Search Results

Search found 2268 results on 91 pages for 'malware detection'.

Page 2/91 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Eye Detection Problem In Opencv

    - by iva123
    Hi, I'm trying to convert this c code(http://nashruddin.com/OpenCV_Eye_Detection) to the python code, but in c style, he used cvROI thing, since ROI functions are not supported by python-opencv, I tried cvGetSubRect so Here is the eye detection part of the code : eye_region = cvGetSubRect(image,cvRect(face.x,int(face.y + (face.height/4)),face.width,int(face.height/2))) eyes = cvHaarDetectObjects(eye_region,eyeCascade,memo,1.15,3,0,cvSize(25,15)) for e in eyes: cvRectangle(image, cvPoint( int(e.x), int(e.y)), cvPoint(int(e.x + e.width), int(e.y + e.height)), CV_RGB(0, 255, 0), 1, 8, 0) return image; When I run this code, It draws rectangles irrelevant places. I thought, eye_region coordinates are wrong, and tried some coordinates, but it didn't work. Any idea ? Note :Face detection method works very well, and it's code is same with the eye detection method.

    Read the article

  • Collision detection on a 2D hexagonal grid

    - by SundayMonday
    I'm making a casual grid-based 2D iPhone game using Cocos2D. The grid is a "staggered" hex-like grid consisting of uniformly sized and spaced discs. It looks something like this. I've stored the grid in a 2D array. Also I have a concept of "surrounding" grid cells. Namely the six grid cells surrounding a particular cell (except those on the boundries which can have less than six). Anyways I'm testing some collision detection and it's not working out as well as I had planned. Here's how I currently do collision detection for a moving disc that's approaching the stationary group of discs: Calculate ij-coordinates of grid cell closest to moving cell using moving cell's xy-position Get list of surrounding grid cells using ij-coordinates Examine the surrounding cells. If they're all empty then no collision If we have some non-empty surrounding cells then compare the distance between the disc centers to some minimum distance required for a collision If there's a collision then place the moving disc in grid cell ij So this works but not too well. I've considered a potentially simpler brute force approach where I just compare the moving disc to all stationary discs at each step of the game loop. This is probably feasible in terms of performance since the stationary disc count is 300 max. If not then some space-partitioning data structure could be used however that feels too complex. What are some common approaches and best practices to collision detection in a game like this?

    Read the article

  • Collision detection in 3D space

    - by dreta
    I've got to write, what can be summed up as, a compelte 3D game from scratch this semester. Up untill now i have only programmed 2D games in my spare time, the transition doesn't seem tough, the game's simple. The only issue i have is collision detection. The only thing i could find was AABB, bounding spheres or recommendations of various physics engines. I have to program a submarine that's going to be moving freely inside of a cave system, AFAIK i can't use physics libraries, so none of the above solves my problem. Up untill now i was using SAT for my collision detection. Are there any similar, great algorithms, but crafted for 3D collision? I'm not talking about octrees, or other optimalizations, i'm talking about direct collision detection of one set of 3D polygons with annother set of 3D polygons. I thought about using SAT twice, project the mesh from the top and the side, but then it seems so hard to even divide 3D space into convex shapes. Also that seems like far too much computation even with octrees. How do proffessionals do it? Could somebody shed some light.

    Read the article

  • Colored Collision Detection

    - by tugrul büyükisik
    Several years ago, i made a fast collision detection for 2D, it was just checking a bullets front-pixel's color to check if it were to hit something. Lets say the target rgb color is (124,200,255) then it just checks for that color. After the collision detection, it paints the target with appropriate picture. So, collision detection is made in background without drawing but then painted and drawed. How can i do this in 3D? Because, a vertex is not just exist like a 2D picture's pixel. I looked at some java3D and other programs and understood that 3D world is made of objects. Not just pictures. Is there a program that truly fills the world with vertices ? But it could be needing terabytes of ram even more. Do you know an easy way to interpolate the color of a vertex in java3D or similar program? Note: for a rgb color-identifier, i can make 255*255*255 different 2D objects in background.

    Read the article

  • Is spywarehelpcenter.com a reliable resource for malware removal?

    - by smartcaveman
    I am looking for a good resource for removing a spyware program Security Shield. I know that many resources claiming to offer help are actually just proponents of additional spyware. The article I came across is at http://www.spywarehelpcenter.com/how-to-remove-security-shield-virus-virus-removal/ . Can I trust this advice and the files from this site? If not, where can I find reliable information on this topic?

    Read the article

  • Java collision detection and player movement: tips

    - by Loris
    I have read a short guide for game develompent (java, without external libraries). I'm facing with collision detection and player (and bullets) movements. Now i put the code. Most of it is taken from the guide (should i link this guide?). I'm just trying to expand and complete it. This is the class that take care of updates movements and firing mechanism (and collision detection): public class ArenaController { private Arena arena; /** selected cell for movement */ private float targetX, targetY; /** true if droid is moving */ private boolean moving = false; /** true if droid is shooting to enemy */ private boolean shooting = false; private DroidController droidController; public ArenaController(Arena arena) { this.arena = arena; this.droidController = new DroidController(arena); } public void update(float delta) { Droid droid = arena.getDroid(); //droid movements if (moving) { droidController.moveDroid(delta, targetX, targetY); //check if arrived if (droid.getX() == targetX && droid.getY() == targetY) moving = false; } //firing mechanism if(shooting) { //stop shot if there aren't bullets if(arena.getBullets().isEmpty()) { shooting = false; } for(int i = 0; i < arena.getBullets().size(); i++) { //current bullet Bullet bullet = arena.getBullets().get(i); System.out.println(bullet.getBounds()); //angle calculation double angle = Math.atan2(bullet.getEnemyY() - bullet.getY(), bullet.getEnemyX() - bullet.getX()); //increments x and y bullet.setX((float) (bullet.getX() + (Math.cos(angle) * bullet.getSpeed() * delta))); bullet.setY((float) (bullet.getY() + (Math.sin(angle) * bullet.getSpeed() * delta))); //collision with obstacles for(int j = 0; j < arena.getObstacles().size(); j++) { Obstacle obs = arena.getObstacles().get(j); if(bullet.getBounds().intersects(obs.getBounds())) { System.out.println("Collision detect!"); arena.removeBullet(bullet); } } //collisions with enemies for(int j = 0; j < arena.getEnemies().size(); j++) { Enemy ene = arena.getEnemies().get(j); if(bullet.getBounds().intersects(ene.getBounds())) { System.out.println("Collision detect!"); arena.removeBullet(bullet); } } } } } public boolean onClick(int x, int y) { //click on empty cell if(arena.getGrid()[(int)(y / Arena.TILE)][(int)(x / Arena.TILE)] == null) { //coordinates targetX = x / Arena.TILE; targetY = y / Arena.TILE; //enables movement moving = true; return true; } //click on enemy: fire if(arena.getGrid()[(int)(y / Arena.TILE)][(int)(x / Arena.TILE)] instanceof Enemy) { //coordinates float enemyX = x / Arena.TILE; float enemyY = y / Arena.TILE; //new bullet Bullet bullet = new Bullet(); //start coordinates bullet.setX(arena.getDroid().getX()); bullet.setY(arena.getDroid().getY()); //end coordinates (enemie) bullet.setEnemyX(enemyX); bullet.setEnemyY(enemyY); //adds bullet to arena arena.addBullet(bullet); //enables shooting shooting = true; return true; } return false; } As you can see for collision detection i'm trying to use Rectangle object. Droid example: import java.awt.geom.Rectangle2D; public class Droid { private float x; private float y; private float speed = 20f; private float rotation = 0f; private float damage = 2f; public static final int DIAMETER = 32; private Rectangle2D rectangle; public Droid() { rectangle = new Rectangle2D.Float(x, y, DIAMETER, DIAMETER); } public float getX() { return x; } public void setX(float x) { this.x = x; //rectangle update rectangle.setRect(x, y, DIAMETER, DIAMETER); } public float getY() { return y; } public void setY(float y) { this.y = y; //rectangle update rectangle.setRect(x, y, DIAMETER, DIAMETER); } public float getSpeed() { return speed; } public void setSpeed(float speed) { this.speed = speed; } public float getRotation() { return rotation; } public void setRotation(float rotation) { this.rotation = rotation; } public float getDamage() { return damage; } public void setDamage(float damage) { this.damage = damage; } public Rectangle2D getRectangle() { return rectangle; } } For now, if i start the application and i try to shot to an enemy, is immediately detected a collision and the bullet is removed! Can you help me with this? If the bullet hit an enemy or an obstacle in his way, it must disappear. Ps: i know that the movements of the bullets should be managed in another class. This code is temporary. update I realized what happens, but not why. With those for loops (which checks collisions) the movements of the bullets are instantaneous instead of gradual. In addition to this, if i add the collision detection to the Droid, the method intersects returns true ALWAYS while the droid is moving! public void moveDroid(float delta, float x, float y) { Droid droid = arena.getDroid(); int bearing = 1; if (droid.getX() > x) { bearing = -1; } if (droid.getX() != x) { droid.setX(droid.getX() + bearing * droid.getSpeed() * delta); //obstacles collision detection for(Obstacle obs : arena.getObstacles()) { if(obs.getRectangle().intersects(droid.getRectangle())) { System.out.println("Collision detected"); //ALWAYS HERE } } //controlla se è arrivato if ((droid.getX() < x && bearing == -1) || (droid.getX() > x && bearing == 1)) droid.setX(x); } bearing = 1; if (droid.getY() > y) { bearing = -1; } if (droid.getY() != y) { droid.setY(droid.getY() + bearing * droid.getSpeed() * delta); if ((droid.getY() < y && bearing == -1) || (droid.getY() > y && bearing == 1)) droid.setY(y); } }

    Read the article

  • Collision detection - Smooth wall sliding, no bounce effect

    - by Joey
    I'm working on a basic collision detection system that provides point - OBB collision detection. I have around 200 cubes in my environment and I check (for now) each of them in turn and see if it collides. If it does I return the colliding face's normal, save the old player position and do some trigonometry to return a new player position for my wall sliding. edit I'll define my meaning of wall sliding: If a player walks in a vertical slope and has a slight horizontal rotation to the left or the right and keeps walking forward in the wall the player should slide a little to the right/left while continually walking towards the wall till he left the wall. Thus, sliding along the wall. Everything works fine and with multiple objects as well but I still have one problem I can't seem to figure out: smooth wall sliding. In my current implementation sliding along the walls make my player bounce like a mad man (especially noticable with gravity on and moving forward). I have a velocity/direction vector, a normal vector from the collided plane and an old and new player position. First I negate the normal vector and get my new velocity vector by substracting the inverted normal from my direction vector (which is the vector to slide along the wall) and I add this vector to my new Player position and recalculate the direction vector (in case I have multiple collisions). I know I am missing some step but I can't seem to figure it out. Here is my code for the collision detection (run every frame): Vector direction; Vector newPos(camera.GetOriginX(), camera.GetOriginY(), camera.GetOriginZ()); direction = newPos - oldPos; // Direction vector // Check for collision with new position for(int i = 0; i < NUM_OBJECTS; i++) { Vector normal = objects[i].CheckCollision(newPos.x, newPos.y, newPos.z, direction.x, direction.y, direction.z); if(normal != Vector::NullVector()) { // Get inverse normal (direction STRAIGHT INTO wall) Vector invNormal = normal.Negative(); Vector wallDir = direction - invNormal; // We know INTO wall, and DIRECTION to wall. Substract these and you got slide WALL direction newPos = oldPos + wallDir; direction = newPos - oldPos; } } Any help would be greatly appreciated! FIX I eventually got things up and running how they should thanks to Krazy, I'll post the updated code listing in case someone else comes upon this problem! for(int i = 0; i < NUM_OBJECTS; i++) { Vector normal = objects[i].CheckCollision(newPos.x, newPos.y, newPos.z, direction.x, direction.y, direction.z); if(normal != Vector::NullVector()) { Vector invNormal = normal.Negative(); invNormal = invNormal * (direction * normal).Length(); // Change normal to direction's length and normal's axis Vector wallDir = direction - invNormal; newPos = oldPos + wallDir; direction = newPos - oldPos; } }

    Read the article

  • Multiple Sprites using foreach Collison Detection in XNA (C#)

    - by Bradley Kreuger
    Back again from my last question. Now I was curious I use a foreach statement to use the same shot class. How would I go about doing collison detection. I used the tutorial here on how to shoot a fireball http://www.xnadevelopment.com/tutorials.shtml. I tried to put in several places a foreach to look at all of them to see if they have reached the borders of my sprite hero but doesn't seem to do anything. If again some one might know of a good site that has tutorials to explain collision detection a little bit better that would be appriecated.

    Read the article

  • Android Java rectangle collision detection not working

    - by Charlton Santana
    I had been hard coding a collision detection system which was buggy. Then I came across using rectangles for collsion detection. So I put it all in and it does not work, I put a log in and it never logged. Note to Java programmers who are not Android programers: Android uses the word Rect instead of Rectangle. Code for Block.java: public Rect getBounds(){ return new Rect (this.x, this.y, 10, 20); } Code for Sprite.java: public Rect getBounds(){ return new Rect (this.x, this.y, 20, 20); } Code for MainGame.java: for(Block block : BLOCKS) { block.draw(canvas); block.rigidbody(); Rect spriter = sprite.getBounds(); Rect blockr = block.getBounds(); if(spriter.intersect(blockr)){ showgameover = 1; Log.d(TAG, "Game Over"); } } Is anyone able to help?

    Read the article

  • Solving 2D Collision Detection Issues with Relative Velocities

    - by Jengerer
    Imagine you have a situation where two objects are moving parallel to one-another and are both within range to collide with a static wall, like this: A common method used in dynamic collision detection is to loop through all objects in arbitrary order, solve for pair-wise collision detection using relative velocities, and then move the object to the nearest collision, if any. However, in this case, if the red object is checked first against the blue one, it would see that the relative velocity to the blue object is -20 m/s (and would thereby not collide this time frame). Then it would see that the red object would collide with the static wall, and the solution would be: And the red object passes through the blue one. So it appears to be a matter of choosing the right order in which you check collisions; but how can you determine which order is correct? How can this passing through of objects be avoided? Is ignoring relative velocity and considering every object as static during pair-wise checks a better idea for this reason?

    Read the article

  • Collision Detection fails with AI cars

    - by amit.r007
    I am making a car parking game in flash and AS3 wherein I drive my car along with other AI traffic cars moving along a specified path using Guidelines. I am using CDK for collision detection. The collision detection works fine with few AI cars, but doesn't seems to be working as required for few AI cars. When an AI car is moving on a path in a straight line it works fine.... but when the AI Car turns at 90 degress..... my car goes into the AI car (Overlapping) and it hits at the center of that AI car and then collision is Detected.... ..... I made a New path and used a new Sprite for AI car... but still the problem pursues....

    Read the article

  • Find the source of malware?

    - by Jud Stephenson
    I have a server that was running an older version of lighttpd (1.4.19 on a freebsd 6.2-RELEASE (yea, old) machine) and google alerted me that it had found malware embedded on one of my server's pages. It just so happened to be our index page. I promptly removed the malware and started looking at server logs for how it got there. With no trace in any of the logs of the files being edited, I noticed that the index page's owner had been changed to www, which is the lighttpd user. I then concluded that some sort of veunerability must have existed for that software version and promptly upgraded to 1.4.26. Now the malware is back. I have started some pretty verbose server logging with ftp, lighttpd, and all login attempts to try and see how this script is getting in. Are their any suggestions as to other approaches to take?

    Read the article

  • Using Virtual box to practice malware removal?

    - by jwsENLBH2XavZ
    Hello, I have Windows 7, and installed virtualbox on it with a copy of Windows XP pro sp3 with all updates. I want to use the virutal environment to practice removing malware....in other words, I want to infect it on purpose. What is the safest way to do this so that win 7 doesn't get infected as well? Any settings I should change in virutalbox? And before anyone asks, no, I don't write viruses/malware. I am a tech, and would like to practice removing malware. Thanks.

    Read the article

  • Security Essentials not installing and I suspect my machine is infected with malware

    - by Jim
    My mouse seems to be automatically right-clicking every few seconds, and sometimes constantly. My cursor will abruptly become an hourglass for a moment every once in a while, as well. It happens in spurts, as in it hasn't happened for about 10 minutes, but the preceding 20 before that it was happening constantly. I suspect that my machine is infected with malware of some sort, so I've tried installing Microsoft Security Essentials, but it presents the following error upon installation failure: My questions are: How can I solve the MSE installation issue and run a scan? Are there any indications that malware isn't actually my issue? Is MSE my best way to go about solving my issue, assuming that malware actually is the problem? Many thanks!

    Read the article

  • Fraud Detection with the SQL Server Suite Part 2

    - by Dejan Sarka
    This is the second part of the fraud detection whitepaper. You can find the first part in my previous blog post about this topic. My Approach to Data Mining Projects It is impossible to evaluate the time and money needed for a complete fraud detection infrastructure in advance. Personally, I do not know the customer’s data in advance. I don’t know whether there is already an existing infrastructure, like a data warehouse, in place, or whether we would need to build one from scratch. Therefore, I always suggest to start with a proof-of-concept (POC) project. A POC takes something between 5 and 10 working days, and involves personnel from the customer’s site – either employees or outsourced consultants. The team should include a subject matter expert (SME) and at least one information technology (IT) expert. The SME must be familiar with both the domain in question as well as the meaning of data at hand, while the IT expert should be familiar with the structure of data, how to access it, and have some programming (preferably Transact-SQL) knowledge. With more than one IT expert the most time consuming work, namely data preparation and overview, can be completed sooner. I assume that the relevant data is already extracted and available at the very beginning of the POC project. If a customer wants to have their people involved in the project directly and requests the transfer of knowledge, the project begins with training. I strongly advise this approach as it offers the establishment of a common background for all people involved, the understanding of how the algorithms work and the understanding of how the results should be interpreted, a way of becoming familiar with the SQL Server suite, and more. Once the data has been extracted, the customer’s SME (i.e. the analyst), and the IT expert assigned to the project will learn how to prepare the data in an efficient manner. Together with me, knowledge and expertise allow us to focus immediately on the most interesting attributes and identify any additional, calculated, ones soon after. By employing our programming knowledge, we can, for example, prepare tens of derived variables, detect outliers, identify the relationships between pairs of input variables, and more, in only two or three days, depending on the quantity and the quality of input data. I favor the customer’s decision of assigning additional personnel to the project. For example, I actually prefer to work with two teams simultaneously. I demonstrate and explain the subject matter by applying techniques directly on the data managed by each team, and then both teams continue to work on the data overview and data preparation under our supervision. I explain to the teams what kind of results we expect, the reasons why they are needed, and how to achieve them. Afterwards we review and explain the results, and continue with new instructions, until we resolve all known problems. Simultaneously with the data preparation the data overview is performed. The logic behind this task is the same – again I show to the teams involved the expected results, how to achieve them and what they mean. This is also done in multiple cycles as is the case with data preparation, because, quite frankly, both tasks are completely interleaved. A specific objective of the data overview is of principal importance – it is represented by a simple star schema and a simple OLAP cube that will first of all simplify data discovery and interpretation of the results, and will also prove useful in the following tasks. The presence of the customer’s SME is the key to resolving possible issues with the actual meaning of the data. We can always replace the IT part of the team with another database developer; however, we cannot conduct this kind of a project without the customer’s SME. After the data preparation and when the data overview is available, we begin the scientific part of the project. I assist the team in developing a variety of models, and in interpreting the results. The results are presented graphically, in an intuitive way. While it is possible to interpret the results on the fly, a much more appropriate alternative is possible if the initial training was also performed, because it allows the customer’s personnel to interpret the results by themselves, with only some guidance from me. The models are evaluated immediately by using several different techniques. One of the techniques includes evaluation over time, where we use an OLAP cube. After evaluating the models, we select the most appropriate model to be deployed for a production test; this allows the team to understand the deployment process. There are many possibilities of deploying data mining models into production; at the POC stage, we select the one that can be completed quickly. Typically, this means that we add the mining model as an additional dimension to an existing DW or OLAP cube, or to the OLAP cube developed during the data overview phase. Finally, we spend some time presenting the results of the POC project to the stakeholders and managers. Even from a POC, the customer will receive lots of benefits, all at the sole risk of spending money and time for a single 5 to 10 day project: The customer learns the basic patterns of frauds and fraud detection The customer learns how to do the entire cycle with their own people, only relying on me for the most complex problems The customer’s analysts learn how to perform much more in-depth analyses than they ever thought possible The customer’s IT experts learn how to perform data extraction and preparation much more efficiently than they did before All of the attendees of this training learn how to use their own creativity to implement further improvements of the process and procedures, even after the solution has been deployed to production The POC output for a smaller company or for a subsidiary of a larger company can actually be considered a finished, production-ready solution It is possible to utilize the results of the POC project at subsidiary level, as a finished POC project for the entire enterprise Typically, the project results in several important “side effects” Improved data quality Improved employee job satisfaction, as they are able to proactively contribute to the central knowledge about fraud patterns in the organization Because eventually more minds get to be involved in the enterprise, the company should expect more and better fraud detection patterns After the POC project is completed as described above, the actual project would not need months of engagement from my side. This is possible due to our preference to transfer the knowledge onto the customer’s employees: typically, the customer will use the results of the POC project for some time, and only engage me again to complete the project, or to ask for additional expertise if the complexity of the problem increases significantly. I usually expect to perform the following tasks: Establish the final infrastructure to measure the efficiency of the deployed models Deploy the models in additional scenarios Through reports By including Data Mining Extensions (DMX) queries in OLTP applications to support real-time early warnings Include data mining models as dimensions in OLAP cubes, if this was not done already during the POC project Create smart ETL applications that divert suspicious data for immediate or later inspection I would also offer to investigate how the outcome could be transferred automatically to the central system; for instance, if the POC project was performed in a subsidiary whereas a central system is available as well Of course, for the actual project, I would repeat the data and model preparation as needed It is virtually impossible to tell in advance how much time the deployment would take, before we decide together with customer what exactly the deployment process should cover. Without considering the deployment part, and with the POC project conducted as suggested above (including the transfer of knowledge), the actual project should still only take additional 5 to 10 days. The approximate timeline for the POC project is, as follows: 1-2 days of training 2-3 days for data preparation and data overview 2 days for creating and evaluating the models 1 day for initial preparation of the continuous learning infrastructure 1 day for presentation of the results and discussion of further actions Quite frequently I receive the following question: are we going to find the best possible model during the POC project, or during the actual project? My answer is always quite simple: I do not know. Maybe, if we would spend just one hour more for data preparation, or create just one more model, we could get better patterns and predictions. However, we simply must stop somewhere, and the best possible way to do this, according to my experience, is to restrict the time spent on the project in advance, after an agreement with the customer. You must also never forget that, because we build the complete learning infrastructure and transfer the knowledge, the customer will be capable of doing further investigations independently and improve the models and predictions over time without the need for a constant engagement with me.

    Read the article

  • Hard drive caught malware and all folders are in shortcuts

    - by Ammar
    I have an external hard drive from Seagate. I think it accidently caught a malware/virus, since all the files in there became shortcut folders. I have very important folders and now I cannot access them at all. I did not have an antivirus program; I just formatted the PC and forgot to install one. Just recently, I installed Avira and it caught the malware, but since I removed the malware via Avira, I can't access anything now. Please help me on what I need to do. I am really lost.

    Read the article

  • Collision Detection Code Structure with Sloped Tiles

    - by ProgrammerGuy123
    Im making a 2D tile based game with slopes, and I need help on the collision detection. This question is not about determining the vertical position of the player given the horizontal position when on a slope, but rather the structure of the code. Here is my pseudocode for the collision detection: void Player::handleTileCollisions() { int left = //find tile that's left of player int right = //find tile that's right of player int top = //find tile that's above player int bottom = //find tile that's below player for(int x = left; x <= right; x++) { for(int y = top; y <= bottom; y++) { switch(getTileType(x, y)) { case 1: //solid tile { //resolve collisions break; } case 2: //sloped tile { //resolve collisions break; } default: //air tile or whatever else break; } } } } When the player is on a sloped tile, he is actually inside the tile itself horizontally, that way the player doesn't look like he is floating. This creates a problem because when there is a sloped tile next to a solid square tile, the player can't move passed it because this algorithm resolves any collisions with the solid tile. Here is a gif showing this problem: So what is a good way to structure my code so that when the player is inside a sloped tile, solid tiles get ignored?

    Read the article

  • Coarse Collision Detection in highly dynamic environment

    - by Millianz
    I'm currently working a 3D space game with A LOT of dynamic objects that are all moving (there is pretty much no static environment). I have the collision detection and resolution working just fine, but I am now trying to optimize the collision detection (which is currently O(N^2) -- linear search). I thought about multiple options, a bounding volume hierarchy, a Binary Spatial Partitioning tree, an Octree or a Grid. I however need some help with deciding what's best for my situation. A grid seems unfeasible simply due to the space requirements and cache coherence problems. Since everything is so dynamic however, it seems to be that trees aren't ideal either, since they would have to be completely rebuilt every frame. I must admit I never implemented a physics engine that required spatial partitioning, do I indeed need to rebuild the tree every frame (assuming that everything is constantly moving) or can I update the trees after integrating? Advice is much appreciated - to give some more background: You're flying a space ship in an asteroid field, and there are lots and lots of asteroids and some enemy ships, all of which shoot bullets. EDIT: I came across the "Sweep an Prune" algorithm, which seems like the right thing for my purposes. It appears like the right mixture of fast building of the data structures involved and detailed enough partitioning. This is the best resource I can find: http://www.codercorner.com/SAP.pdf If anyone has any suggestions whether or not I'm going in the right direction, please let me know.

    Read the article

  • Collision Detection for a 2D RPG

    - by PHMitrious
    First of all, I have done some research on this topic before asking, and I'm asking this question as a mean to get some opinions on this topic, so I don't make a decision only on my own, but taking into account other people's experience as well. I'm starting a 2D online RPG project. I am using SFML for graphics and input and I'm creating a basic game structure and all for the game, creating modules for each part of the game. Well, let me get to the point I just wanted to give you guys some context. I want to decide on how I'm going to work with collision detection. Well I'm kinda going to work on maps with a tile map divided in layers (as usual) and add an extra 2 layers - not exactly in the map - for objects. So I'll have collisions between objects and agents (players - npcs - monsters - spells etc) and agents and tiles. The seconds one can be easily solved the first one need a little bit of work. I considered both creating a basic collision test engine using polygons and a quadtree to diminish tests since I'm going to be working with big maps with lots of objects - creating both a physical and graphical world representation. And I also considered using a physics engine like Box2D for collision tests. I think the first approach would take more work on my part but the second one would have the overhead of using a whole physics engine for just collision detection and no physics. What do you guys think ?

    Read the article

  • improve Collision detection memory usage (blocks with bullets)

    - by Eddy
    i am making a action platform 2D game, something like Megaman. I am using XNA to make it. already made player phisics,collisions, bullets, enemies and AIs, map editor, scorolling X Y camera (about 75% of game is finished ). as i progressed i noticed that my game would be more interesting to play if bullets would be destroyed on collision with regular(stationary ) map blocks, only problem is that if i use my collision detection (each bullet with each block) sometimes it begins to lag(btw if my bullet exits the screen player can see it is removed from bullet list) So how to improve my collision detection so that memory usage would be so high? :) ( on a map 300x300 blocks for example don't think that bigger map should be made); int block = 0; int bulet= 0; bool destroy_bullet = false; while (bulet < bullets.Count) { while (block < blocks.Count) { if (bullets[bulet].P_Bul_rec.Intersects( blocks[block].rect)) {//bullets and block are Lists that holds objects of bullet and block classes //P_Bul_rec just bullet rectangle destroy_bullet = true; } block++; } if (destroy_bullet) { bullets.RemoveAt(bulet); destroy_bullet = false; } else { bulet++; } block = 0; }

    Read the article

  • Java : 2D Collision Detection

    - by neko
    I'm been working on 2D rectangle collision for weeks and still cannot get this problem fixed. The problem I'm having is how to adjust a player to obstacles when it collides. I'm referencing this link. The player sometime does not get adjusted to obstacles. Also, it sometimes stuck in obstacle guy after colliding. Here, the player and the obstacle are inheriting super class Sprite I can detect collision between the two rectangles and the point by ; public Point getSpriteCollision(Sprite sprite, double newX, double newY) { // set each rectangle Rectangle spriteRectA = new Rectangle( (int)getPosX(), (int)getPosY(), getWidth(), getHeight()); Rectangle spriteRectB = new Rectangle( (int)sprite.getPosX(), (int)sprite.getPosY(), sprite.getWidth(), sprite.getHeight()); // if a sprite is colliding with the other sprite if (spriteRectA.intersects(spriteRectB)){ System.out.println("Colliding"); return new Point((int)getPosX(), (int)getPosY()); } return null; } and to adjust sprites after a collision: // Update the sprite's conditions public void update() { // only the player is moving for simplicity // collision detection on x-axis (just x-axis collision detection at this moment) double newX = x + vx; // calculate the x-coordinate of sprite move Point sprite = getSpriteCollision(map.getSprite().get(1), newX, y);// collision coordinates (x,y) if (sprite == null) { // if the player is no colliding with obstacle guy x = newX; // move } else { // if collided if (vx > 0) { // if the player was moving from left to right x = (sprite.x - vx); // this works but a bit strange } else if (vx < 0) { x = (sprite.x + vx); // there's something wrong with this too } } vx=0; y+=vy; vy=0; } I think there is something wrong in update() but cannot fix it. Now I only have a collision with the player and an obstacle guy but in future, I'm planning to have more of them and making them all collide with each other. What would be a good way to do it? Thanks in advance.

    Read the article

  • Confusion with floats converted into ints during collision detection

    - by TheBroodian
    So in designing a 2D platformer, I decided that I should be using a Vector2 to track the world location of my world objects to retain some sub-pixel precision for slow-moving objects and other such subtle nuances, yet representing their bodies with Rectangles, because as far as collision detection and resolution is concerned, I don't need sub-pixel precision. I thought that the following line of thought would work smoothly... Vector2 wrldLocation; Point WorldLocation; Rectangle collisionRectangle; public void Update(GameTime gameTime) { Vector2 moveAmount = velocity * (float)gameTime.ElapsedGameTime.TotalSeconds wrldLocation += moveAmount; WorldLocation = new Point((int)wrldLocation.X, (int)wrldLocation.Y); collisionRectangle = new Rectangle(WorldLocation.X, WorldLocation.Y, genericWidth, genericHeight); } and I guess in theory it sort of works, until I try to use it in conjunction with my collision detection, which works by using Rectangle.Offset() to project where collisionRectangle would supposedly end up after applying moveAmount to it, and if a collision is found, finding the intersection and subtracting the difference between the two intersecting sides to the given moveAmount, which would theoretically give a corrected moveAmount to apply to the object's world location that would prevent it from passing through walls and such. The issue here is that Rectangle.Offset() only accepts ints, and so I'm not really receiving an accurate adjustment to moveAmount for a Vector2. If I leave out wrldLocation from my previous example, and just use WorldLocation to keep track of my object's location, everything works smoothly, but then obviously if my object is being given velocities less than 1 pixel per update, then the velocity value may as well be 0, which I feel further down the line I may regret. Does anybody have any suggestions about how I might go about resolving this?

    Read the article

  • Pixel Perfect Collision Detection in Cocos2dx

    - by Happybirthday
    I am trying to port the pixel perfect collision detection in Cocos2d-x the original version was made for Cocos2D and can be found here: http://www.cocos2d-iphone.org/forums/topic/pixel-perfect-collision-detection-using-color-blending/ Here is my code for the Cocos2d-x version bool CollisionDetection::areTheSpritesColliding(cocos2d::CCSprite *spr1, cocos2d::CCSprite *spr2, bool pp, CCRenderTexture* _rt) { bool isColliding = false; CCRect intersection; CCRect r1 = spr1-boundingBox(); CCRect r2 = spr2-boundingBox(); intersection = CCRectMake(fmax(r1.getMinX(),r2.getMinX()), fmax( r1.getMinY(), r2.getMinY()) ,0,0); intersection.size.width = fmin(r1.getMaxX(), r2.getMaxX() - intersection.getMinX()); intersection.size.height = fmin(r1.getMaxY(), r2.getMaxY() - intersection.getMinY()); // Look for simple bounding box collision if ( (intersection.size.width0) && (intersection.size.height0) ) { // If we're not checking for pixel perfect collisions, return true if (!pp) { return true; } unsigned int x = intersection.origin.x; unsigned int y = intersection.origin.y; unsigned int w = intersection.size.width; unsigned int h = intersection.size.height; unsigned int numPixels = w * h; //CCLog("Intersection X and Y %d, %d", x, y); //CCLog("Number of pixels %d", numPixels); // Draw into the RenderTexture _rt-beginWithClear( 0, 0, 0, 0); // Render both sprites: first one in RED and second one in GREEN glColorMask(1, 0, 0, 1); spr1-visit(); glColorMask(0, 1, 0, 1); spr2-visit(); glColorMask(1, 1, 1, 1); // Get color values of intersection area ccColor4B *buffer = (ccColor4B *)malloc( sizeof(ccColor4B) * numPixels ); glReadPixels(x, y, w, h, GL_RGBA, GL_UNSIGNED_BYTE, buffer); _rt-end(); // Read buffer unsigned int step = 1; for(unsigned int i=0; i 0 && color.g 0) { isColliding = true; break; } } // Free buffer memory free(buffer); } return isColliding; } My code is working perfectly if I send the "pp" parameter as false. That is if I do only a bounding box collision but I am not able to get it working correctly for the case when I need Pixel Perfect collision. I think the opengl masking code is not working as I intended. Here is the code for "_rt" _rt = CCRenderTexture::create(visibleSize.width, visibleSize.height); _rt-setPosition(ccp(origin.x + visibleSize.width * 0.5f, origin.y + visibleSize.height * 0.5f)); this-addChild(_rt, 1000000); _rt-setVisible(true); //For testing I think I am making a mistake with the implementation of this CCRenderTexture Can anyone guide me with what I am doing wrong ? Thank you for your time :)

    Read the article

  • Android Touch Event Collision Detection

    - by chrissb
    I'm relatively new to both Java and Android, so hopefully the problem I'm having is stemming from something pretty minor that I've overlooked. I've got a (very early stage) game that I've started working on, for Android using Java. At this stage, when the user touches the screen, if they touched a point at which there is an enemy, the enemies health is decreased and they become immobile (for the current implementation at least). The issue that I'm having is that the touch detection doesn't always seem to work. I've got a testing sprite set up that goes to the eventX and eventY coordinates of the touch down event, and it always seems to collide with the enemy object. Yet, the enemy doesn't always register as being hit, and sometimes a hit is registered when the sprite indicates the touch coordinates were outside of the enemies bounding box. I realise that this probably doesn't mean much without any code, so here's what I've got so far. Be gentle, as this is literally my first attempt at something more than basic movement etc. First off, the MainGamePanel class registers the touch event, and informs the levelmanager class (which is what I set up to monitor/handle enemies) public boolean onTouchEvent(MotionEvent event) { if (event.getAction() == MotionEvent.ACTION_DOWN){ levelManager.handleActionDown((int)event.getX(), (int)event.getY()); targetX=event.getX(); targetY=event.getY(); } if (event.getAction() == MotionEvent.ACTION_MOVE) { //the gestures } if (event.getAction() == MotionEvent.ACTION_UP) { //touch was released } return true; } From there, in the levelmanager class the touch event is passed on to all of the enemies within a list array: public static void handleActionDown(int eventX,int eventY){ hit=false; for (enemy1 en : enemy1array){ en.handleActionDown(eventX, eventY); } } The rest of the collision code is handled within the enemies handleActionDown function: public void handleActionDown(int eventX, int eventY) { if(eventX>this.x-enemy1bitmap.getWidth() && eventX<this.x+enemy1bitmap.getWidth() && eventY>this.y-enemy1bitmap.getHeight() && eventY<this.x+enemy1bitmap.getHeight()){ takeDamage(1); levelmanager.setHit(); } } I should probably be using getWidth()/2 and getHeight()/2 for it to be more accurate, but I expanded the area to test this - although I've noticed no improvement. At this stage, the games detection over whether or not the enemy is hit is spotty at best. Generally it takes two or three attempts before a collision is successfully registered, even though the sprite that is being used for testing and set to the eventX and eventY coordinates always indicates that the collision should have worked. Hopefully someone can steer me in the right direction here, and if more information is needed, ask away! Cheers, -Chris

    Read the article

  • Different bounding volumes for culling and collision detection

    - by Serthy
    Should an object in a 3D-engine use different bounding volumes for collision-detection (broad-phase) and culling? Basically class renderBounds and class physBounds versus class boundingVolume? Each of this classes then could either contain the same type of volumes (AABB's, kDOP's, sphere's etc.) or a special fitting one for the particular object. (note: without considering of using an external physics engine)

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >