Search Results

Search found 895 results on 36 pages for 'scatter plot'.

Page 12/36 | < Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >

  • How can I get a windows server to collate and email 4 daily reports/graphs for server performance

    - by Glyn Darkin
    I run a windows 2008 webserver and would like to setup the most basic performance monitoring in the world. What i would like is: a plot of ASP.Net request time for each w3wp process for a 24hour period a plot of CPU% utilisation for each w3wp process for a 24hour period a plot of Memory utilisation for each w3wp process for a 24hour period a plot of network utilisation for each w3wp process for a 24hour period a plot of disk utilisation for each w3wp process for a 24hour period I would these plots to be emailed to me each morning. Anybody know what is the simplest way to set this up? Thanks for your help in advance. Glyn

    Read the article

  • How to remove space between chart area and plot area?

    - by Gopalakrishnan Subramani
    I am using chartingToolKit:Chart control. I want to remove the white space appear in between the chart and plot area. Attached the WPF sample and image of area to be removed. <Window x:Class="WpfApplication2.MainWindow" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Title="MainWindow" Height="350" Width="525" xmlns:chartingToolkit="clr-namespace:System.Windows.Controls.DataVisualization.Charting;assembly=System.Windows.Controls.DataVisualization.Toolkit"> <Grid> <chartingToolkit:Chart x:Name="chart" Width="500" Height="300" Margin="0, 0, 0, 0" LegendStyle="{StaticResource LegendStyle}" > <chartingToolkit:AreaSeries ItemsSource="{Binding}" DependentValuePath="Value" IndependentValuePath="Key" Background="Red" > </chartingToolkit:AreaSeries> <chartingToolkit:Chart.Axes> <chartingToolkit:LinearAxis Orientation="X" ShowGridLines="False" Visibility="Hidden"> </chartingToolkit:LinearAxis> <chartingToolkit:LinearAxis Orientation="Y" ShowGridLines="False" Visibility="Hidden"/> </chartingToolkit:Chart.Axes> </chartingToolkit:Chart> </Grid> The area marked in red arrow must be removed

    Read the article

  • How can I suppress the vertical gridlines in a ggplot2 plot while retaining the x-axis labels?

    - by Tarek
    This is a follow-on from this question, in which I was trying to suppress the vertical gridlines. The solution, as provided by learnr, was to add scale_x_continuous(breaks = NA), but this had the side effect of also suppressing the x-axis labels, as well. I am totally happy to write the labels back in by hand, but it's not clear to me how to figure out where the labels should go. The other option is to suppress all gridlines (using opts( panel.grid.major = theme_blank()) or some such) and then drawing back in just the major horizontal gridlines. Again, the problem here is how to figure out what the breaks are in the plot to supply to geom_hline(). So, essentially, my options are: Suppress vertical gridlines and x-axis labels (using scale_x_continuous(breaks = NA) ) and add the x-axis labels back in. Suppress all gridlines (using opts( panel.grid.major = theme_blank()) ) and add the major horizontal gridlines back in using geom_hline(). Here are the two options: library(ggplot2) data <- data.frame(x = 1:10, y = c(3,5,2,5,6,2,7,6,5,4)) # suppressing vertical gridlines and x-axis labels # need to re-draw x-axis labels ggplot(data, aes(x, y)) + geom_bar(stat = 'identity') + scale_x_continuous(breaks = NA) + opts( panel.grid.major = theme_line(size = 0.5, colour = '#1391FF'), panel.grid.minor = theme_blank(), panel.background = theme_blank(), axis.ticks = theme_blank() ) # suppressing all gridlines # need to re-draw horizontal gridlines, probably with geom_hbar() ggplot(data, aes(x, y)) + geom_bar(stat = 'identity') + scale_x_continuous(breaks = NA) + opts( panel.grid.major = theme_blank(), panel.grid.minor = theme_blank(), panel.background = theme_blank(), axis.ticks = theme_blank() )

    Read the article

  • Python Turtle Graphics, how to plot functions over an interval?

    - by TheDragonAce
    I need to plot a function over a specified interval. The function is f1, which is shown below in the code, and the interval is [-7, -3]; [-1, 1]; [3, 7] with a step of .01. When I execute the program, nothing is drawn. Any ideas? import turtle from math import sqrt wn = turtle.Screen() wn.bgcolor("white") wn.title("Plotting") mypen = turtle.Turtle() mypen.shape("classic") mypen.color("black") mypen.speed(10) while True: try: def f1(x): return 2 * sqrt((-abs(abs(x)-1)) * abs(3 - abs(x))/((abs(x)-1)*(3-abs(x)))) * \ (1 + abs(abs(x)-3)/(abs(x)-3))*sqrt(1-(x/7)**2)+(5+0.97*(abs(x-0.5)+abs(x+0.5))-\ 3*(abs(x-0.75)+abs(x+0.75)))*(1+abs(1-abs(x))/(1-abs(x))) mypen.penup() step=.01 startf11=-7 stopf11=-3 startf12=-1 stopf12=1 startf13=3 stopf13=7 def f11 (startf11,stopf11,step): rc=[] y = f1(startf11) while y<=stopf11: rc.append(startf11) #y+=step mypen.setpos(f1(startf11)*25,y*25) mypen.dot() def f12 (startf12,stopf12,step): rc=[] y = f1(startf12) while y<=stopf12: rc.append(startf12) #y+=step mypen.setpos(f1(startf12)*25, y*25) mypen.dot() def f13 (startf13,stopf13,step): rc=[] y = f1(startf13) while y<=stopf13: rc.append(startf13) #y+=step mypen.setpos(f1(startf13)*25, y*25) mypen.dot() f11(startf11,stopf11,step) f12(startf12,stopf12,step) f13(startf13,stopf13,step) except ZeroDivisionError: continue

    Read the article

  • I want to plot ocean current with a GPS in a bottle.

    - by Fantomas
    Thinking of using a wine bottle with a cork that barely sticks out. Anyhow, I want to put in a GPS, a battery and a transmitter and to be able to collect position about every minute or so. Off-the-shelf components are preferred. What are my options as far as hardware and software choices? Thank you in advance!

    Read the article

  • How can I show figures separately in matplotlib?

    - by Federico Ramponi
    Say that I have two figures in matplotlib, with one plot per figure: import matplotlib.pyplot as plt f1 = plt.figure() plt.plot(range(0,10)) f2 = plt.figure() plt.plot(range(10,20)) Then I show both in one shot plt.show() Is there a way to show them separately, i.e. to show just f1? Or better: how can I manage the figures separately like in the following 'wishful' code (that doesn't work): f1 = plt.figure() f1.plot(range(0,10)) f1.show()

    Read the article

  • Flex: Create custom stroke on LineSeries?

    - by John Isaacks
    You can easily set a stroke on a line series like this: <mx:LineSeries yField="apple"> <mx:lineStroke> <mx:Stroke color="0x6699FF" weight="4" alpha=".8" /> </mx:lineStroke> </mx:LineSeries> This will set alpha for the entire stroke to .8 But I want to be able to set a different alpha on the stoke for each plot based on something in the dataProvider. For example the yField in the lineSeries is "Apple" which is how it knows where to plot for the lineSeries. I want to be able to add something like alphaField which tells it what to set the stroke alpha for each plot. so if my dataProvider was: <result month="Jan-04"> <apple>81768</apple> <alpha>1</alpha> </result> <result month="Feb-04"> <apple>51156</apple> <alpha>1</alpha> </result> <result month="Mar-04"> <apple>51156</apple> <alpha>.5</alpha> </result> And I set alphaField="alpha" then I would have a solid stroke from plot 0 to plot 1 and then a 50% alpha stroke from plot 1 to plot 2. How can I do this??? I am looking in the commitProperties() and updateDisplayList() methods of LineSeries and have no idea what would need to be added/changed to make this? I am pretty sure, this class has to use Graphics.lineTo() to draw each plot, so basically it would need to "get" the current alphaField value somehow, and apply a Graphics.lineStyle() with the correct alpha before drawing each line. Thanks!! UPDATE I have gotten much closer to my answer. When I extend LineRenderer I override updateDisplayList() which calls GraphicsUtilities.drawPolyLine() I extend GraphicsUtilities and override the method drawPolyLine() as this is where the line is actually drawn. I can call lineStyle() in here and change the alpha of the line... I still have 1 thing I cannot figure out, from within the drawPolyLine() method how can I access that data that dictates what the alpha should be? Thanks!!!!

    Read the article

  • error when plotting log'd array in matplotlib/scipy/numpy

    - by user248237
    I have two arrays and I take their logs. When I do that and try to plot their scatter plot, I get this error: File "/Library/Python/2.6/site-packages/matplotlib-1.0.svn_r7892-py2.6-macosx-10.6-universal.egg/matplotlib/pyplot.py", line 2192, in scatter ret = ax.scatter(x, y, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, faceted, verts, **kwargs) File "/Library/Python/2.6/site-packages/matplotlib-1.0.svn_r7892-py2.6-macosx-10.6-universal.egg/matplotlib/axes.py", line 5384, in scatter self.add_collection(collection) File "/Library/Python/2.6/site-packages/matplotlib-1.0.svn_r7892-py2.6-macosx-10.6-universal.egg/matplotlib/axes.py", line 1391, in add_collection self.update_datalim(collection.get_datalim(self.transData)) File "/Library/Python/2.6/site-packages/matplotlib-1.0.svn_r7892-py2.6-macosx-10.6-universal.egg/matplotlib/collections.py", line 153, in get_datalim offsets = transOffset.transform_non_affine(offsets) File "/Library/Python/2.6/site-packages/matplotlib-1.0.svn_r7892-py2.6-macosx-10.6-universal.egg/matplotlib/transforms.py", line 1924, in transform_non_affine self._a.transform(points)) File "/Library/Python/2.6/site-packages/matplotlib-1.0.svn_r7892-py2.6-macosx-10.6-universal.egg/matplotlib/transforms.py", line 1420, in transform return affine_transform(points, mtx) ValueError: Invalid vertices array. the code is simply: myarray_x = log(my_array[:, 0]) myarray_y = log(my_array[:, 1]) plt.scatter(myarray_x, myarray_y) any idea what could be causing this? thanks.

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • How can I use RRDTOOL to plot values from a CSV file?

    - by Octopus
    I have to create a graphical representation for staff salary. The staff is getting their salaries per day and I have there information in below format. This is one month data i.e. 1st March to 31st March <DATE>,<NAME1>,<NAME2>,<NAME3>......<NAME N> YYYY-MM-DD,name1,name2,Name3,.......name4 . . so on.. 1) Is rrdtool a better solution to create graphs and find AVERAGE, MAX, MIN. 2) If yes, How can I use above CSV file to create RRD. 3) If no, what else I can use this to automate the graphical information on my website. Any suggestion in Perl would be really appreciated.

    Read the article

  • How can I use Perl and RRD to plot ping times?

    - by ChrisMuench
    I'm trying to do my first rrd graph through Perl. I have tried RRD::Simple and rrds and just can't get either one to work. Here's what I have so far: use strict; use RRD::Simple (); # Create an interface object my $rrd = RRD::Simple-new( file = "server.rrd" ); # Put some arbitary data values in the RRD file for the same # 3 data sources called bytesIn, bytesOut and faultsPerSec. $rrd-create( EqSearch = "DERIVE", MfSearch = "DERIVE", EQCostBasis = "DERIVE", MFCostBasis = "DERIVE" ); $rrd-update( EqSearch = 2, MfSearch = 3, EQCostBasis = 10, MFCostBasis = 15 ); # Generate graphs: # /var/tmp/myfile-daily.png, /var/tmp/myfile-weekly.png # /var/tmp/myfile-monthly.png, /var/tmp/myfile-annual.png my %rtn = $rrd-graph( destination = "/Users/cmuench/Documents/Code/perl", title = "Server A", vertical_label = "", interlaced = "", periods = [qw(hour)] );

    Read the article

  • How can I plot NaN values as a special color with imshow in matplotlib?

    - by Adam Fraser
    example: import numpy as np import matplotlib.pyplot as plt f = plt.figure() ax = f.add_subplot(111) a = np.arange(25).reshape((5,5)).astype(float) a[3,:] = np.nan ax.imshow(a, interpolation='nearest') f.canvas.draw() The resultant image is unexpectedly all blue (the lowest color in the jet colormap). However, if I do the plotting like this: ax.imshow(a, interpolation='nearest', vmin=0, vmax=24) --then I get something better, but the NaN values are drawn the same color as vmin... Is there a graceful way that I can set NaNs to be drawn with a special color (eg: gray or transparent)?

    Read the article

  • What Javascript graphing package will let me plot points against a user-selected coordinate system?

    - by wes
    My customer has some specific requirements for a graph to show in our web app. We use HighCharts elsewhere in the app for more traditional graphing, but it doesn't seem to work for this situation. Their requirements: Allow the user to select a background image, set the scale and origin of the coordinate system. We'll graph our points against the user-defined coordinates. Points can be color coded Mouse-over boxes show more detail about the points Support for zooming and panning, scaling the background appropriately Less importantly: Support for drawing vectors off the points Some of this seems basic, but looking around at different graph packages, I was unable to find any with an example of this kind of usage. I've entertained the thought of just hacking it together in canvas myself, but I've never worked with canvas before so I don't think it would be cost effective. The basics of plotting points with a scaled coordinate system against an image background wouldn't be too hard, but the mouse-over details, zooming and panning sound much more daunting to me. More info: Right now we use jQuery, HighCharts, and ExtJS for our app. We tried flot in the past but switched to HighCharts after flot didn't meet our needs.

    Read the article

  • Netlogo behaviorspace, How to export each experiment's plot in a separate directory with a unique name? (Answer is by using pathdir extension)

    - by Marzy
    I have a save-plots function which I call it in my final command of behavior space to export selected plots, I could create unique names for plots so they don't replace each other, for example my output file name for one of the plots is like this: DeathRates, PS true, HCHA false 100,true.csv Let FileNameDeathRates ( word "D: /Results/" "DeathRates, " "PS "PS? ", HCHA " HCHA? MPS "," CV? ".csv" ) So far is good, but I want is to have a directory with name of the experiment and export all plots of that experiment in that directory for example: Let DirName( word "D:/Results/" "PS "PS? ", HCHA " HCHA? MPS "," CV? ) Netlogo already exports plots with proper name and I just want the directory name to be different , and of course prior to the experiment the directory does not exist so the directory should be created first , I could not find a command to create a directory in netlogo without pathdir extension. Any idea on how can I do this? Thanks in advance ;)

    Read the article

  • Is it possible to plot a single density over a discrete variable?

    - by mattrepl
    The x-axis is time broken up into time intervals. There is an interval column in the data frame that specifies the time for each row. Plotting a histogram or line using geom_histogram and geom_freqpoly works great, but I'd like to use geom_density to get a filled area. Perhaps there is a better way to achieve this. Right now, if I use geom_density, curves are created for each discrete factor level instead of smoothing over all of them.

    Read the article

  • Finding What You Need in R: function arguments/parameters from outside the function's package

    - by doug
    Often in R, there are a dozen functions scattered across as many packages--all of which have the same purpose but of course differ in accuracy, performance, theoretical rigor, and so on. How do you gather all of these in one place before you start your task? So for instance: the generic plot function. Setting secondary ticks is much easier (IMHO) using a function outside of the base package, minor.tick(nx=n, ny=n, tick.ratio=n), found in Hmisc. Of course, that doesn't show up in plot's docstring. Likewise, the data-input arguments to 'plot' can be supplied by an object returned from the function 'hexbin', again, from a library outside of the base installation (where 'plot' resides). What would be great obviously is a programmatic way to gather these function arguments from the various libraries and put them in a single namespace. edit: (trying to re-state my example just above more clearly:) the arguments to plot supplied in the base package for, e.g., setting the axis tick frequency are xaxp/yaxp; however, one can also set a/t/f via a function outside of the base package, again, as in the minor.tick function from the Hmisc package--but you wouldn't know that just from looking at the plot method signature. Is there a meta function in R for this? So far, as i come across them, i've been manually gathering them in a TextMate 'snippet' (along with the attendant library imports). This isn't that difficult or time consuming, but i can only update my snippet as i find out about these additional arguments/parameters. Is there a canonical R way to do this, or at least an easier way? Just in case that wasn't clear, i am not talking about the case where multiple packages provide functions directed to the same statistic or view (e.g., 'boxplot' in the base package; 'boxplot.matrix' in gplots; and 'bplots' in Rlab). What i am talking is the case in which the function name is the same across two or more packages.

    Read the article

  • Why do browsers encode special characters differently with ajax requests?

    - by Andrei Oniga
    I have a web application that reads the values of a few input fields (alphanumeric) and constructs a very simple xml that is passes to the server, using jQuery's $.ajax() method. The template for that xml is: <request> <session>[some-string]</session> <space>[some-string]</space> <plot>[some-string]</plot> ... </request> Sending such requests to the server when the inputs contain Finnish diacritical characters (such as ä or ö) raises a problem in terms of character encoding with different browsers. For instance, if I add the word Käyttötarkoitus" in one of the inputs, here's how Chrome and Firefox send EXACTLY the same request to the server: Chrome: <request> <session>{string-hidden}</session> <space>2080874</space> <plot>Käyttötarkoitus</plot> ... </request> FF 12.0: <request> <session>{string-hidden}</session> <space>2080874</space> <plot>Käyttötarkoitus</plot> ... </request> And here is the code fragment that I use to send the requests: $.ajax({ type: "POST", url: url, dataType: 'xml;charset=UTF-8', data: xml, success: function(xml) { // }, error: function(jqXHR, textStatus, errorThrown) { // } }); Why do I get different encodings and how do I get rid of this difference? I need to fix this problem because it's causing other on the server-side.

    Read the article

  • MATLAB query about for loop, reading in data and plotting

    - by mp7
    Hi there, I am a complete novice at using matlab and am trying to work out if there is a way of optimising my code. Essentially I have data from model outputs and I need to plot them using matlab. In addition I have reference data (with 95% confidence intervals) which I plot on the same graph to get a visual idea on how close the model outputs and reference data is. In terms of the model outputs I have several thousand files (number sequentially) which I open in a loop and plot. The problem/question I have is whether I can preprocess the data and then plot later - to save time. The issue I seem to be having when I try this is that I have a legend which either does not appear or is inaccurate. My code (apolgies if it not elegant): fn= xlsread(['tbobserved' '.xls']); time= fn(:,1); totalreference=fn(:,4); totalreferencelowerci=fn(:,6); totalreferenceupperci=fn(:,7); figure plot(time,totalrefrence,'-', time, totalreferencelowerci,'--', time, totalreferenceupperci,'--'); xlabel('Year'); ylabel('Reference incidence per 100,000 population'); title ('Total'); clickableLegend('Observed reference data', 'Totalreferencelowerci', 'Totalreferenceupperci','Location','BestOutside'); xlim([1910 1970]); hold on start_sim=10000; end_sim=10005; h = zeros (1,1000); for i=start_sim:end_sim %is there any way of doing this earlier to save time? a=int2str(i); incidenceFile =strcat('result_', 'Sim', '_', a, 'I_byCal_total.xls'); est_tot=importdata(incidenceFile, '\t', 1); cal_tot=est_tot.data; magnitude=1; t1=cal_tot(:,1)+1750; totalmodel=cal_tot(:,3)+cal_tot(:,5); h(a)=plot(t1,totalmodel); xlim([1910 1970]); ylim([0 500]); hold all clickableLegend(h(a),a,'Location','BestOutside') end Essentially I was hoping to have a way of reading in the data and then plot later - ie. optimise the code. I hope you might be able to help. Thanks. mp

    Read the article

  • R: Plotting a graph with different colors of points based on advanced criteria

    - by balconydoor
    What I would like to do is a plot (using ggplot), where the x axis represent years which have a different colour for the last three years in the plot than the rest. The last three years should also meet a certain criteria and based on this the last three years can either be red or green. The criteria is that the mean of the last three years should be less (making it green) or more (making it red) than the 66%-percentile of the remaining years. So far I have made two different functions calculating the last three year mean: LYM3 <- function (x) { LYM3 <- tail(x,3) mean(LYM3$Data,na.rm=T) } And the 66%-percentile for the remaining: perc66 <- function(x) { percentile <- head(x,-3) quantile(percentile$Data, .66, names=F,na.rm=T) } Here are two sets of data that can be used in the calculations (plots), the first which is an example from my real data where LYM3(df1) < perc66(df1) and the second is just made up data where LYM3 perc66. df1<- data.frame(Year=c(1979:2010), Data=c(347261.87, 145071.29, 110181.93, 183016.71, 210995.67, 205207.33, 103291.78, 247182.10, 152894.45, 170771.50, 206534.55, 287770.86, 223832.43, 297542.86, 267343.54, 475485.47, 224575.08, 147607.81, 171732.38, 126818.10, 165801.08, 136921.58, 136947.63, 83428.05, 144295.87, 68566.23, 59943.05, 49909.08, 52149.11, 117627.75, 132127.79, 130463.80)) df2 <- data.frame(Year=c(1979:2010), Data=c(sample(50,29,replace=T),75,75,75)) Here’s my code for my plot so far: plot <- ggplot(df1, aes(x=Year, y=Data)) + theme_bw() + geom_point(size=3, aes(colour=ifelse(df1$Year<2008, "black",ifelse(LYM3(df1) < perc66(df1),"green","red")))) + geom_line() + scale_x_continuous(breaks=c(1980,1985,1990,1995,2000,2005,2010), limits=c(1978,2011)) plot As you notice it doesn’t really do what I want it to do. The only thing it does seem to do is that it turns the years before 2008 into one level and those after into another one and base the point colour off these two levels. Since I don’t want this year to be stationary either, I made another tiny function: fun3 <- function(x) { df <- subset(x, Year==(max(Year)-2)) df$Year } So the previous code would have the same effect as: geom_point(size=3, aes(colour=ifelse(df1$Year<fun3(df1), "black","red"))) But it still does not care about my colours. Why does it make the years into levels? And how come an ifelse function doesn’t work within another one in this case? How would it be possible to the arguments to do what I like? I realise this might be a bit messy, asking for a lot at the same time, but I hope my description is pretty clear. It would be helpful if someone could at least point me in the right direction. I tried to put the code for the plot into a function as well so I wouldn’t have to change the data frame at all functions within the plot, but I can’t get it to work. Thank you!

    Read the article

  • Nagios Availability Report plotting in Graphite

    - by Roman Zenka
    I would like to plot my Nagios availability reports over time. Does anyone know a plugin that would do so? I found 'graphios' at https://github.com/shawn-sterling/graphios that would plot extra data provided by plugins. What I need instead is a plugin that would plot information such as: 'the service was in ERROR state 0.5% of the time last week, while the week before it was 1%'. This would be useful for knowing whether the overall stability is getting better.

    Read the article

  • I have discovered a fundamental truth about TV shows and plots

    - by Steve Loethen
    For years, we have all known (okay, maybe I give people too much credit) that there is a very small finite number of plots.  I propose a project.  Let’s use the blogosphere to catalog those plotlines, and then find and document the episodes of shows that use them, including the show title. As evidence, how many shows have used the following plot line:? The standard “evil twin” plotline?  Once relegated to soaps, it has show up in crime shows, with the twist of DNA.  Step one, concentrate one this one.  Tell me about every show you recall that has used this plot.  I will collect and document the shows on my website (www.loethen.net) and we can build a database of the plots. Step two, what other common themes should I offer up?  How about the bigamist plot line?  The “bad guy was dead” plot line (revenge from the dead"?  The “vast government conspiracy” plotline? Let the games begin….

    Read the article

  • Matplotlib canvas drawing

    - by Morgoth
    Let's say I define a few functions to do certain matplotlib actions, such as def dostuff(ax): ax.scatter([0.],[0.]) Now if I launch ipython, I can load these functions and start a new figure: In [1]: import matplotlib.pyplot as mpl In [2]: fig = mpl.figure() In [3]: ax = fig.add_subplot(1,1,1) In [4]: run functions # run the file with the above defined function If I now call dostuff, then the figure does not refresh: In [6]: dostuff(ax) I have to then explicitly run: In [7]: fig.canvas.draw() To get the canvas to draw. Now I can modify dostuff to be def dostuff(ax): ax.scatter([0.],[0.]) ax.get_figure().canvas.draw() This re-draws the canvas automatically. But now, say that I have the following code: def dostuff1(ax): ax.scatter([0.],[0.]) ax.get_figure().canvas.draw() def dostuff2(ax): ax.scatter([1.],[1.]) ax.get_figure().canvas.draw() def doboth(ax): dostuff1(ax) dostuff2(ax) ax.get_figure().canvas.draw() I can call each of these functions, and the canvas will be redrawn, but in the case of doboth(), it will get redrawn multiple times. My question is: how could I code this, such that the canvas.draw() only gets called once? In the above example it won't change much, but in more complex cases with tens of functions that can be called individually or grouped, the repeated drawing is much more obvious, and it would be nice to be able to avoid it. I thought of using decorators, but it doesn't look as though it would be simple. Any ideas?

    Read the article

  • matplotlib: how to refresh figure.canvas

    - by Alex
    Hello, I can't understand how to refresh FigureCanvasWxAgg instance. Here is the example: import wx import matplotlib from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg as FigureCanvas from matplotlib.figure import Figure class MainFrame(wx.Frame): def __init__(self): wx.Frame.__init__(self, None, wx.NewId(), "Main") self.sizer = wx.BoxSizer(wx.VERTICAL) self.figure = Figure(figsize=(1,2)) self.axe = self.figure.add_subplot(111) self.figurecanvas = FigureCanvas(self, -1, self.figure) self.buttonPlot = wx.Button(self, wx.NewId(), "Plot") self.buttonClear = wx.Button(self, wx.NewId(), "Clear") self.sizer.Add(self.figurecanvas, proportion=1, border=5, flag=wx.ALL | wx.EXPAND) self.sizer.Add(self.buttonPlot, proportion=0, border=2, flag=wx.ALL) self.sizer.Add(self.buttonClear, proportion=0, border=2, flag=wx.ALL) self.SetSizer(self.sizer) self.figurecanvas.Bind(wx.EVT_LEFT_DCLICK, self.on_dclick) self.buttonPlot.Bind(wx.EVT_BUTTON, self.on_button_plot) self.buttonClear.Bind(wx.EVT_BUTTON, self.on_button_clear) self.subframe_opened = False def on_dclick(self, evt): self.subframe = SubFrame(self, self.figure) self.subframe.Show(True) self.subframe_opened = True def on_button_plot(self, evt): self.axe.plot(range(10), color='green') self.figurecanvas.draw() def on_button_clear(self, evt): if self.subframe_opened: self.subframe.Close() self.figure.set_canvas(self.figurecanvas) self.axe.clear() self.figurecanvas.draw() class SubFrame(wx.Frame): def __init__(self, parent, figure): wx.Frame.__init__(self, parent, wx.NewId(), "Sub") self.sizer = wx.BoxSizer(wx.VERTICAL) self.figurecanvas = FigureCanvas(self, -1, figure) self.sizer.Add(self.figurecanvas, proportion=1, border=5, flag=wx.ALL | wx.EXPAND) self.SetSizer(self.sizer) self.Bind(wx.EVT_CLOSE, self.on_close) def on_close(self, evt): self.GetParent().subframe_opened = False evt.Skip() class MyApp(wx.App): def OnInit(self): frame = MainFrame() frame.Show(True) self.SetTopWindow(frame) return True app = MyApp(0) app.MainLoop() I'm interested in the following sequence of operations: run a script resize the main frame press Plot button double click on plot press Clear button Now I get a mess on main frame plot. If I resize the frame it redraws properly. My question is what should I add to my code to do that without resizing? Thanks in advance.

    Read the article

< Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >