Search Results

Search found 14643 results on 586 pages for 'performance comparison'.

Page 126/586 | < Previous Page | 122 123 124 125 126 127 128 129 130 131 132 133  | Next Page >

  • Why would SQL be very slow when doing updates?

    - by ooo
    Suddenly doing updates into a few tables have gotten 10 times slower than they used to be. What are some good recommendations to determine root cause and optimization? Could it be that indexing certain columns are causing updates to be slow? Any other recommendations? I guess more important than guesses would be help on the process of identifying the root cause or metrics around performance. Is there anything in Fluent NHibernate that you can use to help identify the root cause of performance issues?

    Read the article

  • Comparing arrays with sql

    - by Nissim
    I want to perform a 'SELECT' statement with a byte array (binary) parameter as a condition. I tried to google it, but didn't find anything useful. In general, I keep information of files in the database. one of the properties is the file's hash (binary). I want to give a hash to the SELECT statement, and get all rows with the same hash value.

    Read the article

  • Is it worth migrating to NHibernate 2.x from NHibernate 1.2?

    - by Amitabh
    We are using nHibernate 1.2 in a system which is not performing good. Will there be some performance improvement if we migrate to latest version of nHibernate? Overall is it a good idea to migrate to the latest version of nHibernate? EDIT: I want to use following features to improve performance. 1. Second level cache. 2. Joined Table. 3. MultiQuery to batch queries.

    Read the article

  • Quickest way to compute the number of shared elements between two vectors

    - by shn
    Suppose I have two vectors of the same size vector< pair<float, NodeDataID> > v1, v2; I want to compute how many elements from both v1 and v2 have the same NodeDataID. For example if v1 = {<3.7, 22>, <2.22, 64>, <1.9, 29>, <0.8, 7>}, and v2 = {<1.66, 7>, <0.03, 9>, <5.65, 64>, <4.9, 11>}, then I want to return 2 because there are two elements from v1 and v2 that share the same NodeDataIDs: 7 and 64. What is the quickest way to do that in C++ ? Just for information, note that the type NodeDataIDs is defined as I use boost as: typedef adjacency_list<setS, setS, undirectedS, NodeData, EdgeData> myGraph; typedef myGraph::vertex_descriptor NodeDataID; But it is not important since we can compare two NodeDataID using the operator == (that is, possible to do v1[i].second == v2[j].second)

    Read the article

  • Perl check for the existence of a value in a regular array

    - by Mel
    I am trying to figure out a way of checking for the existence of a value in an array without iterating through the array. I am reading a file for a parameter. I have a long list of parameters I do not want to deal with. I placed these unwanted parameters in an array @badparams I want to read a new parameter and if it does not exist in @badparams, process it. If it does exist in @badparams, go to the next read.

    Read the article

  • Comparing the values of two nsstrings

    - by user1776234
    So I have been trying to compare two NSStrings in xcode. However, it is not working. What am I doing wrong? NSString Prog are characters that are xml parsed from mysql char *cStr = "YES"; NSString *str3 = [NSString stringWithUTF8String:cStr]; if ([str3 isEqualToString:prog]) { [switch1 setOn:YES animated:YES]; } else { [switch1 setOn:NO animated:YES]; }

    Read the article

  • How much does precomputation (matching a series of strings and their permutations with a set number

    - by nipun
    Consider a typical slots machine with n reels(say reel1: a,b,c,d,w1,d,b, ..etc). On play we generate a concatenated string of n objects (like for above, chars) We have a paytable which lists winning strings with payout amounts. The problem is a wild character (list of wilds: w1,w2) which can replace {w1:a,b,c},{w2:a} ..etc. Is it really worthwhile to have all possible winning strings permutations with the wilds precomputed and used or simply at the time of occurance, generate all combinations with the pattern in hand accordingly. I did'nt really see much difference initially, but now if I need to scale the machine to handle 11+ reels with a much higher concentration of wilds than previously, I need to figure out the exact approach for this particular bit. Any ideas will be really appreciated :)

    Read the article

  • Always use dtexec.exe to test performance of your dataflows. No exceptions.

    - by jamiet
    Earlier this evening I posted a blog post entitled Investigation: Can different combinations of components effect Dataflow performance? where I compared the performance of three different dataflows all working to the same overall goal. I wanted to make one last point related to the results but I thought it warranted a blog post all of its own. Here is a screenshot of one of the dataflows that I was testing: Pretty complicated I’m sure you’ll agree. Now, when I executed this dataflow in the test it was executing in ~19seconds however in that case I was executing using the command-line tool dtexec. I also tried executing inside the BIDS development environment and in that case it took much longer – 139seconds. That’s more than seven times as long. The point I want to make is very simple. If you are testing your dataflows for performance please use dtexec. Nothing else will suffice. @Jamiet

    Read the article

  • Redering performance in FlasCC + UDK when compared to Stage3d and UDK on Windows?

    - by Arthur Wulf White
    http://gaming.adobe.com/technologies/flascc/ Developers can now access UDK for browser applications. Does this mean greater performance than using a Stage3D engine (Away3D 4) and how much of a noticeable difference in performance would it make in rendering speeds? Is there any benchmark you could propose that would allow to compare them fairly? I am asking this to help myself understand the consequences in performance for deciding to use UDK in a browser based game. I would also like to know how it compares with UDK running natively in Windows? I am not asking which technology to use or which is better. Only interested in the optimizing rendering speed in a 3d browser game with flash.

    Read the article

  • Rendering performance in FlasCC + UDK when compared to Stage3d and UDK on Windows?

    - by Arthur Wulf White
    Adobe recently released the Flash C++ Compiler, which UDK uses to target Flash Player. Developers can now access UDK for browser applications. Does this mean greater performance than using a Stage3D engine (Away3D 4) and how much of a noticeable difference in performance would it make in rendering speeds? Is there any benchmark you could propose that would allow to compare them fairly? I am asking this to help myself understand the consequences in performance for deciding to use UDK in a browser based game. I would also like to know how it compares with UDK running natively in Windows? I am not asking which technology to use or which is better. Only interested in optimizing rendering speed in a 3d browser game with flash.

    Read the article

  • Network throughput issue (ARP-related)

    - by Joel Coel
    The small college where I work is having some very strange network issues. I'm looking for any advice or ideas here. We were fine over the summer, but the trouble began few days after students returned to campus in force for the fall term. Symptoms The main symptom is that internet access will work, but it's very slow... often to the point of timeouts. As an example, a typical result from Speedtest.net will return .4Mbps download, but allow 3 to 8 Mbps upload speed. Lesser symptoms may include severely limited performance transferring data to and from our file server, or even in some cases the inability to log in to the computer (cannot reach the domain controller). The issue crosses multiple vlans, and has effected devices on nearly every vlan we operate. The issue does not impact all machines on the network. An unaffected machine will typically see at least 11Mbps download from speedtest.net, and perhaps much more depending on larger campus traffic patterns at the time. There is one variation on the larger issue. We have one vlan where users were unable to log into nearly all of the machines at all. IT staff would log in using a local administrator account (or in some cases cached credentials), and from there a release/renew or pinging the gateway would allow the machine to work... for a while. Complicating this issue is that this vlan covers our computer labs, which use software called Deep Freeze to completely reset the hard drives after a reboot. It could just the same issue manifesting differently because of stale data on machines that have not permanently altered low-level info for weeks. We were able to solve this, however, by creating a new vlan and moving the labs over to the new vlan wholesale. Instigations Eventually we noticed that the effected machines all had recent dhcp leases. We can predict when a machine will become "slow" by watching when a dhcp lease comes up for renewal. We played with setting the lease time very short for a test vlan, but all that did was remove our ability to predict when the machine would become slow. Machines with static IPs have pretty much always worked normally. Manually releasing/renewing an address will never cause a machine to become slow. In fact, in some cases this process has fixed a machine in that state. Most of the time, though, it doesn't help. We also noticed that mobile machines like laptops are likely to become slow when they cross to new vlans. Wireless on campus is divided up into "zones", where each zone maps to a small set of buildings. Moving to a new building can place you in a zone, thereby causing you to get a new address. A machine resuming from sleep mode is also very likely to be slow. Mitigations Sometimes, but not always, clearing the arp cache on an effected machine will allow it to work normally again. As already mentioned, releasing/renewing a local machine's IP address can fix that machine, but it's not guaranteed. Pinging the default gateway can also sometimes help with a slow machine. What seems to help most to mitigate the issue is clearing the arp cache on our core layer-3 switch. This switch is used for our dhcp system as the default gateway on all vlans, and it handles inter-vlan routing. The model is a 3Com 4900SX. To try to mitigate the issue, we have the cache timeout set on the switch all the way down to the lowest possible time, but it hasn't helped. I also put together a script that runs every few minutes to automatically connect to the switch and reset the cache. Unfortunately, this does not always work, and can even cause some machines to end up in the slow state for a short time (though these seem to correct themselves after a few minutes). We currently have a scheduled job that runs every 10 minutes to force the core switch to clear it's ARP cache, but this is far from perfect or desirable. Reproduction We now have a test machine that we can force into the slow state at will. It is connected to a switch with ports set up for each of our vlans. We make the machine slow by connecting to different vlans, and after a new connection or two it will be slow. It's also worth noting in this section that this has happened before at the start of prior terms, but in the past the problem has gone away on it's own after a few days. It solved itself before we had a chance to do much diagnostic work... hence why we've allowed it to drag so long into the term this time 'round; the expectation was this would be a short-lived situation. Other Factors It's worth mentioning that we have had about half a dozen switches just outright fail over the last year. These are mainly 2003/2004-era 3Coms (mostly 4200's) that were all put in at about the same time. They should still be covered under warranty, buy HP has made getting service somewhat difficult. Mostly in power supplies that have failed, but in a couple cases we have used a power supply from a switch with a failed mainboard to bring a switch with a failed power supply back to life. We do have UPS devices on all but three of four switches now, but that was not the case when I started two and a half years ago. Severe budget constraints (we were on the Dept. of Ed's financially challenged institutions list a couple years back) have forced me to look to the likes of Netgear and TrendNet for replacements, but so far these low-end models seem to be holding their own. It's also worth mentioning that the big change on our network this summer was migrating from a single cross-campus wireless SSID to the zoned approach mentioned earlier. I don't think this is the source of the issue, as like I've said: we've seen this before. However, it's possible this is exacerbating the issue, and may be much of the reason it's been so hard to isolate. Diagnosis At first it seemed clear to us, given the timing and persistent nature of the problem, that the source of the issue was an infected (or malicious) student machine doing ARP cache poisoning. However, repeated attempts to isolate the source have failed. Those attempts include numerous wireshark packet traces, and even taking entire buildings offline for brief periods. We have not been able even to find a smoking gun bad ARP entry. My current best guess is an overloaded or failing core switch, but I'm not sure on how to test for this, and the cost of replacing it blindly is steep. Again, any ideas appreciated.

    Read the article

  • VS2012 Launch Event &ndash; Combating Bugs And Poor Performance In Production

    - by Tarun Arora
    I presented a session “A techies guide to combating bugs & poor performance in production” at the Microsoft IT Visual Studio Launch event.  The key message was to demonstrate what common production issues (non-reproducible bugs and poor performance) techie’s run into and how the tooling in Visual Studio can help you efficiently tackle these issues. Remember, a Techie without efficient tools is only half the good!                                                       A techies guide to combating bugs & poor performance in production from Avanade Enjoy!

    Read the article

  • IOUG Enterprise Manager SIG Webinar: WEBINAR: Performance Tuning your Database Cloud in Oracle Enterprise Manager 12c Cloud Control - 360 Degrees

    - by Patrick Rood
    October 25, 2013 EM 12c Sales Blast | IOUG Enterprise Manager SIG WEBINAR: Performance Tuning your Database Cloud in Oracle Enterprise Manager 12c Cloud Control - 360 Degrees Last year, the Independent Oracle User Group (IOUG) established a fast-growing Special Interest Group (SIG) devoted to Enterprise Manager, and has sponsored Quarterly Newsletters and Webinars about EM. To drive more interest in EM and the SIG, IOUG would like Oracle to invite customers to its latest techcast. Your customers will learn how to leverage Oracle Enterprise Manager 12c for tuning, trouble-shooting and monitoring their Oracle Database Cloud Ecosystem. The session covers lessons learned, tips/tricks, recommendations, best practices, "gotchas" and a whole lot more on how to effectively use Oracle Enterprise Manager 12c Cloud Control for quick, easy and intuitive performance tuning of an Oracle Database Cloud. Session Objectives: • Leveraging Enterprise Manager 12c Cloud Control for Oracle Database Tuning/Monitoring • Limited Deep-Dive on Automatic Workload Repository (AWR) • Oracle Database Cloud Performance Tuning • Best Practices for Database Cloud Maintenance and Monitoring Featured Speaker: Tariq Farooq, CEO, BrainSurface and Mike Ault Date & Time: Wednesday, October 30 12:00 PM- 1:00 PM Central Time (USA) Register Here 

    Read the article

  • Advantage Database Server: slow stored procedure performance.

    - by ie
    I have a question about a performance of stored procedures in the ADS. I created a simple database with the following structure: CREATE TABLE MainTable ( Id INTEGER PRIMARY KEY, Name VARCHAR(50), Value INTEGER ); CREATE UNIQUE INDEX MainTableName_UIX ON MainTable ( Name ); CREATE TABLE SubTable ( Id INTEGER PRIMARY KEY, MainId INTEGER, Name VARCHAR(50), Value INTEGER ); CREATE INDEX SubTableMainId_UIX ON SubTable ( MainId ); CREATE UNIQUE INDEX SubTableName_UIX ON SubTable ( Name ); CREATE PROCEDURE CreateItems ( MainName VARCHAR ( 20 ), SubName VARCHAR ( 20 ), MainValue INTEGER, SubValue INTEGER, MainId INTEGER OUTPUT, SubId INTEGER OUTPUT ) BEGIN DECLARE @MainName VARCHAR ( 20 ); DECLARE @SubName VARCHAR ( 20 ); DECLARE @MainValue INTEGER; DECLARE @SubValue INTEGER; DECLARE @MainId INTEGER; DECLARE @SubId INTEGER; @MainName = (SELECT MainName FROM __input); @SubName = (SELECT SubName FROM __input); @MainValue = (SELECT MainValue FROM __input); @SubValue = (SELECT SubValue FROM __input); @MainId = (SELECT MAX(Id)+1 FROM MainTable); @SubId = (SELECT MAX(Id)+1 FROM SubTable ); INSERT INTO MainTable (Id, Name, Value) VALUES (@MainId, @MainName, @MainValue); INSERT INTO SubTable (Id, Name, MainId, Value) VALUES (@SubId, @SubName, @MainId, @SubValue); INSERT INTO __output SELECT @MainId, @SubId FROM system.iota; END; CREATE PROCEDURE UpdateItems ( MainName VARCHAR ( 20 ), MainValue INTEGER, SubValue INTEGER ) BEGIN DECLARE @MainName VARCHAR ( 20 ); DECLARE @MainValue INTEGER; DECLARE @SubValue INTEGER; DECLARE @MainId INTEGER; @MainName = (SELECT MainName FROM __input); @MainValue = (SELECT MainValue FROM __input); @SubValue = (SELECT SubValue FROM __input); @MainId = (SELECT TOP 1 Id FROM MainTable WHERE Name = @MainName); UPDATE MainTable SET Value = @MainValue WHERE Id = @MainId; UPDATE SubTable SET Value = @SubValue WHERE MainId = @MainId; END; CREATE PROCEDURE SelectItems ( MainName VARCHAR ( 20 ), CalculatedValue INTEGER OUTPUT ) BEGIN DECLARE @MainName VARCHAR ( 20 ); @MainName = (SELECT MainName FROM __input); INSERT INTO __output SELECT m.Value * s.Value FROM MainTable m INNER JOIN SubTable s ON m.Id = s.MainId WHERE m.Name = @MainName; END; CREATE PROCEDURE DeleteItems ( MainName VARCHAR ( 20 ) ) BEGIN DECLARE @MainName VARCHAR ( 20 ); DECLARE @MainId INTEGER; @MainName = (SELECT MainName FROM __input); @MainId = (SELECT TOP 1 Id FROM MainTable WHERE Name = @MainName); DELETE FROM SubTable WHERE MainId = @MainId; DELETE FROM MainTable WHERE Id = @MainId; END; Actually, the problem I had - even so light stored procedures work very-very slow (about 50-150 ms) relatively to plain queries (0-5ms). To test the performance, I created a simple test (in F# using ADS ADO.NET provider): open System; open System.Data; open System.Diagnostics; open Advantage.Data.Provider; let mainName = "main name #"; let subName = "sub name #"; // INSERT let cmdTextScriptInsert = " DECLARE @MainId INTEGER; DECLARE @SubId INTEGER; @MainId = (SELECT MAX(Id)+1 FROM MainTable); @SubId = (SELECT MAX(Id)+1 FROM SubTable ); INSERT INTO MainTable (Id, Name, Value) VALUES (@MainId, :MainName, :MainValue); INSERT INTO SubTable (Id, Name, MainId, Value) VALUES (@SubId, :SubName, @MainId, :SubValue); SELECT @MainId, @SubId FROM system.iota;"; let cmdTextProcedureInsert = "CreateItems"; // UPDATE let cmdTextScriptUpdate = " DECLARE @MainId INTEGER; @MainId = (SELECT TOP 1 Id FROM MainTable WHERE Name = :MainName); UPDATE MainTable SET Value = :MainValue WHERE Id = @MainId; UPDATE SubTable SET Value = :SubValue WHERE MainId = @MainId;"; let cmdTextProcedureUpdate = "UpdateItems"; // SELECT let cmdTextScriptSelect = " SELECT m.Value * s.Value FROM MainTable m INNER JOIN SubTable s ON m.Id = s.MainId WHERE m.Name = :MainName;"; let cmdTextProcedureSelect = "SelectItems"; // DELETE let cmdTextScriptDelete = " DECLARE @MainId INTEGER; @MainId = (SELECT TOP 1 Id FROM MainTable WHERE Name = :MainName); DELETE FROM SubTable WHERE MainId = @MainId; DELETE FROM MainTable WHERE Id = @MainId;"; let cmdTextProcedureDelete = "DeleteItems"; let cnnStr = @"data source=D:\DB\test.add; ServerType=local; user id=adssys; password=***;"; let cnn = new AdsConnection(cnnStr); try cnn.Open(); let cmd = cnn.CreateCommand(); let parametrize ix prms = cmd.Parameters.Clear(); let addParam = function | "MainName" -> cmd.Parameters.Add(":MainName" , mainName + ix.ToString()) |> ignore; | "SubName" -> cmd.Parameters.Add(":SubName" , subName + ix.ToString() ) |> ignore; | "MainValue" -> cmd.Parameters.Add(":MainValue", ix * 3 ) |> ignore; | "SubValue" -> cmd.Parameters.Add(":SubValue" , ix * 7 ) |> ignore; | _ -> () prms |> List.iter addParam; let runTest testData = let (cmdType, cmdName, cmdText, cmdParams) = testData; let toPrefix cmdType cmdName = let prefix = match cmdType with | CommandType.StoredProcedure -> "Procedure-" | CommandType.Text -> "Script -" | _ -> "Unknown -" in prefix + cmdName; let stopWatch = new Stopwatch(); let runStep ix prms = parametrize ix prms; stopWatch.Start(); cmd.ExecuteNonQuery() |> ignore; stopWatch.Stop(); cmd.CommandText <- cmdText; cmd.CommandType <- cmdType; let startId = 1500; let count = 10; for id in startId .. startId+count do runStep id cmdParams; let elapsed = stopWatch.Elapsed; Console.WriteLine("Test '{0}' - total: {1}; per call: {2}ms", toPrefix cmdType cmdName, elapsed, Convert.ToInt32(elapsed.TotalMilliseconds)/count); let lst = [ (CommandType.Text, "Insert", cmdTextScriptInsert, ["MainName"; "SubName"; "MainValue"; "SubValue"]); (CommandType.Text, "Update", cmdTextScriptUpdate, ["MainName"; "MainValue"; "SubValue"]); (CommandType.Text, "Select", cmdTextScriptSelect, ["MainName"]); (CommandType.Text, "Delete", cmdTextScriptDelete, ["MainName"]) (CommandType.StoredProcedure, "Insert", cmdTextProcedureInsert, ["MainName"; "SubName"; "MainValue"; "SubValue"]); (CommandType.StoredProcedure, "Update", cmdTextProcedureUpdate, ["MainName"; "MainValue"; "SubValue"]); (CommandType.StoredProcedure, "Select", cmdTextProcedureSelect, ["MainName"]); (CommandType.StoredProcedure, "Delete", cmdTextProcedureDelete, ["MainName"])]; lst |> List.iter runTest; finally cnn.Close(); And I'm getting the following results: Test 'Script -Insert' - total: 00:00:00.0292841; per call: 2ms Test 'Script -Update' - total: 00:00:00.0056296; per call: 0ms Test 'Script -Select' - total: 00:00:00.0051738; per call: 0ms Test 'Script -Delete' - total: 00:00:00.0059258; per call: 0ms Test 'Procedure-Insert' - total: 00:00:01.2567146; per call: 125ms Test 'Procedure-Update' - total: 00:00:00.7442440; per call: 74ms Test 'Procedure-Select' - total: 00:00:00.5120446; per call: 51ms Test 'Procedure-Delete' - total: 00:00:01.0619165; per call: 106ms The situation with the remote server is much better, but still a great gap between plaqin queries and stored procedures: Test 'Script -Insert' - total: 00:00:00.0709299; per call: 7ms Test 'Script -Update' - total: 00:00:00.0161777; per call: 1ms Test 'Script -Select' - total: 00:00:00.0258113; per call: 2ms Test 'Script -Delete' - total: 00:00:00.0166242; per call: 1ms Test 'Procedure-Insert' - total: 00:00:00.5116138; per call: 51ms Test 'Procedure-Update' - total: 00:00:00.3802251; per call: 38ms Test 'Procedure-Select' - total: 00:00:00.1241245; per call: 12ms Test 'Procedure-Delete' - total: 00:00:00.4336334; per call: 43ms Is it any chance to improve the SP performance? Please advice. ADO.NET driver version - 9.10.2.9 Server version - 9.10.0.9 (ANSI - GERMAN, OEM - GERMAN) Thanks!

    Read the article

  • performance of large number calculations in python (python 2.7.3 and .net 4.0)

    - by g36
    There is a lot of general questions about python performance in comparison to other languages. I've got more specific example: There are two simple functions wrote in python an c#, both checking if int number is prime. python: import time def is_prime(n): num =n/2 while num >1: if n % num ==0: return 0 num-=1 return 1 start = time.clock() probably_prime = is_prime(2147483629) elapsed = (time.clock() - start) print 'time : '+str(elapsed) and C#: using System.Diagnostics; public static bool IsPrime(int n) { int num = n/2; while(num >1) { if(n%num ==0) { return false; } num-=1; } return true; } Stopwatch sw = new Stopwatch(); sw.Start(); bool result = Functions.IsPrime(2147483629); sw.Stop(); Console.WriteLine("time: {0}", sw.Elapsed); And times ( which are surprise for me as a begginer in python:)): Python: 121s; c#: 6s Could You explain where does this big diffrence come from ?

    Read the article

  • Performance impact when using XML columns in a table with MS SQL 2008

    - by Sam Dahan
    I am using a simple table with 6 columns, 3 of which are of XML type, not schema-constrained. When the table reaches a size around 120,000 or 150,000 rows, I see a dramatic performance cost in doing any query in the table. For comparison, I have another table, which grows in size at about the same rate, but only contain scalar types (int, datetime, a few float columns). That table performs perfectly fine even after 200,000 rows. And by the way, I am not using XQuery on the xml columns, i am only using regular SQL query statements. Some specifics: both tables contain a DateTime field called SampleTime. a statement like (it's in a stored procedure but I show you the actual statement) SELECT MAX(sampleTime) SampleTime FROM dbo.MyRecords WHERE PlacementID=@somenumber takes 0 seconds on the table without xml columns, and anything from 13 to 20 seconds on the table with XML columns. That depends on which drive I set my database on. At the moment it sits on a different spindle (not C:) and it takes 13 seconds. Has anyone seen this behavior before, or have any hint at what I am doing wrong? I tried this with SQL 2008 EXPRESS and the full-blown SQL Server 2008, that made no difference. Oh, one last detail: I am doing this from a C# application, .NET 3.5, using SqlConnection, SqlReader, etc.. I'd appreciate some insight into that, thanks! Sam

    Read the article

  • C++ custom exceptions: run time performance and passing exceptions from C++ to C

    - by skyeagle
    I am writing a custom C++ exception class (so I can pass exceptions occuring in C++ to another language via a C API). My initial plan of attack was to proceed as follows: //C++ myClass { public: myClass(); ~myClass(); void foo() // throws myException int foo(const int i, const bool b) // throws myException } * myClassPtr; // C API #ifdef __cplusplus extern "C" { #endif myClassPtr MyClass_New(); void MyClass_Destroy(myClassPtr p); void MyClass_Foo(myClassPtr p); int MyClass_FooBar(myClassPtr p, int i, bool b); #ifdef __cplusplus }; #endif I need a way to be able to pass exceptions thrown in the C++ code to the C side. The information I want to pass to the C side is the following: (a). What (b). Where (c). Simple Stack Trace (just the sequence of error messages in order they occured, no debugging info etc) I want to modify my C API, so that the API functions take a pointer to a struct ExceptionInfo, which will contain any exception info (if an exception occured) before consuming the results of the invocation. This raises two questions: Question 1 1. Implementation of each of the C++ methods exposed in the C API needs to be enclosed in a try/catch statement. The performance implications for this seem quite serious (according to this article): "It is a mistake (with high runtime cost) to use C++ exception handling for events that occur frequently, or for events that are handled near the point of detection." At the same time, I remember reading somewhere in my C++ days, that all though exception handling is expensive, it only becmes expensive when an exception actually occurs. So, which is correct?. what to do?. Is there an alternative way that I can trap errors safely and pass the resulting error info to the C API?. Or is this a minor consideration (the article after all, is quite old, and hardware have improved a bit since then). Question 2 I wuld like to modify the exception class given in that article, so that it contains a simple stack trace, and I need some help doing that. Again, in order to make the exception class 'lightweight', I think its a good idea not to include any STL classes, like string or vector (good idea/bad idea?). Which potentially leaves me with a fixed length C string (char*) which will be stack allocated. So I can maybe just keep appending messages (delimted by a unique separator [up to maximum length of buffer])... Its been a while since I did any serious C++ coding, and I will be grateful for the help. BTW, this is what I have come up with so far (I am intentionally, not deriving from std::exception because of the performance reasons mentioned in the article, and I am instead, throwing an integral exception (based on an exception enumeration): class fast_exception { public: fast_exception(int what, char const* file=0, int line=0) : what_(what), line_(line), file_(file) {/*empty*/} int what() const { return what_; } int line() const { return line_; } char const* file() const { return file_; } private: int what_; int line_; char const[MAX_BUFFER_SIZE] file_; }

    Read the article

  • push_back of STL list got bad performance?

    - by Leon Zhang
    I wrote a simple program to test STL list performance against a simple C list-like data structure. It shows bad performance at "push_back()" line. Any comments on it? $ ./test2 Build the type list : time consumed -> 0.311465 Iterate over all items: time consumed -> 0.00898 Build the simple C List: time consumed -> 0.020275 Iterate over all items: time consumed -> 0.008755 The source code is: #include <stdexcept> #include "high_resolution_timer.hpp" #include <list> #include <algorithm> #include <iostream> #define TESTNUM 1000000 /* The test struct */ struct MyType { int num; }; /* * C++ STL::list Test */ typedef struct MyType* mytype_t; void myfunction(mytype_t t) { } int test_stl_list() { std::list<mytype_t> mylist; util::high_resolution_timer t; /* * Build the type list */ t.restart(); for(int i = 0; i < TESTNUM; i++) { mytype_t aItem = (mytype_t) malloc(sizeof(struct MyType)); if(aItem == NULL) { printf("Error: while malloc\n"); return -1; } aItem->num = i; mylist.push_back(aItem); } std::cout << " Build the type list : time consumed -> " << t.elapsed() << std::endl; /* * Iterate over all item */ t.restart(); std::for_each(mylist.begin(), mylist.end(), myfunction); std::cout << " Iterate over all items: time consumed -> " << t.elapsed() << std::endl; return 0; } /* * a simple C list */ struct MyCList; struct MyCList{ struct MyType m; struct MyCList* p_next; }; int test_simple_c_list() { struct MyCList* p_list_head = NULL; util::high_resolution_timer t; /* * Build it */ t.restart(); struct MyCList* p_new_item = NULL; for(int i = 0; i < TESTNUM; i++) { p_new_item = (struct MyCList*) malloc(sizeof(struct MyCList)); if(p_new_item == NULL) { printf("ERROR : while malloc\n"); return -1; } p_new_item->m.num = i; p_new_item->p_next = p_list_head; p_list_head = p_new_item; } std::cout << " Build the simple C List: time consumed -> " << t.elapsed() << std::endl; /* * Iterate all items */ t.restart(); p_new_item = p_list_head; while(p_new_item->p_next != NULL) { p_new_item = p_new_item->p_next; } std::cout << " Iterate over all items: time consumed -> " << t.elapsed() << std::endl; return 0; } int main(int argc, char** argv) { if(test_stl_list() != 0) { printf("ERROR: error at testcase1\n"); return -1; } if(test_simple_c_list() != 0) { printf("ERROR: error at testcase2\n"); return -1; } return 0; }

    Read the article

  • Linq2SQL vs NHibernate performance (have I gone mad?)

    - by HeavyWave
    I have written the following tests to compare performance of Linq2SQL and NHibernate and I find results to be somewhat strange. Mappings are straight forward and identical for both. Both are running against a live DB. Although I'm not deleting Campaigns in case of Linq, but that shouldn't affect performance by more than 10 ms. Linq: [Test] public void Test1000ReadsWritesToAgentStateLinqPrecompiled() { Stopwatch sw = new Stopwatch(); Stopwatch swIn = new Stopwatch(); sw.Start(); for (int i = 0; i < 1000; i++) { swIn.Reset(); swIn.Start(); ReadWriteAndDeleteAgentStateWithLinqPrecompiled(); swIn.Stop(); Console.WriteLine("Run ReadWriteAndDeleteAgentState: " + swIn.ElapsedMilliseconds + " ms"); } sw.Stop(); Console.WriteLine("Total Time: " + sw.ElapsedMilliseconds + " ms"); Console.WriteLine("Average time to execute queries: " + sw.ElapsedMilliseconds / 1000 + " ms"); } private static readonly Func<AgentDesktop3DataContext, int, EntityModel.CampaignDetail> GetCampaignById = CompiledQuery.Compile<AgentDesktop3DataContext, int, EntityModel.CampaignDetail>( (ctx, sessionId) => (from cd in ctx.CampaignDetails join a in ctx.AgentCampaigns on cd.CampaignDetailId equals a.CampaignDetailId where a.AgentStateId == sessionId select cd).FirstOrDefault()); private void ReadWriteAndDeleteAgentStateWithLinqPrecompiled() { int id = 0; using (var ctx = new AgentDesktop3DataContext()) { EntityModel.AgentState agentState = new EntityModel.AgentState(); var campaign = new EntityModel.CampaignDetail { CampaignName = "Test" }; var campaignDisposition = new EntityModel.CampaignDisposition { Code = "123" }; campaignDisposition.Description = "abc"; campaign.CampaignDispositions.Add(campaignDisposition); agentState.CallState = 3; campaign.AgentCampaigns.Add(new AgentCampaign { AgentState = agentState }); ctx.CampaignDetails.InsertOnSubmit(campaign); ctx.AgentStates.InsertOnSubmit(agentState); ctx.SubmitChanges(); id = agentState.AgentStateId; } using (var ctx = new AgentDesktop3DataContext()) { var dbAgentState = ctx.GetAgentStateById(id); Assert.IsNotNull(dbAgentState); Assert.AreEqual(dbAgentState.CallState, 3); var campaignDetails = GetCampaignById(ctx, id); Assert.AreEqual(campaignDetails.CampaignDispositions[0].Description, "abc"); } using (var ctx = new AgentDesktop3DataContext()) { ctx.DeleteSessionById(id); } } NHibernate (the loop is the same): private void ReadWriteAndDeleteAgentState() { var id = WriteAgentState().Id; StartNewTransaction(); var dbAgentState = agentStateRepository.Get(id); Assert.IsNotNull(dbAgentState); Assert.AreEqual(dbAgentState.CallState, 3); Assert.AreEqual(dbAgentState.Campaigns[0].Dispositions[0].Description, "abc"); var campaignId = dbAgentState.Campaigns[0].Id; agentStateRepository.Delete(dbAgentState); NHibernateSession.Current.Transaction.Commit(); Cleanup(campaignId); NHibernateSession.Current.BeginTransaction(); } Results: NHibernate: Total Time: 9469 ms Average time to execute 13 queries: 9 ms Linq: Total Time: 127200 ms Average time to execute 13 queries: 127 ms Linq lost by 13.5 times! Event with precompiled queries (both read queries are precompiled). This can't be right, although I expected NHibernate to be faster, this is just too big of a difference, considering mappings are identical and NHibernate actually executes more queries against the DB.

    Read the article

  • UIButton performance in UITableViewCell vs UIView

    - by marcel salathe
    I'd like to add a UIButton to a custom UITableViewCell (programmatically). This is easy to do, but I'm finding that the "performance" of the button in the cell is slow - that is, when I touch the button, there is quite a bit of delay until the button visually goes into the highlighted state. The same type of button on a regular UIView is very responsive in comparison. In order to isolate the problem, I've created two views - one is a simple UIView, the other is a UITableView with only one UITableViewCell. I've added buttons to both views (the UIView and the UITableViewCell), and the performance difference is quite striking. I've searched the web and read the Apple docs but haven't really found the cause of the problem. My guess is that it somehow has to do with the responder chain, but I can't quite put my finger on it. I must be doing something wrong, and I'd appreciate any help. Thanks. Demo code: ViewController.h #import <UIKit/UIKit.h> @interface ViewController : UIViewController <UITableViewDelegate, UITableViewDataSource> @property UITableView* myTableView; @property UIView* myView; ViewController.m #import "ViewController.h" #import "CustomCell.h" @implementation ViewController @synthesize myTableView, myView; - (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle *)nibBundleOrNil { self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNil]; if (self) { [self initMyView]; [self initMyTableView]; } return self; } - (void) initMyView { UIView* newView = [[UIView alloc] initWithFrame:CGRectMake(0,0,[[UIScreen mainScreen] bounds].size.width,100)]; self.myView = newView; // button on regularView UIButton* myButton = [UIButton buttonWithType:UIButtonTypeRoundedRect]; [myButton addTarget:self action:@selector(pressedMyButton) forControlEvents:UIControlEventTouchUpInside]; [myButton setTitle:@"I'm fast" forState:UIControlStateNormal]; [myButton setFrame:CGRectMake(20.0, 10.0, 160.0, 30.0)]; [[self myView] addSubview:myButton]; } - (void) initMyTableView { UITableView *newTableView = [[UITableView alloc] initWithFrame:CGRectMake(0,100,[[UIScreen mainScreen] bounds].size.width,[[UIScreen mainScreen] bounds].size.height-100) style:UITableViewStyleGrouped]; self.myTableView = newTableView; self.myTableView.delegate = self; self.myTableView.dataSource = self; } -(void) pressedMyButton { NSLog(@"pressedMyButton"); } - (void)viewDidLoad { [super viewDidLoad]; [[self view] addSubview:self.myView]; [[self view] addSubview:self.myTableView]; } - (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView { return 1; } - (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section { return 1; } - (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:(NSIndexPath *)indexPath { CustomCell *customCell = [tableView dequeueReusableCellWithIdentifier:@"CustomCell"]; if (customCell == nil) { customCell = [[CustomCell alloc] initWithStyle:UITableViewCellStyleSubtitle reuseIdentifier:@"CustomCell"]; } return customCell; } @end CustomCell.h #import <UIKit/UIKit.h> @interface CustomCell : UITableViewCell @property (retain, nonatomic) UIButton* cellButton; @end CustomCell.m #import "CustomCell.h" @implementation CustomCell @synthesize cellButton; - (id)initWithStyle:(UITableViewCellStyle)style reuseIdentifier:(NSString *)reuseIdentifier { self = [super initWithStyle:style reuseIdentifier:reuseIdentifier]; if (self) { // button within cell cellButton = [UIButton buttonWithType:UIButtonTypeRoundedRect]; [cellButton addTarget:self action:@selector(pressedCellButton) forControlEvents:UIControlEventTouchUpInside]; [cellButton setTitle:@"I'm sluggish" forState:UIControlStateNormal]; [cellButton setFrame:CGRectMake(20.0, 10.0, 160.0, 30.0)]; [self addSubview:cellButton]; } return self; } - (void) pressedCellButton { NSLog(@"pressedCellButton"); } @end

    Read the article

< Previous Page | 122 123 124 125 126 127 128 129 130 131 132 133  | Next Page >