;Transform Field Service Delivery with Oracle Real-Time Scheduler&rdquo;

    - by ruth.donohue
    Field resources are an expensive element in the service equation. Maximizing the scheduling and routing of these resources is critical in reducing costs, increasing profitability, and improving the customer experience. Oracle Real-Time Scheduler creates cost-optimized plans and schedules for service technicians that increase operational efficiencies and improve margins. It enhances Oracle’s Siebel Field Service with real-time scheduling and dispatch capabilities that ensure service requests are allocated efficiently and service levels are honored. Join our live Webcast to learn how your organization can leverage Oracle Real-Time Scheduler to: Increase operational efficiency with real-time scheduling that enables field service technicians to handle more calls per day and reduce travel mileage Resolve issues faster with dynamic work flows that ensure you have the right technician with the right skill set for the right job Improve the customer experience with real-time planning that optimizes field technician routing, reduces customer wait times, and minimizes missed SLAs Date: Thursday, March 10, 2011 Time: 8:30 am PT / 11:30 am ET / 4:30 pm UK / 5:30 pm CET Click here to register now.   Technorati Tags: Siebel Field Service,Oracle Real-Time Scheduler

    Read the article

  • windows server 2008 r2 - can't get apache to run on port 80

    - by Robbiegod
    I have a rackspace cloud server running windows server 2008 r2. I've uninstalled IIS because I want to install Apache. I've installed Apache but it fails everytime i try to run it when i listen to port 80. I've run the command netstat -aon|finderstr "80" and i see the following: C:\Users\Administratornetstat -aon|findstr "80" TCP 0.0.0.0:80 0.0.0.0:0 LISTENING 4 TCP 10.180.15.249:139 0.0.0.0:0 LISTENING 4 TCP [::]:80 [::]:0 LISTENING 4 UDP 10.180.15.249:137 : 4 UDP 10.180.15.249:138 : 4 So what are these things running on port 80 and why can't i get apache to start? Is there an alternative port for to run apache under that will work just as well as 80?

    Read the article

  • Ubuntu 8.04 LTS MySQL port remote access

    - by Stig Christian
    Hi! I have tried everything I know, but still no solution to this problem. MySQL works perfectly on localhost, but it seems port 3306 is blocked from the outside... I have commented out "bind-address" in /etc/mysql/my.cnf, and there is no iptables rules that deny this port. (I have even opened the port in iptables just to be sure) Still I can`t connect to the server from a remote connection (telnet or portscan returns negative results). Where is the problem?

    Read the article

  • How to stop listening on an HTTP::Daemon port in Perl

    - by Trevor
    I have a basic perl HTTP server using HTTP::Daemon. When I stop and start the script, it appears that the port is still being listened on and I get an error message saying that my HTTP::Daemon instance is undefined. If I try to start the script about a minute after it has stopped, it works fine and can bind to the port again. Is there any way to stop listening on the port when the program terminates instead of having to wait for it to timeout? use HTTP::Daemon; use HTTP::Status; my $d = new HTTP::Daemon(LocalAddr => 'localhost', LocalPort => 8000); while (my $c = $d->accept) { while (my $r = $c->get_request) { $c->send_error(RC_FORBIDDEN) } $c->close; undef($c); }

    Read the article

  • assembling an object graph without an ORM -- in the service layer or data layer?

    - by Hans Gruber
    At my current gig, our persistence layer uses IBatis going against SQL Server stored procedures (puke). IMHO, this approach has many disadvantages over the use of a "true" ORM such NHibernate or EF, but the one I'm trying to address here revolves around all the boilerplate code needed to map data from a result set into an object graph. Say I have the following DTO object graph I want to return to my presentation layer: IEnumerable<CustomerDTO> |--> IEnumerable<AddressDTO> |--> LatestOrderDTO The way I've implemented this is to have a discrete method in my DAO class to return each IEnumerable<*DTO>, and then have my service class be responsible for orchestrating the calls to the DAO. It then returns the fully assembled object graph to the client: public class SomeService(){ public SomeService(IDao someDao){ this._someDao = someDao; } public IEnumerable<CustomerDTO> ListCustomersForHistory(int brokerId){ var customers = _someDao.ListCustomersForBroker(brokerId); foreach (customer in customers){ customer.Addresses = someDao.ListCustomersAddresses(brokerId); customer.LatestOrder = someDao.GetCustomerLatestOrder(brokerId); } } return customers; } My question is should this logic belong in the service layer or the should I make my DAO such that it instead returns the assembled object graph. If I was using NHibernate, I assume that this kind of relationship association between objects comes for "free"?

    Read the article

  • New to JEE; architecture suggestions for a service/daemon?

    - by Kate
    I am brand new to the JEE world. As an exercise to try and familiarize myself with JEE, I'm trying to create a tiered web-app, but I'm getting a little stuck on what the best way is to spin up a service in the background that does work. Parameters of the service: It must open and hold a socket connection and receive information from the connected server. There is a 1-to-1 correlation between a user and a new socket connection. So the idea is the user presses a button on the web-page, and somewhere on the server a socket connection is opened. For the remainder of the users session (or until the user presses some sort of disconnect button) the socket remains open and pushes received information to some sort of centralized store that servlets can query and return to the user via AJAX. Is there a JEE type way to handle this situation? Naturally what I would think to do is to just write a Java application that listens on a port that the servlets can connect to and spawns new threads that open these sockets, but that seems very ad-hoc to me. (PS: I am also new to Stack Overflow, so forgive me if it takes me some time to figure the site out!)

    Read the article

  • New to J2EE; architecture suggestions for a service/daemon?

    - by Kate
    I am brand new to the J2EE world. As an exercise to try and familiarize myself with J2EE, I'm trying to create a tiered web-app, but I'm getting a little stuck on what the best way is to spin up a service in the background that does work. Paramters of the service: It must open and hold a socket connection and receive information from the connected server. There is a 1-to-1 correlation between a user and a new socket connection. So the idea is the user presses a button on the web-page, and somewhere on the server a socket connection is opened. For the remainder of the users session (or until the user presses some sort of disconnect button) the socket remains open and pushes received information to some sort of centralized store that servlets can query and return to the user via AJAX. Is there a J2EE type way to handle this situation? Naturally what I would think to do is to just write a Java application that listens on a port that the servlets can connect to and spawns new threads that open these sockets, but that seems very ad-hoc to me. (PS: I am also new to Stack Overflow, so forgive me if it takes me some time to figure the site out!)

    Read the article

  • Java: How to clear socket bindings

    - by Matt1776
    I am having a few issues with sockets within my Java SIP client. When I bind to an address and port, if something goes wrong I have to attempt to reconnect, usually after I've stopped and restarted the process. Problem with that is then the port is bound and I am forced to increment the local port. How can I remove the binding to the port I am targeting before binding to it? If that isnt possible, then how can I trap the process just before it ends so that I can locate the socket binding and close it manually?

    Read the article

  • Point domain to port used by java app

    - by takeshin
    I have successfully installed YouTrack issue tracker following the guides at: http://confluence.jetbrains.net/display/YTD3/Linux.+YouTrack+JAR+as+a+Service http://youtrack.jetbrains.com/issue/JT-7619 The application is now running at: mydomain.com:8080 How do I configure the server to run at youtrack.mydomain.com instead? I've been trying to set a reverse proxy in Apache, but it didn't work for me.

    Read the article

< Previous Page | 80 81 82 83 84 85 86 87 88 89 90 91  | Next Page >