Search Results

Search found 37765 results on 1511 pages for 'null reference exception'.

Page 139/1511 | < Previous Page | 135 136 137 138 139 140 141 142 143 144 145 146  | Next Page >

  • Do you catch expected exceptions in the controller or business service of your asp.net mvc application

    - by Pascal
    I am developing an asp.net mvc application where user1 could delete data records which were just loaded before by user2. User2 either changes this non-existent data record (Update) or is doing an insert with this data in another table that a foreign-key constraint is violated. Where do you catch such expected exceptions? In the Controller of your asp.net mvc application or in the business service? Just a sidenote: I only catch the SqlException here if its a ForeignKey constraint exception to tell the user that another user has deleted a certain parent record and therefore he can not create the testplan. But this code is not fully implemented yet! Controller:   public JsonResult CreateTestplan(Testplan testplan)   {    bool success = false;    string error = string.Empty;    try   {    success = testplanService.CreateTestplan(testplan);    }   catch (SqlException ex)    {    error = ex.Message;    }    return Json(new { success = success, error = error }, JsonRequestBehavior.AllowGet);   } OR Business service: public Result CreateTestplan(Testplan testplan) { Result result = new Result(); try { using (var con = new SqlConnection(_connectionString)) using (var trans = new TransactionScope()) { con.Open(); _testplanDataProvider.AddTestplan(testplan); _testplanDataProvider.CreateTeststepsForTestplan(testplan.Id, testplan.TemplateId); trans.Complete(); result.Success = true; } } catch (SqlException e) { result.Error = e.Message; } return result; } then in the Controller: public JsonResult CreateTestplan(Testplan testplan)   {    Result result = testplanService.CreateTestplan(testplan);       return Json(new { success = result.success, error = result.error }, JsonRequestBehavior.AllowGet);   }

    Read the article

  • A Null Reference Exception

    - by Alex
    "Object reference not set to an instance of an object." using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.Graphics; namespace XNAdev { class Sprite { //The size of the Sprite public Rectangle Size; //Used to size the Sprite up or down from the original image public float Scale = 1.0f; //The current position of the Sprite public Vector2 Position = new Vector2(115, 0); //The texture object used when drawing the sprite private Texture2D mSpriteTexture; //Load the texture for the sprite using the Content Pipeline public void LoadContent(ContentManager theContentManager, string theAssetName) { mSpriteTexture = theContentManager.Load<Texture2D>(theAssetName); Size = new Rectangle(0, 0, (int)(mSpriteTexture.Width * Scale), (int)(mSpriteTexture.Height * Scale)); } //Draw the sprite to the screen public void Draw(SpriteBatch theSpriteBatch) { theSpriteBatch.Draw(mSpriteTexture, Position, new Rectangle(0, 0, mSpriteTexture.Width, mSpriteTexture.Height), Color.White, 0.0f, Vector2.Zero, Scale, SpriteEffects.None, 0); } } } I am very new at this C# so any help would be great. I have no idea what my error is.

    Read the article

  • Windows: Does something temporarily grab the com ports on startup?

    - by Tim
    I have a WPF/C# app that is launched as part of the "Startup" group on a Windows Embedded Standard machine. One of the first things the app does (in its static App() method) is create a new SerialPort object for COM1. COM1 is a hardwired serial port, not a USB virtual port or anything like that. My problem is that every so often (maybe 1 out of 12) on startup, I get an exception: System.UnauthorizedAccessException: Access to the port 'COM1' is denied. There are no other applications using this port. Also, when I relaunch the app following this error, it grabs the port just fine. It's as if the com port isn't ready/set up for my app sometimes. I'm clueless on this one! Any insight is appreciated! UPDATE: I added a call to SerialPort.GetPortNames() and printout all available ports before attempting to open the port. In the failure case COM1 is indeed THERE! So, it's not that the port isn't ready. It looks like something in Windows is actually grabbing the port temporarily and blocking me.

    Read the article

  • FTP exception 501 "pathname" more than 8 characters

    - by BigMac66
    I am trying to access a file via a URI using the FTP protocol. For obvious security reasons I had to make some changes but this is where the problems seem to be coming from. My URI is as follows: ftp://user:[email protected]/u/Bigpathname/XYZ/ABC/BigPathname/bigpathname/xyz/abc/MY_LOG.LOG And I see this exception: sun.net.ftp.FtpProtocolException: CWD Bigpathname:501 A qualifier in "Bigpathname" is more than 8 characters This is really confusing as I can access the file from a Windows 7 command line with the CD command just fine. Both one directory at a time and as a full path. I found one article mentioning that MVS file names must be 8 or fewer characters but this does not explain how I can get to these same files from my command line! They do exist there is data there that I can download manual but I can not get there via a URI in Java. PS I use .toURL().openStream() to get files on my local machine just fine, it only fails when I try to get them from my server. EDIT October 1st I am able to access files on the MVS host using FileZilla and the basic FTP client from the Windows 7 command line - but I still cannot get them from a URI/URL. I downloaded a very basic Java built FTP client and tried accessing the same file in my program from there and the path works but because my file name has a dot in it "MY_LOG.LOG" I am getting File does not exist 501 Invalid data set name "MY_LOG.LOG". Use MVS Dsname conventions. I am utterly perplexed by this...

    Read the article

  • getting nullpointer exception when click on button

    - by user1315187
    I am use a button and when u click this button a text field is automatic created and button status is automatic disable but if u click on disable button text field is automatic delete and button status is changed to enable.i going through this process. public class ConfigurationScreen extends MainScreen implements FieldChangeListener{ TextField tf_text; tf_text = new TextField(TextField.TYPE_PLAIN,img_text[1],img_text[0],TextField.FIELD_HCENTER); tf_text.setWidth(Display.getWidth()/2+20); ImageButton btn_en; btn_en = new ImageButton(imgs_tmintrvl1,"enable",ImageButton.FIELD_HCENTER); ImageButton btn_dis; btn_dis=new ImageButton(imgs_tmintrvl1,"Disable",ImageButton.FIELD_HCENTER); add(btn_en); btn_en.setChangeListener(this); public void fieldChanged(Field field, int context) { if( field==btn_en) { delete(btn_en); insert(btn_dis, 4); insert(tf_text, 5); System.out.println(ex); }else if (field == btn_dis){ delete(btn_dis); delete(tf_text); insert(btn_en, 4); System.out.println("Disable Button="+ex); } } But when i run this code i am getting null pointerr exception please help me where i am making mistake. Thanks in Advance

    Read the article

  • IntelliJ inspection -- non-thrown exception

    - by skiaddict1
    This is a follow-up question to 1832203. I'm making it a new question as well, because it seems that posting an answer to a question doesn't change its position on the java page and so I'm worried that it won't get seen. Apologies if I've just stepped on some etiquette toes. I'm an IntelliJ newbie -- started using it two days ago and I'm absolutely head-over-heels in love! One of the things I adore is the code inspections. However... In one of my classes I often create exceptions without throwing them. If I can't turn off (or downgrade) the inspection warning for this then I can see I'm going to end up ignoring inspections on at least that file (if not the entire project), which would be a real pity. I've done a search in the inspection settings for "exception", and found nothing that relates exactly, so I turned them all off just to see, and it's still doing it (even after a rebuild...BTW when are inspections redone? at save? at rebuild? ???), so I would really like some help on how to make this one into an info/typo level -- which I can then ignore. Using the free version, if that makes any difference TIA to all those experienced IntelliJ warriors out there!

    Read the article

  • ApplicationDispatcher exception

    - by JFB
    Whenever I try to redirect to a certain page using this dispatch method that is called from my doGet method, I get the following exception. I have no idea why! account controller servlet protected void dispatch(HttpServletRequest request, HttpServletResponse response, String page) throws javax.servlet.ServletException, java.io.IOException { RequestDispatcher dispatcher = getServletContext() .getRequestDispatcher(page); try { dispatcher.forward(request, response); } catch (java.lang.NullPointerException e) { System.out.println("NullPointerException: attribute expected in view"); } } Error msg java.lang.NullPointerException org.apache.jasper.JasperException: java.lang.NullPointerException org.apache.jasper.servlet.JspServletWrapper.handleJspException(JspServletWrapper.java:502) org.apache.jasper.servlet.JspServletWrapper.service(JspServletWrapper.java:430) org.apache.jasper.servlet.JspServlet.serviceJspFile(JspServlet.java:313) org.apache.jasper.servlet.JspServlet.service(JspServlet.java:260) javax.servlet.http.HttpServlet.service(HttpServlet.java:717) controller.AccountController.dispatch(AccountController.java:91) controller.AccountController.doExecute(AccountController.java:72) controller.AccountController.doGet(AccountController.java:34) javax.servlet.http.HttpServlet.service(HttpServlet.java:617) javax.servlet.http.HttpServlet.service(HttpServlet.java:717) java.lang.NullPointerException org.apache.jsp.content.edit_jsp._jspService(edit_jsp.java:109) org.apache.jasper.runtime.HttpJspBase.service(HttpJspBase.java:70) javax.servlet.http.HttpServlet.service(HttpServlet.java:717) org.apache.jasper.servlet.JspServletWrapper.service(JspServletWrapper.java:388) org.apache.jasper.servlet.JspServlet.serviceJspFile(JspServlet.java:313) org.apache.jasper.servlet.JspServlet.service(JspServlet.java:260) javax.servlet.http.HttpServlet.service(HttpServlet.java:717) controller.AccountController.dispatch(AccountController.java:91) controller.AccountController.doExecute(AccountController.java:72) controller.AccountController.doGet(AccountController.java:34) javax.servlet.http.HttpServlet.service(HttpServlet.java:617) javax.servlet.http.HttpServlet.service(HttpServlet.java:717)

    Read the article

  • Could someone help me debug my app (not very big)?

    - by Alex
    Not sure if this kind of help is accepted to ask for here, tell me if it isn't. It has to get done before tomorrow, it's not entirerly finished but it should work somewhat ok by now. I'm trying to use the Eclipse debugger (not very used to it). I have my top-level or main class, which is Game, in which I have a constructor and a main method. In the main method I create a new "Game", initiating the constructor. public static void main(String[] args){ Game chess = new Game(); } public Game(){ Board board = new Board(); That's the first thing the debugger reacts to: Thread [main] (Suspended) ClassNotFoundException(Object).<init>() line: 20 [local variables unavailable] ClassNotFoundException(Throwable).<init>(String, Throwable) line: 217 ClassNotFoundException(Exception).<init>(String, Throwable) line: not available ClassNotFoundException.<init>(String) line: not available URLClassLoader$1.run() line: not available AccessController.doPrivileged(PrivilegedExceptionAction<T>, AccessControlContext) line: not available [native method] Launcher$ExtClassLoader(URLClassLoader).findClass(String) line: not available Launcher$ExtClassLoader.findClass(String) line: not available Launcher$ExtClassLoader(ClassLoader).loadClass(String, boolean) line: not available Launcher$AppClassLoader(ClassLoader).loadClass(String, boolean) line: not available Launcher$AppClassLoader.loadClass(String, boolean) line: not available Launcher$AppClassLoader(ClassLoader).loadClass(String) line: not available Game.<init>() line: 15 Game.main(String[]) line: 11 Line 11 is the one line in my main method, line 15 is the instantiation of "board".

    Read the article

  • Load Empty Database table

    - by john White
    I am using SQLexpress and VS2008. I have a DB with a table named "A", which has an IdentitySpecification column named ID. The ID is auto-incremented. Even if the row is deleted, the ID still increases. After several data manipulation, the current ID has reached 15, for example. When I run the application if there's at least 1 row: if I add a new row, the new ID is 16. Everything is fine. If the table is empty (no row): if I add a new row, the new ID is 0, which is an error (I think). And further data manipulation (eg. delete or update) will result in an unhandled exception. Has anyone encountered this? PS. In my table definition, the ID has been selected as follow: Identity Increment = 1; Identity Seed =1; The DB load code is: dataSet = gcnew DataSet(); dataAdapter->Fill(dataSet,"A"); dataTable=dataSet->Tables["A"]; dbConnection->Open(); The Update button method dataAdapter->Update(dataSet,"tblInFlow"); dataSet->AcceptChanges(); dataTable=dataSet->Tables["tblInFlow"]; dataGrid->DataSource=dataTable; If I press Update: if there's at least a row: the datagrid view updates and shows the table correctly. if there's nothing in the table (no data row), the Add method will add a new row, but from ID 0. If I close the program and restart it again: the ID would be 16, which is correct. This is the add method row=dataTable->NewRow(); row["column1"]="something"; dataTable->Rows->Add(row); dataAdapter->Update(dataSet,"A"); dataSet->AcceptChanges(); dataTable=dataSet->Tables["A"];

    Read the article

  • PDFBox Pagebreak strange Nullpointer exception

    - by schneiti
    I currently try printing out text on multiple pages. For this, I count the number of rows and when they reach a fixed amount a method called pagebreakis executed. After the first pagebreak, when I try setting a font using contentstream.setFont(PDType1Font.HELVETICA, 12); it yields the following errormessage occuring at the described setFont-row. java.lang.NullPointerException at org.apache.pdfbox.pdmodel.edit.PDPageContentStream.setFont(PDPageContentStream.java:321) at com.xy.deu.xy.abc.db.schemavergleich.PDFDocumenter.drawBGCS(PDFDocumenter.java:781) at com.xy.deu.xy.abc.db.schemavergleich.PDFDocumenter.createPDFDocumentation(PDFDocumenter.java:205) at com.xy.deu.xy.abc.db.schemavergleich.MainClass.createPDFandOutput(MainClass.java:361) at com.xy.deu.xy.abc.db.schemavergleich.MainClass.start(MainClass.java:231) at com.xy.deu.xy.abc.db.schemavergleich.MainClass.main(MainClass.java:180) Below is the code that gets executed as the error occurs. ... // If Table gets to long for a page -> pagebreak: if(currentLines > 37) { pageBreak(currentLinePos); // TODO Currently causing app to crash } ... private void pageBreak(int currentLine) throws Exception { contentStream.endText(); contentStream.close(); // Create new page page = new PDPage(PDPage.PAGE_SIZE_A4); doc.addPage( page ); // Create a new font object selecting one of the PDF base fonts font = PDType1Font.HELVETICA; // Start a new content stream which will "hold" the to be created content contentStream = new PDPageContentStream(doc, page); currentLines = 0; mediabox = page.findMediaBox(); contentStream.beginText(); contentStream.moveTextPositionByAmount(startX, startY); contentStream.setFont(PDType1Font.HELVETICA, 12); } Now comes the strange thing: Debugging yields into nothing that is not set. I'll attach a screenshot for you right at the position where the error occurs:

    Read the article

  • Null reference but it's not?

    - by Clint Davis
    This is related to my previous question but it is a different problem. I have two classes: Server and Database. Public Class Server Private _name As String Public Property Name() As String Get Return _name End Get Set(ByVal value As String) _name = value End Set End Property Private _databases As List(Of Database) Public Property Databases() As List(Of Database) Get Return _databases End Get Set(ByVal value As List(Of Database)) _databases = value End Set End Property Public Sub LoadTables() Dim db As New Database(Me) db.Name = "test" Databases.Add(db) End Sub End Class Public Class Database Private _server As Server Private _name As String Public Property Name() As String Get Return _name End Get Set(ByVal value As String) _name = value End Set End Property Public Property Server() As Server Get Return _server End Get Set(ByVal value As Server) _server = value End Set End Property Public Sub New(ByVal ser As Server) Server = ser End Sub End Class Fairly simple. I use like this: Dim s As New Server s.Name = "Test" s.LoadTables() The problem is in the LoadTables in the Server class. When it hits Databases.Add(db) it gives me a NullReference error (Object reference not set). I don't understand how it is getting that, all the objects are set. Any ideas? Thanks.

    Read the article

  • Java Socket - how to catch Exception of BufferedReader.readline()

    - by Hasan Tahsin
    I have a Thread (let's say T1) which reads data from socket: public void run() { while (running) { try { BufferedReader reader = new BufferedReader( new InputStreamReader(socket.getInputStream()) ); String input = reader.readLine(); } catch (IOException e) { e.printStackTrace(); } } } Another Thread (lets say T2) try to finish the program in one of its method. Therefore T2 does the following: T1.running = false; socket.close(); Here is this scenario for which i couldn't find a solution: T1 is active and waiting for some input to read i.e. blocking. context switching T2 is active and sets running to false, closes the socket context switching because T1 was blocking and T2 closed the socket, T1 throws an Exception. What i want is to catch this SocketException. i can't put a try/catch(SocketException) in T1.run(). So how can i catch it in T1's running-method? If it's not possible to catch it in T1's running, then how can i catch it elsewhere? PS: "Another question about the Thread Debugging" Normally when i debug the code step by step, i lose the 'active running line' on a context switch. Let's say i'm in line 20 of T1, context switch happens, let's assume the program continues from the 30.line of T2, but the debugger does not go/show to the 30.line of T2, instead the 'active running line' vanishes. So i lose the control over the code. I use Eclipse for Java and Visual Studio for C#. So what is the best way to track the code while debugging on a context switch ?

    Read the article

  • AS3---TypeError: Error #1009: Cannot access a property or method of a null object reference

    - by user571620
    I'm very new to flash and I really have no idea what I'm doing. Thank you in advance. its giving me that error after I click a button to go to another frame. After I get the error, some buttons do not go to its destination and instead it just does nothing. The error is as follows: TypeError: Error #1009: Cannot access a property or method of a null object reference. at wmhssports_fla::MainTimeline/frame39() Here is the code for frame 39: stop(); winter_btn.addEventListener(MouseEvent.CLICK, buttonClick1); function buttonClick1(event:MouseEvent):void{ gotoAndPlay(39); }; spring_btn_boys.addEventListener(MouseEvent.CLICK, buttonClick10); function buttonClick10(event:MouseEvent):void{ gotoAndPlay(114); }; fall_btn_boys.addEventListener(MouseEvent.CLICK, buttonClick11); function buttonClick11(event:MouseEvent):void{ gotoAndPlay(135); }; Edit: I could email the file to someone, if they could look at it for me? Its REALLY sketchy due to my inexperience with flash, but then again its not that big of a clip. email me at: [email protected]

    Read the article

  • Recommendation for using equals in Entities and avoiding LazyInitializationExceptions?

    - by huxendupsel
    In the beginning there is a problem that wants to be solved. In my case i got an LazyInitializationException while using indexof in a Collection to retrieve an Object for manipulation. Here i start to think about using equals in EntityBeans (OR-Mapper at all). I know there are some discussions about overriding equals in association with OR-Mapper as hibernate like [1] Entities equals(), hashCode() and toString(). How to correctly implement them? [2] To equals and hashcode or not on entity classes, that is the question. [3] Overriding equals and hashCode in Java I currently have some entities which implements the equals but inside the code i could not use equals several times because of the LazyInitializationExceptions. So i had to workaround and use eg. the name property of the object to identify it's equality. From my point of view the whole 'LazyInitializationException-thing' is not really mentioned in this questions. I'd like to know have you got some good patterns or real live recommendations how to avoid such exception in an equal-Method. Shall i use some helper Methodes to distinguish if a Object of a class is already initialized (4) or should i apdicate the use of equals and use helper classes instead (2)? And what is about catching LazyInitializationExceptions in the equals? [Edit]: If you put equals in context with the initialization of the Object then it will gain importance. Sometimes it is nessesary to have the Object fully initialized but sometimes you don't want to. Because you just need the Object itself (name, id, ...) not its Collection-Properties. So just for equalization you have to reattach the Object and load the whole bunch you don't realy need? Are there any other solutions for such a problem?

    Read the article

  • Reference an object, based on a variable with it's name in it

    - by James G
    I'm looking for a way to reference an object, based on a variable with it's name in it. I know I can do this for properties and sub properties: var req = {body: {jobID: 12}}; console.log(req.body.jobID); //12 var subProperty = "jobID"; console.log(req.body[subProperty ]); //12 var property = "body"; console.log(req[property][subProperty]); //12 is it possible for the object itself? var req = {body: {jobID: 12}}; var object = "req"; var property = "body"; var subProperty = "jobID"; console.log([object][property][subProperty]); //12 or console.log(this[object][property][subProperty]); //12 Note: I'm doing this in node.js not a browser. Here is an exert from the function: if(action.render){ res.render(action.render,renderData); }else if(action.redirect){ if(action.redirect.args){ var args = action.redirect.args; res.redirect(action.redirect.path+req[args[0]][args[1]]); }else{ res.redirect(action.redirect.path); } } I could work around it by changing it to this, but I was looking for something more dynamic. if(action.render){ res.render(action.render,renderData); }else if(action.redirect){ if(action.redirect.args){ var args = action.redirect.args; if(args[0]==="req"){ res.redirect(action.redirect.path+req[args[1]][args[2]]); }else if(args[0]==="rows"){ rows.redirect(action.redirect.path+rows[args[1]][args[2]]); } }else{ res.redirect(action.redirect.path); } }

    Read the article

  • Object Reference with TimeSpan/DateTime

    - by user1732039
    When creating an appointment i want to send an email out to the patient with details like Time, Date etc. I know the email service i have created works (i have tested it by hardcoding strings into the method with the problem. The Problem is that i am getting Object reference issues with converting the Time and Date to a string. It does create the appointment data in the database correctly (time and date). User_Doctor thisDoc = user_DoctorComboBox.SelectedItem as User_Doctor; User_Patient thisPatient = appointment_Patient_autoComplete.SelectedItem as User_Patient; Appointment App = AppointmentSlots.SelectedItem as Appointment; DateTime date = (DateTime)datePickerAppointment.SelectedDate; TimeSpan timeslot = App.Time; //For Emailing Patients string fullname = thisPatient.PatientName + " " + thisPatient.PatientSurname; string mestime = timeslot.ToString("HH:mm"); string mesdate = date.ToString("MM/dd/yyyy"); string email = thisPatient.aspnet_Users.aspnet_Membership.LoweredEmail; EmailServiceClient em = new EmailServiceClient(); em.createMessageAsync(email, "Upcomming Appointment", fullname, mestime, mesdate, thisDoc.aspnet_Users.UserName, true); The problem occures with the strings mestime and mesdate, as well as with getting the email of the user from the database (again this exists in the db, as a nvar)

    Read the article

  • why Floating point exception?

    - by livio8495
    I have a floating point exception, and I don't know why. the code is this: void calcola_fitness(){ vector<double> fitness; int n=nodes.size(); int e=edges.size(); int dim=feasibility.size(); int feas=(feasibility[dim-1])*100; int narchi=numarchicoll[dim-1]/e; int numero_nodi=freePathNode.size()/n; double dist_start_goal=node_dist(0,1); int i,f,t; double pathlenght=0; int siize=freePathNode.size(); for(i=0;i!=siize-1; i++){ f=freePathNode[i].getIndex(); i++; t=freePathNode[i].getIndex(); i--; pathlenght=pathlenght+node_dist(f,t); } double pathlenghtnorm=pathlenght/10*dist_start_goal; double fit=((double)numero_nodi+pathlenghtnorm+(double)narchi)*((double)feas); fitness.push_back(fit); } Could anybody help me? What's the problem? I could I solve this? thank you very much

    Read the article

  • eclipse error - org.osgi.framework.BundleException: Exception in org.eclipse.core.internal.net.Activator.start()

    - by chaostimmy
    i have the following error message written to the workspace log file... i tried several different Eclipse versions and fresh workspaces... !SESSION 2011-01-11 16:56:49.375 ----------------------------------------------- eclipse.buildId=M20100909-0800 java.version=1.6.0_20 java.vendor=Sun Microsystems Inc. BootLoader constants: OS=linux, ARCH=x86_64, WS=gtk, NL=en_US Command-line arguments: -os linux -ws gtk -arch x86_64 !ENTRY org.eclipse.osgi 4 0 2011-01-11 16:57:03.820 !MESSAGE An error occurred while automatically activating bundle org.eclipse.core.net (46). !STACK 0 org.osgi.framework.BundleException: Exception in org.eclipse.core.internal.net.Activator.start() of bundle org.eclipse.core.net. at org.eclipse.osgi.framework.internal.core.BundleContextImpl.startActivator(BundleContextImpl.java:806) at org.eclipse.osgi.framework.internal.core.BundleContextImpl.start(BundleContextImpl.java:755) at org.eclipse.osgi.framework.internal.core.BundleHost.startWorker(BundleHost.java:370) at org.eclipse.osgi.framework.internal.core.AbstractBundle.start(AbstractBundle.java:284) at org.eclipse.osgi.framework.util.SecureAction.start(SecureAction.java:417) at org.eclipse.osgi.internal.loader.BundleLoader.setLazyTrigger(BundleLoader.java:265) at org.eclipse.core.runtime.internal.adaptor.EclipseLazyStarter.postFindLocalClass(EclipseLazyStarter.java:106) at org.eclipse.osgi.baseadaptor.loader.ClasspathManager.findLocalClass(ClasspathManager.java:453) at org.eclipse.osgi.internal.baseadaptor.DefaultClassLoader.findLocalClass(DefaultClassLoader.java:216) at org.eclipse.osgi.internal.loader.BundleLoader.findLocalClass(BundleLoader.java:393) at org.eclipse.osgi.internal.loader.SingleSourcePackage.loadClass(SingleSourcePackage.java:33) at org.eclipse.osgi.internal.loader.BundleLoader.findClassInternal(BundleLoader.java:466) at org.eclipse.osgi.internal.loader.BundleLoader.findClass(BundleLoader.java:422) at org.eclipse.osgi.internal.loader.BundleLoader.findClass(BundleLoader.java:410) at org.eclipse.osgi.internal.baseadaptor.DefaultClassLoader.loadClass(DefaultClassLoader.java:107) at java.lang.ClassLoader.loadClass(ClassLoader.java:248) at java.lang.Class.forName0(Native Method) at java.lang.Class.forName(Class.java:169) at org.eclipse.ui.internal.ide.application.IDEWorkbenchAdvisor.activateProxyService(IDEWorkbenchAdvisor.java:284) at org.eclipse.ui.internal.ide.application.IDEWorkbenchAdvisor.postStartup(IDEWorkbenchAdvisor.java:264) at org.eclipse.ui.internal.Workbench.runUI(Workbench.java:2575) at org.eclipse.ui.internal.Workbench.access$4(Workbench.java:2438) at org.eclipse.ui.internal.Workbench$7.run(Workbench.java:671) at org.eclipse.core.databinding.observable.Realm.runWithDefault(Realm.java:332) at org.eclipse.ui.internal.Workbench.createAndRunWorkbench(Workbench.java:664) at org.eclipse.ui.PlatformUI.createAndRunWorkbench(PlatformUI.java:149) at org.eclipse.ui.internal.ide.application.IDEApplication.start(IDEApplication.java:115) at org.eclipse.equinox.internal.app.EclipseAppHandle.run(EclipseAppHandle.java:196) at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.runApplication(EclipseAppLauncher.java:110) at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.start(EclipseAppLauncher.java:79) at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:369) at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:179) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.eclipse.equinox.launcher.Main.invokeFramework(Main.java:619) at org.eclipse.equinox.launcher.Main.basicRun(Main.java:574) at org.eclipse.equinox.launcher.Main.run(Main.java:1407) at org.eclipse.equinox.launcher.Main.main(Main.java:1383) Caused by: java.lang.NoClassDefFoundError: javax/crypto/BadPaddingException at org.eclipse.equinox.internal.security.storage.SecurePreferencesMapper.open(SecurePreferencesMapper.java:99) at org.eclipse.equinox.internal.security.storage.SecurePreferencesMapper.getDefault(SecurePreferencesMapper.java:44) at org.eclipse.equinox.security.storage.SecurePreferencesFactory.getDefault(SecurePreferencesFactory.java:50) at org.eclipse.core.internal.net.ProxyType.getNode(ProxyType.java:515) at org.eclipse.core.internal.net.ProxyType.loadProxyAuth(ProxyType.java:525) at org.eclipse.core.internal.net.ProxyType.createProxyData(ProxyType.java:148) at org.eclipse.core.internal.net.ProxyType.getProxyData(ProxyType.java:137) at org.eclipse.core.internal.net.ProxyManager.migrateInstanceScopePreferences(ProxyManager.java:453) at org.eclipse.core.internal.net.ProxyManager.checkMigrated(ProxyManager.java:418) at org.eclipse.core.internal.net.ProxyManager.initialize(ProxyManager.java:277) at org.eclipse.core.internal.net.Activator.start(Activator.java:179) at org.eclipse.osgi.framework.internal.core.BundleContextImpl$1.run(BundleContextImpl.java:783) at java.security.AccessController.doPrivileged(Native Method) at org.eclipse.osgi.framework.internal.core.BundleContextImpl.startActivator(BundleContextImpl.java:774) ... 39 more Caused by: java.lang.ClassNotFoundException: javax.crypto.BadPaddingException at org.eclipse.osgi.internal.loader.BundleLoader.findClassInternal(BundleLoader.java:460) at org.eclipse.osgi.internal.loader.BundleLoader.findClass(BundleLoader.java:422) at org.eclipse.osgi.internal.loader.BundleLoader.findClass(BundleLoader.java:410) at org.eclipse.osgi.internal.baseadaptor.DefaultClassLoader.loadClass(DefaultClassLoader.java:107) at java.lang.ClassLoader.loadClass(ClassLoader.java:248) ... 53 more Root exception: java.lang.NoClassDefFoundError: javax/crypto/BadPaddingException at org.eclipse.equinox.internal.security.storage.SecurePreferencesMapper.open(SecurePreferencesMapper.java:99) at org.eclipse.equinox.internal.security.storage.SecurePreferencesMapper.getDefault(SecurePreferencesMapper.java:44) at org.eclipse.equinox.security.storage.SecurePreferencesFactory.getDefault(SecurePreferencesFactory.java:50) at org.eclipse.core.internal.net.ProxyType.getNode(ProxyType.java:515) at org.eclipse.core.internal.net.ProxyType.loadProxyAuth(ProxyType.java:525) at org.eclipse.core.internal.net.ProxyType.createProxyData(ProxyType.java:148) at org.eclipse.core.internal.net.ProxyType.getProxyData(ProxyType.java:137) at org.eclipse.core.internal.net.ProxyManager.migrateInstanceScopePreferences(ProxyManager.java:453) at org.eclipse.core.internal.net.ProxyManager.checkMigrated(ProxyManager.java:418) at org.eclipse.core.internal.net.ProxyManager.initialize(ProxyManager.java:277) at org.eclipse.core.internal.net.Activator.start(Activator.java:179) at org.eclipse.osgi.framework.internal.core.BundleContextImpl$1.run(BundleContextImpl.java:783) at java.security.AccessController.doPrivileged(Native Method) at org.eclipse.osgi.framework.internal.core.BundleContextImpl.startActivator(BundleContextImpl.java:774) at org.eclipse.osgi.framework.internal.core.BundleContextImpl.start(BundleContextImpl.java:755) at org.eclipse.osgi.framework.internal.core.BundleHost.startWorker(BundleHost.java:370) at org.eclipse.osgi.framework.internal.core.AbstractBundle.start(AbstractBundle.java:284) at org.eclipse.osgi.framework.util.SecureAction.start(SecureAction.java:417) at org.eclipse.osgi.internal.loader.BundleLoader.setLazyTrigger(BundleLoader.java:265) at org.eclipse.core.runtime.internal.adaptor.EclipseLazyStarter.postFindLocalClass(EclipseLazyStarter.java:106) at org.eclipse.osgi.baseadaptor.loader.ClasspathManager.findLocalClass(ClasspathManager.java:453) at org.eclipse.osgi.internal.baseadaptor.DefaultClassLoader.findLocalClass(DefaultClassLoader.java:216) at org.eclipse.osgi.internal.loader.BundleLoader.findLocalClass(BundleLoader.java:393) at org.eclipse.osgi.internal.loader.SingleSourcePackage.loadClass(SingleSourcePackage.java:33) at org.eclipse.osgi.internal.loader.BundleLoader.findClassInternal(BundleLoader.java:466) at org.eclipse.osgi.internal.loader.BundleLoader.findClass(BundleLoader.java:422) at org.eclipse.osgi.internal.loader.BundleLoader.findClass(BundleLoader.java:410) at org.eclipse.osgi.internal.baseadaptor.DefaultClassLoader.loadClass(DefaultClassLoader.java:107) at java.lang.ClassLoader.loadClass(ClassLoader.java:248) at java.lang.Class.forName0(Native Method) at java.lang.Class.forName(Class.java:169) at org.eclipse.ui.internal.ide.application.IDEWorkbenchAdvisor.activateProxyService(IDEWorkbenchAdvisor.java:284) at org.eclipse.ui.internal.ide.application.IDEWorkbenchAdvisor.postStartup(IDEWorkbenchAdvisor.java:264) at org.eclipse.ui.internal.Workbench.runUI(Workbench.java:2575) at org.eclipse.ui.internal.Workbench.access$4(Workbench.java:2438) at org.eclipse.ui.internal.Workbench$7.run(Workbench.java:671) at org.eclipse.core.databinding.observable.Realm.runWithDefault(Realm.java:332) at org.eclipse.ui.internal.Workbench.createAndRunWorkbench(Workbench.java:664) at org.eclipse.ui.PlatformUI.createAndRunWorkbench(PlatformUI.java:149) at org.eclipse.ui.internal.ide.application.IDEApplication.start(IDEApplication.java:115) at org.eclipse.equinox.internal.app.EclipseAppHandle.run(EclipseAppHandle.java:196) at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.runApplication(EclipseAppLauncher.java:110) at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.start(EclipseAppLauncher.java:79) at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:369) at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:179) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.eclipse.equinox.launcher.Main.invokeFramework(Main.java:619) at org.eclipse.equinox.launcher.Main.basicRun(Main.java:574) at org.eclipse.equinox.launcher.Main.run(Main.java:1407) at org.eclipse.equinox.launcher.Main.main(Main.java:1383) Caused by: java.lang.ClassNotFoundException: javax.crypto.BadPaddingException at org.eclipse.osgi.internal.loader.BundleLoader.findClassInternal(BundleLoader.java:460) at org.eclipse.osgi.internal.loader.BundleLoader.findClass(BundleLoader.java:422) at org.eclipse.osgi.internal.loader.BundleLoader.findClass(BundleLoader.java:410) at org.eclipse.osgi.internal.baseadaptor.DefaultClassLoader.loadClass(DefaultClassLoader.java:107) at java.lang.ClassLoader.loadClass(ClassLoader.java:248) ... 53 more !ENTRY org.eclipse.ui.workbench 4 0 2011-01-11 16:57:03.862 !MESSAGE Widget disposed too early! !STACK 0 java.lang.RuntimeException: Widget disposed too early! at org.eclipse.ui.internal.WorkbenchPartReference$1.widgetDisposed(WorkbenchPartReference.java:172) at org.eclipse.swt.widgets.TypedListener.handleEvent(TypedListener.java:123) at org.eclipse.swt.widgets.EventTable.sendEvent(EventTable.java:84) at org.eclipse.swt.widgets.Widget.sendEvent(Widget.java:1258) at org.eclipse.swt.widgets.Widget.sendEvent(Widget.java:1282) at org.eclipse.swt.widgets.Widget.sendEvent(Widget.java:1263) at org.eclipse.swt.widgets.Widget.release(Widget.java:1080) at org.eclipse.swt.widgets.Control.release(Control.java:3304) at org.eclipse.swt.widgets.Composite.releaseChildren(Composite.java:1293) at org.eclipse.swt.widgets.Widget.release(Widget.java:1083) at org.eclipse.swt.widgets.Control.release(Control.java:3304) at org.eclipse.swt.widgets.Composite.releaseChildren(Composite.java:1293) at org.eclipse.swt.widgets.Widget.release(Widget.java:1083) at org.eclipse.swt.widgets.Control.release(Control.java:3304) at org.eclipse.swt.widgets.Composite.releaseChildren(Composite.java:1293) at org.eclipse.swt.widgets.Canvas.releaseChildren(Canvas.java:208) at org.eclipse.swt.widgets.Decorations.releaseChildren(Decorations.java:469) at org.eclipse.swt.widgets.Shell.releaseChildren(Shell.java:2305) at org.eclipse.swt.widgets.Widget.release(Widget.java:1083) at org.eclipse.swt.widgets.Control.release(Control.java:3304) at org.eclipse.swt.widgets.Widget.dispose(Widget.java:462) at org.eclipse.swt.widgets.Shell.dispose(Shell.java:2241) at org.eclipse.swt.widgets.Display.release(Display.java:3211) at org.eclipse.swt.graphics.Device.dispose(Device.java:237) at org.eclipse.ui.internal.ide.application.IDEApplication.start(IDEApplication.java:131) at org.eclipse.equinox.internal.app.EclipseAppHandle.run(EclipseAppHandle.java:196) at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.runApplication(EclipseAppLauncher.java:110) at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.start(EclipseAppLauncher.java:79) at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:369) at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:179) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.eclipse.equinox.launcher.Main.invokeFramework(Main.java:619) at org.eclipse.equinox.launcher.Main.basicRun(Main.java:574) at org.eclipse.equinox.launcher.Main.run(Main.java:1407) at org.eclipse.equinox.launcher.Main.main(Main.java:1383) !ENTRY org.eclipse.ui.workbench 4 0 2011-01-11 16:57:03.868 !MESSAGE Widget disposed too early! !STACK 0 java.lang.RuntimeException: Widget disposed too early! at org.eclipse.ui.internal.WorkbenchPartReference$1.widgetDisposed(WorkbenchPartReference.java:172) at org.eclipse.swt.widgets.TypedListener.handleEvent(TypedListener.java:123) at org.eclipse.swt.widgets.EventTable.sendEvent(EventTable.java:84) at org.eclipse.swt.widgets.Widget.sendEvent(Widget.java:1258) at org.eclipse.swt.widgets.Widget.sendEvent(Widget.java:1282) at org.eclipse.swt.widgets.Widget.sendEvent(Widget.java:1263) at org.eclipse.swt.widgets.Widget.release(Widget.java:1080) at org.eclipse.swt.widgets.Control.release(Control.java:3304) at org.eclipse.swt.widgets.Composite.releaseChildren(Composite.java:1293) at org.eclipse.swt.widgets.Widget.release(Widget.java:1083) at org.eclipse.swt.widgets.Control.release(Control.java:3304) at org.eclipse.swt.widgets.Composite.releaseChildren(Composite.java:1293) at org.eclipse.swt.widgets.Widget.release(Widget.java:1083) at org.eclipse.swt.widgets.Control.release(Control.java:3304) at org.eclipse.swt.widgets.Composite.releaseChildren(Composite.java:1293) at org.eclipse.swt.widgets.Canvas.releaseChildren(Canvas.java:208) at org.eclipse.swt.widgets.Decorations.releaseChildren(Decorations.java:469) at org.eclipse.swt.widgets.Shell.releaseChildren(Shell.java:2305) at org.eclipse.swt.widgets.Widget.release(Widget.java:1083) at org.eclipse.swt.widgets.Control.release(Control.java:3304) at org.eclipse.swt.widgets.Widget.dispose(Widget.java:462) at org.eclipse.swt.widgets.Shell.dispose(Shell.java:2241) at org.eclipse.swt.widgets.Display.release(Display.java:3211) at org.eclipse.swt.graphics.Device.dispose(Device.java:237) at org.eclipse.ui.internal.ide.application.IDEApplication.start(IDEApplication.java:131) at org.eclipse.equinox.internal.app.EclipseAppHandle.run(EclipseAppHandle.java:196) at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.runApplication(EclipseAppLauncher.java:110) at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.start(EclipseAppLauncher.java:79) at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:369) at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:179) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.eclipse.equinox.launcher.Main.invokeFramework(Main.java:619) at org.eclipse.equinox.launcher.Main.basicRun(Main.java:574) at org.eclipse.equinox.launcher.Main.run(Main.java:1407) at org.eclipse.equinox.launcher.Main.main(Main.java:1383) !ENTRY org.eclipse.ui.workbench 4 0 2011-01-11 16:57:03.872 !MESSAGE Widget disposed too early! !STACK 0 java.lang.RuntimeException: Widget disposed too early! at org.eclipse.ui.internal.WorkbenchPartReference$1.widgetDisposed(WorkbenchPartReference.java:172) at org.eclipse.swt.widgets.TypedListener.handleEvent(TypedListener.java:123) at org.eclipse.swt.widgets.EventTable.sendEvent(EventTable.java:84) at org.eclipse.swt.widgets.Widget.sendEvent(Widget.java:1258) at org.eclipse.swt.widgets.Widget.sendEvent(Widget.java:1282) at org.eclipse.swt.widgets.Widget.sendEvent(Widget.java:1263) at org.eclipse.swt.widgets.Widget.release(Widget.java:1080) at org.eclipse.swt.widgets.Control.release(Control.java:3304) at org.eclipse.swt.widgets.Composite.releaseChildren(Composite.java:1293) at org.eclipse.swt.widgets.Widget.release(Widget.java:1083) at org.eclipse.swt.widgets.Control.release(Control.java:3304) at org.eclipse.swt.widgets.Composite.releaseChildren(Composite.java:1293) at org.eclipse.swt.widgets.Widget.release(Widget.java:1083) at org.eclipse.swt.widgets.Control.release(Control.java:3304) at org.eclipse.swt.widgets.Composite.releaseChildren(Composite.java:1293) at org.eclipse.swt.widgets.Canvas.releaseChildren(Canvas.java:208) at org.eclipse.swt.widgets.Decorations.releaseChildren(Decorations.java:469) at org.eclipse.swt.widgets.Shell.releaseChildren(Shell.java:2305) at org.eclipse.swt.widgets.Widget.release(Widget.java:1083) at org.eclipse.swt.widgets.Control.release(Control.java:3304) at org.eclipse.swt.widgets.Widget.dispose(Widget.java:462) at org.eclipse.swt.widgets.Shell.dispose(Shell.java:2241) at org.eclipse.swt.widgets.Display.release(Display.java:3211) at org.eclipse.swt.graphics.Device.dispose(Device.java:237) at org.eclipse.ui.internal.ide.application.IDEApplication.start(IDEApplication.java:131) at org.eclipse.equinox.internal.app.EclipseAppHandle.run(EclipseAppHandle.java:196) at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.runApplication(EclipseAppLauncher.java:110) at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.start(EclipseAppLauncher.java:79) at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:369) at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:179) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.eclipse.equinox.launcher.Main.invokeFramework(Main.java:619) at org.eclipse.equinox.launcher.Main.basicRun(Main.java:574) at org.eclipse.equinox.launcher.Main.run(Main.java:1407) at org.eclipse.equinox.launcher.Main.main(Main.java:1383) !ENTRY org.eclipse.osgi 4 0 2011-01-11 16:57:03.925 !MESSAGE Application error !STACK 1 java.lang.NoClassDefFoundError: An error occurred while automatically activating bundle org.eclipse.core.net (46). at org.eclipse.ui.internal.ide.application.IDEWorkbenchAdvisor.activateProxyService(IDEWorkbenchAdvisor.java:284) at org.eclipse.ui.internal.ide.application.IDEWorkbenchAdvisor.postStartup(IDEWorkbenchAdvisor.java:264) at org.eclipse.ui.internal.Workbench.runUI(Workbench.java:2575) at org.eclipse.ui.internal.Workbench.access$4(Workbench.java:2438) at org.eclipse.ui.internal.Workbench$7.run(Workbench.java:671) at org.eclipse.core.databinding.observable.Realm.runWithDefault(Realm.java:332) at org.eclipse.ui.internal.Workbench.createAndRunWorkbench(Workbench.java:664) at org.eclipse.ui.PlatformUI.createAndRunWorkbench(PlatformUI.java:149) at org.eclipse.ui.internal.ide.application.IDEApplication.start(IDEApplication.java:115) at org.eclipse.equinox.internal.app.EclipseAppHandle.run(EclipseAppHandle.java:196) at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.runApplication(EclipseAppLauncher.java:110) at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.start(EclipseAppLauncher.java:79) at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:369) at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:179) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.eclipse.equinox.launcher.Main.invokeFramework(Main.java:619) at org.eclipse.equinox.launcher.Main.basicRun(Main.java:574) at org.eclipse.equinox.launcher.Main.run(Main.java:1407) at org.eclipse.equinox.launcher.Main.main(Main.java:1383) i dont know what to do =(

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Depencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. That being said though - I serialized 10,000 objects in 80ms vs. 45ms so this isn't hardly slouchy. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?On occasion dynamic loading makes sense. But there's a price to be paid in added code complexity and a performance hit. But for some operations that are not pivotal to a component or application and only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful tool. Hopefully some of you find this information useful…© Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Dependencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. This will change though depending on the size of objects serialized - the larger the object the more processing time is spent inside the actual dynamically activated components and the less difference there will be. Dynamic code is always slower, but how much it really affects your application primarily depends on how frequently the dynamic code is called in relation to the non-dynamic code executing. In most situations where dynamic code is used 'to get the process rolling' as I do here the overhead is small enough to not matter.All that being said though - I serialized 10,000 objects in 80ms vs. 45ms so this is hardly slouchy performance. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?Dynamic loading is not something you need to worry about but on occasion dynamic loading makes sense. But there's a price to be paid in added code  and a performance hit which depends on how frequently the dynamic code is accessed. But for some operations that are not pivotal to a component or application and are only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files adding dependencies and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems like a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful option in your toolset… © Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • KnpLabs / DoctrineBehaviors Translatable - currentLocale = null

    - by Ruben
    Using the trait \Knp\DoctrineBehaviors\Model\Translatable\Translation inside an Entity, I see that the property currentLocale is never setted , so we always obtain the default locale ('en') in all the calls to $this->translate(). If I change this getDefaultLocale, all the translations are made correctly, so I think that is no problem with the fallback. I tried debug the currentLocaleCallable. I see that if I put a "var_dump ($this-container-get('request'));" in the contructor of currentLocaleCallable, the request have a locale to null. And outside the request has the correct locale.It seems that container is not in the scope: request , i don't know how can I get it to work I post an issue in github https://github.com/KnpLabs/DoctrineBehaviors/issues/71 EDITED This service is defined in vendor/knplabs/doctrine-behaviors/config/orm-services.yml and is: knp.doctrine_behaviors.reflection.class_analyzer: class: "%knp.doctrine_behaviors.reflection.class_analyzer.class%" public: false knp.doctrine_behaviors.translatable_listener: class: "%knp.doctrine_behaviors.translatable_listener.class%" public: false arguments: - "@knp.doctrine_behaviors.reflection.class_analyzer" - "%knp.doctrine_behaviors.reflection.is_recursive%" - "@knp.doctrine_behaviors.translatable_listener.current_locale_callable" tags: - { name: doctrine.event_subscriber } knp.doctrine_behaviors.translatable_listener.current_locale_callable: class: "%knp.doctrine_behaviors.translatable_listener.current_locale_callable.class%" arguments: - "@service_container" # lazy request resolution public: false EDIT 2: My composer.json "php": ">=5.3.3", "symfony/symfony": "2.3.*", "doctrine/orm": ">=2.2.3,<2.4-dev", "doctrine/doctrine-bundle": "1.2.*", "twig/extensions": "1.0.*", "symfony/assetic-bundle": "2.3.*", "symfony/swiftmailer-bundle": "2.3.*", "symfony/monolog-bundle": "2.3.*", "sensio/distribution-bundle": "2.3.*", "sensio/framework-extra-bundle": "2.3.*", "sensio/generator-bundle": "2.3.*", "incenteev/composer-parameter-handler": "~2.0", "friendsofsymfony/user-bundle": "1.3.*", "avalanche123/imagine-bundle": "v2.1", "raulfraile/ladybug-bundle": "~1.0", "genemu/form-bundle": "2.2.*", "friendsofsymfony/rest-bundle": "0.12.0", "stof/doctrine-extensions-bundle": "dev-master", "sonata-project/admin-bundle": "dev-master", "a2lix/translation-form-bundle": "1.*@dev", "sonata-project/user-bundle": "dev-master", "psliwa/pdf-bundle": "dev-master", "jms/serializer-bundle": "dev-master", "jms/di-extra-bundle": "dev-master", "knplabs/doctrine-behaviors": "dev-master", "sonata-project/doctrine-orm-admin-bundle": "dev-master", "knplabs/knp-paginator-bundle": "dev-master", "friendsofsymfony/jsrouting-bundle": "~1.1", "zendframework/zend-validator": ">=2.0.0-rc2", "zendframework/zend-barcode": ">=2.0.0-rc2"

    Read the article

  • Terminating app due to uncaught exception 'NSGenericException', reason: '*** Collection <CALayerArray: 0x66522e0> was mutated while being enumerated

    - by fahu
    some times my app crashed by showing * Collection was mutated while being enumerated . This is occurring in same line of code all the time.please help me on this issue. i stuck on this. the app is crashing at pushing view controller line of my code.but it is not frequent one. my error console Terminating app due to uncaught exception 'NSGenericException', reason: '* Collection CALayerArray: 0x1030c730 was mutated while being enumerated. "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "" )' my code: - (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath *)indexPath { ServiceDetails *service=[[ServiceDetails alloc] initWithNibName:@"ServiceDetails" bundle:nil]; CompanyListingForm *list=[[CompanyListingForm alloc]initWithNibName:@"CompanyListingForm" bundle:nil]; [category_company_text resignFirstResponder]; if(viewHoldingTable) { [viewHoldingTable removeFromSuperview]; } if (category_clicked_flag==0) { if (location_or_cat_com==0) { NSMutableArray *get=[district_array objectAtIndex:indexPath.row]; locationid=[[get objectAtIndex:0]intValue]; [location_textfield resignFirstResponder]; location_textfield.text=[get objectAtIndex:1]; } else { if (draggingView) { [draggingView removeFromSuperview]; } if (viewHoldingTable) { [viewHoldingTable removeFromSuperview]; } NSMutableArray *get=[company_array objectAtIndex:indexPath.row]; category_company_text.text=[get objectAtIndex:1]; service.ida=[NSString stringWithFormat:@"%d",[[get objectAtIndex:0] intValue]]; service.idloc=[NSString stringWithFormat:@"%d",locationid]; [self.navigationController pushViewController:service animated:YES];//getting error at this point. //[emer release]; } } else { if (location_or_cat_com==0) { NSMutableArray *get=[district_array objectAtIndex:indexPath.row]; locationid=[[get objectAtIndex:0]intValue]; [location_textfield resignFirstResponder]; location_textfield.text=[get objectAtIndex:1]; } else { NSMutableArray *get=[category_array objectAtIndex:indexPath.row]; category_company_text.text=[get objectAtIndex:1]; int catid=[[get objectAtIndex:0]intValue]; list.IDForLoc=[NSString stringWithFormat:@"%d",locationid]; list.IDForCat=[NSString stringWithFormat:@"%d",catid]; list.companydetails=[get objectAtIndex:1]; [self.navigationController pushViewController:list animated:YES];//getting error at this point. } } [service release]; [list release]; }

    Read the article

  • The parameters dictionary contains a null entry for parameter

    - by ognjenb
    <%using (Html.BeginForm("OrderDevice", "ImportXML", FormMethod.Post)) { %> <table id="OrderDevices" class="data-table"> <tr> <th> DeviceId </th> <th> Id </th> <th> OrderId </th> </tr> <% foreach (var item in Model) { %> <tr> <td> <input readonly="readonly" class="" id="DeviceId" type="text" name="<%= Html.Encode(item.DeviceId) %>" value="<%= Html.Encode(item.DeviceId) %>" style="width: 61px" /> </td> <td> <input readonly="readonly" class="" id="c" type="text" name= "<%= Html.Encode(item.Id) %>" value=" <%= Html.Encode(item.Id) %>" style="width: 50px" /> </td> <td> <input readonly="readonly" class="" id="OrderId" type="text" name= " <%= Html.Encode(item.OrderId) %>" value="<%= Html.Encode(item.OrderId) %> " style="width: 49px" /> </td> </tr> <% } %> </table> <input type="submit" value="Create"/> <%} %> My controller action: [AcceptVerbs(HttpVerbs.Post)] public ActionResult OrderDevice(int id) { try { // TODO: Add insert logic here orderdevice ord = new orderdevice(); ord.Id = System.Convert.ToInt32(Request.Form["Id"]); ord.OrderId = System.Convert.ToInt32(Request.Form["OrderId"]); ord.DeviceId = System.Convert.ToInt32(Request.Form["DeviceId"]); XMLEntities.AddToorderdevice(ord); XMLEntities.SaveChanges(); return RedirectToAction("Index"); } catch { return View("Index"); } } When post a form I have this error: The parameters dictionary contains a null entry for parameter 'id' of non-nullable type 'System.Int32' for method 'System.Web.Mvc.ActionResult OrderDevice(Int32)' in 'MvcKVteam.Controllers.ImportXMLController'. An optional parameter must be a reference type, a nullable type, or be declared as an optional parameter. Parameter name: parameters How fix it?

    Read the article

  • WiX unresolved reference error

    - by David
    I'm using Wix version 3.0.5419.0. I have two .wxs files, one which is a fragment, and another which uses the fragment to create the .msi file. Here is the file which uses the fragment (DaisyFarmer.wxs): <?xml version='1.0' encoding='windows-1252'?> <Wix xmlns='http://schemas.microsoft.com/wix/2006/wi' xmlns:iis='http://schemas.microsoft.com/wix/IIsExtension'> <Product Name='Daisy Web Site 1.0' Id='BB7FBBE4-0A25-4cc7-A39C-AC916B665220' UpgradeCode='8A5311DE-A125-418f-B0E1-5A30B9C667BD' Language='1033' Codepage='1252' Version='1.0.0' Manufacturer='the man'> <Package Id='5F341544-4F95-4e01-A2F8-EF74448C0D6D' Keywords='Installer' Description="desc" Manufacturer='the man' InstallerVersion='100' Languages='1033' Compressed='yes' SummaryCodepage='1252' /> <Media Id='1' Cabinet='Sample.cab' EmbedCab='yes' DiskPrompt="CD-ROM #1" /> <Property Id='DiskPrompt' Value="the man" /> <PropertyRef Id="NETFRAMEWORK35"/> <Condition Message='This setup requires the .NET Framework 3.5.'> <![CDATA[Installed OR (NETFRAMEWORK35)]]> </Condition> <Feature Id='DaisyFarmer' Title='DaisyFarmer' Level='1'> <ComponentRef Id='SchedulerComponent' /> </Feature> </Product> </Wix> The fragment I'm referencing is (Scheduler.wxs): <?xml version="1.0" encoding="utf-8"?> <Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"> <Fragment> <DirectoryRef Id="TARGETDIR"> <Directory Id="dir2787390E4B7313EB8005DE08108EFEA4" Name="scheduler"> <Component Id="SchedulerComponent" Guid="{9254F7E1-DE41-4EE5-BC0F-BA668AF051CB}"> <File Id="fil9A013D0BFB837BAC71FED09C59C5501B" KeyPath="yes" Source="SourceDir\DTBookMonitor.exe" /> <File Id="fil4F0D8D05F53E6AFBDB498E7C75C2D98F" KeyPath="no" Source="SourceDir\DTBookMonitor.exe.config" /> <File Id="filF02F4686267D027CB416E044E8C8C2FA" KeyPath="no" Source="SourceDir\monitor.bat" /> <File Id="fil05B8FF38A3C85FE6C4A58CD6FDFCD2FB" KeyPath="no" Source="SourceDir\output.txt" /> <File Id="fil397F04E2527DCFDF7E8AC1DD92E48264" KeyPath="no" Source="SourceDir\pipelineOutput.txt" /> <File Id="fil83DFACFE7F661A9FF89AA17428474929" KeyPath="no" Source="SourceDir\process.bat" /> <File Id="fil2809039236E0072642C52C6A52AD6F2F" KeyPath="no" Source="SourceDir\README.txt" /> </Component> </Directory> </DirectoryRef> </Fragment> </Wix> I then run the following commands: candle -ext WixUtilExtension -ext WiXNetFxExtension DaisyFarmer.wxs Scheduler.wxs light -sice:ICE20 -ext WixUtilExtension -ext WiXNetFxExtension Scheduler.wixobj DaisyFarmer.wixobj -out DaisyFarmer.msi I'm getting an error when I run light.exe which says "DaisyFarmer.wxs(20) : error LGHT0094 : Unresolved reference to symbol 'Component:SchedulerComponent' in section 'Product:{BB7FBBE4-0A25-4CC7-A39C-AC916B665220}'." What am I missing?

    Read the article

< Previous Page | 135 136 137 138 139 140 141 142 143 144 145 146  | Next Page >