Search Results

Search found 7974 results on 319 pages for 'keyboard buffer'.

Page 134/319 | < Previous Page | 130 131 132 133 134 135 136 137 138 139 140 141  | Next Page >

  • Implementing invisible bones

    - by DeadMG
    I suddenly have the feeling that I have absolutely no idea how to implement invisible objects/bones. Right now, I use hardware instancing to store the world matrix of every bone in a vertex buffer, and then send them all to the pipeline. But when dealing with frustrum culling, or having them set to invisible by my simulation for other reasons, means that some of them will be randomly invisible. Does this mean I effectively need to re-fill the buffer from scratch every frame with only the visible unit's matrices? This seems to me like it would involve a lot of wasted bandwidth.

    Read the article

  • How do i use latest Pulseaudio in 11.10?

    - by YumYumYum
    Ubuntu 11.04 i had pulseaudio from source compiled and i used it to learn, it always worked (git versions). But since i have Ubuntu 11.10, i can install it but i can not use it anymore like i do in 11.04 before. Everytime i play something its throwing this: $ speaker-test speaker-test 1.0.24.2 Playback device is default Stream parameters are 48000Hz, S16_LE, 1 channels Using 16 octaves of pink noise Rate set to 48000Hz (requested 48000Hz) Buffer size range from 192 to 2097152 Period size range from 64 to 699051 Using max buffer size 2097152 Periods = 4 ALSA lib pcm_pulse.c:746:(pulse_prepare) PulseAudio: Unable to create stream: Invalid argument Unable to set hw params for playback: Input/output error Setting of hwparams failed: Input/output error How to make pulseaudio work in 11.10 from source?

    Read the article

  • Processing Kinect v2 Color Streams in Parallel

    - by Chris Gardner
    Originally posted on: http://geekswithblogs.net/freestylecoding/archive/2014/08/20/processing-kinect-v2-color-streams-in-parallel.aspxProcessing Kinect v2 Color Streams in Parallel I've really been enjoying being a part of the Kinect for Windows Developer's Preview. The new hardware has some really impressive capabilities. However, with great power comes great system specs. Unfortunately, my little laptop that could is not 100% up to the task; I've had to get a little creative. The most disappointing thing I've run into is that I can't always cleanly display the color camera stream in managed code. I managed to strip the code down to what I believe is the bear minimum: using( ColorFrame _ColorFrame = e.FrameReference.AcquireFrame() ) { if( null == _ColorFrame ) return;   BitmapToDisplay.Lock(); _ColorFrame.CopyConvertedFrameDataToIntPtr( BitmapToDisplay.BackBuffer, Convert.ToUInt32( BitmapToDisplay.BackBufferStride * BitmapToDisplay.PixelHeight ), ColorImageFormat.Bgra ); BitmapToDisplay.AddDirtyRect( new Int32Rect( 0, 0, _ColorFrame.FrameDescription.Width, _ColorFrame.FrameDescription.Height ) ); BitmapToDisplay.Unlock(); } With this snippet, I'm placing the converted Bgra32 color stream directly on the BackBuffer of the WriteableBitmap. This gives me pretty smooth playback, but I still get the occasional freeze for half a second. After a bit of profiling, I discovered there were a few problems. The first problem is the size of the buffer along with the conversion on the buffer. At this time, the raw image format of the data from the Kinect is Yuy2. This is great for direct video processing. It would be ideal if I had a WriteableVideo object in WPF. However, this is not the case. Further digging led me to the real problem. It appears that the SDK is converting the input serially. Let's think about this for a second. The color camera is a 1080p camera. As we should all know, this give us a native resolution of 1920 x 1080. This produces 2,073,600 pixels. Yuy2 uses 4 bytes per 2 pixel, for a buffer size of 4,147,200 bytes. Bgra32 uses 4 bytes per pixel, for a buffer size of 8,294,400 bytes. The SDK appears to be doing this on one thread. I started wondering if I chould do this better myself. I mean, I have 8 cores in my system. Why can't I use them all? The first problem is converting a Yuy2 frame into a Bgra32 frame. It is NOT trivial. I spent a day of research of just how to do this. In the end, I didn't even produce the best algorithm possible, but it did work. After I managed to get that to work, I knew my next step was the get the conversion operation off the UI Thread. This was a simple process of throwing the work into a Task. Of course, this meant I had to marshal the final write to the WriteableBitmap back to the UI thread. Finally, I needed to vectorize the operation so I could run it safely in parallel. This was, mercifully, not quite as hard as I thought it would be. I had my loop return an index to a pair of pixels. From there, I had to tell the loop to do everything for this pair of pixels. If you're wondering why I did it for pairs of pixels, look back above at the specification for the Yuy2 format. I won't go into full detail on why each 4 bytes contains 2 pixels of information, but rest assured that there is a reason why the format is described in that way. The first working attempt at this algorithm successfully turned my poor laptop into a space heater. I very quickly brought and maintained all 8 cores up to about 97% usage. That's when I remembered that obscure option in the Task Parallel Library where you could limit the amount of parallelism used. After a little trial and error, I discovered 4 parallel tasks was enough for most cases. This yielded the follow code: private byte ClipToByte( int p_ValueToClip ) { return Convert.ToByte( ( p_ValueToClip < byte.MinValue ) ? byte.MinValue : ( ( p_ValueToClip > byte.MaxValue ) ? byte.MaxValue : p_ValueToClip ) ); }   private void ColorFrameArrived( object sender, ColorFrameArrivedEventArgs e ) { if( null == e.FrameReference ) return;   // If you do not dispose of the frame, you never get another one... using( ColorFrame _ColorFrame = e.FrameReference.AcquireFrame() ) { if( null == _ColorFrame ) return;   byte[] _InputImage = new byte[_ColorFrame.FrameDescription.LengthInPixels * _ColorFrame.FrameDescription.BytesPerPixel]; byte[] _OutputImage = new byte[BitmapToDisplay.BackBufferStride * BitmapToDisplay.PixelHeight]; _ColorFrame.CopyRawFrameDataToArray( _InputImage );   Task.Factory.StartNew( () => { ParallelOptions _ParallelOptions = new ParallelOptions(); _ParallelOptions.MaxDegreeOfParallelism = 4;   Parallel.For( 0, Sensor.ColorFrameSource.FrameDescription.LengthInPixels / 2, _ParallelOptions, ( _Index ) => { // See http://msdn.microsoft.com/en-us/library/windows/desktop/dd206750(v=vs.85).aspx int _Y0 = _InputImage[( _Index << 2 ) + 0] - 16; int _U = _InputImage[( _Index << 2 ) + 1] - 128; int _Y1 = _InputImage[( _Index << 2 ) + 2] - 16; int _V = _InputImage[( _Index << 2 ) + 3] - 128;   byte _R = ClipToByte( ( 298 * _Y0 + 409 * _V + 128 ) >> 8 ); byte _G = ClipToByte( ( 298 * _Y0 - 100 * _U - 208 * _V + 128 ) >> 8 ); byte _B = ClipToByte( ( 298 * _Y0 + 516 * _U + 128 ) >> 8 );   _OutputImage[( _Index << 3 ) + 0] = _B; _OutputImage[( _Index << 3 ) + 1] = _G; _OutputImage[( _Index << 3 ) + 2] = _R; _OutputImage[( _Index << 3 ) + 3] = 0xFF; // A   _R = ClipToByte( ( 298 * _Y1 + 409 * _V + 128 ) >> 8 ); _G = ClipToByte( ( 298 * _Y1 - 100 * _U - 208 * _V + 128 ) >> 8 ); _B = ClipToByte( ( 298 * _Y1 + 516 * _U + 128 ) >> 8 );   _OutputImage[( _Index << 3 ) + 4] = _B; _OutputImage[( _Index << 3 ) + 5] = _G; _OutputImage[( _Index << 3 ) + 6] = _R; _OutputImage[( _Index << 3 ) + 7] = 0xFF; } );   Application.Current.Dispatcher.Invoke( () => { BitmapToDisplay.WritePixels( new Int32Rect( 0, 0, Sensor.ColorFrameSource.FrameDescription.Width, Sensor.ColorFrameSource.FrameDescription.Height ), _OutputImage, BitmapToDisplay.BackBufferStride, 0 ); } ); } ); } } This seemed to yield a results I wanted, but there was still the occasional stutter. This lead to what I realized was the second problem. There is a race condition between the UI Thread and me locking the WriteableBitmap so I can write the next frame. Again, I'm writing approximately 8MB to the back buffer. Then, I started thinking I could cheat. The Kinect is running at 30 frames per second. The WPF UI Thread runs at 60 frames per second. This made me not feel bad about exploiting the Composition Thread. I moved the bulk of the code from the FrameArrived handler into CompositionTarget.Rendering. Once I was in there, I polled from a frame, and rendered it if it existed. Since, in theory, I'm only killing the Composition Thread every other hit, I decided I was ok with this for cases where silky smooth video performance REALLY mattered. This ode looked like this: private byte ClipToByte( int p_ValueToClip ) { return Convert.ToByte( ( p_ValueToClip < byte.MinValue ) ? byte.MinValue : ( ( p_ValueToClip > byte.MaxValue ) ? byte.MaxValue : p_ValueToClip ) ); }   void CompositionTarget_Rendering( object sender, EventArgs e ) { using( ColorFrame _ColorFrame = FrameReader.AcquireLatestFrame() ) { if( null == _ColorFrame ) return;   byte[] _InputImage = new byte[_ColorFrame.FrameDescription.LengthInPixels * _ColorFrame.FrameDescription.BytesPerPixel]; byte[] _OutputImage = new byte[BitmapToDisplay.BackBufferStride * BitmapToDisplay.PixelHeight]; _ColorFrame.CopyRawFrameDataToArray( _InputImage );   ParallelOptions _ParallelOptions = new ParallelOptions(); _ParallelOptions.MaxDegreeOfParallelism = 4;   Parallel.For( 0, Sensor.ColorFrameSource.FrameDescription.LengthInPixels / 2, _ParallelOptions, ( _Index ) => { // See http://msdn.microsoft.com/en-us/library/windows/desktop/dd206750(v=vs.85).aspx int _Y0 = _InputImage[( _Index << 2 ) + 0] - 16; int _U = _InputImage[( _Index << 2 ) + 1] - 128; int _Y1 = _InputImage[( _Index << 2 ) + 2] - 16; int _V = _InputImage[( _Index << 2 ) + 3] - 128;   byte _R = ClipToByte( ( 298 * _Y0 + 409 * _V + 128 ) >> 8 ); byte _G = ClipToByte( ( 298 * _Y0 - 100 * _U - 208 * _V + 128 ) >> 8 ); byte _B = ClipToByte( ( 298 * _Y0 + 516 * _U + 128 ) >> 8 );   _OutputImage[( _Index << 3 ) + 0] = _B; _OutputImage[( _Index << 3 ) + 1] = _G; _OutputImage[( _Index << 3 ) + 2] = _R; _OutputImage[( _Index << 3 ) + 3] = 0xFF; // A   _R = ClipToByte( ( 298 * _Y1 + 409 * _V + 128 ) >> 8 ); _G = ClipToByte( ( 298 * _Y1 - 100 * _U - 208 * _V + 128 ) >> 8 ); _B = ClipToByte( ( 298 * _Y1 + 516 * _U + 128 ) >> 8 );   _OutputImage[( _Index << 3 ) + 4] = _B; _OutputImage[( _Index << 3 ) + 5] = _G; _OutputImage[( _Index << 3 ) + 6] = _R; _OutputImage[( _Index << 3 ) + 7] = 0xFF; } );   BitmapToDisplay.WritePixels( new Int32Rect( 0, 0, Sensor.ColorFrameSource.FrameDescription.Width, Sensor.ColorFrameSource.FrameDescription.Height ), _OutputImage, BitmapToDisplay.BackBufferStride, 0 ); } }

    Read the article

  • View space lighting in deferred shading

    - by kochol
    I implemented a simple deferred shading renderer. I use 3 G-Buffer for storing position (R32F), normal (G16R16F) and albedo (ARGB8). I use sphere map algorithm to store normals in world space. Currently I use inverse of view * projection matrix to calculate the position of each pixel from stored depth value. First I want to avoid per pixel matrix multiplication for calculating the position. Is there another way to store and calculate position in G-Buffer without the need of matrix multiplication Store the normal in view space Every lighting in my engine is in world space and I want do the lighting in view space to speed up my lighting pass. I want an optimized lighting pass for my deferred engine.

    Read the article

  • Multiple vulnerabilities in Wireshark

    - by RitwikGhoshal
    CVE DescriptionCVSSv2 Base ScoreComponentProduct and Resolution CVE-2012-4285 Numeric Errors vulnerability 3.3 Wireshark Solaris 11 11/11 SRU 13.4 CVE-2012-4286 Numeric Errors vulnerability 4.3 CVE-2012-4287 Resource Management Errors vulnerability 5.0 CVE-2012-4288 Numeric Errors vulnerability 3.3 CVE-2012-4289 Resource Management Errors vulnerability 3.3 CVE-2012-4290 Resource Management Errors vulnerability 3.3 CVE-2012-4291 Resource Management Errors vulnerability 3.3 CVE-2012-4292 Improper Input Validation vulnerability 3.3 CVE-2012-4293 Numeric Errors vulnerability 3.3 CVE-2012-4294 Improper Restriction of Operations within the Bounds of a Memory Buffer vulnerability 5.8 CVE-2012-4295 Denial of Service (DoS) vulnerability 3.3 CVE-2012-4296 Resource Management Errors vulnerability 3.3 CVE-2012-4297 Improper Restriction of Operations within the Bounds of a Memory Buffer vulnerability 8.3 CVE-2012-4298 Numeric Errors vulnerability 5.4 This notification describes vulnerabilities fixed in third-party components that are included in Oracle's product distributions.Information about vulnerabilities affecting Oracle products can be found on Oracle Critical Patch Updates and Security Alerts page.

    Read the article

  • NVidia control panel SSAO not working

    - by János Turánszki
    I am just before implementing screen space ambient occlusion in my game, but first I wanted to try enabling it from NVidia control panel only to find out that it is greyed out so that I can not enable it. With this I could enable SSAO for some other games, but not every one. I know this technique requires the depth buffer and (optionally) a normal map texture to sample information from which I already have access to given I have a deferred renderer working. After that I actually thought to roll back to a previous version of my game which still uses forward rendering so the depth buffer is actually bound to the backbuffer which I render to from the get-go so that maybe the NVidia control panel would somehow make use of it. It was not working with forward rendering either. (I also tried FXAA in the control panel and that works - but it doesn't need any depth or normal texture) So my question is that how can I enable this function so that it would work by enabling it in the NVidia control panel?

    Read the article

  • Processing Text and Binary (Blob, ArrayBuffer, ArrayBufferView) Payload in WebSocket - (TOTD #185)

    - by arungupta
    The WebSocket API defines different send(xxx) methods that can be used to send text and binary data. This Tip Of The Day (TOTD) will show how to send and receive text and binary data using WebSocket. TOTD #183 explains how to get started with a WebSocket endpoint using GlassFish 4. A simple endpoint from that blog looks like: @WebSocketEndpoint("/endpoint") public class MyEndpoint { public void receiveTextMessage(String message) { . . . } } A message with the first parameter of the type String is invoked when a text payload is received. The payload of the incoming WebSocket frame is mapped to this first parameter. An optional second parameter, Session, can be specified to map to the "other end" of this conversation. For example: public void receiveTextMessage(String message, Session session) {     . . . } The return type is void and that means no response is returned to the client that invoked this endpoint. A response may be returned to the client in two different ways. First, set the return type to the expected type, such as: public String receiveTextMessage(String message) { String response = . . . . . . return response; } In this case a text payload is returned back to the invoking endpoint. The second way to send a response back is to use the mapped session to send response using one of the sendXXX methods in Session, when and if needed. public void receiveTextMessage(String message, Session session) {     . . .     RemoteEndpoint remote = session.getRemote();     remote.sendString(...);     . . .     remote.sendString(...);    . . .    remote.sendString(...); } This shows how duplex and asynchronous communication between the two endpoints can be achieved. This can be used to define different message exchange patterns between the client and server. The WebSocket client can send the message as: websocket.send(myTextField.value); where myTextField is a text field in the web page. Binary payload in the incoming WebSocket frame can be received if ByteBuffer is used as the first parameter of the method signature. The endpoint method signature in that case would look like: public void receiveBinaryMessage(ByteBuffer message) {     . . . } From the client side, the binary data can be sent using Blob, ArrayBuffer, and ArrayBufferView. Blob is a just raw data and the actual interpretation is left to the application. ArrayBuffer and ArrayBufferView are defined in the TypedArray specification and are designed to send binary data using WebSocket. In short, ArrayBuffer is a fixed-length binary buffer with no format and no mechanism for accessing its contents. These buffers are manipulated using one of the views defined by one of the subclasses of ArrayBufferView listed below: Int8Array (signed 8-bit integer or char) Uint8Array (unsigned 8-bit integer or unsigned char) Int16Array (signed 16-bit integer or short) Uint16Array (unsigned 16-bit integer or unsigned short) Int32Array (signed 32-bit integer or int) Uint32Array (unsigned 16-bit integer or unsigned int) Float32Array (signed 32-bit float or float) Float64Array (signed 64-bit float or double) WebSocket can send binary data using ArrayBuffer with a view defined by a subclass of ArrayBufferView or a subclass of ArrayBufferView itself. The WebSocket client can send the message using Blob as: blob = new Blob([myField2.value]);websocket.send(blob); where myField2 is a text field in the web page. The WebSocket client can send the message using ArrayBuffer as: var buffer = new ArrayBuffer(10);var bytes = new Uint8Array(buffer);for (var i=0; i<bytes.length; i++) { bytes[i] = i;}websocket.send(buffer); A concrete implementation of receiving the binary message may look like: @WebSocketMessagepublic void echoBinary(ByteBuffer data, Session session) throws IOException {    System.out.println("echoBinary: " + data);    for (byte b : data.array()) {        System.out.print(b);    }    session.getRemote().sendBytes(data);} This method is just printing the binary data for verification but you may actually be storing it in a database or converting to an image or something more meaningful. Be aware of TYRUS-51 if you are trying to send binary data from server to client using method return type. Here are some references for you: JSR 356: Java API for WebSocket - Specification (Early Draft) and Implementation (already integrated in GlassFish 4 promoted builds) TOTD #183 - Getting Started with WebSocket in GlassFish TOTD #184 - Logging WebSocket Frames using Chrome Developer Tools, Net-internals and Wireshark Subsequent blogs will discuss the following topics (not necessary in that order) ... Error handling Custom payloads using encoder/decoder Interface-driven WebSocket endpoint Java client API Client and Server configuration Security Subprotocols Extensions Other topics from the API

    Read the article

  • Multiple vulnerabilities in ImageMagick

    - by chandan
    CVE DescriptionCVSSv2 Base ScoreComponentProduct and Resolution CVE-2004-0981 Buffer overflow vulnerability 10.0 ImageMagick Solaris 10 SPARC: 136882-03 X86: 136883-03 CVE-2005-0397 Format string vulnerability 7.5 CVE-2005-0759 Denial of service (DoS) vulnerability 5.0 CVE-2005-0760 Denial of service (DoS) vulnerability 5.0 CVE-2005-0761 Denial of service (DoS) vulnerability 5.0 CVE-2005-0762 Buffer overflow vulnerability 7.5 CVE-2005-1739 Denial of service (DoS) vulnerability 5.0 CVE-2007-4985 Denial of service (DoS) vulnerability 4.3 CVE-2007-4986 Numeric Errors vulnerability 6.8 CVE-2007-4987 Numeric Errors vulnerability 9.3 CVE-2007-4988 Numeric Errors vulnerability 6.8 This notification describes vulnerabilities fixed in third-party components that are included in Sun's product distribution.Information about vulnerabilities affecting Oracle Sun products can be found on Oracle Critical Patch Updates and Security Alerts page.

    Read the article

  • OpenGL VBOs are slower then glDrawArrays.

    - by Arelius
    So, this seems odd to me. I upload a large buffer of vertices, then every frame I call glBindbuffer and then the appropriate gl*Pointer functions with offsets into the buffer, then I use glDrawArrays to draw all of my triangles. I'm only drawing about 100K triangles, however I'm getting about 15FPS. This is where it gets weird, if I change it to not call glBindBuffer, then change the gl*Pointer calls to be actual pointers into the array I have in system memory, and then call glDrawArrays the same, my framerate jumps up to about 50FPS. Any idea what I weird thing I could be doing that would cause this? Did I maybe forget to call glEnable(GL_ALLOW_VBOS_TO_RUN_FAST) or something?

    Read the article

  • Is it only possible to display 64k vertices on the monitor with 16bit?

    - by Aufziehvogel
    I did the first 3D tutorial over at riemers.net and stumbled upon that my graphic card only supports Shader 2.0 (Reach profile in XNA) which means I can only use Int16 to store the indices (triangle to vertex). This means that I can only store 2^16 = 65536 vertices. Also I read on the internet that you should prefer 16-bit over 32-bit because not all hardware (like mine) does support 32-bit. Yet, I am wondering: Do really all game scenes get along with only so little vertices? I though already faces of people used a lot of polygons (which are made up of vertices?). It’s not relevant for me yet, but I am interested: Do game scenes use only 65536 vertices? Do you use some trade-off to display more (e.g. 64k in GPU buffer rest on RAM) Is there some method to get more into the GPU buffer? I already read on some other posts that there seems to be a limit of 64k per mesh too, so maybe you can compact stuff to meshes?

    Read the article

  • How can I support scrolling when using batched rendering for my tiles?

    - by dardanel
    I have tiled map 100*75 and tiles are 32*32 pixel.I want to use batching for performance .I don't figure it out , because of my game needs scrolling and every frame i draw 22*16 tiles (my screen is 20*16 tile) .I thought that batching tiles for every frame .Is it good or any suggestion? edit :to more clarify I want to use occlusion culling and batching at the same time.I thought that drawing only visible areas and batching them together .But there is a something i couldn't figure out .When scrolling screen with translate matrix , if one row become invisible , I bind new row and batch them again.Every batched objects needs to buffer again.So I batch tiles and buffer to VBO every time when one row become invisible .I don't know these way is efficient or not .This is my question .And i am open to any suggestions.

    Read the article

  • Multiple vulnerabilities in Firefox web browser

    - by chandan
    CVE DescriptionCVSSv2 Base ScoreComponentProduct and Resolution CVE-2011-3062 Numeric Errors vulnerability 6.8 Firefox web browser Solaris 11 11/11 SRU 9.5 Solaris 10 SPARC: 145080-11 X86: 145081-10 CVE-2012-0467 Denial of service (DoS) vulnerability 10.0 CVE-2012-0468 Improper Restriction of Operations within the Bounds of a Memory Buffer vulnerability 10.0 CVE-2012-0469 Resource Management Errors vulnerability 10.0 CVE-2012-0470 Improper Restriction of Operations within the Bounds of a Memory Buffer vulnerability 10.0 CVE-2012-0471 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability 4.3 CVE-2012-0473 Numeric Errors vulnerability 5.0 CVE-2012-0474 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability 4.3 CVE-2012-0477 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability 4.3 CVE-2012-0478 Permissions, Privileges, and Access Controls vulnerability 9.3 CVE-2012-0479 Identity spoofing vulnerability 4.3 This notification describes vulnerabilities fixed in third-party components that are included in Sun's product distribution.Information about vulnerabilities affecting Oracle Sun products can be found on Oracle Critical Patch Updates and Security Alerts page.

    Read the article

  • What is the correct way to reset and load new data into GL_ARRAY_BUFFER?

    - by Geto
    I am using an array buffer for colors data. If I want to load different colors for the current mesh in real time what is the correct way to do it. At the moment I am doing: glBindVertexArray(vao); glBindBuffer(GL_ARRAY_BUFFER, colorBuffer); glBufferData(GL_ARRAY_BUFFER, SIZE, colorsData, GL_STATIC_DRAW); glEnableVertexAttribArray(shader->attrib("color")); glVertexAttribPointer(shader->attrib("color"), 3, GL_FLOAT, GL_TRUE, 0, NULL); glBindBuffer(GL_ARRAY_BUFFER, 0); It works, but I am not sure if this is good and efficient way to do it. What happens to the previous data ? Does it write on top of it ? Do I need to call : glDeleteBuffers(1, colorBuffer); glGenBuffers(1, colorBuffer); before transfering the new data into the buffer ?

    Read the article

  • Animate sprite/texture position with VBO

    - by Dono
    I'm currently worlking on a renderer for my projects and I want animate a sprite on screen. I've got a spritesheet but I don't know what is the the best way to update the texture coordinates for each vertex. Update vertices then update vertex buffer. (Heavy ?) Send to the shader my texture coordinates (It is possible ?) Don't use VBO ? By the way, I've got this structure : Object class with Geometry (Faces + Vertex + Buffer) and Material (Shader + other stuff ) properties, it is a good structure ? Thanks!

    Read the article

  • How to move a rectangle properly?

    - by bodycountPP
    I recently started to learn OpenGL. Right now I finished the first chapter of the "OpenGL SuperBible". There were two examples. The first had the complete code and showed how to draw a simple triangle. The second example is supposed to show how to move a rectangle using SpecialKeys. The only code provided for this example was the SpecialKeys method. I still tried to implement it but I had two problems. In the previous example I declared and instaciated vVerts in the SetupRC() method. Now as it is also used in the SpecialKeys() method, I moved the declaration and instantiation to the top of the code. Is this proper c++ practice? I copied the part where vertex positions are recalculated from the book, but I had to pick the vertices for the rectangle on my own. So now every time I press a key for the first time the rectangle's upper left vertex is moved to (-0,5:-0.5). This ok because of GLfloat blockX = vVerts[0]; //Upper left X GLfloat blockY = vVerts[7]; // Upper left Y But I also think that this is the reason why my rectangle is shifted in the beginning. After the first time a key was pressed everything works just fine. Here is my complete code I hope you can help me on those two points. GLBatch squareBatch; GLShaderManager shaderManager; //Load up a triangle GLfloat vVerts[] = {-0.5f,0.5f,0.0f, 0.5f,0.5f,0.0f, 0.5f,-0.5f,0.0f, -0.5f,-0.5f,0.0f}; //Window has changed size, or has just been created. //We need to use the window dimensions to set the viewport and the projection matrix. void ChangeSize(int w, int h) { glViewport(0,0,w,h); } //Called to draw the scene. void RenderScene(void) { //Clear the window with the current clearing color glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT|GL_STENCIL_BUFFER_BIT); GLfloat vRed[] = {1.0f,0.0f,0.0f,1.0f}; shaderManager.UseStockShader(GLT_SHADER_IDENTITY,vRed); squareBatch.Draw(); //perform the buffer swap to display the back buffer glutSwapBuffers(); } //This function does any needed initialization on the rendering context. //This is the first opportunity to do any OpenGL related Tasks. void SetupRC() { //Blue Background glClearColor(0.0f,0.0f,1.0f,1.0f); shaderManager.InitializeStockShaders(); squareBatch.Begin(GL_QUADS,4); squareBatch.CopyVertexData3f(vVerts); squareBatch.End(); } //Respond to arrow keys by moving the camera frame of reference void SpecialKeys(int key,int x,int y) { GLfloat stepSize = 0.025f; GLfloat blockSize = 0.5f; GLfloat blockX = vVerts[0]; //Upper left X GLfloat blockY = vVerts[7]; // Upper left Y if(key == GLUT_KEY_UP) { blockY += stepSize; } if(key == GLUT_KEY_DOWN){blockY -= stepSize;} if(key == GLUT_KEY_LEFT){blockX -= stepSize;} if(key == GLUT_KEY_RIGHT){blockX += stepSize;} //Recalculate vertex positions vVerts[0] = blockX; vVerts[1] = blockY - blockSize*2; vVerts[3] = blockX + blockSize * 2; vVerts[4] = blockY - blockSize *2; vVerts[6] = blockX+blockSize*2; vVerts[7] = blockY; vVerts[9] = blockX; vVerts[10] = blockY; squareBatch.CopyVertexData3f(vVerts); glutPostRedisplay(); } //Main entry point for GLUT based programs int main(int argc, char** argv) { //Sets the working directory. Not really needed gltSetWorkingDirectory(argv[0]); //Passes along the command-line parameters and initializes the GLUT library. glutInit(&argc,argv); //Tells the GLUT library what type of display mode to use, when creating the window. //Double buffered window, RGBA-Color mode,depth-buffer as part of our display, stencil buffer also available glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGBA|GLUT_DEPTH|GLUT_STENCIL); //Window size glutInitWindowSize(800,600); glutCreateWindow("MoveRect"); glutReshapeFunc(ChangeSize); glutDisplayFunc(RenderScene); glutSpecialFunc(SpecialKeys); //initialize GLEW library GLenum err = glewInit(); //Check that nothing goes wrong with the driver initialization before we try and do any rendering. if(GLEW_OK != err) { fprintf(stderr,"Glew Error: %s\n",glewGetErrorString); return 1; } SetupRC(); glutMainLoop(); return 0; }

    Read the article

  • How to display consistent background image

    - by Tofu_Craving_Redish_BlueDragon
    Drawing a large background is relatively slow in PyGame. In order to avoid drawing BG every frame, you could draw it once, then do nothing. However, if something is overdrawn onto the surface and keeps moving, you will need to redraw the background in order to "erase" the color pixels left by moving object; otherwise, you will have "traces" of the moving object. I have a moving object in my PyGame. However, I do not want to "clear the color buffer" by redrawing the background image. Redrawing the background image every frame is slow. My solution : I will "clear" only required portions (where the "traces" of moving object are left) of the "buffer" by redrawing portions of background. Is there any other better way to have a consistent background?

    Read the article

  • openGL textures in bitmap mode

    - by evenex_code
    For reasons detailed here I need to texture a quad using a bitmap (as in, 1 bit per pixel, not an 8-bit pixmap). Right now I have a bitmap stored in an on-device buffer, and am mounting it like so: glBindBuffer(GL_PIXEL_UNPACK_BUFFER, BFR.G[(T+1)%2]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, W, H, 0, GL_COLOR_INDEX, GL_BITMAP, 0); The OpenGL spec has this to say about glTexImage2D: "If type is GL_BITMAP, the data is considered as a string of unsigned bytes (and format must be GL_COLOR_INDEX). Each data byte is treated as eight 1-bit elements..." Judging by the spec, each bit in my buffer should correspond to a single pixel. However, the following experiments show that, for whatever reason, it doesn't work as advertised: 1) When I build my texture, I write to the buffer in 32-bit chunks. From the wording of the spec, it is reasonable to assume that writing 0x00000001 for each value would result in a texture with 1-px-wide vertical bars with 31-wide spaces between them. However, it appears blank. 2) Next, I write with 0x000000FF. By my apparently flawed understanding of the bitmap mode, I would expect that this should produce 8-wide bars with 24-wide spaces between them. Instead, it produces a white 1-px-wide bar. 3) 0x55555555 = 1010101010101010101010101010101, therefore writing this value ought to create 1-wide vertical stripes with 1 pixel spacing. However, it creates a solid gray color. 4) Using my original 8-bit pixmap in GL_BITMAP mode produces the correct animation. I have reached the conclusion that, even in GL_BITMAP mode, the texturer is still interpreting 8-bits as 1 element, despite what the spec seems to suggest. The fact that I can generate a gray color (while I was expecting that I was working in two-tone), as well as the fact that my original 8-bit pixmap generates the correct picture, support this conclusion. Questions: 1) Am I missing some kind of prerequisite call (perhaps for setting a stride length or pack alignment or something) that will signal to the texturer to treat each byte as 8-elements, as it suggests in the spec? 2) Or does it simply not work because modern hardware does not support it? (I have read that GL_BITMAP mode was deprecated in 3.3, I am however forcing a 3.0 context.) 3) Am I better off unpacking the bitmap into a pixmap using a shader? This is a far more roundabout solution than I was hoping for but I suppose there is no such thing as a free lunch.

    Read the article

  • Vertex Array Object (OpenGL)

    - by user5140
    I've just started out with OpenGL I still haven't really understood what Vertex Array Objects are and how they can be employed. If Vertex Buffer Object are used to store vertex data (such as their positions and texture coordinates) and the VAOs only contain status flags, where can they be used? What's their purpose? As far as I understood from the (very incomplete and unclear) GL Wiki, VAOs are used to set the flags/status for every vertex, following the order described in the Element Array Buffer, but the wiki was really ambiguous about it and I'm not really sure about what VAOs really do and how I could employ them.

    Read the article

  • boost::asio::async_write problem

    - by user368831
    Hi, I'm trying to figure out how asynchronous reads and writes work in boost asio by manipulating the echo example. Currently, I have a server that should, when sent a sentence, respond with only the first word. However, the boost::asio::async_write never seems to complete even though the write handler is being called. Can someone please explain what's going on? Here's the code: #include <cstdlib> #include <iostream> #include <boost/bind.hpp> #include <boost/asio.hpp> using boost::asio::ip::tcp; class session { public: session(boost::asio::io_service& io_service) : socket_(io_service) { } tcp::socket& socket() { return socket_; } void start() { std::cout<<"starting"<<std::endl; boost::asio::async_read_until(socket_, buffer, ' ', boost::bind(&session::handle_read, this, boost::asio::placeholders::error, boost::asio::placeholders::bytes_transferred)); } void handle_read(const boost::system::error_code& error, size_t bytes_transferred) { // std::ostringstream ss; // ss<<&buffer; char* c = new char[bytes_transferred]; //std::string s; buffer.sgetn(c,bytes_transferred); std::cout<<"data: "<< c<<" bytes: "<<bytes_transferred<<std::endl; if (!error) { boost::asio::async_write(socket_, boost::asio::buffer(c,bytes_transferred), boost::bind(&session::handle_write, this, boost::asio::placeholders::error)); } else { delete this; } } void handle_write(const boost::system::error_code& error) { std::cout<<"handling write"<<std::endl; if (!error) { } else { delete this; } } private: tcp::socket socket_; boost::asio::streambuf buffer; }; class server { public: server(boost::asio::io_service& io_service, short port) : io_service_(io_service), acceptor_(io_service, tcp::endpoint(tcp::v4(), port)) { session* new_session = new session(io_service_); acceptor_.async_accept(new_session->socket(), boost::bind(&server::handle_accept, this, new_session, boost::asio::placeholders::error)); } void handle_accept(session* new_session, const boost::system::error_code& error) { if (!error) { new_session->start(); new_session = new session(io_service_); acceptor_.async_accept(new_session->socket(), boost::bind(&server::handle_accept, this, new_session, boost::asio::placeholders::error)); } else { delete new_session; } } private: boost::asio::io_service& io_service_; tcp::acceptor acceptor_; }; int main(int argc, char* argv[]) { try { if (argc != 2) { std::cerr << "Usage: async_tcp_echo_server <port>\n"; return 1; } boost::asio::io_service io_service; using namespace std; // For atoi. server s(io_service, atoi(argv[1])); io_service.run(); } catch (std::exception& e) { std::cerr << "Exception: " << e.what() << "\n"; } return 0; } Thanks!

    Read the article

  • Access Violation Exception when trying to perform WTSVirtualChannelRead

    - by Scott Chamberlain
    I am trying to write a hello world type program for using virtual channels in the windows terminal services client. public partial class Form1 : Form { public Form1() { InitializeComponent(); } IntPtr mHandle = IntPtr.Zero; private void Form1_Load(object sender, EventArgs e) { mHandle = NativeMethods.WTSVirtualChannelOpen(IntPtr.Zero, -1, "TSCRED"); } private void button1_Click(object sender, EventArgs e) { int bufferSize = 1024; byte[] buffer = new byte[bufferSize]; int bytesRead = 0; NativeMethods.WTSVirtualChannelRead(mHandle, 0, buffer, bufferSize, ref bytesRead); if (bytesRead != 0) { MessageBox.Show("Got no Data"); } else { MessageBox.Show("Got data: " + bytesRead); } } protected override void Dispose(bool disposing) { if (mHandle != System.IntPtr.Zero) { NativeMethods.WTSVirtualChannelClose(mHandle); } base.Dispose(disposing); } } internal static class NativeMethods { [DllImport("Wtsapi32.dll")] public static extern IntPtr WTSVirtualChannelOpen(IntPtr server, int sessionId, [MarshalAs(UnmanagedType.LPStr)] string virtualName); [DllImport("Wtsapi32.dll", SetLastError = true)] public static extern bool WTSVirtualChannelRead(IntPtr channelHandle, long timeout, byte[] buffer, int length, ref int bytesReaded); [DllImport("Wtsapi32.dll")] public static extern bool WTSVirtualChannelClose(IntPtr channelHandle); } On NativeMethods.WTSVirtualChannelRead(mHandle, 0, buffer, bufferSize, ref bytesRead); I get the following error every time. System.AccessViolationException was unhandled by user code Message=Attempted to read or write protected memory. This is often an indication that other memory is corrupt. Source=RemoteForm StackTrace: at RemoteForm.NativeMethods.WTSVirtualChannelRead(IntPtr channelHandle, Int64 timeout, Byte[] buffer, Int32 length, Int32& bytesReaded) at RemoteForm.Form1.button1_Click(Object sender, EventArgs e) in E:\Visual Studio 2010\Projects\RemoteForm\Form1.cs:line 31 at System.Windows.Forms.Control.OnClick(EventArgs e) at System.Windows.Forms.Button.OnClick(EventArgs e) at System.Windows.Forms.Button.OnMouseUp(MouseEventArgs mevent) at System.Windows.Forms.Control.WmMouseUp(Message& m, MouseButtons button, Int32 clicks) at System.Windows.Forms.Control.WndProc(Message& m) at System.Windows.Forms.ButtonBase.WndProc(Message& m) at System.Windows.Forms.Button.WndProc(Message& m) at System.Windows.Forms.Control.ControlNativeWindow.OnMessage(Message& m) at System.Windows.Forms.Control.ControlNativeWindow.WndProc(Message& m) at System.Windows.Forms.NativeWindow.Callback(IntPtr hWnd, Int32 msg, IntPtr wparam, IntPtr lparam) InnerException: I am sending the data from the MSTSC COM object and ActiveX controll. public partial class Form1 : Form { public Form1() { InitializeComponent(); } private void Form1_Load(object sender, EventArgs e) { rdp.Server = "schamberlainvm"; rdp.UserName = "TestAcct"; IMsTscNonScriptable secured = (IMsTscNonScriptable)rdp.GetOcx(); secured.ClearTextPassword = "asdf"; rdp.CreateVirtualChannels("TSCRED"); rdp.Connect(); } private void button1_Click(object sender, EventArgs e) { rdp.SendOnVirtualChannel("TSCRED", "This is a test"); } } //Designer code // // rdp // this.rdp.Enabled = true; this.rdp.Location = new System.Drawing.Point(12, 12); this.rdp.Name = "rdp"; this.rdp.OcxState = ((System.Windows.Forms.AxHost.State)(resources.GetObject("rdp.OcxState"))); this.rdp.Size = new System.Drawing.Size(1092, 580); this.rdp.TabIndex = 0; Any help on this would be greatly appreciated.

    Read the article

  • KeepAliveException when using HttpWebRequest.GetResponse

    - by Lucas
    I am trying to POST an attachment to CouchDB using the HttpWebRequest. However, when I attempt "response = (HttpWebResponse)httpWebRequest.GetResponse();" I receive a WebException with the message "The underlying connection was closed: A connection that was expected to be kept alive was closed by the server." I have found some articles stating that setting the keepalive to false and httpversion to 1.0 resolves the situation. I am finding that it does not yeilding the exact same error, plus I do not want to take that approach as I do not want to use the 1.0 version due to how it handles the connection. Any suggestions or ideas are welcome. I'll try them all until one works! public ServerResponse PostAttachment(Server server, Database db, Attachment attachment) { Stream dataStream; HttpWebResponse response = null; StreamReader sr = null; byte[] buffer; string json; string boundary = "----------------------------" + DateTime.Now.Ticks.ToString("x"); string headerTemplate = "Content-Disposition: form-data; name=\"_attachments\"; filename=\"" + attachment.Filename + "\"\r\n Content-Type: application/octet-stream\r\n\r\n"; byte[] headerbytes = System.Text.Encoding.UTF8.GetBytes(headerTemplate); byte[] boundarybytes = System.Text.Encoding.ASCII.GetBytes("\r\n--" + boundary + "\r\n"); HttpWebRequest httpWebRequest = (HttpWebRequest)WebRequest.Create("http://" + server.Host + ":" + server.Port.ToString() + "/" + db.Name + "/" + attachment.Document.Id); httpWebRequest.ContentType = "multipart/form-data; boundary=" + boundary; httpWebRequest.Method = "POST"; httpWebRequest.KeepAlive = true; httpWebRequest.ContentLength = attachment.Stream.Length + headerbytes.Length + boundarybytes.Length; if (!string.IsNullOrEmpty(server.EncodedCredentials)) httpWebRequest.Headers.Add("Authorization", server.EncodedCredentials); if (!attachment.Stream.CanRead) throw new System.NotSupportedException("The stream cannot be read."); // Get the request stream try { dataStream = httpWebRequest.GetRequestStream(); } catch (Exception e) { throw new WebException("Failed to get the request stream.", e); } buffer = new byte[server.BufferSize]; int bytesRead; dataStream.Write(headerbytes,0,headerbytes.Length); attachment.Stream.Position = 0; while ((bytesRead = attachment.Stream.Read(buffer, 0, buffer.Length)) > 0) { dataStream.Write(buffer, 0, bytesRead); } dataStream.Write(boundarybytes, 0, boundarybytes.Length); dataStream.Close(); // send the request and get the response try { response = (HttpWebResponse)httpWebRequest.GetResponse(); } catch (Exception e) { throw new WebException("Invalid response received from server.", e); } // get the server's response json try { dataStream = response.GetResponseStream(); sr = new StreamReader(dataStream); json = sr.ReadToEnd(); } catch (Exception e) { throw new WebException("Failed to access the response stream.", e); } // close up all our streams and response sr.Close(); dataStream.Close(); response.Close(); // Deserialize the server response return ConvertTo.JsonToServerResponse(json); }

    Read the article

  • Problem with Freetype and OpenGL

    - by Morgan
    Hey, i'm having a weird issue with drawing text in openGL loaded with the Freetype 2 library. Here is a screenshot of what I'm seeing. http://img203.imageshack.us/img203/3316/freetypeweird.png Here are my code bits for loading and rendering my text. class Font { Font(const String& filename) { if (FT_New_Face(Font::ftLibrary, "arial.ttf", 0, &mFace)) { cout << "UH OH!" << endl; } FT_Set_Char_Size(mFace, 16 * 64, 16 * 64, 72, 72); } Glyph* GetGlyph(const unsigned char ch) { if(FT_Load_Char(mFace, ch, FT_LOAD_RENDER)) cout << "OUCH" << endl; FT_Glyph glyph; if(FT_Get_Glyph( mFace->glyph, &glyph )) cout << "OUCH" << endl; FT_BitmapGlyph bitmap_glyph = (FT_BitmapGlyph)glyph; Glyph* thisGlyph = new Glyph; thisGlyph->buffer = bitmap_glyph->bitmap.buffer; thisGlyph->width = bitmap_glyph->bitmap.width; thisGlyph->height = bitmap_glyph->bitmap.rows; return thisGlyph; } }; The relevant glyph information (width, height, buffer) is stored in the following struct struct Glyph { GLubyte* buffer; Uint width; Uint height; }; And finally, to render it, I have this class called RenderFont. class RenderFont { RenderFont(Font* font) { mTextureIds = new GLuint[128]; mFirstDisplayListId=glGenLists(128); glGenTextures( 128, mTextureIds ); for(unsigned char i=0;i<128;i++) { MakeDisplayList(font, i); } } void MakeDisplayList(Font* font, unsigned char ch) { Glyph* glyph = font->GetGlyph(ch); glBindTexture( GL_TEXTURE_2D, mTextureIds[ch]); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, glyph->width, glyph->height, 0, GL_ALPHA, GL_UNSIGNED_BYTE, glyph->buffer); glNewList(mFirstDisplayListId+ch,GL_COMPILE); glBindTexture(GL_TEXTURE_2D, mTextureIds[ch]); glBegin(GL_QUADS); glTexCoord2d(0,1); glVertex2f(0,glyph->height); glTexCoord2d(0,0); glVertex2f(0,0); glTexCoord2d(1,0); glVertex2f(glyph->width,0); glTexCoord2d(1,1); glVertex2f(glyph->width,glyph->height); glEnd(); glTranslatef(16, 0, 0); glEndList(); } void Draw(const String& text, Uint size, const TransformComponent* transform, const Color32* color) { glEnable(GL_TEXTURE_2D); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glTranslatef(100, 250, 0.0f); glListBase(mFirstDisplayListId); glCallLists(text.length(), GL_UNSIGNED_BYTE, text.c_str()); glDisable(GL_TEXTURE_2D); glDisable(GL_BLEND); glLoadIdentity(); } private: GLuint mFirstDisplayListId; GLuint* mTextureIds; }; Can anybody see anything weird going on here that would cause the garbled text? It's strange because if I change the font size, or the DPI, then some of the letters that display correctly become garbled, and other letters that were garbled before then display correctly.

    Read the article

  • OpenGL-ES Texture Mapping. Texture is reversed?

    - by Feet
    I am trying to get my head around Texture mapping, I thought I had it the other day after asking this. However, I am having some trouble with my texture coordinates being flipped from what I am expecting. I am loading my texture like so int[] textures = new int[1]; gl.glGenTextures(1, textures, 0); _textureID = textures[0]; gl.glBindTexture(GL10.GL_TEXTURE_2D, _textureID); Bitmap bmp = BitmapFactory.decodeResource( _context.getResources(), R.drawable.die_1); GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bmp, 0); gl.glTexParameterx(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER, GL10.GL_LINEAR); gl.glTexParameterx(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER, GL10.GL_LINEAR); bmp.recycle(); My cube is this float vertices[] = { // Front face -width, -height, depth, // 0 width, -height, depth, // 1 width, height, depth, // 2 -width, height, depth, // 3 // Back Face width, -height, -depth, // 4 -width, -height, -depth, // 5 -width, height, -depth, // 6 width, height, -depth, // 7 // Left face -width, -height, -depth, // 8 -width, -height, depth, // 9 -width, height, depth, // 10 -width, height, -depth, // 11 // Right face width, -height, depth, // 12 width, -height, -depth, // 13 width, height, -depth, // 14 width, height, depth, // 15 // Top face -width, height, depth, // 16 width, height, depth, // 17 width, height, -depth, // 18 -width, height, -depth, // 19 // Bottom face -width, -height, -depth, // 20 width, -height, -depth, // 21 width, -height, depth, // 22 -width, -height, depth, // 23 }; short indices[] = { // Front 0,1,2, 0,2,3, // Back 4,5,6, 4,6,7, // Left 8,9,10, 8,10,11, // Right 12,13,14, 12,14,15, // Top 16,17,18, 16,18,19, // Bottom 20,21,22, 20,22,23, }; float texCoords[] = { // Front face textured only, for simplicity 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f}; And it is drawn like so // Counter-clockwise winding. gl.glFrontFace(GL10.GL_CCW); // Enable face culling. gl.glEnable(GL10.GL_CULL_FACE); // What faces to remove with the face culling. gl.glCullFace(GL10.GL_BACK); // Enabled the vertices buffer for writing and to be used during // rendering. gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); // Specifies the location and data format of an array of vertex // coordinates to use when rendering. gl.glVertexPointer(3, GL10.GL_FLOAT, 0, verticesBuffer); if (normalsBuffer != null) { // Enabled the normal buffer for writing and to be used during rendering. gl.glEnableClientState(GL10.GL_NORMAL_ARRAY); // Specifies the location and data format of an array of normals to use when rendering. gl.glNormalPointer(GL10.GL_FLOAT, 0, normalsBuffer); } // Set flat color gl.glColor4f(rgba[0], rgba[1], rgba[2], rgba[3]); // Smooth color if ( colorBuffer != null ) { // Enable the color array buffer to be used during rendering. gl.glEnableClientState(GL10.GL_COLOR_ARRAY); // Point out the where the color buffer is. gl.glColorPointer(4, GL10.GL_FLOAT, 0, colorBuffer); } // Use textures? if ( textureBuffer != null) { gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY); gl.glEnable(GL10.GL_TEXTURE_2D); gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, textureBuffer); } // Translation and rotation before drawing gl.glTranslatef(x, y, z); gl.glRotatef(rx, 1, 0, 0); gl.glRotatef(ry, 0, 1, 0); gl.glRotatef(rz, 0, 0, 1); gl.glDrawElements(GL10.GL_TRIANGLES, numOfIndices, GL10.GL_UNSIGNED_SHORT, indicesBuffer); // Disable the vertices buffer. gl.glDisableClientState(GL10.GL_VERTEX_ARRAY); gl.glDisableClientState(GL10.GL_COLOR_ARRAY); gl.glDisableClientState(GL10.GL_NORMAL_ARRAY); gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY); // Disable face culling. gl.glDisable(GL10.GL_CULL_FACE); However my front face looks like this I also add, I haven't got any normals set, are textures affected by normals? float texCoords[] = { // Front 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f} It seems as if the texture is being flipped, so the coordinates don't match up properly?

    Read the article

  • Variable mysteriously changing value

    - by Eitan
    I am making a simple tcp/ip chat program for practicing threads and tcp/ip. I was using asynchronous methods but had a problem with concurrency so I went to threads and blocking methods (not asynchronous). I have two private variables defined in the class, not static: string amessage = string.Empty; int MessageLength; and a Thread private Thread BeginRead; Ok so I call a function called Listen ONCE when the client starts: public virtual void Listen(int byteLength) { var state = new StateObject {Buffer = new byte[byteLength]}; BeginRead = new Thread(ReadThread); BeginRead.Start(state); } and finally the function to receive commands and process them, I'm going to shorten it because it is really long: private void ReadThread(object objectState) { var state = (StateObject)objectState; int byteLength = state.Buffer.Length; while (true) { var buffer = new byte[byteLength]; int len = MySocket.Receive(buffer); if (len <= 0) return; string content = Encoding.ASCII.GetString(buffer, 0, len); amessage += cleanMessage.Substring(0, MessageLength); if (OnRead != null) { var e = new CommandEventArgs(amessage); OnRead(this, e); } } } Now, as I understand it only one thread at a time will enter BeginRead, I call Receive, it blocks until I get data, and then I process it. The problem: the variable amessage will change it's value between statements that do not touch or alter the variable at all, for example at the bottom of the function at: if (OnRead != null) "amessage" will be equal to 'asdf' and at if (OnRead != null) "amessage" will be equal to qwert. As I understand it this is indicative of another thread changing the value/running asynchronously. I only spawn one thread to do the receiving and the Receive function is blocking, how could there be two threads in this function and if there is only one thread how does amessage's value change between statements that don't affect it's value. As a side note sorry for spamming the site with these questions but I'm just getting a hang of this threading story and it's making me want to sip cyanide. Thanks in advance. EDIT: Here is my code that calls the Listen Method in the client: public void ConnectClient(string ip,int port) { client.Connect(ip,port); client.Listen(5); } and in the server: private void Accept(IAsyncResult result) { var client = new AbstractClient(MySocket.EndAccept(result)); var e = new CommandEventArgs(client, null); Clients.Add(client); client.Listen(5); if (OnClientAdded != null) { var target = (Control) OnClientAdded.Target; if (target != null && target.InvokeRequired) target.Invoke(OnClientAdded, this, e); else OnClientAdded(this, e); } client.OnRead += OnRead; MySocket.BeginAccept(new AsyncCallback(Accept), null); } All this code is in a class called AbstractClient. The client inherits the Abstract client and when the server accepts a socket it create's it's own local AbstractClient, in this case both modules access the functions above however they are different instances and I couldn't imagine threads from different instances combining especially as no variable is static.

    Read the article

  • multipart file-upload post request from java

    - by Martin
    I'm trying to make a program that uploads a image to a webserver that accepts multipart file-uploads. More specificly i want to make a http POST request to http://iqs.me that sends a file in the variable "pic". I've made a lot of tries but i don't know if i've even been close. The hardest part seems to be to get a HttpURLConnection to make a request of the type POST. The response i get looks like it makes a GET. (And i want to do this without any third party libs) UPDATE: non-working code goes here (no errors but doesn't seem to do a POST): HttpURLConnection conn = null; BufferedReader br = null; DataOutputStream dos = null; DataInputStream inStream = null; InputStream is = null; OutputStream os = null; boolean ret = false; String StrMessage = ""; String exsistingFileName = "myScreenShot.png"; String lineEnd = "\r\n"; String twoHyphens = "--"; String boundary = "*****"; int bytesRead, bytesAvailable, bufferSize; byte[] buffer; int maxBufferSize = 1*1024*1024; String responseFromServer = ""; String urlString = "http://iqs.local.com/index.php"; try{ FileInputStream fileInputStream = new FileInputStream( new File(exsistingFileName) ); URL url = new URL(urlString); conn = (HttpURLConnection) url.openConnection(); conn.setDoInput(true); conn.setDoOutput(true); conn.setRequestMethod("POST"); conn.setUseCaches(false); conn.setRequestProperty("Connection", "Keep-Alive"); conn.setRequestProperty("Content-Type", "multipart/form-data;boundary="+boundary); dos = new DataOutputStream( conn.getOutputStream() ); dos.writeBytes(twoHyphens + boundary + lineEnd); dos.writeBytes("Content-Disposition: form-data; name=\"pic\";" + " filename=\"" + exsistingFileName +"\"" + lineEnd); dos.writeBytes(lineEnd); bytesAvailable = fileInputStream.available(); bufferSize = Math.min(bytesAvailable, maxBufferSize); buffer = new byte[bufferSize]; bytesRead = fileInputStream.read(buffer, 0, bufferSize); while (bytesRead > 0){ dos.write(buffer, 0, bufferSize); bytesAvailable = fileInputStream.available(); bufferSize = Math.min(bytesAvailable, maxBufferSize); bytesRead = fileInputStream.read(buffer, 0, bufferSize); } dos.writeBytes(lineEnd); dos.writeBytes(twoHyphens + boundary + twoHyphens + lineEnd); fileInputStream.close(); dos.flush(); dos.close(); }catch (MalformedURLException ex){ System.out.println("Error:"+ex); }catch (IOException ioe){ System.out.println("Error:"+ioe); } try{ inStream = new DataInputStream ( conn.getInputStream() ); String str; while (( str = inStream.readLine()) != null){ System.out.println(str); } inStream.close(); }catch (IOException ioex){ System.out.println("Error: "+ioex); }

    Read the article

< Previous Page | 130 131 132 133 134 135 136 137 138 139 140 141  | Next Page >