Search Results

Search found 6638 results on 266 pages for 'boost range'.

Page 94/266 | < Previous Page | 90 91 92 93 94 95 96 97 98 99 100 101  | Next Page >

  • Convert a Row to a Column (or Backwards) in Google Docs Spreadsheets

    - by The Geek
    If you have to deal with a lot of spreadsheets, you’re probably really bored right now. You also might be wondering how to turn a row into a column, or a column into a row. Here’s how to do it with Google Docs Spreadsheets. If you’re an Excel user, you’re also in luck, because we’ve already shown you how to turn a row into a column, or vice-versa. It won’t make you any less bored though. Convert a Row to a Column (or backwards) The first thing you’ll need is a column or a row of information that you want to convert into the opposite. For our example, we’ve got this set of data that we created by using the Auto Fill options in Google Docs. Now in another cell, you’ll need to use the TRANSPOSE function, which you can use by simply typing in the following: =TRANSPOSE( And then selecting the cells with the mouse, or manually typing in the range of cells you want to copy. The final function in this example was: =TRANSPOSE(A1:A11) Finish it off with the final ) character to complete the function, hit the Enter key, and there we are… the column was transposed over to the right. You can use the same thing to turn columns into rows, or rows into columns—just change the range you are looking for. Similar Articles Productive Geek Tips How To Use AutoFill on a Google Docs Spreadsheet [Quick Tips]Integrate Google Docs with Outlook the Easy WayHow To Export Documents from Google Docs to Your ComputerConvert a Row to a Column in Excel the Easy WayScroll Backwards From the Ubuntu Server Command Line TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Check Your IMAP Mail Offline In Thunderbird Follow Finder Finds You Twitter Users To Follow Combine MP3 Files Easily QuicklyCode Provides Cheatsheets & Other Programming Stuff Download Free MP3s from Amazon Awe inspiring, inter-galactic theme (Win 7)

    Read the article

  • EPM 11.1.2.2 Architecture: Essbase

    - by Marc Schumacher
    Since a lot of components exist to access or administer Essbase, there are also a couple of client tools available. End users typically use the Excel Add-In or SmartView nowadays. While the Excel Add-In talks to the Essbase server directly using various ports, SmartView connects to Essbase through Provider Services using HTTP protocol. The ability to communicate using a single port is one of the major advantages from SmartView over Excel Add-In. If you consider using Excel Add-In going forward, please make sure you are aware of the Statement of Direction for this component. The Administration Services Console, Integration Services Console and Essbase Studio are clients, which are mainly used by Essbase administrators or application designers. While Integration Services and Essbase Studio are used to setup Essbase applications by loading metadata or simply for data loads, Administration Services are utilized for all kind of Essbase administration. All clients are using only one or two ports to talk to their server counterparts, which makes them work through firewalls easily. Although clients for Provider Services (SmartView) and Administration Services (Administration Services Console) are only using a single port to communicate to their backend services, the backend services itself need the Essbase configured port range to talk to the Essbase server. Any communication to repository databases is done using JDBC connections. Essbase Studio and Integration Services are using different technologies to talk to the Essbase server, Integration Services uses CAPI, Essbase Studio uses JAPI. However, both are using the configured port range on the Essbase server to talk to Essbase. Connections to data sources are either based on ODBC (Integration Service, Essbase) or JDBC (Essbase Studio). As for all other components discussed previously, when setting up firewall rules, be aware of the fact that all services may need to talk to the external authentication sources, this is not only needed for Shared Services.

    Read the article

  • Speaking at MySQL Connect 2012

    - by jonathonc
    At the end of September, the MySQL Connect 2012 conference will be held as part of Oracle OpenWorld in San Francisco. MySQL Connect is a two day event that allows attendees to focus on MySQL at a technical depth with presentations and interaction with many of the MySQL developers, engineers and other knowledgeable staff. There is also a range a international speakers to give broader knowledge to the presentations. I am presenting a Hands-On Lab on Sunday 30th September 16:15 - 17:15 entitled HOL10474 - MySQL Security: Authentication and Auditing. The sessions goes through an introduction to the plugin API and how it can help expand the capabilities of MySQL. Since it is a hands-on lab, attendees will use practical examples of implementing simple plugins to get a start in developing their own plugins. These plugin examples are based around implementing PAM authentication and how it can be utilized to offer greater security for the MySQL Server. Once the authentication has been tested, a method to monitor it will be implemented using the auditing API and logging different events as they happen in the service. There is a total of 78 sessions at MySQL Connect 2012 with a great range of speakers. Hope to see you there!

    Read the article

  • Introduction to LinqPad Driver for StreamInsight 2.1

    - by Roman Schindlauer
    We are announcing the availability of the LinqPad driver for StreamInsight 2.1. The purpose of this blog post is to offer a quick introduction into the new features that we added to the StreamInsight LinqPad driver. We’ll show you how to connect to a remote server, how to inspect the entities present of that server, how to compose on top of them and how to manage their lifetime. Installing the driver Info on how to install the driver can be found in an earlier blog post here. Establishing connections As you click on the “Add Connection” link in the left pane you will notice that now it’s possible to build the data context automatically. The new driver appears as an option in the upper list, and if you pick it you will open a connection dialog that lets you connect to a remote StreamInsight server. The connection dialog lets you specify the address of the remote server. You will notice that it’s possible to pick up the binding information from the configuration file of the LinqPad application (which is normally in the same folder as LinqPad.exe and is called LinqPad.exe.config). In order for the context to be generated you need to pick an application from the server. The control is editable hence you can create a new application if you don’t want to make changes to an existing application. If you choose a new application name you will be prompted for confirmation before this gets created. Once you click OK the connection is created and you can start issuing queries against the remote server. If there’s any connectivity error the connection is marked with a red X and you can see the error message informing you what went wrong (i.e., the remote server could not be reached etc.). The context for remote servers Let’s take a look at what happens after we are connected successfully. Every LinqPad query runs inside a context – think of it as a class that wraps all the code that you’re writing. If you’re connecting to a live server the context will contain the following: The application object itself. All entities present in this application (sources, sinks, subjects and processes). The picture below shows a snapshot of the left pane of LinqPad after a successful connection. Every entity on the server has a different icon which will allow users to figure out its purpose. You will also notice that some entities have a string in parentheses following the name. It should be interpreted as such: the first name is the name of the property of the context class and the second name is the name of the entity as it exists on the server. Not all valid entity names are valid identifier names so in cases where we had to make a transformation you see both. Note also that as you hover over the entities you get IntelliSense with their types – more on that later. Remoting is not supported As you play with the entities exposed by the context you will notice that you can’t read and write directly to/from them. If for instance you’re trying to dump the content of an entity you will get an error message telling you that in the current version remoting is not supported. This is because the entity lives on the remote server and dumping its content means reading the events produced by this entity into the local process. ObservableSource.Dump(); Will yield the following error: Reading from a remote 'System.Reactive.Linq.IQbservable`1[System.Int32]' is not supported. Use the 'Microsoft.ComplexEventProcessing.Linq.RemoteProvider.Bind' method to read from the source using a remote observer. This basically tells you that you can call the Bind() method to direct the output of this source to a sink that has to be defined on the remote machine as well. You can’t bring the results to the LinqPad window unless you write code specifically for that. Compose queries You may ask – what's the purpose of all that? After all the same information is present in the EventFlowDebugger, why bother with showing it in LinqPad? First of all, What gets exposed in LinqPad is not what you see in the debugger. In LinqPad we have a property on the context class for every entity that lives on the server. Because LinqPad offers IntelliSense we in fact have much more information about the entity, and more importantly we can compose with that entity very easily. For example, let’s say that this code creates an entity: using (var server = Server.Connect(...)) {     var a = server.CreateApplication("WhiteFish");     var src = a         .DefineObservable<int>(() => Observable.Range(0, 3))         .Deploy("ObservableSource"); If later we want to compose with the source we have to fetch it and then we can bind something to     a.GetObservable<int>("ObservableSource)").Bind(... This means that we had to know a bunch of things about this: that it’s a source, that it’s an observable, it produces a result with payload Int32 and it’s named “ObservableSource”. Only the second and last bits of information are present in the debugger, by the way. As you type in the query window you see that all the entities are present, you get IntelliSense support for them and it’s much easier to make sense of what’s available. Let’s look at a scenario where composition is plausible. With the new programming model it’s possible to create “cold” sources that are parameterized. There was a way to accomplish that even in the previous version by passing parameters to the adapters, but this time it’s much more elegant because the expression declares what parameters are required. Say that we hover the mouse over the ThrottledSource source – we will see that its type is Func<int, int, IQbservable<int>> - this in effect means that we need to pass two int parameters before we can get a source that produces events, and the type for those events is int – in the particular case of my example I had the source produce a range of integers and the two parameters were the start and end of the range. So we see how a developer can create a source that is not running yet. Then someone else (e.g. an administrator) can pass whatever parameters appropriate and run the process. Proxy Types Here’s an interesting scenario – what if someone created a source on a server but they forgot to tell you what type they used. Worse yet, they might have used an anonymous type and even though they can refer to it by name you can’t figure out how to use that type. Let’s walk through an example that shows how you can compose against types you don’t need to have the definition of. This is how we can create a source that returns an anonymous type: Application.DefineObservable(() => Observable.Range(1, 10).Select(i => new { I = i })).Deploy("O1"); Now if we refresh the connection we can see the new source named O1 appear in the list. But what’s more important is that we now have a type to work with. So we can compose a query that refers to the anonymous type. var threshold = new StreamInsightDynamicDriver.TypeProxies.AnonymousType1_0<int>(5); var filter = from i in O1              where i > threshold              select i; filter.Deploy("O2"); You will notice that the anonymous type defined with this statement: new { I = i } can now be manipulated by a client that does not have access to it because the LinqPad driver has generated another type in its stead, named StreamInsightDynamicDriver.TypeProxies.AnonymousType1_0. This type has all the properties and fields of the type defined on the server, except in this case we can instantiate values and use it to compose more queries. It is worth noting that the same thing works for types that are not anonymous – the test is if the LinqPad driver can resolve the type or not. If it’s not possible then a new type will be generated that approximates the type that exists on the server. Control metadata In addition to composing processes on top of the existing entities we can do other useful things. We can delete them – nothing new here as we simply access the entities through the Entities collection of the application class. Here is where having their real name in parentheses comes handy. There’s another way to find out what’s behind a property – dump its expression. The first line in the output tells us what’s the name of the entity used to build this property in the context. Runtime information So let’s create a process to see what happens. We can bind a source to a sink and run the resulting process. If you right click on the connection you can refresh it and see the process present in the list of entities. Then you can drag the process to the query window and see that you can have access to process object in the Processes collection of the application. You can then manipulate the process (delete it, read its diagnostic view etc.). Regards, The StreamInsight Team

    Read the article

  • How Facebook's Ad Bid System Works

    - by pnongrata
    When you are creating an ad on Facebook, you are provided with a "suggested bid" range (e.g., $0.90 - $2.15 USD). According to this page: The suggested bid range is there to help you pick a maximum bid so your ad will be successful. It’s based on how many other advertisers are competing to show their ad to the same audience as you are. I'm interested in understanding what's actually going on (technically) under the hood here. Say a user logs into Facebook. On the server-side, it the HTTP request that the user's browser sent (as part of the login) is handled, and the server needs to figure out which ad to display back to the user. I assume this is where the "bidding" system comes into play? Say that, based on this user's demographics, and based on the audience targeting that several competing advertisers designed their campaign with, let's pretend that Facebook sees a pool of 20 different ads it could return. How does this bidding system help Facebook determine which of the 20 ads it returns to the client-side? I'm guessing that advertisers who "bid more" get prioritized over those who "bid less". But when does this bidding take place? How often does an advertiser need to re-bid? How long is a bid binding for? Once I understand these usage-related concepts behind ads, it will probably be obvious between which of the following "selection strategies" the backend is using: Round robin Prioritized round robin Randomized (doubtful) History-based MVP-based Thanks to anyone who can help point me in the right direction and explain what these suggested bid systems are and how they work.

    Read the article

  • Shuffling algorithm with no "self-mapping"?

    - by OregonTrail
    To randomly shuffle an array, with no bias towards any particular permutation, there is the Knuth Fischer-Yeats algorithm. In Python: #!/usr/bin/env python import sys from random import randrange def KFYShuffle(items): i = len(items) - 1 while i > 0: j = randrange(i+1) # 0 <= j <= i items[j], items[i] = items[i], items[j] i = i - 1 return items print KFYShuffle(range(int(sys.argv[1]))) There is also Sattolo's algorithm, which produces random cycles. In Python: #!/usr/bin/env python import sys from random import randrange def SattoloShuffle(items): i = len(items) while i > 1: i = i - 1 j = randrange(i) # 0 <= j <= i-1 items[j], items[i] = items[i], items[j] return items print SattoloShuffle(range(int(sys.argv[1]))) I'm currently writing a simulation with the following specifications for a shuffling algorithm: The algorithm is unbiased. If a true random number generator was used, no permutation would be more likely than any other. No number ends up at its original index. The input to the shuffle will always be A[i] = i for i from 0 to N-1 Permutations are produced that are not cycles, but still meet specification 2. The cycles produced by Sattolo's algorithm meet specification 2, but not specification 1 or 3. I've been working at creating an algorithm that meets these specifications, what I came up with was equivalent to Sattolo's algorithm. Does anyone have an algorithm for this problem?

    Read the article

  • Project Euler 19: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 19.  As always, any feedback is welcome. # Euler 19 # http://projecteuler.net/index.php?section=problems&id=19 # You are given the following information, but you may # prefer to do some research for yourself. # # - 1 Jan 1900 was a Monday. # - Thirty days has September, # April, June and November. # All the rest have thirty-one, # Saving February alone, # Which has twenty-eight, rain or shine. # And on leap years, twenty-nine. # - A leap year occurs on any year evenly divisible by 4, # but not on a century unless it is divisible by 400. # # How many Sundays fell on the first of the month during # the twentieth century (1 Jan 1901 to 31 Dec 2000)? import time start = time.time() import datetime sundays = 0 for y in range(1901,2001): for m in range(1,13): # monday == 0, sunday == 6 if datetime.datetime(y,m,1).weekday() == 6: sundays += 1 print sundays print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Linear Search in Python? [closed]

    - by POTUS
    def find_interval(mesh,x): '''This function finds the interval containing x according to the following rules, mesh is an ordered list with n numbers return 0 if x < mesh[0] return n if mesh[n-1] < x return k if mesh[k-1] <= x < mesh[k] return n-1 if mesh[n-2] <= x <= mesh[n-1] This function does a Linear search. 08/29/2012 ''' for n in range(len(mesh)): for k in range(len(mesh)): if x == mesh[n]: print "Found x at index:" return n elif x<mesh[n]: return 0 elif mesh[n-1]<x: return n elif mesh[n-2]<=x<=mesh[n-1]: return n-1 elif mesh[k-1]<=x<mesh[k]: return k mesh = [0, 0.1, 0.25, 0.5, 0.6, 0.75, 0.9, 1] print mesh print find_interval(mesh, -1) print find_interval(mesh, 0) print find_interval(mesh, 0.1) print find_interval(mesh, 0.8) print find_interval(mesh, 0.9) print find_interval(mesh, 1) print find_interval(mesh, 1.01) Output: [0, 0.100000000000000, 0.250000000000000, 0.500000000000000, 0.600000000000000, 0.750000000000000, 0.900000000000000, 1] 0 Found x at index: 0 2 6 -1 -1 0 I don't think the output is correct. Can anyone help me fix it? Thanks.

    Read the article

  • Get a culture specific list of month names

    - by erwin21
    A while ago I found a clever way to retrieve a dynamic culture specific list of months names in C# with LINQ. 1: var months = Enumerable.Range(1, 12) 2: .Select(i => new 3: { 4: Month = i.ToString(), 5: MonthName = new DateTime(1, i, 1).ToString("MMMM") 6: }) 7: .ToList(); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } It’s fairly simple, for a range of numbers from 1 to 12 a DateTime object is created (year and day doesn’t matter in this case), then the date time object formatted to a full month name with ToString(“MMMM”). In this example an anonymous object is created with a Month and MonthName property. You can use this solution to populate your dropdown list with months or to display a user friendly month name.

    Read the article

  • Oracle ATG Ranked "Leader" Once Again In This Year's Gartner Magic Quadrant For E-Commerce

    - by Michael Hylton
    Oracle ATG Web Commerce is in the top portion of the Leaders quadrant once again in this year's Gartner Magic Quadrant for E-Commerce, and gained in “ability to execute” over the 2010 version. Leaders are defined in this Magic Quadrant as technology providers that demonstrate the optimal blend of insight, innovation, execution and the ability to "see around the corner." Oracle ATG Web Commerce is a Leader because it has broadened its e-commerce capabilities with multisite management, a broader range of mobile devices supported and other additions, and Gartner points out ATG’s steady growth in revenue, market share and market visibility. Gartner notes that Oracle made the announcement regarding its acquisition of ATG in November 2010 and this has helped ATG with additional sales, marketing, R&D and global partnerships.Oracle ATG's latest release, Oracle ATG Commerce 10, provides several important enhancements, including multisite management, cross-channel campaign management and support for a broader range of mobile devices, with the addition of merchandising (including updates to the user interface) and promotions applications. The Magic Quadrant focuses on e-commerce for B2B and B2C across industry verticals, including retail, manufacturing, distribution, telecommunications, publishing, media, and financial services. The product should be able to integrate with applications beyond traditional e-commerce channels to meet the emerging customer requirement to transact across channels with a seamless experience.

    Read the article

  • Oracle ATG Ranked "Leader" Once Again In This Year's Gartner Magic Quadrant For E-Commerce

    - by Michael Hylton
    Oracle ATG Web Commerce is in the top portion of the Leaders quadrant once again in this year's Gartner Magic Quadrant for E-Commerce, and gained in “ability to execute” over the 2010 version. Leaders are defined in this Magic Quadrant as technology providers that demonstrate the optimal blend of insight, innovation, execution and the ability to "see around the corner." Oracle ATG Web Commerce is a Leader because it has broadened its e-commerce capabilities with multisite management, a broader range of mobile devices supported and other additions, and Gartner points out ATG’s steady growth in revenue, market share and market visibility. Gartner notes that Oracle made the announcement regarding its acquisition of ATG in November 2010 and this has helped ATG with additional sales, marketing, R&D and global partnerships.Oracle ATG's latest release, Oracle ATG Commerce 10, provides several important enhancements, including multisite management, cross-channel campaign management and support for a broader range of mobile devices, with the addition of merchandising (including updates to the user interface) and promotions applications. The Magic Quadrant focuses on e-commerce for B2B and B2C across industry verticals, including retail, manufacturing, distribution, telecommunications, publishing, media, and financial services. The product should be able to integrate with applications beyond traditional e-commerce channels to meet the emerging customer requirement to transact across channels with a seamless experience.

    Read the article

  • Solving Big Problems with Oracle R Enterprise, Part I

    - by dbayard
    Abstract: This blog post will show how we used Oracle R Enterprise to tackle a customer’s big calculation problem across a big data set. Overview: Databases are great for managing large amounts of data in a central place with rigorous enterprise-level controls.  R is great for doing advanced computations.  Sometimes you need to do advanced computations on large amounts of data, subject to rigorous enterprise-level concerns.  This blog post shows how Oracle R Enterprise enables R plus the Oracle Database enabled us to do some pretty sophisticated calculations across 1 million accounts (each with many detailed records) in minutes. The problem: A financial services customer of mine has a need to calculate the historical internal rate of return (IRR) for its customers’ portfolios.  This information is needed for customer statements and the online web application.  In the past, they had solved this with a home-grown application that pulled trade and account data out of their data warehouse and ran the calculations.  But this home-grown application was not able to do this fast enough, plus it was a challenge for them to write and maintain the code that did the IRR calculation. IRR – a problem that R is good at solving: Internal Rate of Return is an interesting calculation in that in most real-world scenarios it is impractical to calculate exactly.  Rather, IRR is a calculation where approximation techniques need to be used.  In this blog post, we will discuss calculating the “money weighted rate of return” but in the actual customer proof of concept we used R to calculate both money weighted rate of returns and time weighted rate of returns.  You can learn more about the money weighted rate of returns here: http://www.wikinvest.com/wiki/Money-weighted_return First Steps- Calculating IRR in R We will start with calculating the IRR in standalone/desktop R.  In our second post, we will show how to take this desktop R function, deploy it to an Oracle Database, and make it work at real-world scale.  The first step we did was to get some sample data.  For a historical IRR calculation, you have a balances and cash flows.  In our case, the customer provided us with several accounts worth of sample data in Microsoft Excel.      The above figure shows part of the spreadsheet of sample data.  The data provides balances and cash flows for a sample account (BMV=beginning market value. FLOW=cash flow in/out of account. EMV=ending market value). Once we had the sample spreadsheet, the next step we did was to read the Excel data into R.  This is something that R does well.  R offers multiple ways to work with spreadsheet data.  For instance, one could save the spreadsheet as a .csv file.  In our case, the customer provided a spreadsheet file containing multiple sheets where each sheet provided data for a different sample account.  To handle this easily, we took advantage of the RODBC package which allowed us to read the Excel data sheet-by-sheet without having to create individual .csv files.  We wrote ourselves a little helper function called getsheet() around the RODBC package.  Then we loaded all of the sample accounts into a data.frame called SimpleMWRRData. Writing the IRR function At this point, it was time to write the money weighted rate of return (MWRR) function itself.  The definition of MWRR is easily found on the internet or if you are old school you can look in an investment performance text book.  In the customer proof, we based our calculations off the ones defined in the The Handbook of Investment Performance: A User’s Guide by David Spaulding since this is the reference book used by the customer.  (One of the nice things we found during the course of this proof-of-concept is that by using R to write our IRR functions we could easily incorporate the specific variations and business rules of the customer into the calculation.) The key thing with calculating IRR is the need to solve a complex equation with a numerical approximation technique.  For IRR, you need to find the value of the rate of return (r) that sets the Net Present Value of all the flows in and out of the account to zero.  With R, we solve this by defining our NPV function: where bmv is the beginning market value, cf is a vector of cash flows, t is a vector of time (relative to the beginning), emv is the ending market value, and tend is the ending time. Since solving for r is a one-dimensional optimization problem, we decided to take advantage of R’s optimize method (http://stat.ethz.ch/R-manual/R-patched/library/stats/html/optimize.html). The optimize method can be used to find a minimum or maximum; to find the value of r where our npv function is closest to zero, we wrapped our npv function inside the abs function and asked optimize to find the minimum.  Here is an example of using optimize: where low and high are scalars that indicate the range to search for an answer.   To test this out, we need to set values for bmv, cf, t, emv, tend, low, and high.  We will set low and high to some reasonable defaults. For example, this account had a negative 2.2% money weighted rate of return. Enhancing and Packaging the IRR function With numerical approximation methods like optimize, sometimes you will not be able to find an answer with your initial set of inputs.  To account for this, our approach was to first try to find an answer for r within a narrow range, then if we did not find an answer, try calling optimize() again with a broader range.  See the R help page on optimize()  for more details about the search range and its algorithm. At this point, we can now write a simplified version of our MWRR function.  (Our real-world version is  more sophisticated in that it calculates rate of returns for 5 different time periods [since inception, last quarter, year-to-date, last year, year before last year] in a single invocation.  In our actual customer proof, we also defined time-weighted rate of return calculations.  The beauty of R is that it was very easy to add these enhancements and additional calculations to our IRR package.)To simplify code deployment, we then created a new package of our IRR functions and sample data.  For this blog post, we only need to include our SimpleMWRR function and our SimpleMWRRData sample data.  We created the shell of the package by calling: To turn this package skeleton into something usable, at a minimum you need to edit the SimpleMWRR.Rd and SimpleMWRRData.Rd files in the \man subdirectory.  In those files, you need to at least provide a value for the “title” section. Once that is done, you can change directory to the IRR directory and type at the command-line: The myIRR package for this blog post (which has both SimpleMWRR source and SimpleMWRRData sample data) is downloadable from here: myIRR package Testing the myIRR package Here is an example of testing our IRR function once it was converted to an installable package: Calculating IRR for All the Accounts So far, we have shown how to calculate IRR for a single account.  The real-world issue is how do you calculate IRR for all of the accounts?This is the kind of situation where we can leverage the “Split-Apply-Combine” approach (see http://www.cscs.umich.edu/~crshalizi/weblog/815.html).  Given that our sample data can fit in memory, one easy approach is to use R’s “by” function.  (Other approaches to Split-Apply-Combine such as plyr can also be used.  See http://4dpiecharts.com/2011/12/16/a-quick-primer-on-split-apply-combine-problems/). Here is an example showing the use of “by” to calculate the money weighted rate of return for each account in our sample data set.  Recap and Next Steps At this point, you’ve seen the power of R being used to calculate IRR.  There were several good things: R could easily work with the spreadsheets of sample data we were given R’s optimize() function provided a nice way to solve for IRR- it was both fast and allowed us to avoid having to code our own iterative approximation algorithm R was a convenient language to express the customer-specific variations, business-rules, and exceptions that often occur in real-world calculations- these could be easily added to our IRR functions The Split-Apply-Combine technique can be used to perform calculations of IRR for multiple accounts at once. However, there are several challenges yet to be conquered at this point in our story: The actual data that needs to be used lives in a database, not in a spreadsheet The actual data is much, much bigger- too big to fit into the normal R memory space and too big to want to move across the network The overall process needs to run fast- much faster than a single processor The actual data needs to be kept secured- another reason to not want to move it from the database and across the network And the process of calculating the IRR needs to be integrated together with other database ETL activities, so that IRR’s can be calculated as part of the data warehouse refresh processes In our next blog post in this series, we will show you how Oracle R Enterprise solved these challenges.

    Read the article

  • Ubuntu 12.04 freezes when booting

    - by Agustín González
    Translated I installed Ubuntu 12.04 LTS from the LiveCD, after finalizing the installation process and booting correctly, I applied the pending updates, which asked me to reboot. After rebooting, an error appeared saying "Out of Range". I pressed CTRL+ALT+F1, login to the tty1 terminal and edit the xorg.conf file and add VertRefresh 50.0 - 60.0 to it, which would solve the "Out of Range" problem that was mentioned before. After applying the changed and rebooting again, the following boot screen is all I see now: It freezes there. I even waited 2 hours and nothing happened. Can anybody help? Thank you! Original Instale Ubuntu 12.04 LTS desde el Live CD, al finalizar la instalación inicio el sistema operativo e inicia correctamente, después de aplicar actualizaciones me solicita reiniciar en lo cual acepto. Al volver a iniciar me daba un erro de "Fuera de rango", aprieto CTRL + ALT + F1, me logueo y edito el archivo xorg.conf en la sección Screen y agrego "VertRefresh 50.0 - 60.0", lo cual solucionaría el problema de "Fuera de rango", al aplicar los cambios, vuelvo a iniciar y solamente me aparece la pantalla de inicio (Véase imagen: http://t.bb/fH) y queda colgado, lo deje por lo menos 2 horas así y nada sucedió. ¿Alguien puede ayudarme? Gracias!

    Read the article

  • XNA texture stretching at extreme coordinates

    - by Shaun Hamman
    I was toying around with infinitely scrolling 2D textures using the XNA framework and came across a rather strange observation. Using the basic draw code: spriteBatch.Begin(SpriteSortMode.Deferred, null, SamplerState.PointWrap, null, null); spriteBatch.Draw(texture, Vector2.Zero, sourceRect, Color.White, 0.0f, Vector2.Zero, 2.0f, SpriteEffects.None, 1.0f); spriteBatch.End(); with a small 32x32 texture and a sourceRect defined as: sourceRect = new Rectangle(0, 0, Window.ClientBounds.Width, Window.ClientBounds.Height); I was able to scroll the texture across the window infinitely by changing the X and Y coordinates of the sourceRect. Playing with different coordinate locations, I noticed that if I made either of the coordinates too large, the texture no longer drew and was instead replaced by either a flat color or alternating bands of color. Tracing the coordinates back down, I found the following at around (0, -16,777,000): As you can see, the texture in the top half of the image is stretched vertically. My question is why is this occurring? Certainly I can do things like bind the x/y position to some low multiple of 32 to give the same effect without this occurring, so fixing it isn't an issue, but I'm curious about why this happens. My initial thought was perhaps it was overflowing the coordinate value or some such thing, but looking at a data type size chart, the next closest below is an unsigned short with a range of about 32,000, and above is an unsigned int with a range of around 2,000,000,000 so that isn't likely the cause.

    Read the article

  • Oracle India Provides Choices For Students

    - by user769227
    For next year's graduating class of computer science and engineering students, the world is their oyster. I believe that in today's day and age the opportunities for graduates are truly endless. Many students have a misconception that Oracle is mainly a Database Company. While we certainly are leaders in the database space, there is so much more that we do. If you look a little bit deeper you will find we have business groups within Oracle creating technical solutions across all areas of the business world. I think that the opportunities available at Oracle can be those 'life changing' roles that students are looking for where they will learn, develop, be challenged and still have the opportunity to be themselves. What other company provides as many choices for students as Oracle. The range of business and technical solutions we provide is enormous. At Oracle India we hire students across a range of different business groups. Below is a presentation showing you just some of the different business groups that hire graduates in Oracle India. The theme is 'choices' because we believe with the variety of work we do we provide the choice to allow you to be you. .prezi-player { width: 550px; } .prezi-player-links { text-align: center; } Oracle Campus Recruitment India: Choices on Prezi As you can see, here at Oracle you get the chance to allow 'You to be You'. If Cloud Computing is what you are interested in, great explore opportunities in our Cloud Services Team. Have you always wanted to work as a Systems Engineer, maybe a role in our Systems/Hardware Business is right for you. With Oracle you have the choice to carve out your career in the path you want it to take. Do you want to find our more, send us your details at [email protected] 

    Read the article

  • StreamInsight 2.1, meet LINQ

    - by Roman Schindlauer
    Someone recently called LINQ “magic” in my hearing. I leapt to LINQ’s defense immediately. Turns out some people don’t realize “magic” is can be a pejorative term. I thought LINQ needed demystification. Here’s your best demystification resource: http://blogs.msdn.com/b/mattwar/archive/2008/11/18/linq-links.aspx. I won’t repeat much of what Matt Warren says in his excellent series, but will talk about some core ideas and how they affect the 2.1 release of StreamInsight. Let’s tell the story of a LINQ query. Compile time It begins with some code: IQueryable<Product> products = ...; var query = from p in products             where p.Name == "Widget"             select p.ProductID; foreach (int id in query) {     ... When the code is compiled, the C# compiler (among other things) de-sugars the query expression (see C# spec section 7.16): ... var query = products.Where(p => p.Name == "Widget").Select(p => p.ProductID); ... Overload resolution subsequently binds the Queryable.Where<Product> and Queryable.Select<Product, int> extension methods (see C# spec sections 7.5 and 7.6.5). After overload resolution, the compiler knows something interesting about the anonymous functions (lambda syntax) in the de-sugared code: they must be converted to expression trees, i.e.,“an object structure that represents the structure of the anonymous function itself” (see C# spec section 6.5). The conversion is equivalent to the following rewrite: ... var prm1 = Expression.Parameter(typeof(Product), "p"); var prm2 = Expression.Parameter(typeof(Product), "p"); var query = Queryable.Select<Product, int>(     Queryable.Where<Product>(         products,         Expression.Lambda<Func<Product, bool>>(Expression.Property(prm1, "Name"), prm1)),         Expression.Lambda<Func<Product, int>>(Expression.Property(prm2, "ProductID"), prm2)); ... If the “products” expression had type IEnumerable<Product>, the compiler would have chosen the Enumerable.Where and Enumerable.Select extension methods instead, in which case the anonymous functions would have been converted to delegates. At this point, we’ve reduced the LINQ query to familiar code that will compile in C# 2.0. (Note that I’m using C# snippets to illustrate transformations that occur in the compiler, not to suggest a viable compiler design!) Runtime When the above program is executed, the Queryable.Where method is invoked. It takes two arguments. The first is an IQueryable<> instance that exposes an Expression property and a Provider property. The second is an expression tree. The Queryable.Where method implementation looks something like this: public static IQueryable<T> Where<T>(this IQueryable<T> source, Expression<Func<T, bool>> predicate) {     return source.Provider.CreateQuery<T>(     Expression.Call(this method, source.Expression, Expression.Quote(predicate))); } Notice that the method is really just composing a new expression tree that calls itself with arguments derived from the source and predicate arguments. Also notice that the query object returned from the method is associated with the same provider as the source query. By invoking operator methods, we’re constructing an expression tree that describes a query. Interestingly, the compiler and operator methods are colluding to construct a query expression tree. The important takeaway is that expression trees are built in one of two ways: (1) by the compiler when it sees an anonymous function that needs to be converted to an expression tree, and; (2) by a query operator method that constructs a new queryable object with an expression tree rooted in a call to the operator method (self-referential). Next we hit the foreach block. At this point, the power of LINQ queries becomes apparent. The provider is able to determine how the query expression tree is evaluated! The code that began our story was intentionally vague about the definition of the “products” collection. Maybe it is a queryable in-memory collection of products: var products = new[]     { new Product { Name = "Widget", ProductID = 1 } }.AsQueryable(); The in-memory LINQ provider works by rewriting Queryable method calls to Enumerable method calls in the query expression tree. It then compiles the expression tree and evaluates it. It should be mentioned that the provider does not blindly rewrite all Queryable calls. It only rewrites a call when its arguments have been rewritten in a way that introduces a type mismatch, e.g. the first argument to Queryable.Where<Product> being rewritten as an expression of type IEnumerable<Product> from IQueryable<Product>. The type mismatch is triggered initially by a “leaf” expression like the one associated with the AsQueryable query: when the provider recognizes one of its own leaf expressions, it replaces the expression with the original IEnumerable<> constant expression. I like to think of this rewrite process as “type irritation” because the rewritten leaf expression is like a foreign body that triggers an immune response (further rewrites) in the tree. The technique ensures that only those portions of the expression tree constructed by a particular provider are rewritten by that provider: no type irritation, no rewrite. Let’s consider the behavior of an alternative LINQ provider. If “products” is a collection created by a LINQ to SQL provider: var products = new NorthwindDataContext().Products; the provider rewrites the expression tree as a SQL query that is then evaluated by your favorite RDBMS. The predicate may ultimately be evaluated using an index! In this example, the expression associated with the Products property is the “leaf” expression. StreamInsight 2.1 For the in-memory LINQ to Objects provider, a leaf is an in-memory collection. For LINQ to SQL, a leaf is a table or view. When defining a “process” in StreamInsight 2.1, what is a leaf? To StreamInsight a leaf is logic: an adapter, a sequence, or even a query targeting an entirely different LINQ provider! How do we represent the logic? Remember that a standing query may outlive the client that provisioned it. A reference to a sequence object in the client application is therefore not terribly useful. But if we instead represent the code constructing the sequence as an expression, we can host the sequence in the server: using (var server = Server.Connect(...)) {     var app = server.Applications["my application"];     var source = app.DefineObservable(() => Observable.Range(0, 10, Scheduler.NewThread));     var query = from i in source where i % 2 == 0 select i; } Example 1: defining a source and composing a query Let’s look in more detail at what’s happening in example 1. We first connect to the remote server and retrieve an existing app. Next, we define a simple Reactive sequence using the Observable.Range method. Notice that the call to the Range method is in the body of an anonymous function. This is important because it means the source sequence definition is in the form of an expression, rather than simply an opaque reference to an IObservable<int> object. The variation in Example 2 fails. Although it looks similar, the sequence is now a reference to an in-memory observable collection: var local = Observable.Range(0, 10, Scheduler.NewThread); var source = app.DefineObservable(() => local); // can’t serialize ‘local’! Example 2: error referencing unserializable local object The Define* methods support definitions of operator tree leaves that target the StreamInsight server. These methods all have the same basic structure. The definition argument is a lambda expression taking between 0 and 16 arguments and returning a source or sink. The method returns a proxy for the source or sink that can then be used for the usual style of LINQ query composition. The “define” methods exploit the compile-time C# feature that converts anonymous functions into translatable expression trees! Query composition exploits the runtime pattern that allows expression trees to be constructed by operators taking queryable and expression (Expression<>) arguments. The practical upshot: once you’ve Defined a source, you can compose LINQ queries in the familiar way using query expressions and operator combinators. Notably, queries can be composed using pull-sequences (LINQ to Objects IQueryable<> inputs), push sequences (Reactive IQbservable<> inputs), and temporal sequences (StreamInsight IQStreamable<> inputs). You can even construct processes that span these three domains using “bridge” method overloads (ToEnumerable, ToObservable and To*Streamable). Finally, the targeted rewrite via type irritation pattern is used to ensure that StreamInsight computations can leverage other LINQ providers as well. Consider the following example (this example depends on Interactive Extensions): var source = app.DefineEnumerable((int id) =>     EnumerableEx.Using(() =>         new NorthwindDataContext(), context =>             from p in context.Products             where p.ProductID == id             select p.ProductName)); Within the definition, StreamInsight has no reason to suspect that it ‘owns’ the Queryable.Where and Queryable.Select calls, and it can therefore defer to LINQ to SQL! Let’s use this source in the context of a StreamInsight process: var sink = app.DefineObserver(() => Observer.Create<string>(Console.WriteLine)); var query = from name in source(1).ToObservable()             where name == "Widget"             select name; using (query.Bind(sink).Run("process")) {     ... } When we run the binding, the source portion which filters on product ID and projects the product name is evaluated by SQL Server. Outside of the definition, responsibility for evaluation shifts to the StreamInsight server where we create a bridge to the Reactive Framework (using ToObservable) and evaluate an additional predicate. It’s incredibly easy to define computations that span multiple domains using these new features in StreamInsight 2.1! Regards, The StreamInsight Team

    Read the article

  • How to automatically render all opaque meshes with a specific shader?

    - by dsilva.vinicius
    I have a specular outline shader that I want to be used on all opaque meshes of the scene whenever a specific camera renders. The shader is working properly when it is manually applied to some material. The shader is as follows: Shader "Custom/Outline" { Properties { _Color ("Main Color", Color) = (.5,.5,.5,1) _OutlineColor ("Outline Color", Color) = (1,0.5,0,1) _Outline ("Outline width", Range (0.0, 0.1)) = .05 _SpecColor ("Specular Color", Color) = (0.5, 0.5, 0.5, 1) _Shininess ("Shininess", Range (0.03, 1)) = 0.078125 _MainTex ("Base (RGB) Gloss (A)", 2D) = "white" {} } SubShader { Tags { "Queue"="Overlay" "RenderType"="Opaque" } Pass { Name "OUTLINE" Tags { "LightMode" = "Always" } Cull Off ZWrite Off // Uncomment to show outline always. //ZTest Always CGPROGRAM #pragma target 3.0 #pragma vertex vert #pragma fragment frag #include "UnityCG.cginc" struct appdata { float4 vertex : POSITION; float3 normal : NORMAL; }; struct v2f { float4 pos : POSITION; float4 color : COLOR; }; float _Outline; float4 _OutlineColor; v2f vert(appdata v) { // just make a copy of incoming vertex data but scaled according to normal direction v2f o; o.pos = mul(UNITY_MATRIX_MVP, v.vertex); float3 norm = mul ((float3x3)UNITY_MATRIX_IT_MV, v.normal); float2 offset = TransformViewToProjection(norm.xy); o.pos.xy += offset * o.pos.z * _Outline; o.color = _OutlineColor; return o; } float4 frag(v2f fromVert) : COLOR { return fromVert.color; } ENDCG } UsePass "Specular/FORWARD" } FallBack "Specular" } The camera used fot the effect has just a script component which setups the shader replacement: using UnityEngine; using System.Collections; public class DetectiveEffect : MonoBehaviour { public Shader EffectShader; // Use this for initialization void Start () { this.camera.SetReplacementShader(EffectShader, "RenderType=Opaque"); } // Update is called once per frame void Update () { } } Unfortunately, whenever I use this camera I just see the background color. Any ideas?

    Read the article

  • Data Center Modernization: Harness the power of Oracle Exalogic and Exadata with PeopleSoft

    - by Michelle Kimihira
    Author: Latha Krishnaswamy, Senior Manager, Exalogic Product Management   Allegis Group - a Hanover, MD-based global staffing company is the largest privately held staffing company in the United States with more than 10,000 internal employees and 90,000 contract employees. Allegis Group is a $6+ billion company, offering a full range of specialized staffing and recruiting solutions to clients in a wide range of industries.   The company processes about 133,000 paychecks per week, every week of the year. With 300 offices around the world and the hefty task of managing HR and payroll, the PeopleSoft system at Allegis  is a mission-critical application. The firm is in the midst of a data center modernization initiative. Part of that project meant moving the company's PeopleSoft applications (Financials and HR Modules as well as Custom Time & Expense module) to a converged infrastructure.     The company ran a proof of concept with four different converged architectures before deciding upon Exadata and Exalogic as the platform of choice.   Performance combined with High availability for running mission-critical payroll processes drove this decision.  During the testing on Exadata and Exalogic Allegis applied a particular (11-F) tax update in production environment. What job ran for roughly six hours completed in less than 1.5 hours. With additional tuning the second run of the Tax update 11-F reduced to 33 minutes - a 90% improvement!     Not only that, the move will help the company save money on middleware by consolidating use of Oracle licensing in a single platform.   Summary With a modern data center powered by Exalogic and Exadata to run mission-critical PeopleSoft HR and Financial Applications, Allegis is positioned to manage business growth and improve employee productivity. PeopleSoft applications run on engineered systems platform minimizing hardware and software integration risks. Additional Information Product Information on Oracle.com: Oracle Fusion Middleware Follow us on Twitter and Facebook Subscribe to our regular Fusion Middleware Newsletter

    Read the article

  • Creating Gun objects with upgrades?

    - by zardon
    I have a series of guns in my game. I use the Gun class/object like this: (Just an example) @interface Gun : NSObject { NSString *name; // Six-shooter NSNumber *cost; NSNumber *clipPrice; // ie: 700 NSNumber *clipCapacity; // 6 NSNumber *ammoCapacity; // 6 NSNumber *damage; // 0-10 NSNumber *accuracy; // 0-10 NSNumber *fireRate; // 0-10 NSNumber *range; // 0-10 // Not sure if I have all the stats, but this is fine for now } Lets say I want to have 3 upgrades per gun. My problem is I am not sure how to do this. Examples: increase fire-rate increase range increase accuracy silencer double ammo capacity (ie: Drum) double clip capacity (ie: Taped magazine) Thus my question is, I'd like to implement an upgrade system to guns but I am not sure how to do it. Would there be an Upgrade object which is a child to the Gun class, or would it be seperate class altogether. Thanks for your time.

    Read the article

  • How to remove the last character from Stringbuilder

    - by hmloo
    We usually use StringBuilder to append string in loops and make a string of each data separated by a delimiter. but you always end up with an extra delimiter at the end. This code sample shows how to remove the last delimiter from a StringBuilder. using System; using System.Collections.Generic; using System.Text; using System.Linq; class Program { static void Main() { var list =Enumerable.Range(0, 10).ToArray(); StringBuilder sb = new StringBuilder(); foreach(var item in list) { sb.Append(item).Append(","); } sb.Length--;//Just reduce the length of StringBuilder, it's so easy Console.WriteLine(sb); } } //Output : 0,1,2,3,4,5,6,7,8,9 Alternatively,  we can use string.Join for the same results, please refer to blow code sample. using System; using System.Collections.Generic; using System.Text; using System.Linq; class Program { static void Main() { var list = Enumerable.Range(0, 10).Select(n => n.ToString()).ToArray(); string str = string.Join(",", list); Console.WriteLine(str); } }

    Read the article

  • Application that provides unique keys to multiple threads

    - by poly
    Thanks all for your help before. So, this is what I came up with so far, the requirements are, application has two or more threads and each thread requires a unique session/transaction ID. is the below considered thread safe? thread 1 will register itself with get_id by sending it's pid thread 2 will do the same then thread 1 & 2 will call the function to get a unique ID function get_id(bool choice/*register thread or get id*/, pid_t pid) { static int pid[15][1]={0};//not sure if this work, anyway considor any it's been set to 0 by any other way than this static int total_threads = 0; static int i = 0; int x=0,y=0; if (choice) // thread registeration part { for(x=0;x<15;x++) { if (pid[x][0]==0); { pid[x][0] = (int) pid; pid[x][1] = (x & pidx[x][1]) << 24;//initiate counter for this PID by shifting x to the 25th bit, it could be any other bit, it's just to set a range. //so the range will be between 0x0000000 and 0x0ffffff, the second one will be 0x1000000 and 0x1ffffff, break; } total_threads++; } } //search if pid exist or not, if yes return transaction id for(x=0;x<15;x++) { if (pid[x][0]==pid); { pid[x][1]++;//put some test here to reset the number to 0 if it reaches 0x0ffffff return pid[x][1]; break; } } }

    Read the article

  • Very basic beginner Ruby question to do with elsif and ranges [migrated]

    - by MattKneale
    I've been trying to get to grasps with Ruby (for all of an hour) and this is my first language. I've got the following code: var_comparison = 5 print "Please enter a number: " my_num = Integer(gets.chomp) if my_num > var_comparison print "You picked a number greater than 5!" elsif my_num < var_comparison print "You picked a number less than 5!" elsif my_num > 99 print "Your number is too large, man." else print "You picked the number 5!" end Clearly the interpreter has no way of distinguishing between accepting the rule 5 or 99. How do I make it so that any number between 6-99 returns "You picked a number greater than 5!", but a number 100 or greater returns "Your number is too large, man!"? Do I need to specifically state a range somehow? How would I best do that? Would it by the normal range methods e.g. if my_num 6..99 or if my_num.between(6..99) ?

    Read the article

  • How are the conceptual pairs Abstract/Concrete, Generic/Specific, and Complex/Simple related to one another in software architecture?

    - by tjb1982
    (= 2 (+ 1 1)) take the above. The requirement of the '=' predicate is that its arguments be comparable. Any two structures are comparable in this case, and so the contract/requirement is pretty generic. The '+' predicate requires that its arguments be numbers. That's more specific. (socket domain type protocol) the arguments here are much more specific (even though the arguments are still just numbers and the function itself returns a file descriptor, which is itself an int), but the arguments are more abstract, and the implementation is built up from other functions whose abstractions are less abstract, which are themselves built from less and less abstract abstractions. To the point where the requirements are something like move from one location to another, observe whether the switch at that location is on or off, turn the switch on or off, or leave it the same, etc. But are functions also less and less complex the less abstract they are? And is there a relationship between the number and range of arguments of a function and the complexity of its implementation, as you go from more abstract to less abstract, and vice versa? (= 2 (+ 1 1) 2r10) the '=' predicate is more generic than the '+' predicate, and thus could be more complex in its implementation. The '+' predicate's contract is less generic, and so could be less complex in its implementation. Is this even a little correct? What about the 'socket' function? Each of those arguments is a number of some kind. What they represent, though, is something more elaborate. It also returns a number (just like the others do), which is also a representation of something conceptually much more elaborate than a number. To boil it down, I'm asking if there is a relationship between the following dimensions, and why: Abstract/Concrete Complex/Simple Generic/Specific And more specifically, do different configurations of these dimensions have a specific, measurable impact on the number and range of the arguments (i.e., the contract) of a function?

    Read the article

  • How do you coordinate with co-workers to give a balanced interview?

    - by goldierox
    My company has been conducting a lot of interviews lately for candidates with various experience levels, ranging from interns to senior candidates. We put our candidates through five 45 minute interview sessions where we try to ask a range of questions. One person always asks the same questions that test logic and communication. The rest typically split time between a whiteboard coding question and a discussion of previous projects, technologies the interviewee has worked with, and what he/she is looking for a job. Generally, we know the range of questions that other people on the loop will ask. Sometimes we switch things up and end up having redundancies. Today, 3 interviewers asked tree-related questions. Other times, we've all honed in on the same project on a resume and have had the interviewee talk about it with everyone. I think a smooth interview process would help us learn more about the candidate while giving the impression to the candidate that we have our act together as a team. How do you coordinate with others in the interview loop to give a balanced interview?

    Read the article

  • I’m new to C++ and unsure about how to improve this code [migrated]

    - by Laian Alsabbagh
    The purpose of the following code is to get a random number of 100 nodes and to distribute these nodes randomly in range 500*500 …(X,Y).. this was the first step #include<iostream> #include <fstream> #include<cmath> using namespace std; int main() { const int x = 0, y = 1; int nodes[100][2]; ofstream myfile; myfile.open ("example.txt"); myfile << "Writing this to a file.\n"; for (int i=0; i<100 ;i++) { nodes[i][x] = rand() % 501; nodes[i][y] = rand() % 501; myfile <<nodes[i][x]<<" "<<nodes[i][y]; } myfile.close(); } now the next step is to improve this code to distribute these nodes in order ( "Imust divide both xy_coordinates as : x= 0-100-200-300-400-500 & y=0-100-200-300-400-500) next is to distribute the nodes (regardless number of nodes) in order range Starting from (0,100 )….(100,100)..(100,200)…….untile i reach the last point (500,500),, ") I’m really confused of how to do it correctly I start to think to define 2 dimensional array , and then to define 2 for loops enter code here Int no_nodes=100; Int XY_coordinate [500][500]; For (int i=0;i<no_nodes; i++) { For (int j=0;j<no_nodes; j++)

    Read the article

< Previous Page | 90 91 92 93 94 95 96 97 98 99 100 101  | Next Page >