Search Results

Search found 1329 results on 54 pages for 'garbage collecting'.

Page 15/54 | < Previous Page | 11 12 13 14 15 16 17 18 19 20 21 22  | Next Page >

  • List of Commonly Used Value Types in XNA Games

    - by Michael B. McLaughlin
    Most XNA programmers are concerned about generating garbage. More specifically about allocating GC-managed memory (GC stands for “garbage collector” and is both the name of the class that provides access to the garbage collector and an acronym for the garbage collector (as a concept) itself). Two of the major target platforms for XNA (Windows Phone 7 and Xbox 360) use variants of the .NET Compact Framework. On both variants, the GC runs under various circumstances (Windows Phone 7 and Xbox 360). Of concern to XNA programmers is the fact that it runs automatically after a fixed amount of GC-managed memory has been allocated (currently 1MB on both systems). Many beginning XNA programmers are unaware of what constitutes GC-managed memory, though. So here’s a quick overview. In .NET, there are two different “types” of types: value types and reference types. Only reference types are managed by the garbage collector. Value types are not managed by the garbage collector and are instead managed in other ways that are implementation dependent. For purposes of XNA programming, the important point is that they are not managed by the GC and thus do not, by themselves, increment that internal 1 MB allocation counter. (n.b. Structs are value types. If you have a struct that has a reference type as a member, then that reference type, when instantiated, will still be allocated in the GC-managed memory and will thus count against the 1 MB allocation counter. Putting it in a struct doesn’t change the fact that it gets allocated on the GC heap, but the struct itself is created outside of the GC’s purview). Both value types and reference types use the keyword ‘new’ to allocate a new instance of them. Sometimes this keyword is hidden by a method which creates new instances for you, e.g. XmlReader.Create. But the important thing to determine is whether or not you are dealing with a value types or a reference type. If it’s a value type, you can use the ‘new’ keyword to allocate new instances of that type without incrementing the GC allocation counter (except as above where it’s a struct with a reference type in it that is allocated by the constructor, but there are no .NET Framework or XNA Framework value types that do this so it would have to be a struct you created or that was in some third-party library you were using for that to even become an issue). The following is a list of most all of value types you are likely to use in a generic XNA game: AudioCategory (used with XACT; not available on WP7) AvatarExpression (Xbox 360 only, but exposed on Windows to ease Xbox development) bool BoundingBox BoundingSphere byte char Color DateTime decimal double any enum (System.Enum itself is a class, but all enums are value types such that there are no GC allocations for enums) float GamePadButtons GamePadCapabilities GamePadDPad GamePadState GamePadThumbSticks GamePadTriggers GestureSample int IntPtr (rarely but occasionally used in XNA) KeyboardState long Matrix MouseState nullable structs (anytime you see, e.g. int? something, that ‘?’ denotes a nullable struct, also called a nullable type) Plane Point Quaternion Ray Rectangle RenderTargetBinding sbyte (though I’ve never seen it used since most people would just use a short) short TimeSpan TouchCollection TouchLocation TouchPanelCapabilities uint ulong ushort Vector2 Vector3 Vector4 VertexBufferBinding VertexElement VertexPositionColor VertexPositionColorTexture VertexPositionNormalTexture VertexPositionTexture Viewport So there you have it. That’s not quite a complete list, mind you. For example: There are various structs in the .NET framework you might make use of. I left out everything from the Microsoft.Xna.Framework.Graphics.PackedVector namespace, since everything in there ventures into the realm of advanced XNA programming anyway (n.b. every single instantiable thing in that namespace is a struct and thus a value type; there are also two interfaces but interfaces cannot be instantiated at all and thus don’t figure in to this discussion). There are so many enums you’re likely to use (PlayerIndex, SpriteSortMode, SpriteEffects, SurfaceFormat, etc.) that including them would’ve flooded the list and reduced its utility. So I went with “any enum” and trust that you can figure out what the enums are (and it’s rare to use ‘new’ with an enum anyway). That list also doesn’t include any of the pre-defined static instances of some of the classes (e.g. BlendState.AlphaBlend, BlendState.Opaque, etc.) which are already allocated such that using them doesn’t cause any new allocations and therefore doesn’t increase that 1 MB counter. That list also has a few misleading things. VertexElement, VertexPositionColor, and all the other vertex types are structs. But you’re only likely to ever use them as an array (for use with VertexBuffer or DynamicVertexBuffer), and all arrays are reference types (even arrays of value types such as VertexPositionColor[ ] or int[ ]). * So that’s it for now. The note below may be a bit confusing (it deals with how the GC works and how arrays are managed in .NET). If so, you can probably safely ignore it for now but feel free to ask any questions regardless. * Arrays of value types (where the value type doesn’t contain any reference type members) are much faster for the GC to examine than arrays of reference types, so there is a definite benefit to using arrays of value types where it makes sense. But creating arrays of value types does cause the GC’s allocation counter to increase. Indeed, allocating a large array of a value type is one of the quickest ways to increment the allocation counter since a .NET array is a sequential block of memory. An array of reference types is just a sequential block of references (typically 4 bytes each) while an array of value types is a sequential block of instances of that type. So for an array of Vector3s it would be 12 bytes each since each float is 4 bytes and there are 3 in a Vector3; for an array of VertexPositionNormalTexture structs it would typically be 32 bytes each since it has two Vector3s and a Vector2. (Note that there are a few additional bytes taken up in the creation of an array, typically 12 but sometimes 16 or possibly even more, which depend on the implementation details of the array type on the particular platform the code is running on).

    Read the article

  • SQL SERVER – Guest Post – Jacob Sebastian – Filestream – Wait Types – Wait Queues – Day 22 of 28

    - by pinaldave
    Jacob Sebastian is a SQL Server MVP, Author, Speaker and Trainer. Jacob is one of the top rated expert community. Jacob wrote the book The Art of XSD – SQL Server XML Schema Collections and wrote the XML Chapter in SQL Server 2008 Bible. See his Blog | Profile. He is currently researching on the subject of Filestream and have submitted this interesting article on the very subject. What is FILESTREAM? FILESTREAM is a new feature introduced in SQL Server 2008 which provides an efficient storage and management option for BLOB data. Many applications that deal with BLOB data today stores them in the file system and stores the path to the file in the relational tables. Storing BLOB data in the file system is more efficient that storing them in the database. However, this brings up a few disadvantages as well. When the BLOB data is stored in the file system, it is hard to ensure transactional consistency between the file system data and relational data. Some applications store the BLOB data within the database to overcome the limitations mentioned earlier. This approach ensures transactional consistency between the relational data and BLOB data, but is very bad in terms of performance. FILESTREAM combines the benefits of both approaches mentioned above without the disadvantages we examined. FILESTREAM stores the BLOB data in the file system (thus takes advantage of the IO Streaming capabilities of NTFS) and ensures transactional consistency between the BLOB data in the file system and the relational data in the database. For more information on the FILESTREAM feature, visit: http://beyondrelational.com/filestream/default.aspx FILESTREAM Wait Types Since this series is on the different SQL Server wait types, let us take a look at the various wait types that are related to the FILESTREAM feature. FS_FC_RWLOCK This wait type is generated by FILESTREAM Garbage Collector. This occurs when Garbage collection is disabled prior to a backup/restore operation or when a garbage collection cycle is being executed. FS_GARBAGE_COLLECTOR_SHUTDOWN This wait type occurs when during the cleanup process of a garbage collection cycle. It indicates that that garbage collector is waiting for the cleanup tasks to be completed. FS_HEADER_RWLOCK This wait type indicates that the process is waiting for obtaining access to the FILESTREAM header file for read or write operation. The FILESTREAM header is a disk file located in the FILESTREAM data container and is named “filestream.hdr”. FS_LOGTRUNC_RWLOCK This wait type indicates that the process is trying to perform a FILESTREAM log truncation related operation. It can be either a log truncate operation or to disable log truncation prior to a backup or restore operation. FSA_FORCE_OWN_XACT This wait type occurs when a FILESTREAM file I/O operation needs to bind to the associated transaction, but the transaction is currently owned by another session. FSAGENT This wait type occurs when a FILESTREAM file I/O operation is waiting for a FILESTREAM agent resource that is being used by another file I/O operation. FSTR_CONFIG_MUTEX This wait type occurs when there is a wait for another FILESTREAM feature reconfiguration to be completed. FSTR_CONFIG_RWLOCK This wait type occurs when there is a wait to serialize access to the FILESTREAM configuration parameters. Waits and Performance System waits has got a direct relationship with the overall performance. In most cases, when waits increase the performance degrades. SQL Server documentation does not say much about how we can reduce these waits. However, following the FILESTREAM best practices will help you to improve the overall performance and reduce the wait types to a good extend. Read all the post in the Wait Types and Queue series. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, Readers Contribution, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology Tagged: Filestream

    Read the article

  • Why does Java not have any destructor like C++?

    - by Abhishek Jain
    Java has its own garbage collection implementation so it does not require any destructor like C++ . This makes Java developer lazy in implementing memory management. And Garbage Collection is very expensive. Still we can have destructor along with garbage collector where developer can free resources and which can save garbage collector's work. This might improves the performance of application. Why does Java not provide any destructor kind of mechanism? Developer does not have control over GC but he/she can control or create object. Then why not give them ability to destruct the objects?

    Read the article

  • How to debug macruby?

    - by Dan
    Hi, I've encountered an inconsistent bug with MacRuby and have no idea how to go about debugging this. If anyone could help would be great. I don't know if this is due to my own code or is it a bug in the MacRuby framework. I have a feeling it's my own code, something about over-retaining a piece of memory and hence the garbage collection failed. This is the error from Xcode. Thanks. CSV Wizard(30245,0x7fff704f7ca0) malloc: resurrection error for object 0x20199da20 while assigning {conservative-block}[196608](0x302360060)[117616] = Array[64](0x20199da20) garbage pointer stored into reachable memory, break on auto_zone_resurrection_error to debug CSV Wizard(30245,0x103781000) malloc: garbage block 0x20199da20(Array[64]) was over-retained during finalization, refcount = 1 This could be an unbalanced CFRetain(), or CFRetain() balanced with -release. Break on auto_zone_resurrection_error() to debug. CSV Wizard(30245,0x103781000) malloc: fatal resurrection error for garbage block 0x20199da20(Array[64]): over-retained during finalization, refcount = 1

    Read the article

  • Mathematica, PDF Curves and Shading

    - by Venerable Garbage Collector
    I need to plot a normal distribution and then shade some specific region of it. Right now I'm doing this by creating a plot of the distribution and overlaying it with a RegionPlot. This is pretty convoluted and I'm certain there must be a more elegant way of doing it. I Googled, looked at the docs, found nothing. Help me SO! I guess Mathematica counts as programming? :D

    Read the article

  • How to register a domain for a beginner?

    - by garbage collection
    I've never registered a .com , .net like domain before, and I would like to do some research before doing so. I currently have a ruby on rails app running Heroku. Is there anything special I have to do prior to registering domain on my ruby on rails app at all? Or is it as easy as just inserting my current Heroku address to mask it with another .com or .net name? Is there some special features I should look for registering domain? Or is it typical for domain seller to just sell domain names only? Any recommendations on sellers? Thank you.

    Read the article

  • Collectd agent, Munin master

    - by blauwblaatje
    For monitoring and graphing of servers and services, I would like to make a setup where collectd is the agent, collecting the data on the server, and munin is on the monitoring server, collecting the data from the agents an process it. Reasons for this setup, is that collectd had a smaller footprint on the servers and munin (v2) has a better frontend. I was wondering if there's an interface for this connection, or if someone has an opinion about why I shouldn't do this.

    Read the article

  • ./a.out termniated . Garbage output due to smashing of stack . How to remove this error ?

    - by mekasperasky
    #include <iostream> #include <fstream> #include <cstring> using namespace std; typedef unsigned long int WORD; /* Should be 32-bit = 4 bytes */ #define w 32 /* word size in bits */ #define r 12 /* number of rounds */ #define b 16 /* number of bytes in key */ #define c 4 /* number words in key */ /* c = max(1,ceil(8*b/w)) */ #define t 26 /* size of table S = 2*(r+1) words */ WORD S [t],L[c]; /* expanded key table */ WORD P = 0xb7e15163, Q = 0x9e3779b9; /* magic constants */ /* Rotation operators. x must be unsigned, to get logical right shift*/ #define ROTL(x,y) (((x)<<(y&(w-1))) | ((x)>>(w-(y&(w-1))))) #define ROTR(x,y) (((x)>>(y&(w-1))) | ((x)<<(w-(y&(w-1))))) void RC5_ENCRYPT(WORD *pt, WORD *ct) /* 2 WORD input pt/output ct */ { WORD i, A=pt[0]+S[0], B=pt[1]+S[1]; for (i=1; i<=r; i++) { A = ROTL(A^B,B)+S[2*i]; B = ROTL(B^A,A)+S[2*i+1]; } ct [0] = A ; ct [1] = B ; } void RC5_DECRYPT(WORD *ct, WORD *pt) /* 2 WORD input ct/output pt */ { WORD i, B=ct[1], A=ct[ 0]; for (i=r; i>0; i--) { B = ROTR(B-S [2*i+1],A)^A; A = ROTR(A-S [2*i],B)^B; } pt [1] = B-S [1] ;pt [0] = A-S [0]; } void RC5_SETUP(unsigned char *K) /* secret input key K 0...b-1] */ { WORD i, j, k, u=w/8, A, B, L [c]; /* Initialize L, then S, then mix key into S */ for (i=b-1,L[c-1]=0; i!=-1; i--) L[i/u] = (L[i/u]<<8)+K[ i]; for (S [0]=P,i=1; i<t; i++) S [i] = S [i-1]+Q; for (A=B=i=j=k=0; k<3*t; k++,i=(i+1)%t,j=(j+1)%c) /* 3*t > 3*c */ { A = S[i] = ROTL(S [i]+(A+B),3); B = L[j] = ROTL(L[j]+(A+B),(A+B)); } } void printword(WORD A) { WORD k; for (k=0 ;k<w; k+=8) printf("%c"); } int main() { WORD i, j, k,ptext, pt1 [2], pt2 [2], ct [2] = {0,0}; ifstream in("key1.txt"); ifstream in1("plt.txt"); ofstream out1("cpt.txt"); if(!in) { cout << "Cannot open file.\n"; return 1; } if(!in1) { cout << "Cannot open file.\n"; return 1; } unsigned char key[b]; in >> key; in1 >> pt1[0]; in1 >> pt1[0]; if (sizeof(WORD)!=4) printf("RC5 error: WORD has %d bytes.\n",sizeof(WORD)); RC5_SETUP(key); RC5_ENCRYPT(pt1,ct); printf("\n plaintext "); printword(pt1 [0]); printword(pt1 [1]); printf(" ---> ciphertext "); printword(ct [0]); printword(ct [1]); printf("\n"); RC5_SETUP(key); RC5_DECRYPT(ct,pt2); out1<<ct[0]; out1<<ct[1]; out1 <<"\n"; printf("\n plaintext "); printword(pt1 [0]); printword(pt1 [1]); return 0; } Let the plt.txt file contain 101 100 let the key be 111

    Read the article

  • When Your Favorite Video Game Characters go Trick-or-Treating [Video]

    - by Asian Angel
    Halloween has arrived and all of your favorite video game characters are out and about collecting lots of candy goodness. The question is whether or not all will be successful in collecting treats or if the tricks will be on them! Note: Video contains some language that may be considered inappropriate. Videogame Trick-or-Treating [Dorkly] 6 Start Menu Replacements for Windows 8 What Is the Purpose of the “Do Not Cover This Hole” Hole on Hard Drives? How To Log Into The Desktop, Add a Start Menu, and Disable Hot Corners in Windows 8

    Read the article

  • Turn Your Browser Pane into a Game of Katamari Damacy

    - by Jason Fitzpatrick
    If you’re a fan of Katamari Damacy, a quirky and fun Japanese puzzle game made popular on the PlayStation, you’ll love this Javas script hack that turns your browser pane and its contents into a giant HTML-collecting game of Katamari Damacy. Katamari Damacy, for the unfamiliar, is a addictive game based on the premise that a galactic prince is on a mission to rebuild stars, constellations, and moons accidentally destroyed by his father. You roll around and collect objects (making yourself an increasingly larger ball in the process). This script hack puts a ball on your web browser pane (works best in Chrome) that you can roll around collecting elements from the web page. At first you can only grab links but as you grow you can grab increasingly large objects like photo elements off the page. It doesn’t have the sophisticated graphics of the Playstation version, of course, nor the detailed back story, but it’s a clever little hack that is sure to delight fans of Katamari Damacy. Katamari Hack [KatHack] Internet Explorer 9 Released: Here’s What You Need To KnowHTG Explains: How Does Email Work?How To Make a Youtube Video Into an Animated GIF

    Read the article

  • can not access MovieClip properties in flashDevelop

    - by numerical25
    I know there is something I am doing wrong. In my controls I have keydown events that control my hero. As of right now, I am trying to rotate my hero but he refuses to turn . Below is my Hero Class, my control class, and gameobject class. pretty much all the classes associate with the controls class. package com.Objects { import com.Objects.GameObject; /** * ... * @author Anthony Gordon */ [Embed(source='../../../bin/Assets.swf', symbol='OuterRim')] public class Hero extends GameObject { public function Hero() { } } } Here is my Controls class. This is the class where I am trying to rotate my hero but he doesnt. The keydown event does work cause I trace it. package com.Objects { import com.Objects.Hero; import flash.events.*; import flash.display.MovieClip; /** * ... * @author Anthony Gordon */ public class Controls extends GameObject { private var aKeyPress:Array; public var ship:Hero; public function Controls(ship:Hero) { this.ship = ship; IsDisplay = false; aKeyPress = new Array(); engine.sr.addEventListener(KeyboardEvent.KEY_DOWN, keyDownListener); engine.sr.addEventListener(KeyboardEvent.KEY_UP,keyUpListener); } private function keyDownListener(e:KeyboardEvent):void { //trace("down e.keyCode=" + e.keyCode); aKeyPress[e.keyCode] = true; trace(e.keyCode); } private function keyUpListener(e:KeyboardEvent):void { //trace("up e.keyCode=" + e.keyCode); aKeyPress[e.keyCode]=false; } override public function UpdateObject():void { Update(); } private function Update():void { if (aKeyPress[37])//Key press left ship.rotation += 3,trace(ship.rotation ); ///DOESNT ROtate }//End Controls } } Here is GameObject Class package com.Objects { import com.Objects.Engine; import com.Objects.IGameObject; import flash.display.MovieClip; /** * ... * @author Anthony Gordon */ public class GameObject extends MovieClip implements IGameObject { private var isdisplay:Boolean = true; private var garbage:Boolean; public static var engine:Engine; public var layer:Number = 0; public function GameObject() { } public function UpdateObject():void { } public function GarbageCollection():void { } public function set Garbage(garb:Boolean):void { garbage = garb; } public function get Garbage():Boolean { return garbage } public function get IsDisplay():Boolean { return isdisplay; } public function set IsDisplay(display:Boolean):void { isdisplay = display; } public function set Layer(l:Number):void { layer = l; } public function get Layer():Number { return layer } } }

    Read the article

  • Clever memory usage through the years

    - by Ben Emmett
    A friend and I were recently talking about the really clever tricks people have used to get the most out of memory. I thought I’d share my favorites, and would love to hear yours too! Interleaving on drum memory Back in the ye olde days before I’d been born (we’re talking the 50s / 60s here), working memory commonly took the form of rotating magnetic drums. These would spin at a constant speed, and a fixed head would read from memory when the correct part of the drum passed it by, a bit like a primitive platter disk. Because each revolution took a few milliseconds, programmers took to manually arranging information non-sequentially on the drum, timing when an instruction or memory address would need to be accessed, then spacing information accordingly around the edge of the drum, thus reducing the access delay. Similar techniques were still used on hard disks and floppy disks into the 90s, but have become irrelevant with modern disk technologies. The Hashlife algorithm Conway’s Game of Life has attracted numerous implementations over the years, but Bill Gosper’s Hashlife algorithm is particularly impressive. Taking advantage of the repetitive nature of many cellular automata, it uses a quadtree structure to store the hashes of pieces of the overall grid. Over time there are fewer and fewer new structures which need to be evaluated, so it starts to run faster with larger grids, drastically outperforming other algorithms both in terms of speed and the size of grid which can be simulated. The actual amount of memory used is huge, but it’s used in a clever way, so makes the list . Elite’s procedural generation Ok, so this isn’t exactly a memory optimization – more a storage optimization – but it gets an honorable mention anyway. When writing Elite, David Braben and Ian Bell wanted to build a rich world which gamers could explore, but their 22K memory was something of a limitation (for comparison that’s about the size of my avatar picture at the top of this page). They procedurally generated all the characteristics of the 2048 planets in their virtual universe, including the names, which were stitched together using a lookup table of parts of names. In fact the original plans were for 2^52 planets, but it was decided that that was probably too many. Oh, and they did that all in assembly language. Other games of the time used similar techniques too – The Sentinel’s landscape generation algorithm being another example. Modern Garbage Collectors Garbage collection in managed languages like Java and .NET ensures that most of the time, developers stop needing to care about how they use and clean up memory as the garbage collector handles it automatically. Achieving this without killing performance is a near-miraculous feet of software engineering. Much like when learning chemistry, you find that every time you think you understand how the garbage collector works, it turns out to be a mere simplification; that there are yet more complexities and heuristics to help it run efficiently. Of course introducing memory problems is still possible (and there are tools like our memory profiler to help if that happens to you) but they’re much, much rarer. A cautionary note In the examples above, there were good and well understood reasons for the optimizations, but cunningly optimized code has usually had to trade away readability and maintainability to achieve its gains. Trying to optimize memory usage without being pretty confident that there’s actually a problem is doing it wrong. So what have I missed? Tell me about the ingenious (or stupid) tricks you’ve seen people use. Ben

    Read the article

  • Load and Web Performance Testing using Visual Studio Ultimate 2010-Part 3

    - by Tarun Arora
    Welcome back once again, in Part 1 of Load and Web Performance Testing using Visual Studio 2010 I talked about why Performance Testing the application is important, the test tools available in Visual Studio Ultimate 2010 and various test rig topologies, in Part 2 of Load and Web Performance Testing using Visual Studio 2010 I discussed the details of web performance & load tests as well as why it’s important to follow a goal based pattern while performance testing your application. In part 3 I’ll be discussing Test Result Analysis, Test Result Drill through, Test Report Generation, Test Run Comparison, Asp.net Profiler and some closing thoughts. Test Results – I see some creepy worms! In Part 2 we put together a web performance test and a load test, lets run the test to see load test to see how the Web site responds to the load simulation. While the load test is running you will be able to see close to real time analysis in the Load Test Analyser window. You can use the Load Test Analyser to conduct load test analysis in three ways: Monitor a running load test - A condensed set of the performance counter data is maintained in memory. To prevent the results memory requirements from growing unbounded, up to 200 samples for each performance counter are maintained. This includes 100 evenly spaced samples that span the current elapsed time of the run and the most recent 100 samples.         After the load test run is completed - The test controller spools all collected performance counter data to a database while the test is running. Additional data, such as timing details and error details, is loaded into the database when the test completes. The performance data for a completed test is loaded from the database and analysed by the Load Test Analyser. Below you can see a screen shot of the summary view, this provides key results in a format that is compact and easy to read. You can also print the load test summary, this is generated after the test has completed or been stopped.         Analyse the load test results of a previously run load test – We’ll see this in the section where i discuss comparison between two test runs. The performance counters can be plotted on the graphs. You also have the option to highlight a selected part of the test and view details, drill down to the user activity chart where you can hover over to see more details of the test run.   Generate Report => Test Run Comparisons The level of reports you can generate using the Load Test Analyser is astonishing. You have the option to create excel reports and conduct side by side analysis of two test results or to track trend analysis. The tools also allows you to export the graph data either to MS Excel or to a CSV file. You can view the ASP.NET profiler report to conduct further analysis as well. View Data and Diagnostic Attachments opens the Choose Diagnostic Data Adapter Attachment dialog box to select an adapter to analyse the result type. For example, you can select an IntelliTrace adapter, click OK and open the IntelliTrace summary for the test agent that was used in the load test.   Compare results This creates a set of reports that compares the data from two load test results using tables and bar charts. I have taken these screen shots from the MSDN documentation, I would highly recommend exploring the wealth of knowledge available on MSDN. Leaving Thoughts While load testing the application with an excessive load for a longer duration of time, i managed to bring the IIS to its knees by piling up a huge queue of requests waiting to be processed. This clearly means that the IIS had run out of threads as all the threads were busy processing existing request, one easy way of fixing this is by increasing the default number of allocated threads, but this might escalate the problem. The better suggestion is to try and drill down to the actual root cause of the problem. When ever the garbage collection runs it stops processing any pages so all requests that come in during that period are queued up, but realistically the garbage collection completes in fraction of a a second. To understand this better lets look at the .net heap, it is divided into large heap and small heap, anything greater than 85kB in size will be allocated to the Large object heap, the Large object heap is non compacting and remember large objects are expensive to move around, so if you are allocating something in the large object heap, make sure that you really need it! The small object heap on the other hand is divided into generations, so all objects that are supposed to be short-lived are suppose to live in Gen-0 and the long living objects eventually move to Gen-2 as garbage collection goes through.  As you can see in the picture below all < 85 KB size objects are first assigned to Gen-0, when Gen-0 fills up and a new object comes in and finds Gen-0 full, the garbage collection process is started, the process checks for all the dead objects and assigns them as the valid candidate for deletion to free up memory and promotes all the remaining objects in Gen-0 to Gen-1. So in the future when ever you clean up Gen-1 you have to clean up Gen-0 as well. When you fill up Gen – 0 again, all of Gen – 1 dead objects are drenched and rest are moved to Gen-2 and Gen-0 objects are moved to Gen-1 to free up Gen-0, but by this time your Garbage collection process has started to take much more time than it usually takes. Now as I mentioned earlier when garbage collection is being run all page requests that come in during that period are queued up. Does this explain why possibly page requests are getting queued up, apart from this it could also be the case that you are waiting for a long running database process to complete.      Lets explore the heap a bit more… What is really a case of crisis is when the objects are living long enough to make it to Gen-2 and then dying, this is definitely a high cost operation. But sometimes you need objects in memory, for example when you cache data you hold on to the objects because you need to use them right across the user session, which is acceptable. But if you wanted to see what extreme caching can do to your server then write a simple application that chucks in a lot of data in cache, run a load test over it for about 10-15 minutes, forcing a lot of data in memory causing the heap to run out of memory. If you get to such a state where you start running out of memory the IIS as a mode of recovery restarts the worker process. It is great way to free up all your memory in the heap but this would clear the cache. The problem with this is if the customer had 10 items in their shopping basket and that data was stored in the application cache, the user basket will now be empty forcing them either to get frustrated and go to a competitor website or if the customer is really patient, give it another try! How can you address this, well two ways of addressing this; 1. Workaround – A x86 bit processor only allows a maximum of 4GB of RAM, this means the machine effectively has around 3.4 GB of RAM available, the OS needs about 1.5 GB of RAM to run efficiently, the IIS and .net framework also need their share of memory, leaving you a heap of around 800 MB to play with. Because Team builds by default build your application in ‘Compile as any mode’ it means the application is build such that it will run in x86 bit mode if run on a x86 bit processor and run in a x64 bit mode if run on a x64 but processor. The problem with this is not all applications are really x64 bit compatible specially if you are using com objects or external libraries. So, as a quick win if you compiled your application in x86 bit mode by changing the compile as any selection to compile as x86 in the team build, you will be able to run your application on a x64 bit machine in x86 bit mode (WOW – By running Windows on Windows) and what that means is, you could use 8GB+ worth of RAM, if you take away everything else your application will roughly get a heap size of at least 4 GB to play with, which is immense. If you need a heap size of more than 4 GB you have either build a software for NASA or there is something fundamentally wrong in your application. 2. Solution – Now that you have put a workaround in place the IIS will not restart the worker process that regularly, which means you can take a breather and start working to get to the root cause of this memory leak. But this begs a question “How do I Identify possible memory leaks in my application?” Well i won’t say that there is one single tool that can tell you where the memory leak is, but trust me, ‘Performance Profiling’ is a great start point, it definitely gets you started in the right direction, let’s have a look at how. Performance Wizard - Start the Performance Wizard and select Instrumentation, this lets you measure function call counts and timings. Before running the performance session right click the performance session settings and chose properties from the context menu to bring up the Performance session properties page and as shown in the screen shot below, check the check boxes in the group ‘.NET memory profiling collection’ namely ‘Collect .NET object allocation information’ and ‘Also collect the .NET Object lifetime information’.    Now if you fire off the profiling session on your pages you will notice that the results allows you to view ‘Object Lifetime’ which shows you the number of objects that made it to Gen-0, Gen-1, Gen-2, Large heap, etc. Another great feature about the profile is that if your application has > 5% cases where objects die right after making to the Gen-2 storage a threshold alert is generated to alert you. Since you have the option to also view the most expensive methods and by capturing the IntelliTrace data you can drill in to narrow down to the line of code that is the root cause of the problem. Well now that we have seen how crucial memory management is and how easy Visual Studio Ultimate 2010 makes it for us to identify and reproduce the problem with the best of breed tools in the product. Caching One of the main ways to improve performance is Caching. Which basically means you tell the web server that instead of going to the database for each request you keep the data in the webserver and when the user asks for it you serve it from the webserver itself. BUT that can have consequences! Let’s look at some code, trust me caching code is not very intuitive, I define a cache key for almost all searches made through the common search page and cache the results. The approach works fine, first time i get the data from the database and second time data is served from the cache, significant performance improvement, EXCEPT when two users try to do the same operation and run into each other. But it is easy to handle this by adding the lock as you can see in the snippet below. So, as long as a user comes in and finds that the cache is empty, the user locks and starts to get the cache no more concurrency issues. But lets say you are processing 10 requests per second, by the time i have locked the operation to get the results from the database, 9 other users came in and found that the cache key is null so after i have come out and populated the cache they will still go in to get the results again. The application will still be faster because the next set of 10 users and so on would continue to get data from the cache. BUT if we added another null check after locking to build the cache and before actual call to the db then the 9 users who follow me would not make the extra trip to the database at all and that would really increase the performance, but didn’t i say that the code won’t be very intuitive, may be you should leave a comment you don’t want another developer to come in and think what a fresher why is he checking for the cache key null twice !!! The downside of caching is, you are storing the data outside of the database and the data could be wrong because the updates applied to the database would make the data cached at the web server out of sync. So, how do you invalidate the cache? Well if you only had one way of updating the data lets say only one entry point to the data update you can write some logic to say that every time new data is entered set the cache object to null. But this approach will not work as soon as you have several ways of feeding data to the system or your system is scaled out across a farm of web servers. The perfect solution to this is Micro Caching which means you cache the query for a set time duration and invalidate the cache after that set duration. The advantage is every time the user queries for that data with in the time span for which you have cached the results there are no calls made to the database and the data is served right from the server which makes the response immensely quick. Now figuring out the appropriate time span for which you micro cache the query results really depends on the application. Lets say your website gets 10 requests per second, if you retain the cache results for even 1 minute you will have immense performance gains. You would reduce 90% hits to the database for searching. Ever wondered why when you go to e-bookers.com or xpedia.com or yatra.com to book a flight and you click on the book button because the fare seems too exciting and you get an error message telling you that the fare is not valid any more. Yes, exactly => That is a cache failure! These travel sites or price compare engines are not going to hit the database every time you hit the compare button instead the results will be served from the cache, because the query results are micro cached, its a perfect trade-off, by micro caching the results the site gains 100% performance benefits but every once in a while annoys a customer because the fare has expired. But the trade off works in the favour of these sites as they are still able to process up to 30+ page requests per second which means cater to the site traffic by may be losing 1 customer every once in a while to a competitor who is also using a similar caching technique what are the odds that the user will not come back to their site sooner or later? Recap   Resources Below are some Key resource you might like to review. I would highly recommend the documentation, walkthroughs and videos available on MSDN. You can always make use of Fiddler to debug Web Performance Tests. Some community test extensions and plug ins available on Codeplex might also be of interest to you. The Road Ahead Thank you for taking the time out and reading this blog post, you may also want to read Part I and Part II if you haven’t so far. If you enjoyed the post, remember to subscribe to http://feeds.feedburner.com/TarunArora. Questions/Feedback/Suggestions, etc please leave a comment. Next ‘Load Testing in the cloud’, I’ll be working on exploring the possibilities of running Test controller/Agents in the Cloud. See you on the other side! Thank You!   Share this post : CodeProject

    Read the article

  • Chaning coding style due to Android GC performance, how far is too far?

    - by Benju
    I keep hearing that Android applications should try to limit the number of objects created in order to reduce the workload on the garbage collector. It makes sense that you may not want to created massive numbers of objects to track on a limited memory footprint, for example on a traditional server application created 100,000 objects within a few seconds would not be unheard of. The problem is how far should I take this? I've seen tons of examples of Android applications relying on static state in order supposedly "speed things up". Does increasing the number of instances that need to be garbage collected from dozens to hundreds really make that big of a difference? I can imagine changing my coding style to now created hundreds of thousands of objects like you might have on a full-blown Java-EE server but relying on a bunch of static state to (supposedly) reduce the number of objects to be garbage collected seems odd. How much is it really necessary to change your coding style in order to create performance Android apps?

    Read the article

  • Weak reference and Strong reference

    - by theband
    package uk.co.bigroom.utils { import flash.utils.Dictionary; /** * Class to create a weak reference to an object. A weak reference * is a reference that does not prevent the object from being * garbage collected. If the object has been garbage collected * then the get method will return null. */ public class WeakRef { private var dic:Dictionary; /** * The constructor - creates a weak reference. * * @param obj the object to create a weak reference to */ public function WeakRef( obj:* ) { dic = new Dictionary( true ); dic[obj] = 1; } /** * To get a strong reference to the object. * * @return a strong reference to the object or null if the * object has been garbage collected */ public function get():* { for ( var item:* in dic ) { return item; } return null; } } } In this Class, how they denote one as Weak Reference and one as Strong reference.

    Read the article

  • Pointers, links, object and reference count

    - by EugeneP
    String a = "a"; // allocate memory and write address of a memory block to a variable String b = "b"; // in a and b hold addresses b = a; // copy a address into b. // Now what? b value is completely lost and will be garbage collected //* next step a = null; // now a does not hold a valid address to any data, // still data of a object exist somewhere, yet we cannot get access to it. Correct me if there's a mistake somewhere in my reflexions. My question is: suppose anInstance object of type Instance has a property ' surname ' anInstance.getSurname() returns "MySurname". now String s = anInstance.getSurname(); anInstance = null; question is - is it true that getSurname value, namely MySurname will not be garbage collected because and only because it has active reference counter 0, and if other properties of anInstance have a zero reference counter, they'll be garbage collected?

    Read the article

  • Python - Memory Leak

    - by Dave
    I'm working on solving a memory leak in my Python application. Here's the thing - it really only appears to happen on Windows Server 2008 (not R2) but not earlier versions of Windows, and it also doesn't look like it's happening on Linux (although I haven't done nearly as much testing on Linux). To troubleshoot it, I set up debugging on the garbage collector: gc.set_debug(gc.DEBUG_UNCOLLECTABLE | gc.DEBUG_INSTANCES | gc.DEBUG_OBJECTS) Then, periodically, I log the contents of gc.garbage. Thing is, gc.garbage is always empty, yet my memory usage goes up and up and up. Very puzzling.

    Read the article

  • A Forming Repository of Script Samples for Automating Windows Server 2012 and Windows 8

    - by Jialiang
    Compared with Windows Server 2008/R2 that provides about 230 cmdlets, Windows Server 2012 beats that by a factor of over 10 shipping ~ 2,430 cmdlets.  You can automate almost every aspect of the server.   The new PowerShell 3.0, like Windows Server 2012, has a ton of new features.  In this automation script-centric move, Microsoft All-In-One Script Framework (AIOSF) is ready to support IT Pros with many new services and offerings coming this year.  We sincerely hope that the IT community will benefit from the effort. Here is the first one among our new services and offerings:  The team is preparing a large set of Windows 8 / Windows Server 2012 script samples based on frequently asked IT tasks that we collect in TechNet forums and support calls to Microsoft.   Because the script topics come from frequently asked IT tasks, we hope that these script samples can be helpful to many IT Pros worldwide.   With the General Availability of Windows Server 2012, we release the first three Windows Server 2012 / Windows 8 script samples today.    Get Network Adapter Properties in Windows Server 2012 and Windows 8 (PowerShell) http://gallery.technet.microsoft.com/scriptcenter/Get-Network-Adapter-37c5a913 Description: This script could be used to get network adapter properties and advanced properties in Windows Server 2012 and Windows 8. It combines the outputs of Get-NetAdapter and Get-NetAdapterAdvancedProperty. It can generate a report of network adapter configuration settings. Use Scenarios: In a real world, IT Administrators are required to check the configuration of network adapters after the deployment of new servers. One typical example is the duplex setting of network adapters. Also, IT administrators need to maintain a server list which contains network adapter configuration settings in a regular basis. Before Windows Server 2012, IT administrators often feel difficulties to handle these tasks. Acknowledgement: Thanks Greg Gu from AIOSF for collecting this script topic, and writing the script sample.  Thanks James Adams (Microsoft Premier Field Engineer) for reviewing the script sample and ensuring its quality.   How to batch create virtual machines in Windows Server 2012 (PowerShell) http://gallery.technet.microsoft.com/scriptcenter/How-to-batch-create-9efd1811 Description: This PowerShell Script illustrates how to batch create multiple virtual machines based on comma delimited file by using PowerShell 3.0 in Windows Server 2012. Use Scenarios: IT admin requires to batch creating virtual machines in Windows Server 2012, although they can use few commands due to the lack of programming knowledge. Although it’s a set of Hyper-V command-lets within Windows PowerShell, IT Admins are reluctant to use them except simple a command which is widely used. Acknowledgement: Thanks Anders Wang from AIOSF for collecting this script topic and writing the script sample.  Thanks Christopher Norris for reviewing the script sample and ensuring its quality before publishing.   Remove Windows Store Apps in Windows 8 (PowerShell) http://gallery.technet.microsoft.com/scriptcenter/Remove-Windows-Store-Apps-a00ef4a4 Description: This script can be used to remove multiple Windows Store Apps from a user account in Windows 8. It provides a list of installed Windows Store applications. You can specify the application IDs, and remove them all at once. Use Scenarios: 1. In Windows 8, you can remove a single Windows Store App by right-clicking the tile in the Start menu and choosing the uninstall command.  However, no command is provided for removing multiple Windows Store Apps all at once. If you want to do so, you can use this script sample. 2. Sometimes Windows Store Apps may crash in Windows 8.  Even though you can successfully uninstall and reinstall the App, the application may still crash after the reinstallation.  In this situation, you can use this example script to remove these Windows Store Apps cleanly. Acknowledgement: Thanks Edward Qi from AIOSF for collecting the script idea and composing the script sample.  Thanks James Adams (Microsoft Premier Field Engineer) for reviewing the script sample and ensuring its quality.   This is just the beginning, and more and more script samples are coming.  You can follow our blog (http://blogs.technet.com/b/onescript) to get the latest customer-driven script samples for Windows Server 2012 and Windows 8.

    Read the article

  • Azure Blob storage defrag

    - by kaleidoscope
    The Blob Storage is really handy for storing temporary data structures during a scaled-out distributed processing. Yet, the lifespan of those data structures should not exceed the one of the underlying operation, otherwise clutter and dead data could potentially start filling up your Blob Storage Temporary data in cloud computing is very similar to memory collection in object oriented languages, when it's not done automatically by the framework, temp data tends to leak. In particular, in cloud computing,  it's pretty easy to end up with storage leaks due to: Collection omission. App crash. Service interruption. All those events cause garbage to accumulate into your Blob Storage. Then, it must be noted that for most cloud apps, I/O costs are usually predominant compared to pure storage costs. Enumerating through your whole Blob Storage to clean the garbage is likely to be an expensive solution. Lokesh, M

    Read the article

  • Which Programming Languages Support the Following Features?

    - by donalbain
    My personal programming background is mainly in Java, with a little bit of Ruby, a tiny bit of Scheme, and most recently, due to some iOS development, Objective-C. In my move from Java to Objective-C I've really come to love some features that Objective-C has that Java doesn't. These include support for both static and dynamic typing, functional programming, and closures, which I'm trying to leverage in my code more often. Unfortunately there are trade-offs, including lack of support for generics and (on iOS at least) no garbage collection. These contrasts have lead me to start a search for some of the programming languages that support the following features: Object Oriented Functional Programming Support Closures Generics Support for both Static and Dynamic Typing Module Management to avoid classpath/dll hell Garbage Collection Available Decent IDE Support Admittedly some of these features(IDE support, Module Management) may not be specific to the language itself, but obviously influence the ease of development in the language. Which languages fit these criteria?

    Read the article

< Previous Page | 11 12 13 14 15 16 17 18 19 20 21 22  | Next Page >