Search Results

Search found 22794 results on 912 pages for 'bit cost'.

Page 98/912 | < Previous Page | 94 95 96 97 98 99 100 101 102 103 104 105  | Next Page >

  • Problem with hadoop start-dfs.sh

    - by user288501
    I installed and configured hadoop on my Ubuntu 14.04 server, virtualized inside of hyper-v, however I am getting an issue when i run start-dfs.sh root@sUbuntu01:/var/log# start-dfs.sh 14/06/04 15:27:08 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable Starting namenodes on [OpenJDK 64-Bit Server VM warning: You have loaded library /usr/local/hadoop/lib/native/libhadoop.so.1.0.0 which might have disabled stack guard. The VM will try to fix the stack guard now. It's highly recommended that you fix the library with 'execstack -c <libfile>', or link it with '-z noexecstack'. localhost] sed: -e expression #1, char 6: unknown option to `s' -c: Unknown cipher type 'cd' localhost: Ubuntu 14.04 LTS localhost: starting namenode, logging to /usr/local/hadoop/logs/hadoop-root-namenode-sUbuntu01.out noexecstack'.: ssh: Could not resolve hostname noexecstack'.: Name or service not known '-z: ssh: Could not resolve hostname '-z: Name or service not known 'execstack: ssh: Could not resolve hostname 'execstack: Name or service not known disabled: ssh: Could not resolve hostname disabled: Name or service not known with: ssh: Could not resolve hostname with: Name or service not known have: ssh: Could not resolve hostname have: Name or service not known VM: ssh: Could not resolve hostname vm: Name or service not known stack: ssh: Could not resolve hostname stack: Name or service not known guard: ssh: Could not resolve hostname guard: Name or service not known fix: ssh: Could not resolve hostname fix: Name or service not known VM: ssh: Could not resolve hostname vm: Name or service not known the: ssh: Could not resolve hostname the: Name or service not known to: ssh: Could not resolve hostname to: Name or service not known warning:: ssh: Could not resolve hostname warning:: Name or service not known it: ssh: Could not resolve hostname it: Name or service not known now.: ssh: Could not resolve hostname now.: Name or service not known library: ssh: Could not resolve hostname library: Name or service not known will: ssh: Could not resolve hostname will: Name or service not known link: ssh: Could not resolve hostname link: Name or service not known or: ssh: Could not resolve hostname or: Name or service not known It's: ssh: Could not resolve hostname it's: Name or service not known <libfile>',: ssh: Could not resolve hostname <libfile>',: Name or service not known which: ssh: connect to host which port 22: Connection timed out have: ssh: connect to host have port 22: Connection timed out you: ssh: connect to host you port 22: Connection timed out try: ssh: connect to host try port 22: Connection timed out the: ssh: connect to host the port 22: Connection timed out highly: ssh: connect to host highly port 22: Connection timed out might: ssh: connect to host might port 22: Connection timed out loaded: ssh: connect to host loaded port 22: Connection timed out You: ssh: connect to host you port 22: Connection timed out guard.: ssh: connect to host guard. port 22: Connection timed out library: ssh: connect to host library port 22: Connection timed out Server: ssh: connect to host server port 22: Connection timed out fix: ssh: connect to host fix port 22: Connection timed out The: ssh: connect to host the port 22: Connection timed out recommended: ssh: connect to host recommended port 22: Connection timed out that: ssh: connect to host that port 22: Connection timed out stack: ssh: connect to host stack port 22: Connection timed out OpenJDK: ssh: connect to host openjdk port 22: Connection timed out 64-Bit: ssh: connect to host 64-bit port 22: Connection timed out with: ssh: connect to host with port 22: Connection timed out localhost: Ubuntu 14.04 LTS localhost: starting datanode, logging to /usr/local/hadoop/logs/hadoop-root-datanode-sUbuntu01.out localhost: OpenJDK 64-Bit Server VM warning: You have loaded library /usr/local/hadoop/lib/native/libhadoop.so.1.0.0 which might have disabled stack guard. The VM will try to fix the stack guard now. localhost: It's highly recommended that you fix the library with 'execstack -c <libfile>', or link it with '-z noexecstack'. Starting secondary namenodes [OpenJDK 64-Bit Server VM warning: You have loaded library /usr/local/hadoop/lib/native/libhadoop.so.1.0.0 which might have disabled stack guard. The VM will try to fix the stack guard now. It's highly recommended that you fix the library with 'execstack -c <libfile>', or link it with '-z noexecstack'. 0.0.0.0] sed: -e expression #1, char 6: unknown option to `s' warning:: ssh: Could not resolve hostname warning:: Name or service not known -c: Unknown cipher type 'cd' It's: ssh: Could not resolve hostname it's: Name or service not known 'execstack: ssh: Could not resolve hostname 'execstack: Name or service not known '-z: ssh: Could not resolve hostname '-z: Name or service not known 0.0.0.0: Ubuntu 14.04 LTS 0.0.0.0: starting secondarynamenode, logging to /usr/local/hadoop/logs/hadoop-root-secondarynamenode-sUbuntu01.out 0.0.0.0: OpenJDK 64-Bit Server VM warning: You have loaded library /usr/local/hadoop/lib/native/libhadoop.so.1.0.0 which might have disabled stack guard. The VM will try to fix the stack guard now. 0.0.0.0: It's highly recommended that you fix the library with 'execstack -c <libfile>', or link it with '-z noexecstack'. noexecstack'.: ssh: Could not resolve hostname noexecstack'.: Name or service not known <libfile>',: ssh: Could not resolve hostname <libfile>',: Name or service not known link: ssh: Could not resolve hostname link: No address associated with hostname it: ssh: Could not resolve hostname it: No address associated with hostname to: ssh: connect to host to port 22: Connection timed out or: ssh: connect to host or port 22: Connection timed out you: ssh: connect to host you port 22: Connection timed out guard.: ssh: connect to host guard. port 22: Connection timed out VM: ssh: connect to host vm port 22: Connection timed out stack: ssh: connect to host stack port 22: Connection timed out library: ssh: connect to host library port 22: Connection timed out Server: ssh: connect to host server port 22: Connection timed out might: ssh: connect to host might port 22: Connection timed out stack: ssh: connect to host stack port 22: Connection timed out You: ssh: connect to host you port 22: Connection timed out now.: ssh: connect to host now. port 22: Connection timed out disabled: ssh: connect to host disabled port 22: Connection timed out have: ssh: connect to host have port 22: Connection timed out will: ssh: connect to host will port 22: Connection timed out The: ssh: connect to host the port 22: Connection timed out have: ssh: connect to host have port 22: Connection timed out try: ssh: connect to host try port 22: Connection timed out the: ssh: connect to host the port 22: Connection timed out guard: ssh: connect to host guard port 22: Connection timed out the: ssh: connect to host the port 22: Connection timed out recommended: ssh: connect to host recommended port 22: Connection timed out with: ssh: connect to host with port 22: Connection timed out library: ssh: connect to host library port 22: Connection timed out 64-Bit: ssh: connect to host 64-bit port 22: Connection timed out fix: ssh: connect to host fix port 22: Connection timed out which: ssh: connect to host which port 22: Connection timed out VM: ssh: connect to host vm port 22: Connection timed out OpenJDK: ssh: connect to host openjdk port 22: Connection timed out fix: ssh: connect to host fix port 22: Connection timed out highly: ssh: connect to host highly port 22: Connection timed out that: ssh: connect to host that port 22: Connection timed out with: ssh: connect to host with port 22: Connection timed out loaded: ssh: connect to host loaded port 22: Connection timed out 14/06/04 15:36:02 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable Any advice?

    Read the article

  • Twitter traffic might not be what it seems

    - by Piet
    Are you using bit.ly stats to measure interest in the links you post on twitter? I’ve been hearing for a while about people claiming to get the majority of their traffic originating from twitter these days. Now, I’ve been playing with the twitter ruby gem recently, doing various experiments which I’ll not go into detail here because they could be regarded as spamming… if I’d conduct them on a large scale, that is. It’s scary to see people actually engaging with @replies crafted with some regular expressions and eliza-like trickery on status updates found using the twitter api. I’m wondering how Twitter is going to contain the coming spam-flood. When posting links I used bit.ly as url shortener, since this one seems to be the de-facto standard on twitter. A nice thing about bit.ly is that it shows some basic stats about the redirects it performs for your shortened links. To my surprise, most links posted almost immediately resulted in several visitors. Now, seeing that I was posting the links together with some information concerning what the link is about, I concluded that the people who were actually clicking the links should be very targeted visitors. This felt a bit like free adwords, and I suddenly started to understand why everyone was raving about getting traffic from twitter. How wrong I was! (and I think several 1000 online marketers with me) On the destination site I used a traffic logging solution that works by including a little javascript snippet in your pages. It seemed that somehow all visitors disappeared after the bit.ly redirect and before getting to the site, because I was hardly seeing any visitors there. So I started investigating what was happening: by looking at the logfiles of the destination site, and by making my own ’shortened’ urls by doing redirects using a very short domain name I own. This way, I could check the apache access_log before the redirects. Most user agents turned out to be bots without a doubt. Here’s an excerpt of user-agents awk’ed from apache’s access_log for a time period of about one hour, right after posting some links: AideRSS 2.0 (postrank.com) Java/1.6.0_13 Java/1.6.0_14 libwww-perl/5.816 MLBot (www.metadatalabs.com/mlbot) Mozilla/4.0 (compatible;MSIE 5.01; Windows -NT 5.0 - real-url.org) Mozilla/5.0 (compatible; Twitturls; +http://twitturls.com) Mozilla/5.0 (compatible; Viralheat Bot/1.0; +http://www.viralheat.com/) Mozilla/5.0 (Danger hiptop 4.6; U; rv:1.7.12) Gecko/20050920 Mozilla/5.0 (X11; U; Linux i686; en-us; rv:1.9.0.2) Gecko/2008092313 Ubuntu/9.04 (jaunty) Firefox/3.5 OpenCalaisSemanticProxy PycURL/7.18.2 PycURL/7.19.3 Python-urllib/1.17 Twingly Recon twitmatic Twitturly / v0.6 Wget/1.10.2 (Red Hat modified) Wget/1.11.1 (Red Hat modified) Of the few user-agents that seem ‘real’ at first, half are originating from an ip-address used by Amazon EC2. And I doubt people are setting op proxies on there. Oh yeah, Googlebot (the real deal, from a legit google owned address) is sucking up posted links like fresh oysters. I guess google is trying to make sure in advance to never be beaten by twitter in the ‘realtime search’ department. Actually, I think it’d be almost stupid NOT to post any new pages/posts/websites on Twitter, it must be one of the fastest ways to get a Googlebot visit. Same experiment with a real, established twitter account Now, because I was posting the url’s either as ’status’ messages or directed @people, on a test-account with hardly any (human) followers, I checked again using the twitter accounts from a commercial site I’m involved with. These accounts all have between 500 and 1000 targeted (I think) followers. I checked the destination access_logs and also added ‘my’ redirect after the bit.ly redirect: same results, although seemingly a bit higher real visitor/bot ratio. Btw: one of these account was ‘punished’ with a 1 week lock recently because the same (1 one!) status update was sent that was sent right before using another account. They got an email explaining the lock because the account didn’t act according to their TOS. I can’t find anything in their TOS about it, can you? I don’t think Twitter is on the right track punishing a legit account, knowing the trickery I had been doing with it’s api went totally unpunished. I might be wrong though, I often am. On the other hand: this commercial site reported targeted traffic and actual signups from visitors coming from Twitter. The ones that are really real visitors are also very targeted. I’m just not sure if the amount of work involved could hold up against an adwords campaign. Reposting the same link over and over again helps On thing I noticed: It helps to keep on reposting the same links with regular intervals. I guess most people only look at their first page when checking out recent posts of the ones they’re following, or don’t look too far back when performing a search. Now, this probably isn’t according to the twitter TOS. Actually, it might be spamming but no-one is obligated to follow anyone else of course. This way, I was getting more real visitors and less bots. To my surprise (when my programmer’s hat is on) there were still repeated visits from the same bots coming from the same ip-addresses. Did they expect to find something else when visiting for a 2nd or 3rd time? (actually,this gave me an idea: you can’t change a link once it’s posted, but you can change where it redirects to) Most bots were smart enough not to follow the same link again though. Are you successful in getting real visitors from Twitter? Are you only relying on bit.ly to provide traffic stats?

    Read the article

  • When is a SQL function not a function?

    - by Rob Farley
    Should SQL Server even have functions? (Oh yeah – this is a T-SQL Tuesday post, hosted this month by Brad Schulz) Functions serve an important part of programming, in almost any language. A function is a piece of code that is designed to return something, as opposed to a piece of code which isn’t designed to return anything (which is known as a procedure). SQL Server is no different. You can call stored procedures, even from within other stored procedures, and you can call functions and use these in other queries. Stored procedures might query something, and therefore ‘return data’, but a function in SQL is considered to have the type of the thing returned, and can be used accordingly in queries. Consider the internal GETDATE() function. SELECT GETDATE(), SomeDatetimeColumn FROM dbo.SomeTable; There’s no logical difference between the field that is being returned by the function and the field that’s being returned by the table column. Both are the datetime field – if you didn’t have inside knowledge, you wouldn’t necessarily be able to tell which was which. And so as developers, we find ourselves wanting to create functions that return all kinds of things – functions which look up values based on codes, functions which do string manipulation, and so on. But it’s rubbish. Ok, it’s not all rubbish, but it mostly is. And this isn’t even considering the SARGability impact. It’s far more significant than that. (When I say the SARGability aspect, I mean “because you’re unlikely to have an index on the result of some function that’s applied to a column, so try to invert the function and query the column in an unchanged manner”) I’m going to consider the three main types of user-defined functions in SQL Server: Scalar Inline Table-Valued Multi-statement Table-Valued I could also look at user-defined CLR functions, including aggregate functions, but not today. I figure that most people don’t tend to get around to doing CLR functions, and I’m going to focus on the T-SQL-based user-defined functions. Most people split these types of function up into two types. So do I. Except that most people pick them based on ‘scalar or table-valued’. I’d rather go with ‘inline or not’. If it’s not inline, it’s rubbish. It really is. Let’s start by considering the two kinds of table-valued function, and compare them. These functions are going to return the sales for a particular salesperson in a particular year, from the AdventureWorks database. CREATE FUNCTION dbo.FetchSales_inline(@salespersonid int, @orderyear int) RETURNS TABLE AS  RETURN (     SELECT e.LoginID as EmployeeLogin, o.OrderDate, o.SalesOrderID     FROM Sales.SalesOrderHeader AS o     LEFT JOIN HumanResources.Employee AS e     ON e.EmployeeID = o.SalesPersonID     WHERE o.SalesPersonID = @salespersonid     AND o.OrderDate >= DATEADD(year,@orderyear-2000,'20000101')     AND o.OrderDate < DATEADD(year,@orderyear-2000+1,'20000101') ) ; GO CREATE FUNCTION dbo.FetchSales_multi(@salespersonid int, @orderyear int) RETURNS @results TABLE (     EmployeeLogin nvarchar(512),     OrderDate datetime,     SalesOrderID int     ) AS BEGIN     INSERT @results (EmployeeLogin, OrderDate, SalesOrderID)     SELECT e.LoginID, o.OrderDate, o.SalesOrderID     FROM Sales.SalesOrderHeader AS o     LEFT JOIN HumanResources.Employee AS e     ON e.EmployeeID = o.SalesPersonID     WHERE o.SalesPersonID = @salespersonid     AND o.OrderDate >= DATEADD(year,@orderyear-2000,'20000101')     AND o.OrderDate < DATEADD(year,@orderyear-2000+1,'20000101')     ;     RETURN END ; GO You’ll notice that I’m being nice and responsible with the use of the DATEADD function, so that I have SARGability on the OrderDate filter. Regular readers will be hoping I’ll show what’s going on in the execution plans here. Here I’ve run two SELECT * queries with the “Show Actual Execution Plan” option turned on. Notice that the ‘Query cost’ of the multi-statement version is just 2% of the ‘Batch cost’. But also notice there’s trickery going on. And it’s nothing to do with that extra index that I have on the OrderDate column. Trickery. Look at it – clearly, the first plan is showing us what’s going on inside the function, but the second one isn’t. The second one is blindly running the function, and then scanning the results. There’s a Sequence operator which is calling the TVF operator, and then calling a Table Scan to get the results of that function for the SELECT operator. But surely it still has to do all the work that the first one is doing... To see what’s actually going on, let’s look at the Estimated plan. Now, we see the same plans (almost) that we saw in the Actuals, but we have an extra one – the one that was used for the TVF. Here’s where we see the inner workings of it. You’ll probably recognise the right-hand side of the TVF’s plan as looking very similar to the first plan – but it’s now being called by a stack of other operators, including an INSERT statement to be able to populate the table variable that the multi-statement TVF requires. And the cost of the TVF is 57% of the batch! But it gets worse. Let’s consider what happens if we don’t need all the columns. We’ll leave out the EmployeeLogin column. Here, we see that the inline function call has been simplified down. It doesn’t need the Employee table. The join is redundant and has been eliminated from the plan, making it even cheaper. But the multi-statement plan runs the whole thing as before, only removing the extra column when the Table Scan is performed. A multi-statement function is a lot more powerful than an inline one. An inline function can only be the result of a single sub-query. It’s essentially the same as a parameterised view, because views demonstrate this same behaviour of extracting the definition of the view and using it in the outer query. A multi-statement function is clearly more powerful because it can contain far more complex logic. But a multi-statement function isn’t really a function at all. It’s a stored procedure. It’s wrapped up like a function, but behaves like a stored procedure. It would be completely unreasonable to expect that a stored procedure could be simplified down to recognise that not all the columns might be needed, but yet this is part of the pain associated with this procedural function situation. The biggest clue that a multi-statement function is more like a stored procedure than a function is the “BEGIN” and “END” statements that surround the code. If you try to create a multi-statement function without these statements, you’ll get an error – they are very much required. When I used to present on this kind of thing, I even used to call it “The Dangers of BEGIN and END”, and yes, I’ve written about this type of thing before in a similarly-named post over at my old blog. Now how about scalar functions... Suppose we wanted a scalar function to return the count of these. CREATE FUNCTION dbo.FetchSales_scalar(@salespersonid int, @orderyear int) RETURNS int AS BEGIN     RETURN (         SELECT COUNT(*)         FROM Sales.SalesOrderHeader AS o         LEFT JOIN HumanResources.Employee AS e         ON e.EmployeeID = o.SalesPersonID         WHERE o.SalesPersonID = @salespersonid         AND o.OrderDate >= DATEADD(year,@orderyear-2000,'20000101')         AND o.OrderDate < DATEADD(year,@orderyear-2000+1,'20000101')     ); END ; GO Notice the evil words? They’re required. Try to remove them, you just get an error. That’s right – any scalar function is procedural, despite the fact that you wrap up a sub-query inside that RETURN statement. It’s as ugly as anything. Hopefully this will change in future versions. Let’s have a look at how this is reflected in an execution plan. Here’s a query, its Actual plan, and its Estimated plan: SELECT e.LoginID, y.year, dbo.FetchSales_scalar(p.SalesPersonID, y.year) AS NumSales FROM (VALUES (2001),(2002),(2003),(2004)) AS y (year) CROSS JOIN Sales.SalesPerson AS p LEFT JOIN HumanResources.Employee AS e ON e.EmployeeID = p.SalesPersonID; We see here that the cost of the scalar function is about twice that of the outer query. Nicely, the query optimizer has worked out that it doesn’t need the Employee table, but that’s a bit of a red herring here. There’s actually something way more significant going on. If I look at the properties of that UDF operator, it tells me that the Estimated Subtree Cost is 0.337999. If I just run the query SELECT dbo.FetchSales_scalar(281,2003); we see that the UDF cost is still unchanged. You see, this 0.0337999 is the cost of running the scalar function ONCE. But when we ran that query with the CROSS JOIN in it, we returned quite a few rows. 68 in fact. Could’ve been a lot more, if we’d had more salespeople or more years. And so we come to the biggest problem. This procedure (I don’t want to call it a function) is getting called 68 times – each one between twice as expensive as the outer query. And because it’s calling it in a separate context, there is even more overhead that I haven’t considered here. The cheek of it, to say that the Compute Scalar operator here costs 0%! I know a number of IT projects that could’ve used that kind of costing method, but that’s another story that I’m not going to go into here. Let’s look at a better way. Suppose our scalar function had been implemented as an inline one. Then it could have been expanded out like a sub-query. It could’ve run something like this: SELECT e.LoginID, y.year, (SELECT COUNT(*)     FROM Sales.SalesOrderHeader AS o     LEFT JOIN HumanResources.Employee AS e     ON e.EmployeeID = o.SalesPersonID     WHERE o.SalesPersonID = p.SalesPersonID     AND o.OrderDate >= DATEADD(year,y.year-2000,'20000101')     AND o.OrderDate < DATEADD(year,y.year-2000+1,'20000101')     ) AS NumSales FROM (VALUES (2001),(2002),(2003),(2004)) AS y (year) CROSS JOIN Sales.SalesPerson AS p LEFT JOIN HumanResources.Employee AS e ON e.EmployeeID = p.SalesPersonID; Don’t worry too much about the Scan of the SalesOrderHeader underneath a Nested Loop. If you remember from plenty of other posts on the matter, execution plans don’t push the data through. That Scan only runs once. The Index Spool sucks the data out of it and populates a structure that is used to feed the Stream Aggregate. The Index Spool operator gets called 68 times, but the Scan only once (the Number of Executions property demonstrates this). Here, the Query Optimizer has a full picture of what’s being asked, and can make the appropriate decision about how it accesses the data. It can simplify it down properly. To get this kind of behaviour from a function, we need it to be inline. But without inline scalar functions, we need to make our function be table-valued. Luckily, that’s ok. CREATE FUNCTION dbo.FetchSales_inline2(@salespersonid int, @orderyear int) RETURNS table AS RETURN (SELECT COUNT(*) as NumSales     FROM Sales.SalesOrderHeader AS o     LEFT JOIN HumanResources.Employee AS e     ON e.EmployeeID = o.SalesPersonID     WHERE o.SalesPersonID = @salespersonid     AND o.OrderDate >= DATEADD(year,@orderyear-2000,'20000101')     AND o.OrderDate < DATEADD(year,@orderyear-2000+1,'20000101') ); GO But we can’t use this as a scalar. Instead, we need to use it with the APPLY operator. SELECT e.LoginID, y.year, n.NumSales FROM (VALUES (2001),(2002),(2003),(2004)) AS y (year) CROSS JOIN Sales.SalesPerson AS p LEFT JOIN HumanResources.Employee AS e ON e.EmployeeID = p.SalesPersonID OUTER APPLY dbo.FetchSales_inline2(p.SalesPersonID, y.year) AS n; And now, we get the plan that we want for this query. All we’ve done is tell the function that it’s returning a table instead of a single value, and removed the BEGIN and END statements. We’ve had to name the column being returned, but what we’ve gained is an actual inline simplifiable function. And if we wanted it to return multiple columns, it could do that too. I really consider this function to be superior to the scalar function in every way. It does need to be handled differently in the outer query, but in many ways it’s a more elegant method there too. The function calls can be put amongst the FROM clause, where they can then be used in the WHERE or GROUP BY clauses without fear of calling the function multiple times (another horrible side effect of functions). So please. If you see BEGIN and END in a function, remember it’s not really a function, it’s a procedure. And then fix it. @rob_farley

    Read the article

  • Solaris X86 AESNI OpenSSL Engine

    - by danx
    Solaris X86 AESNI OpenSSL Engine Cryptography is a major component of secure e-commerce. Since cryptography is compute intensive and adds a significant load to applications, such as SSL web servers (https), crypto performance is an important factor. Providing accelerated crypto hardware greatly helps these applications and will help lead to a wider adoption of cryptography, and lower cost, in e-commerce and other applications. The Intel Westmere microprocessor has six new instructions to acclerate AES encryption. They are called "AESNI" for "AES New Instructions". These are unprivileged instructions, so no "root", other elevated access, or context switch is required to execute these instructions. These instructions are used in a new built-in OpenSSL 1.0 engine available in Solaris 11, the aesni engine. Previous Work Previously, AESNI instructions were introduced into the Solaris x86 kernel and libraries. That is, the "aes" kernel module (used by IPsec and other kernel modules) and the Solaris pkcs11 library (for user applications). These are available in Solaris 10 10/09 (update 8) and above, and Solaris 11. The work here is to add the aesni engine to OpenSSL. X86 AESNI Instructions Intel's Xeon 5600 is one of the processors that support AESNI. This processor is used in the Sun Fire X4170 M2 As mentioned above, six new instructions acclerate AES encryption in processor silicon. The new instructions are: aesenc performs one round of AES encryption. One encryption round is composed of these steps: substitute bytes, shift rows, mix columns, and xor the round key. aesenclast performs the final encryption round, which is the same as above, except omitting the mix columns (which is only needed for the next encryption round). aesdec performs one round of AES decryption aesdeclast performs the final AES decryption round aeskeygenassist Helps expand the user-provided key into a "key schedule" of keys, one per round aesimc performs an "inverse mixed columns" operation to convert the encryption key schedule into a decryption key schedule pclmulqdq Not a AESNI instruction, but performs "carryless multiply" operations to acclerate AES GCM mode. Since the AESNI instructions are implemented in hardware, they take a constant number of cycles and are not vulnerable to side-channel timing attacks that attempt to discern some bits of data from the time taken to encrypt or decrypt the data. Solaris x86 and OpenSSL Software Optimizations Having X86 AESNI hardware crypto instructions is all well and good, but how do we access it? The software is available with Solaris 11 and is used automatically if you are running Solaris x86 on a AESNI-capable processor. AESNI is used internally in the kernel through kernel crypto modules and is available in user space through the PKCS#11 library. For OpenSSL on Solaris 11, AESNI crypto is available directly with a new built-in OpenSSL 1.0 engine, called the "aesni engine." This is in lieu of the extra overhead of going through the Solaris OpenSSL pkcs11 engine, which accesses Solaris crypto and digest operations. Instead, AESNI assembly is included directly in the new aesni engine. Instead of including the aesni engine in a separate library in /lib/openssl/engines/, the aesni engine is "built-in", meaning it is included directly in OpenSSL's libcrypto.so.1.0.0 library. This reduces overhead and the need to manually specify the aesni engine. Since the engine is built-in (that is, in libcrypto.so.1.0.0), the openssl -engine command line flag or API call is not needed to access the engine—the aesni engine is used automatically on AESNI hardware. Ciphers and Digests supported by OpenSSL aesni engine The Openssl aesni engine auto-detects if it's running on AESNI hardware and uses AESNI encryption instructions for these ciphers: AES-128-CBC, AES-192-CBC, AES-256-CBC, AES-128-CFB128, AES-192-CFB128, AES-256-CFB128, AES-128-CTR, AES-192-CTR, AES-256-CTR, AES-128-ECB, AES-192-ECB, AES-256-ECB, AES-128-OFB, AES-192-OFB, and AES-256-OFB. Implementation of the OpenSSL aesni engine The AESNI assembly language routines are not a part of the regular Openssl 1.0.0 release. AESNI is a part of the "HEAD" ("development" or "unstable") branch of OpenSSL, for future release. But AESNI is also available as a separate patch provided by Intel to the OpenSSL project for OpenSSL 1.0.0. A minimal amount of "glue" code in the aesni engine works between the OpenSSL libcrypto.so.1.0.0 library and the assembly functions. The aesni engine code is separate from the base OpenSSL code and requires patching only a few source files to use it. That means OpenSSL can be more easily updated to future versions without losing the performance from the built-in aesni engine. OpenSSL aesni engine Performance Here's some graphs of aesni engine performance I measured by running openssl speed -evp $algorithm where $algorithm is aes-128-cbc, aes-192-cbc, and aes-256-cbc. These are using the 64-bit version of openssl on the same AESNI hardware, a Sun Fire X4170 M2 with a Intel Xeon E5620 @2.40GHz, running Solaris 11 FCS. "Before" is openssl without the aesni engine and "after" is openssl with the aesni engine. The numbers are MBytes/second. OpenSSL aesni engine performance on Sun Fire X4170 M2 (Xeon E5620 @2.40GHz) (Higher is better; "before"=OpenSSL on AESNI without AESNI engine software, "after"=OpenSSL AESNI engine) As you can see the speedup is dramatic for all 3 key lengths and for data sizes from 16 bytes to 8 Kbytes—AESNI is about 7.5-8x faster over hand-coded amd64 assembly (without aesni instructions). Verifying the OpenSSL aesni engine is present The easiest way to determine if you are running the aesni engine is to type "openssl engine" on the command line. No configuration, API, or command line options are needed to use the OpenSSL aesni engine. If you are running on Intel AESNI hardware with Solaris 11 FCS, you'll see this output indicating you are using the aesni engine: intel-westmere $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support If you are running on Intel without AESNI hardware you'll see this output indicating the hardware can't support the aesni engine: intel-nehalem $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support For Solaris on SPARC or older Solaris OpenSSL software, you won't see any aesni engine line at all. Third-party OpenSSL software (built yourself or from outside Oracle) will not have the aesni engine either. Solaris 11 FCS comes with OpenSSL version 1.0.0e. The output of typing "openssl version" should be "OpenSSL 1.0.0e 6 Sep 2011". 64- and 32-bit OpenSSL OpenSSL comes in both 32- and 64-bit binaries. 64-bit executable is now the default, at /usr/bin/openssl, and OpenSSL 64-bit libraries at /lib/amd64/libcrypto.so.1.0.0 and libssl.so.1.0.0 The 32-bit executable is at /usr/bin/i86/openssl and the libraries are at /lib/libcrytpo.so.1.0.0 and libssl.so.1.0.0. Availability The OpenSSL AESNI engine is available in Solaris 11 x86 for both the 64- and 32-bit versions of OpenSSL. It is not available with Solaris 10. You must have a processor that supports AESNI instructions, otherwise OpenSSL will fallback to the older, slower AES implementation without AESNI. Processors that support AESNI include most Westmere and Sandy Bridge class processor architectures. Some low-end processors (such as for mobile/laptop platforms) do not support AESNI. The easiest way to determine if the processor supports AESNI is with the isainfo -v command—look for "amd64" and "aes" in the output: $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu Conclusion The Solaris 11 OpenSSL aesni engine provides easy access to powerful Intel AESNI hardware cryptography, in addition to Solaris userland PKCS#11 libraries and Solaris crypto kernel modules.

    Read the article

  • Solaris X86 AESNI OpenSSL Engine

    - by danx
    Solaris X86 AESNI OpenSSL Engine Cryptography is a major component of secure e-commerce. Since cryptography is compute intensive and adds a significant load to applications, such as SSL web servers (https), crypto performance is an important factor. Providing accelerated crypto hardware greatly helps these applications and will help lead to a wider adoption of cryptography, and lower cost, in e-commerce and other applications. The Intel Westmere microprocessor has six new instructions to acclerate AES encryption. They are called "AESNI" for "AES New Instructions". These are unprivileged instructions, so no "root", other elevated access, or context switch is required to execute these instructions. These instructions are used in a new built-in OpenSSL 1.0 engine available in Solaris 11, the aesni engine. Previous Work Previously, AESNI instructions were introduced into the Solaris x86 kernel and libraries. That is, the "aes" kernel module (used by IPsec and other kernel modules) and the Solaris pkcs11 library (for user applications). These are available in Solaris 10 10/09 (update 8) and above, and Solaris 11. The work here is to add the aesni engine to OpenSSL. X86 AESNI Instructions Intel's Xeon 5600 is one of the processors that support AESNI. This processor is used in the Sun Fire X4170 M2 As mentioned above, six new instructions acclerate AES encryption in processor silicon. The new instructions are: aesenc performs one round of AES encryption. One encryption round is composed of these steps: substitute bytes, shift rows, mix columns, and xor the round key. aesenclast performs the final encryption round, which is the same as above, except omitting the mix columns (which is only needed for the next encryption round). aesdec performs one round of AES decryption aesdeclast performs the final AES decryption round aeskeygenassist Helps expand the user-provided key into a "key schedule" of keys, one per round aesimc performs an "inverse mixed columns" operation to convert the encryption key schedule into a decryption key schedule pclmulqdq Not a AESNI instruction, but performs "carryless multiply" operations to acclerate AES GCM mode. Since the AESNI instructions are implemented in hardware, they take a constant number of cycles and are not vulnerable to side-channel timing attacks that attempt to discern some bits of data from the time taken to encrypt or decrypt the data. Solaris x86 and OpenSSL Software Optimizations Having X86 AESNI hardware crypto instructions is all well and good, but how do we access it? The software is available with Solaris 11 and is used automatically if you are running Solaris x86 on a AESNI-capable processor. AESNI is used internally in the kernel through kernel crypto modules and is available in user space through the PKCS#11 library. For OpenSSL on Solaris 11, AESNI crypto is available directly with a new built-in OpenSSL 1.0 engine, called the "aesni engine." This is in lieu of the extra overhead of going through the Solaris OpenSSL pkcs11 engine, which accesses Solaris crypto and digest operations. Instead, AESNI assembly is included directly in the new aesni engine. Instead of including the aesni engine in a separate library in /lib/openssl/engines/, the aesni engine is "built-in", meaning it is included directly in OpenSSL's libcrypto.so.1.0.0 library. This reduces overhead and the need to manually specify the aesni engine. Since the engine is built-in (that is, in libcrypto.so.1.0.0), the openssl -engine command line flag or API call is not needed to access the engine—the aesni engine is used automatically on AESNI hardware. Ciphers and Digests supported by OpenSSL aesni engine The Openssl aesni engine auto-detects if it's running on AESNI hardware and uses AESNI encryption instructions for these ciphers: AES-128-CBC, AES-192-CBC, AES-256-CBC, AES-128-CFB128, AES-192-CFB128, AES-256-CFB128, AES-128-CTR, AES-192-CTR, AES-256-CTR, AES-128-ECB, AES-192-ECB, AES-256-ECB, AES-128-OFB, AES-192-OFB, and AES-256-OFB. Implementation of the OpenSSL aesni engine The AESNI assembly language routines are not a part of the regular Openssl 1.0.0 release. AESNI is a part of the "HEAD" ("development" or "unstable") branch of OpenSSL, for future release. But AESNI is also available as a separate patch provided by Intel to the OpenSSL project for OpenSSL 1.0.0. A minimal amount of "glue" code in the aesni engine works between the OpenSSL libcrypto.so.1.0.0 library and the assembly functions. The aesni engine code is separate from the base OpenSSL code and requires patching only a few source files to use it. That means OpenSSL can be more easily updated to future versions without losing the performance from the built-in aesni engine. OpenSSL aesni engine Performance Here's some graphs of aesni engine performance I measured by running openssl speed -evp $algorithm where $algorithm is aes-128-cbc, aes-192-cbc, and aes-256-cbc. These are using the 64-bit version of openssl on the same AESNI hardware, a Sun Fire X4170 M2 with a Intel Xeon E5620 @2.40GHz, running Solaris 11 FCS. "Before" is openssl without the aesni engine and "after" is openssl with the aesni engine. The numbers are MBytes/second. OpenSSL aesni engine performance on Sun Fire X4170 M2 (Xeon E5620 @2.40GHz) (Higher is better; "before"=OpenSSL on AESNI without AESNI engine software, "after"=OpenSSL AESNI engine) As you can see the speedup is dramatic for all 3 key lengths and for data sizes from 16 bytes to 8 Kbytes—AESNI is about 7.5-8x faster over hand-coded amd64 assembly (without aesni instructions). Verifying the OpenSSL aesni engine is present The easiest way to determine if you are running the aesni engine is to type "openssl engine" on the command line. No configuration, API, or command line options are needed to use the OpenSSL aesni engine. If you are running on Intel AESNI hardware with Solaris 11 FCS, you'll see this output indicating you are using the aesni engine: intel-westmere $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support If you are running on Intel without AESNI hardware you'll see this output indicating the hardware can't support the aesni engine: intel-nehalem $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support For Solaris on SPARC or older Solaris OpenSSL software, you won't see any aesni engine line at all. Third-party OpenSSL software (built yourself or from outside Oracle) will not have the aesni engine either. Solaris 11 FCS comes with OpenSSL version 1.0.0e. The output of typing "openssl version" should be "OpenSSL 1.0.0e 6 Sep 2011". 64- and 32-bit OpenSSL OpenSSL comes in both 32- and 64-bit binaries. 64-bit executable is now the default, at /usr/bin/openssl, and OpenSSL 64-bit libraries at /lib/amd64/libcrypto.so.1.0.0 and libssl.so.1.0.0 The 32-bit executable is at /usr/bin/i86/openssl and the libraries are at /lib/libcrytpo.so.1.0.0 and libssl.so.1.0.0. Availability The OpenSSL AESNI engine is available in Solaris 11 x86 for both the 64- and 32-bit versions of OpenSSL. It is not available with Solaris 10. You must have a processor that supports AESNI instructions, otherwise OpenSSL will fallback to the older, slower AES implementation without AESNI. Processors that support AESNI include most Westmere and Sandy Bridge class processor architectures. Some low-end processors (such as for mobile/laptop platforms) do not support AESNI. The easiest way to determine if the processor supports AESNI is with the isainfo -v command—look for "amd64" and "aes" in the output: $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu Conclusion The Solaris 11 OpenSSL aesni engine provides easy access to powerful Intel AESNI hardware cryptography, in addition to Solaris userland PKCS#11 libraries and Solaris crypto kernel modules.

    Read the article

  • Enable wireless on Dell Inspiron 1300

    - by Simon
    As per subject, I've looked at various resources and attempted ndiswrapper solutions, found a one-click solution that lead to a 404 and this but none works. I've run all updates. Once I managed to lose my wired connection as well and had to reinstall. This is my first hour with Linux. iwconfig gives this before I do anything: lo no wireless extensions. wlan0 IEEE 802.11bg ESSID:off/any Mode:Managed Access Point: Not-Associated Tx-Power=0 dBm Retry long limit:7 RTS thr:off Fragment thr:off Power Management:on eth0 no wireless extens Thanks for responding lspci returns 00:00.0 Host bridge: Intel Corporation Mobile 915GM/PM/GMS/910GML Express Processor to DRAM Controller (rev 03) Subsystem: Dell Device 01c9 Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort+ >SERR- <PERR- INTx- Latency: 0 Capabilities: <access denied> Kernel driver in use: agpgart-intel 00:02.0 VGA compatible controller: Intel Corporation Mobile 915GM/GMS/910GML Express Graphics Controller (rev 03) (prog-if 00 [VGA controller]) Subsystem: Dell Device 01c9 Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin A routed to IRQ 16 Region 0: Memory at dff00000 (32-bit, non-prefetchable) [size=512K] Region 1: I/O ports at eff8 [size=8] Region 2: Memory at c0000000 (32-bit, prefetchable) [size=256M] Region 3: Memory at dfec0000 (32-bit, non-prefetchable) [size=256K] Expansion ROM at <unassigned> [disabled] Capabilities: <access denied> Kernel driver in use: i915 Kernel modules: intelfb, i915 00:02.1 Display controller: Intel Corporation Mobile 915GM/GMS/910GML Express Graphics Controller (rev 03) Subsystem: Dell Device 01c9 Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Region 0: Memory at dff80000 (32-bit, non-prefetchable) [size=512K] Capabilities: <access denied> 00:1b.0 Audio device: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) High Definition Audio Controller (rev 03) Subsystem: Dell Device 01c9 Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+ Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0, Cache Line Size: 64 bytes Interrupt: pin A routed to IRQ 42 Region 0: Memory at dfebc000 (64-bit, non-prefetchable) [size=16K] Capabilities: <access denied> Kernel driver in use: snd_hda_intel Kernel modules: snd-hda-intel 00:1c.0 PCI bridge: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) PCI Express Port 1 (rev 03) (prog-if 00 [Normal decode]) Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+ Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0, Cache Line Size: 64 bytes Bus: primary=00, secondary=0b, subordinate=0b, sec-latency=0 I/O behind bridge: 00002000-00002fff Memory behind bridge: 30000000-301fffff Prefetchable memory behind bridge: 0000000030200000-00000000303fffff Secondary status: 66MHz- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- <SERR- <PERR- BridgeCtl: Parity- SERR+ NoISA- VGA- MAbort- >Reset- FastB2B- PriDiscTmr- SecDiscTmr- DiscTmrStat- DiscTmrSERREn- Capabilities: <access denied> Kernel driver in use: pcieport Kernel modules: shpchp 00:1c.3 PCI bridge: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) PCI Express Port 4 (rev 03) (prog-if 00 [Normal decode]) Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+ Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0, Cache Line Size: 64 bytes Bus: primary=00, secondary=0c, subordinate=0d, sec-latency=0 I/O behind bridge: 0000d000-0000dfff Memory behind bridge: dfc00000-dfdfffff Prefetchable memory behind bridge: 00000000d0000000-00000000d01fffff Secondary status: 66MHz- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- <SERR- <PERR- BridgeCtl: Parity- SERR+ NoISA- VGA- MAbort- >Reset- FastB2B- PriDiscTmr- SecDiscTmr- DiscTmrStat- DiscTmrSERREn- Capabilities: <access denied> Kernel driver in use: pcieport Kernel modules: shpchp 00:1d.0 USB controller: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) USB UHCI #1 (rev 03) (prog-if 00 [UHCI]) Subsystem: Dell Device 01c9 Control: I/O+ Mem- BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap- 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin A routed to IRQ 16 Region 4: I/O ports at bf80 [size=32] Kernel driver in use: uhci_hcd 00:1d.1 USB controller: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) USB UHCI #2 (rev 03) (prog-if 00 [UHCI]) Subsystem: Dell Device 01c9 Control: I/O+ Mem- BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap- 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin B routed to IRQ 17 Region 4: I/O ports at bf60 [size=32] Kernel driver in use: uhci_hcd 00:1d.2 USB controller: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) USB UHCI #3 (rev 03) (prog-if 00 [UHCI]) Subsystem: Dell Device 01c9 Control: I/O+ Mem- BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap- 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin C routed to IRQ 18 Region 4: I/O ports at bf40 [size=32] Kernel driver in use: uhci_hcd 00:1d.3 USB controller: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) USB UHCI #4 (rev 03) (prog-if 00 [UHCI]) Subsystem: Dell Device 01c9 Control: I/O+ Mem- BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap- 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin D routed to IRQ 19 Region 4: I/O ports at bf20 [size=32] Kernel driver in use: uhci_hcd 00:1d.7 USB controller: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) USB2 EHCI Controller (rev 03) (prog-if 20 [EHCI]) Subsystem: Dell Device 01c9 Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR+ FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin A routed to IRQ 16 Region 0: Memory at b0000000 (32-bit, non-prefetchable) [size=1K] Capabilities: <access denied> Kernel driver in use: ehci_hcd 00:1e.0 PCI bridge: Intel Corporation 82801 Mobile PCI Bridge (rev d3) (prog-if 01 [Subtractive decode]) Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR+ FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Bus: primary=00, secondary=02, subordinate=02, sec-latency=32 I/O behind bridge: 0000f000-00000fff Memory behind bridge: dfb00000-dfbfffff Prefetchable memory behind bridge: 00000000fff00000-00000000000fffff Secondary status: 66MHz- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort+ <SERR- <PERR- BridgeCtl: Parity- SERR+ NoISA- VGA- MAbort- >Reset- FastB2B- PriDiscTmr- SecDiscTmr- DiscTmrStat- DiscTmrSERREn- Capabilities: <access denied> 00:1f.0 ISA bridge: Intel Corporation 82801FBM (ICH6M) LPC Interface Bridge (rev 03) Subsystem: Dell Device 01c9 Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR+ FastB2B- DisINTx- Status: Cap- 66MHz- UDF- FastB2B- ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Kernel modules: iTCO_wdt, intel-rng 00:1f.1 IDE interface: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) IDE Controller (rev 03) (prog-if 8a [Master SecP PriP]) Subsystem: Dell Device 01c9 Control: I/O+ Mem- BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap- 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin A routed to IRQ 16 Region 0: I/O ports at 01f0 [size=8] Region 1: I/O ports at 03f4 [size=1] Region 2: I/O ports at 0170 [size=8] Region 3: I/O ports at 0374 [size=1] Region 4: I/O ports at bfa0 [size=16] Kernel driver in use: ata_piix 02:00.0 Ethernet controller: Broadcom Corporation BCM4401-B0 100Base-TX (rev 02) Subsystem: Dell Device 01c9 Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR+ FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 64 Interrupt: pin A routed to IRQ 18 Region 0: Memory at dfbfc000 (32-bit, non-prefetchable) [size=8K] Capabilities: <access denied> Kernel driver in use: b44 Kernel modules: b44 02:03.0 Network controller: Broadcom Corporation BCM4318 [AirForce One 54g] 802.11g Wireless LAN Controller (rev 02) Subsystem: Dell Wireless 1370 WLAN Mini-PCI Card Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR+ FastB2B- DisINTx- Status: Cap- 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 64 Interrupt: pin A routed to IRQ 17 Region 0: Memory at dfbfe000 (32-bit, non-prefetchable) [size=8K] Kernel driver in use: b43-pci-bridge Kernel modules: ssb and the rfkill shows 0: phy0: Wireless LAN Soft blocked: no Hard blocked: no Just checking addtional drivers. Says no additional driver installed in this system

    Read the article

  • A Rose by Any Other Name..

    - by Geoff N. Hiten
    It is always a good start when you can steal a title line from one of the best writers in the English language.  Let’s hope I can make the rest of this post live up to the opening.  One recurring problem with SQL server is moving databases to new servers.  Client applications use a variety of ways to resolve SQL Server names, some of which are not changed easily <cough SharePoint /cough>.  If you happen to be using default instances on both the source and target SQL Server, then the solution is pretty simple.  You create (or bug the network admin until she creates) two DNS “A” records. One points the old name to the new IP address.  The other creates a new alias for the old server, since the original system name is now redirected.  Note this will redirect ALL traffic from the old server to the new server, including RDP and file share connection attempts.    Figure 1 – Microsoft DNS MMC Snap-In   Figure 2 – DNS New Host Dialog Box Both records are necessary so you can still access the old server via an alternate name. Server Role IP Address Name Alias Source 10.97.230.60 SQL01 SQL01_Old Target 10.97.230.80 SQL02 SQL01 Table 1 – Alias List If you or somebody set up connections via IP address, you deserve to have to go to each app and fix it by hand.  That is the only way to fix that particular foul-up. If have to deal with Named Instances either as a source or a target, then it gets more complicated.  The standard fix is to use the SQL Server Configuration Manager (or one of its earlier incarnations) to create a SQL client alias to redirect the connection.  This can be a pain installing and configuring the app on multiple client servers.  The good news is that SQL Server Configuration Manager AND all of its earlier versions simply write a few registry keys.  Extracting the keys into a .reg file makes centralized automated deployment a snap. If the client is a 32-bit system, you have to extract the native key.  If it is a 64-bit, you have to extract the native key and the WoW (32 bit on 64 bit host) key. First, pick a development system to create the actual registry key.  If you do this repeatedly, you can simply edit an existing registry file.  Create the entry using the SQL Configuration Manager.  You must use a 64-bit system to create the WoW key.  The following example redirects from a named instance “SQL01\SQLUtiluty” to a default instance on “SQL02”.   Figure 3 – SQL Server Configuration Manager - Native Figure 3 shows the native key listing. Figure 4 – SQL Server Configuration Manager – WoW If you think you don’t need the WoW key because your app is 64 it, think again.  SQL Server Management Server is a 32-bit app, as are most SQL test utilities.  Always create both keys for 64-bit target systems. Now that the keys exist, we can extract them into a .reg file. Fire up REGEDIT and browse to the following location:  HKLM\Software\Microsoft\MSSQLServer\Client\ConnectTo.  You can also search the registry for the string value of one of the server names (old or new). Right click on the “ConnectTo” label and choose “Export”.  Save with an appropriate name and location.  The resulting file should look something like this: Figure 5 – SQL01_Alias.reg Repeat the process with the location: HKLM\Software\Wow6432Node\Microsoft\MSSQLServer\Client\ConnectTo Note that if you have multiple alias entries, ALL of the entries will be exported.  In that case, you can edit the file and remove the extra aliases. You can edit the files together into a single file.  Just leave a blank line between new keys like this: Figure 6 – SQL01_Alias_All.reg Of course if you have an automatic way to deploy, it makes sense to have an automatic way to Un-deploy.  To delete a registry key, simply edit the .reg file and replace the target with a “-“ sign like so. Figure 7 – SQL01_Alias_UNDO.reg Now we have the ability to move any database to any server without having to install or change any applications on any client server.  The whole process should be transparent to the applications, which makes planning and coordinating database moves a far simpler task.

    Read the article

  • Big Data – Role of Cloud Computing in Big Data – Day 11 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned the importance of the NewSQL. In this article we will understand the role of Cloud in Big Data Story What is Cloud? Cloud is the biggest buzzword around from last few years. Everyone knows about the Cloud and it is extremely well defined online. In this article we will discuss cloud in the context of the Big Data. Cloud computing is a method of providing a shared computing resources to the application which requires dynamic resources. These resources include applications, computing, storage, networking, development and various deployment platforms. The fundamentals of the cloud computing are that it shares pretty much share all the resources and deliver to end users as a service.  Examples of the Cloud Computing and Big Data are Google and Amazon.com. Both have fantastic Big Data offering with the help of the cloud. We will discuss this later in this blog post. There are two different Cloud Deployment Models: 1) The Public Cloud and 2) The Private Cloud Public Cloud Public Cloud is the cloud infrastructure build by commercial providers (Amazon, Rackspace etc.) creates a highly scalable data center that hides the complex infrastructure from the consumer and provides various services. Private Cloud Private Cloud is the cloud infrastructure build by a single organization where they are managing highly scalable data center internally. Here is the quick comparison between Public Cloud and Private Cloud from Wikipedia:   Public Cloud Private Cloud Initial cost Typically zero Typically high Running cost Unpredictable Unpredictable Customization Impossible Possible Privacy No (Host has access to the data Yes Single sign-on Impossible Possible Scaling up Easy while within defined limits Laborious but no limits Hybrid Cloud Hybrid Cloud is the cloud infrastructure build with the composition of two or more clouds like public and private cloud. Hybrid cloud gives best of the both the world as it combines multiple cloud deployment models together. Cloud and Big Data – Common Characteristics There are many characteristics of the Cloud Architecture and Cloud Computing which are also essentially important for Big Data as well. They highly overlap and at many places it just makes sense to use the power of both the architecture and build a highly scalable framework. Here is the list of all the characteristics of cloud computing important in Big Data Scalability Elasticity Ad-hoc Resource Pooling Low Cost to Setup Infastructure Pay on Use or Pay as you Go Highly Available Leading Big Data Cloud Providers There are many players in Big Data Cloud but we will list a few of the known players in this list. Amazon Amazon is arguably the most popular Infrastructure as a Service (IaaS) provider. The history of how Amazon started in this business is very interesting. They started out with a massive infrastructure to support their own business. Gradually they figured out that their own resources are underutilized most of the time. They decided to get the maximum out of the resources they have and hence  they launched their Amazon Elastic Compute Cloud (Amazon EC2) service in 2006. Their products have evolved a lot recently and now it is one of their primary business besides their retail selling. Amazon also offers Big Data services understand Amazon Web Services. Here is the list of the included services: Amazon Elastic MapReduce – It processes very high volumes of data Amazon DynammoDB – It is fully managed NoSQL (Not Only SQL) database service Amazon Simple Storage Services (S3) – A web-scale service designed to store and accommodate any amount of data Amazon High Performance Computing – It provides low-tenancy tuned high performance computing cluster Amazon RedShift – It is petabyte scale data warehousing service Google Though Google is known for Search Engine, we all know that it is much more than that. Google Compute Engine – It offers secure, flexible computing from energy efficient data centers Google Big Query – It allows SQL-like queries to run against large datasets Google Prediction API – It is a cloud based machine learning tool Other Players Besides Amazon and Google we also have other players in the Big Data market as well. Microsoft is also attempting Big Data with the Cloud with Microsoft Azure. Additionally Rackspace and NASA together have initiated OpenStack. The goal of Openstack is to provide a massively scaled, multitenant cloud that can run on any hardware. Thing to Watch The cloud based solutions provides a great integration with the Big Data’s story as well it is very economical to implement as well. However, there are few things one should be very careful when deploying Big Data on cloud solutions. Here is a list of a few things to watch: Data Integrity Initial Cost Recurring Cost Performance Data Access Security Location Compliance Every company have different approaches to Big Data and have different rules and regulations. Based on various factors, one can implement their own custom Big Data solution on a cloud. Tomorrow In tomorrow’s blog post we will discuss about various Operational Databases supporting Big Data. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Building InstallShield based Installers using Team Build 2010

    - by jehan
    Last few weeks, I have been working on Application Packaging stuff using all the widely used tools like InstallShield, WISE, WiX and Visual Studio Installer. So, I thought it would be good to post about how to Build the Installers developed using these tools with Team Build 2010. This post will focus on how to build the InstallShield generated packages using Team Build 2010. For the release of VS2010, Microsoft has partnered with Flexera who are the makers of InstallShield to create InstallShield Limited Edition, especially for the customers of Visual Studio. First Microsoft planned to release WiX (Windows Installer Xml) with VS2010, but later Microsoft dropped  WiX from VS2010 due to reasons which are best known to them and partnered with InstallShield for Limited Edition. It disappointed lot of people because InstallShield Limited Edition provides only few features of InstallShield and it may not feasable to build complex installer packages using this and it also requires License, where as WiX is an open source with no license costs and it has proved efficient in building most complex packages. Only the last three features are available in InstallShield Limited Edition from the total features offered by InstallShield as shown in below list.                                                                                            Feature Limited Edition for Visual Studio 2010 Standalone Build System Maintain a clean build machine by using only the part of InstallShield that compiles the installations. InstallShield Best Practices Validation Suite Avoid common installation issues. Try and Die Functionality RCreate a fully functional trial version of your product. InstallShield Repackager Create Windows Installer setups from any legacy installation. Multilingual Support Present installation text in up to 35 languages. Microsoft App-V™ Support Deploy your applications as App-V virtual packages that run without conflict. Industry-Standard InstallScript Achieve maximum flexibility in your installations. Dialog Editor Modify the layout of existing end-user dialogs, create new custom dialogs, and more. Patch Creation Build updates and patches for your products. Setup Prerequisite Editor Easily control prerequisite restart behavior and source locations. String Editor View Control the localizable text strings displayed at run time with this spreadsheet-like table. Text File Changes View Configure search-and-replace actions for content in text files to be modified at run time. Virtual Machine Detection Block your installations from running on virtual machines. Unicode Support Improve multi-language installation development. Support for 64-Bit COM Extraction Extract COM data from a 64-bit COM server. Windows Installer Installation Chaining Add MSI packages to your main installation and chain them together. XML Support Save time by quickly testing XML configuration changes to installation projects. Billboard Support for Custom Branding Display Adobe Flash billboards and other graphic files during the install process. SaaS Support (IIS 7 and SSL Technologies) Easily deploy Windows-based Web applications. Project Assistant Jumpstart a project by using a simplified set of views. Support for Digital Signatures Save time by digitally signing all your files at build time. Easily Run Custom Actions Schedule a custom action to run at precisely the right moment in your installation. Installation Prerequisites Check for and install prerequisites before your installation is executed. To create a InstallShield project in Visual Studio and Build it using Team Build 2010, first you have to add the InstallShield Project template  to your Solution file. If you want to use InstallShield Limited edition you can add it from FileàNewà project àother Project Types àSetup and Deploymentà InstallShield LE and if you are using other versions of InstallShield, then you have to add it from  from FileàNewà project àInstallShield Projects. Here, I’m using  InstallShield 2011 Premier edition as I already have it Installed. I have created a simple package for TailSpin Application which has a Feature called Web, few components and a IIS Web Site for  TailSpin application.   Before started working on this, I thought I may need to build the package by calling invoke process activity in build process template or have to create a new custom activity. But, it got build without any changes to build process template. But, it was failing with below error message. C:\Program Files (x86)\MSBuild\InstallShield\2011\InstallShield.targets (68): The "InstallShield.Tasks.InstallShield" task could not be loaded from the assembly C:\Program Files (x86)\MSBuild\InstallShield\2010Limited\InstallShield.Tasks.dll. Could not load file or assembly 'file:///C:\Program Files(x86)\MSBuild\InstallShield\2011\InstallShield.Tasks.dll' or one of its dependencies. An attempt was made to load a program with an incorrect format. Confirm that the <UsingTask> declaration is correct, that the assembly and all its dependencies are available, and that the task contains a public class that implements Microsoft.Build.Framework.ITask. This error is due to 64-bit build machine which I’m using. This issue will be replicable if you are queuing a build on a 64-bit build machine. To avoid this you have to ensure that you configured the build definition for your InstallShield project to load the InstallShield.Tasks.dll file (which is a 32-bit file); otherwise, you will encounter this build error informing you that the InstallShield.Tasks.dll file could not be loaded. To select the 32-bit version of MSBuild, click the Process tab of your build definition in Team Explorer. Then, under the Advanced node, find the MSBuild Platform setting, and select x86. Note that if you are using a 32-bit build machine, you can select either Auto or x86 for the MSBuild Platform setting.  Once I did above changes, the build got successful.

    Read the article

  • Easiest way to open chm files programmatically?

    - by Adrian Grigore
    Hi, I have a legacy 32-bit application written in Borland's C++ Builder. I need to show specific pages from within a HtmlHelp file programmatically. Until now I've been doing this via HtmlHelp.ocx, but this does not work on x64 versions of Windows Vista / Windows7 as described in this thread. I can't compile the application as 64-bit executable. Therefore the only workaround I have found so far is to create a 32-bit component implementing a COM object which loads and calls into the 32-bit DLL, and exposes the 32-bit DLL interface as a COM interface. That sounds far too complicated just to display a chml file with a specific topic. There must be something else. But what is it?

    Read the article

  • Deploying a PyQt application on Windows Vista x64

    - by Skilldrick
    I'm working on an application for a client/friend using PyQt. I've been working on Linux and testing on Vista, but the target computer is Vista x64. Now, Python comes with compiled binaries of Python 2.6 for 64 bit Windows, but Riverbank don't provide 64 bit binaries for PyQt. I don't have much access to the target computer, so I can't really go through the hassle of compiling PyQt. This Google code project might be the solution, but I'm not sure if it's going to work. Can I use something like py2exe from 32 bit Vista, or would I have to have to make the executable from a 64 bit machine with PyQt 64 bit installed? Basically, am I going to have to compile PyQt on the target machine?

    Read the article

  • Announcing the New Windows Azure Web Sites Shared Scaling Tier

    - by Clint Edmonson
    Windows Azure Web Sites has added a new pricing tier that will solve the #1 blocker for the web development community. The shared tier now supports custom domain names mapped to shared-instance web sites. This post will outline the plan changes and elaborate on how the new pricing model makes Windows Azure Web Sites an even richer option for web development shops of all sizes. Free Shared Reserved # of Sites 10 100 100 Egress 165MB/Day 5GB/Month Included 5GB/Month Included Storage 1GB 1GB 10GB Throttling CPU/Memory/Egress CPU/Memory Unlimited Price Free $.02/hr per site, per instance $.08/hr per core Setting the Stage In June, we released the first public preview of Windows Azure Web Sites, which gave web developers a great platform on which to get web sites running using their web development framework of choice. PHP, Node.js, classic ASP, and ASP.NET developers can all utilize the Windows Azure platform to create and launch their web sites. Likewise, these developers have a series of data storage options using Windows Azure SQL Databases, MySQL, or Windows Azure Storage. The Windows Azure Web Sites free offer enabled startups to get their site up and running on Windows Azure with a minimal investment, and with multiple deployment and continuous integration features such as Git, Team Foundation Services, FTP, and Web Deploy.  The response to the Windows Azure Web Sites offer has been overwhelmingly positive. Since the addition of the service on June 12th, tens of thousands of web sites have been deployed to Windows Azure and the volume of adoption is increasing every week. Preview Feedback In spite of the growth and success of the product, the community has had questions about features lacking in the free preview offer. The main question web developers asked regarding Windows Azure Web Sites relates to the lack of the free offer’s support for domain name mapping. During the preview launch period, customer feedback made it obvious that the lack of domain name mapping support was an area of concern. We’re happy to announce that this #1 request has been delivered as a feature of the new shared plan. New Shared Tier Portal Features In the screen shot below, the “Scale” tab in the portal shows the new tiers – Free, Shared, and Reserved – and gives the user the ability to quickly move any of their free web sites into the shared tier. With a single mouse-click, the user can move their site into the shared tier. Once a site has been moved into the shared tier, a new Manage Domains button appears in the bottom action bar of the Windows Azure Portal giving site owners the ability to manage their domain names for a shared site. This button brings up the domain-management dialog, which can be used to enter in a specific domain name that will be mapped to the Windows Azure Web Site. Shared Tier Benefits Startups and large web agencies will both benefit from this plan change. Here are a few examples of scenarios which fit the new pricing model: Startups no longer have to select the reserved plan to map domain names to their sites. Instead, they can use the free option to develop their sites and choose on a site-by-site basis which sites they elect to move into the shared plan, paying only for the sites that are finished and ready to be domain-mapped Agencies who manage dozens of sites will realize a lower cost of ownership over the long term by moving their sites into reserved mode. Once multi-site companies reach a certain price point in the shared tier, it is much more cost-effective to move sites to a reserved tier.  Long-term, it’s easy to see how the new Windows Azure Web Sites shared pricing tier makes Windows Azure Web Sites it a great choice for both startups and agency customers, as it enables rapid growth and upgrades while keeping the cost to a minimum. Large agencies will be able to have all of their sites in their own instances, and startups will have the capability to scale up to multiple-shared instances for minimal cost and eventually move to reserved instances without worrying about the need to incur continually additional costs. Customers can feel confident they have the power of the Microsoft Windows Azure brand and our world-class support, at prices competitive in the market. Plus, in addition to realizing the cost savings, they’ll have the whole family of Windows Azure features available. Continuous Deployment from GitHub and CodePlex Along with this new announcement are two other exciting new features. I’m proud to announce that web developers can now publish their web sites directly from CodePlex or GitHub.com repositories. Once connections are established between these services and your web sites, Windows Azure will automatically be notified every time a check-in occurs. This will then trigger Windows Azure to pull the source and compile/deploy the new version of your app to your web site automatically. Walk-through videos on how to perform these functions are below: Publishing to an Azure Web Site from CodePlex Publishing to an Azure Web Site from GitHub.com These changes, as well as the enhancements to the reserved plan model, make Windows Azure Web Sites a truly competitive hosting option. It’s never been easier or cheaper for a web developer to get up and running. Check out the free Windows Azure web site offering and see for yourself. Stay tuned to my twitter feed for Windows Azure announcements, updates, and links: @clinted

    Read the article

  • WebKit and npapi and mingw-w64

    - by rubenvb
    Hi, The problem is the following: On Windows x64, pointers are 64-bit, but type long is 32-bit. MSVC doesn't seem to care, and even omits warnings about pointer truncation on the default warning level. Since recently, there is a GCC that target x86_64-w64-mingw32, or better Windows x64 native. GCC produces errors when pointers are truncated (which is the logical thing to do...), and this is causing trouble in WebKit and more specifically, the Netscape Plugin API: First, there's the files (I can only post one hyperlink...): http://trac.webkit.org/browser/trunk/WebCore/ bridge/npapi.h -- defines uint32 as 32-bit int type (~line 145) plugins/win/PluginViewWin.cpp -- casts Windows window handles to 32-bit int, truncating them (~line 450) My proposed fix was to change the uint32 casts to uintptr_t, which makes GCC happy, but still puts a 64-bit value in a uint32 (=unsigned long). I have no clue how to solve this, because clearly WebKit is happy truncating pointers on Win64... How can I solve this the right way? Thanks!

    Read the article

  • How many developers before continuous integration becomes effective for us?

    - by Carnotaurus
    There is an overhead associated with continuous integration, e.g., set up, re-training, awareness activities, stoppage to fix "bugs" that turn out to be data issues, enforced separation of concerns programming styles, etc. At what point does continuous integration pay for itself? EDIT: These were my findings The set-up was CruiseControl.Net with Nant, reading from VSS or TFS. Here are a few reasons for failure, which have nothing to do with the setup: Cost of investigation: The time spent investigating whether a red light is due a genuine logical inconsistency in the code, data quality, or another source such as an infrastructure problem (e.g., a network issue, a timeout reading from source control, third party server is down, etc., etc.) Political costs over infrastructure: I considered performing an "infrastructure" check for each method in the test run. I had no solution to the timeout except to replace the build server. Red tape got in the way and there was no server replacement. Cost of fixing unit tests: A red light due to a data quality issue could be an indicator of a badly written unit test. So, data dependent unit tests were re-written to reduce the likelihood of a red light due to bad data. In many cases, necessary data was inserted into the test environment to be able to accurately run its unit tests. It makes sense to say that by making the data more robust then the test becomes more robust if it is dependent on this data. Of course, this worked well! Cost of coverage, i.e., writing unit tests for already existing code: There was the problem of unit test coverage. There were thousands of methods that had no unit tests. So, a sizeable amount of man days would be needed to create those. As this would be too difficult to provide a business case, it was decided that unit tests would be used for any new public method going forward. Those that did not have a unit test were termed 'potentially infra red'. An intestesting point here is that static methods were a moot point in how it would be possible to uniquely determine how a specific static method had failed. Cost of bespoke releases: Nant scripts only go so far. They are not that useful for, say, CMS dependent builds for EPiServer, CMS, or any UI oriented database deployment. These are the types of issues that occured on the build server for hourly test runs and overnight QA builds. I entertain that these to be unnecessary as a build master can perform these tasks manually at the time of release, esp., with a one man band and a small build. So, single step builds have not justified use of CI in my experience. What about the more complex, multistep builds? These can be a pain to build, especially without a Nant script. So, even having created one, these were no more successful. The costs of fixing the red light issues outweighed the benefits. Eventually, developers lost interest and questioned the validity of the red light. Having given it a fair try, I believe that CI is expensive and there is a lot of working around the edges instead of just getting the job done. It's more cost effective to employ experienced developers who do not make a mess of large projects than introduce and maintain an alarm system. This is the case even if those developers leave. It doesn't matter if a good developer leaves because processes that he follows would ensure that he writes requirement specs, design specs, sticks to the coding guidelines, and comments his code so that it is readable. All this is reviewed. If this is not happening then his team leader is not doing his job, which should be picked up by his manager and so on. For CI to work, it is not enough to just write unit tests, attempt to maintain full coverage, and ensure a working infrastructure for sizable systems. The bottom line: One might question whether fixing as many bugs before release is even desirable from a business prespective. CI involves a lot of work to capture a handful of bugs that the customer could identify in UAT or the company could get paid for fixing as part of a client service agreement when the warranty period expires anyway.

    Read the article

  • Most Innovative IDM Projects: Awards at OpenWorld

    - by Tanu Sood
    On Tuesday at Oracle OpenWorld 2012, Oracle recognized the winners of Innovation Awards 2012 at a ceremony presided over by Hasan Rizvi, Executive Vice President at Oracle. Oracle Fusion Middleware Innovation Awards recognize customers for achieving significant business value through innovative uses of Oracle Fusion Middleware offerings. Winners are selected based on the uniqueness of their business case, business benefits, level of impact relative to the size of the organization, complexity and magnitude of implementation, and the originality of architecture. This year’s Award honors customers for their cutting-edge solutions driving business innovation and IT modernization using Oracle Fusion Middleware. The program has grown over the past 6 years, receiving a record number of nominations from customers around the globe. The winners were selected by a panel of judges that ranked each nomination across multiple different scoring categories. Congratulations to both Avea and ETS for winning this year’s Innovation Award for Identity Management. Identity Management Innovation Award 2012 Winner – Avea Company: Founded in 2004, AveA is the sole GSM 1800 mobile operator of Turkey and has reached a nationwide customer base of 12.8 million as of the end of 2011 Region: Turkey (EMEA) Products: Oracle Identity Manager, Oracle Identity Analytics, Oracle Access Management Suite Business Drivers: ·         To manage the agility and scale required for GSM Operations and enable call center efficiency by enabling agents to change their identity profiles (accounts and entitlements) rapidly based on call load. ·         Enhance user productivity and call center efficiency with self service password resets ·         Enforce compliance and audit reporting ·         Seamless identity management between AveA and parent company Turk Telecom Innovation and Results: ·         One of the first Sun2Oracle identity management migrations designed for high performance provisioning and trusted reconciliation built with connectors developed on the ICF architecture that provides custom user interfaces for  dynamic and rapid management of roles and entitlements along with entitlement level attestation using closed loop remediation between Oracle Identity Manager and Oracle Identity Analytics. ·         Dramatic reduction in identity administration and call center password reset tasks leading to 20% reduction in administration costs and 95% reduction in password related calls. ·         Enhanced user productivity by up to 25% to date ·         Enforced enterprise security and reduced risk ·         Cost-effective compliance management ·         Looking to seamlessly integrate with parent and sister companies’ infrastructure securely. Identity Management Innovation Award 2012 Winner – Education Testing Service (ETS)       See last year's winners here --Company: ETS is a private nonprofit organization devoted to educational measurement and research, primarily through testing. Region: U.S.A (North America) Products: Oracle Access Manager, Oracle Identity Federation, Oracle Identity Manager Business Drivers: ETS develops and administers more than 50 million achievement and admissions tests each year in more than 180 countries, at more than 9,000 locations worldwide.  As the business becomes more globally based, having a robust solution to security and user management issues becomes paramount. The organizations was looking for: ·         Simplified user experience for over 3000 company users and more than 6 million dynamic student and staff population ·         Infrastructure and administration cost reduction ·         Managing security risk by controlling 3rd party access to ETS systems ·         Enforce compliance and manage audit reporting ·         Automate on-boarding and decommissioning of user account to improve security, reduce administration costs and enhance user productivity ·         Improve user experience with simplified sign-on and user self service Innovation and Results: 1.    Manage Risk ·         Centralized system to control user access ·         Provided secure way of accessing service providers' application using federated SSO. ·         Provides reporting capability for auditing, governance and compliance. 2.    Improve efficiency ·         Real-Time provisioning to target systems ·         Centralized provisioning system for user management and access controls. ·         Enabling user self services. 3.    Reduce cost ·         Re-using common shared services for provisioning, SSO, Access by application reducing development cost and time. ·         Reducing infrastructure and maintenance cost by decommissioning legacy/redundant IDM services. ·         Reducing time and effort to implement security functionality in business applications (“onboard” instead of new development). ETS was able to fold in new and evolving requirement in addition to the initial stated goals realizing quick ROI and successfully meeting business objectives. Congratulations to the winners once again. We will be sure to bring you more from these Innovation Award winners over the next few months.

    Read the article

  • Filtering and copying with PowerShell

    - by Bergius
    In my quest to improve my PowerShell skills, here's an example of an ugly solution to a simple problem. Any suggestions how to improve the oneliner are welcome. Mission: trim a huge icon library down to something a bit more manageable. The original directory structure looks like this: /Apps and Utilities /Compile /32 Bit Alpha png /Compile 16 n p.png /+ 10 or more files /+ 5 more formats with 10 or more files each /+ 20 or so icon names /+ 22 more categories I want to copy the 32 Bit Alpha pngs and flatten the directory structure a bit. Here's my quick and very dirty solution: $dest = mkdir c:\icons; gci -r | ? { $_.Name -eq '32 Bit Alph a png' } | % { mkdir ("$dest\" + $_.Parent.Parent.Name + "\" + $_.Parent.Name); $_ } | gci | % { cp $_. FullName -dest ("$dest\" + $_.Directory.Parent.Parent + "\" + $_.Directory.Parent) } Not nice, but it solved my problem. Resulting structure: /Apps and Utilities /Compile /Compile 16 n p.png /etc /etc /etc How would you do it?

    Read the article

  • DllImport Based on OS Platform

    - by Ngu Soon Hui
    I have a mixture of unmanaged code ( backend) and managed code ( front end), as such, I would need to call the unmanaged code from my managed code, using interop techniques and DllImport attribute. Now, I've compiled two versions of unmanaged code, for both 32 and 64 bit OS; they are named service32.dll and service64.dll respectively. So, in my .Net code, I would have to do a DllImport for both dlls: [DllImport(@"service32.dll")] //for 32 bit OS invocation public static void SimpleFunction(); [DllImport(@"service64.dll")] //for 64 bit OS invocation public static void SimpleFunction(); And call them depending on which platform my application is running on. The issue now is that for every unmanaged function, I have to declared it twice, one for 32 bit OS and one for 64 bit OS. This is a duplication of work, and everytime I change the signature of an unmanaged function, I have to modified it in two places. Is there anyway that I can change the argument in DllImport so that the correct dll will be invoked automagically, depending on the platform?

    Read the article

  • Can an URL shortener pass parameters?

    - by ManniAT
    Hi, I use bit.ly to shorten my urls. My problem - paramters are not passed. Let me explain I use http://bit.ly/MYiPhoneApps which redirects (let's say) to http://iphone.pp-p.net/default.aspx Now when I try http://bit.ly/MYiPhoneApps?param=xx this param is not added to the resulting url. I know I could create an extra "short url" including a paramter - so http://bit.ly/WithParam would result in http://www.mysite.com/somepath/apage.aspx?Par1=yy and so forth. But what I want is to have a short URL directing to a page - and then I want to add a parameter to this shortened url - which shoul (of course) land at my page. Is this a shortcome of bit.ly (and others are maybe able to do it) - or does "parameter forwarding" not work with 301 redirections? Manfred

    Read the article

  • SQL – Step by Step Guide to Download and Install NuoDB – Getting Started with NuoDB

    - by Pinal Dave
    Let us take a look at the application you own at your business. If you pay attention to the underlying database for that application you will be amazed. Every successful business these days processes way more data than they used to process before. The number of transactions and the amount of data is growing at an exponential rate. Every single day there is way more data to process than before. Big data is no longer a concept; it is now turning into reality. If you look around there are so many different big data solutions and it can be a quite difficult task to figure out where to begin. Personally, I have been experimenting with a lot of different solutions which allow my database to scale immediately without much hassle while maintaining optimal database performance.  There are for sure some solutions out there, but for many I even have to learn their specific language and there is a lot of new exploration to do. Honestly, what I prefer is a product, which works with the language I know (SQL) and follows all the RDBMS concepts which I am familiar with (ACID etc.). NuoDB is one such solution.  It is an operational NewSQL database built on a patented emergent architecture with full support for SQL and ACID guarantees. In this blog post, I will explore how one can download and install NuoDB database. Step 1: Follow me and go to the NuoDB download page. Simply fill out the form, accept the online license agreement, and you will be taken directly to a page where you can select any platform you prefer to install NuoDB. In my example below, I select the Windows 64-bit platform as it is one of the most popular NuoDB platforms. (You can also run NuoDB on Amazon Web Services but I prefer to install it on my local machine for the purposes of this blog). Step 2: Once you have downloaded the NuoDB installer, double click on it to install it on the Windows platform. Here is the enlarged the icon of the installer. Step 3: Follow the wizard installation, as it is pretty straight forward and easy to do so. I have selected all the options to install as the overall installation is very simple and it does not take up much space. I have installed it on my C drive but you can select your preferred drive. It is quite possible that if you do not have 64 bit Java, it will throw following error. If you face following error, I suggest you to download 64-bit Java from here. Make sure that you download 64-bit Java from following link: http://java.com/en/download/manual.jsp If already have Java 64-bit installed, you can continue with the installation as described in following image. Otherwise, install Java and start from with Step 1. As in my case, I already have 64-bit Java installed – and you won’t believe me when I say that the entire installation of NuoDB only took me around 90 seconds. Click on Finish to end to exit the installation. Step 4: Once the installation is successful, NuoDB will automatically open the following two tabs – Console and DevCenter — in your preferred browser. On the Console tab you can explore various components of the NuoDB solution, e.g. QuickStart, Admin, Explorer, Storefront and Samples. We will see various components and their usage in future blog posts. If you follow these steps in this post, which I have followed to install NuoDB, you will agree that the installation of NuoDB is extremely smooth and it was indeed a pleasure to install a database product with such ease. If you have installed other database products in the past, you will absolutely agree with me. So download NuoDB and install it today, and in tomorrow’s blog post I will take the installation to the next level. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: NuoDB

    Read the article

  • Exchange 2007 ignoring Send Connectors (again)

    - by gravyface
    Wow, I'm at a loss here -- I posted this exact same question a while back and it's doing the exact same thing: my Send Connector I've created for "Microsoft Domains" (hotmail.com cost 1) is being ignored again and routed through the "Default" Send Connector (* cost 10). Last time, I had the same cost for both Send Connectors, but I've tried setting the Default connector to 5, 10, 100, etc. and regardless, all mail gets routed through that connector (which smarthosts through Postini). Besides calling an air strike on Redmond, what else can I do? MS is blocking Postini again, need to get this working permanently.

    Read the article

  • DrScheme versus mzscheme: treatment of definitions

    - by speciousfool
    One long term project I have is working through all the exercises of SICP. I noticed something a bit odd with the most recent exercise. I am testing a Huffman encoding tree. When I execute the following code in DrScheme I get the expected result: (a d a b b c a) However, if I execute this same code in mzscheme by calling (load "2.67.scm") or by running mzscheme -f 2.67.scm, it reports: symbols: expected symbols as arguments, given: (leaf D 1) My question is: why? Is it because mzscheme and drscheme use different rules for loading program definitions? The program code is below. ;; Define an encoding tree and a sample message ;; Use the decode procedure to decode the message, and give the result. (define (make-leaf symbol weight) (list 'leaf symbol weight)) (define (leaf? object) (eq? (car object) 'leaf)) (define (symbol-leaf x) (cadr x)) (define (weight-leaf x) (caddr x)) (define (make-code-tree left right) (list left right (append (symbols left) (symbols right)) (+ (weight left) (weight right)))) (define (left-branch tree) (car tree)) (define (right-branch tree) (cadr tree)) (define (symbols tree) (if (leaf? tree) (list (symbol-leaf tree)) (caddr tree))) (define (weight tree) (if (leaf? tree) (weight-leaf tree) (cadddr tree))) (define (decode bits tree) (define (decode-1 bits current-branch) (if (null? bits) '() (let ((next-branch (choose-branch (car bits) current-branch))) (if (leaf? next-branch) (cons (symbol-leaf next-branch) (decode-1 (cdr bits) tree)) (decode-1 (cdr bits) next-branch))))) (decode-1 bits tree)) (define (choose-branch bit branch) (cond ((= bit 0) (left-branch branch)) ((= bit 1) (right-branch branch)) (else (error "bad bit -- CHOOSE-BRANCH" bit)))) (define (test s-exp) (display s-exp) (newline)) (define sample-tree (make-code-tree (make-leaf 'A 4) (make-code-tree (make-leaf 'B 2) (make-code-tree (make-leaf 'D 1) (make-leaf 'C 1))))) (define sample-message '(0 1 1 0 0 1 0 1 0 1 1 1 0)) (test (decode sample-message sample-tree))

    Read the article

  • Filling a byte array in Java

    - by Corleone
    Hey all! For part of a project I'm working on I am implementing a RTPpacket where I have to fill the header array of byte with RTP header fields. //size of the RTP header: static int HEADER_SIZE = 12; // bytes //Fields that compose the RTP header public int Version; // 2 bits public int Padding; // 1 bit public int Extension; // 1 bit public int CC; // 4 bits public int Marker; // 1 bit public int PayloadType; // 7 bits public int SequenceNumber; // 16 bits public int TimeStamp; // 32 bits public int Ssrc; // 32 bits //Bitstream of the RTP header public byte[] header = new byte[ HEADER_SIZE ]; This was my approach: /* * bits 0-1: Version * bit 2: Padding * bit 3: Extension * bits 4-7: CC */ header[0] = new Integer( (Version << 6)|(Padding << 5)|(Extension << 6)|CC ).byteValue(); /* * bit 0: Marker * bits 1-7: PayloadType */ header[1] = new Integer( (Marker << 7)|PayloadType ).byteValue(); /* SequenceNumber takes 2 bytes = 16 bits */ header[2] = new Integer( SequenceNumber >> 8 ).byteValue(); header[3] = new Integer( SequenceNumber ).byteValue(); /* TimeStamp takes 4 bytes = 32 bits */ for ( int i = 0; i < 4; i++ ) header[7-i] = new Integer( TimeStamp >> (8*i) ).byteValue(); /* Ssrc takes 4 bytes = 32 bits */ for ( int i = 0; i < 4; i++ ) header[11-i] = new Integer( Ssrc >> (8*i) ).byteValue(); Any other, maybe 'better' ways to do this?

    Read the article

  • Cheapest way to go for somebody who wants to accept payments, but won't be accepting hundreds of ord

    - by blockhead
    I have a client who lectures, and wants to sell spots to his lecture online. I would preferably like to set him up with a solution that allows me to collect billing information on his site. My experience with e-commerce is in using solutions like Authorize.net, however this does not seem cost effective since I can't imagine he's making a huge profit off of this. I'm afraid he would lose money in the cost of using Authorize.net (or any payment gateway for the matter). I could use google checkout or paypal express, but this would require me to leave his site (although with google checkout, it looks like, from a glance, that I could just submit to their form from my server, and likely with paypal as well, but I don't know if this is against their TOS). What is the most cost-effective solution for accepting credit card payments in this situation?

    Read the article

  • Linux servers vs Windows IIS sense of usage "free" solutions

    - by Rob
    I wonder what is the sense of using "free" open source solutions for serious webstie applications? Crawled and read many testing of servers performance and there is one conclusion: IIS seems to be the best choice for high load applicatiom. I mean cost effective. Especially this concers to Nginx PLUS and LiteSpeed Users where subscriptions paid for e.g. LoadBalacer and extra support cost a lot in fact. I'm asking then where it's "free" then or "cheap" in this case? Assuming even little higher cost of dedicated servers with Windows still seems like Windows looks cheaper. At it's basic setup Windows 2012 with IIS offer much more than std LAMP, or other NGINX config.... Maybe am I missing sth ? I mean only general case for someone who did not already started his app. I know exactly that the cheapest solution is the one someone is skilled. Has anyone done already such real costs calculation for example scenarios?

    Read the article

  • how to speed up the code??

    - by kaushik
    i have very huge code about 600 lines plus. cant post the whole thing here. but a particular code snippet is taking so much time,leading to problems. here i post that part of code please tell me what to do speed up the processing.. please suggest the part which may be the reason and measure to improve them if this small part of code is understandable. using_data={} def join_cost(a , b): global using_data #print a #print b save_a=[] save_b=[] print 1 #for i in range(len(m)): #if str(m[i][0])==str(a): save_a=database_index[a] #for i in range(len(m)): # if str(m[i][0])==str(b): #print 'save_a',save_a #print 'save_b',save_b print 2 save_b=database_index[b] using_data[save_a[0]]=save_a s=str(save_a[1]).replace('phone','text') s=str(s)+'.pm' p=os.path.join("c:/begpython/wavnk/",s) x=open(p , 'r') print 3 for i in range(6): x.readline() k2='a' j=0 o=[] while k2 is not '': k2=x.readline() k2=k2.rstrip('\n') oj=k2.split(' ') o=o+[oj] #print o[j] j=j+1 #print j #print o[2][0] temp=long(1232332) end_time=save_a[4] #print end_time k=(j-1) for i in range(k): diff=float(o[i][0])-float(end_time) if diff<0: diff=diff*(-1) if temp>diff: temp=diff pm_row=i #print pm_row #print temp #print o[pm_row] #pm_row=3 q=[] print 4 l=str(p).replace('.pm','.mcep') z=open(l ,'r') for i in range(pm_row): z.readline() k3=z.readline() k3=k3.rstrip('\n') q=k3.split(' ') #print q print 5 s=str(save_b[1]).replace('phone','text') s=str(s)+'.pm' p=os.path.join("c:/begpython/wavnk/",s) x=open(p , 'r') for i in range(6): x.readline() k2='a' j=0 o=[] while k2 is not '': k2=x.readline() k2=k2.rstrip('\n') oj=k2.split(' ') o=o+[oj] #print o[j] j=j+1 #print j #print o[2][0] temp=long(1232332) strt_time=save_b[3] #print strt_time k=(j-1) for i in range(k): diff=float(o[i][0])-float(strt_time) if diff<0: diff=diff*(-1) if temp>diff: temp=diff pm_row=i #print pm_row #print temp #print o[pm_row] #pm_row=3 w=[] l=str(p).replace('.pm','.mcep') z=open(l ,'r') for i in range(pm_row): z.readline() k3=z.readline() k3=k3.rstrip('\n') w=k3.split(' ') #print w cost=0 for i in range(12): #print q[i] #print w[i] h=float(q[i])-float(w[i]) cost=cost+math.pow(h,2) j_cost=math.sqrt(cost) #print cost return j_cost def target_cost(a , b): a=(b+1)*3 b=(a+1)*2 t_cost=(a+b)*5/2 return t_cost r1='shht:ra_77' r2='grx_18' g=[] nodes=[] nodes=nodes+[[r1]] for i in range(len(y_in_db_format)): g=y_in_db_format[i] #print g #print g[0] g.remove(str(g[0])) nodes=nodes+[g] nodes=nodes+[[r2]] print nodes print "lenght of nodes",len(nodes) lists=[] #lists=lists+[r1] for i in range(len(nodes)): for j in range(len(nodes[i])): lists=lists+[nodes[i][j]] #lists=lists+[r2] print lists distance={} for i in range(len(lists)): if i==0: distance[str(lists[i])]=0 else: distance[str(lists[i])]=long(123231223) #print distance group_dist=[] infinity=long(123232323) for i in range(len(nodes)): distances=[] for j in range(len(nodes[i])): #distances=[] if i==0: distances=distances+[[nodes[i][j], 0]] else: distances=distances+[[nodes[i][j],infinity]] group_dist=group_dist+[distances] #print distances print "group_distances",group_dist #print "check",group_dist[0][0][1] #costs={} #for i in range(len(lists)): #if i==0: # costs[str(lists[i])]=1 #else: # costs[str(lists[i])]=get_selfcost(lists[i]) path=[] for i in range(len(nodes)): mini=[] if i!=(len(nodes)-1): #temp=long(123234324) #Now calculate the cost between the current node and each of its neighbour for k in range(len(nodes[(i+1)])): for j in range(len(nodes[i])): current=nodes[i][j] #print "current_node",current j_distance=join_cost( current , nodes[i+1][k]) #t_distance=target_cost( current , nodes[i+1][k]) t_distance=34 #print distance #print "distance between current and neighbours",distance total_distance=(.5*(float(group_dist[i][j][1])+float(j_distance))+.5*(float(t_distance))) #print "total distance between the intial_nodes and current neighbour",total_distance if int(group_dist[i+1][k][1]) > int(total_distance): group_dist[i+1][k][1]=total_distance #print "updated distance",group_dist[i+1][k][1] a=current #print "the neighbour",nodes[i+1][k],"updated the value",a mini=mini+[[str(nodes[i+1][k]),a]] print mini

    Read the article

< Previous Page | 94 95 96 97 98 99 100 101 102 103 104 105  | Next Page >