Search Results

Search found 5274 results on 211 pages for 'stream operators'.

Page 2/211 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • When to use Shift operators << >> in C# ?

    - by Junior Mayhé
    I was studying shift operators in C#, trying to find out when to use them in my code. I found an answer but for Java, you could: a) Make faster integer multiplication and division operations: *4839534 * 4* can be done like this: 4839534 << 2 or 543894 / 2 can be done like this: 543894 1 Shift operations much more faster than multiplication for most of processors. b) Reassembling byte streams to int values c) For accelerating operations with graphics since Red, Green and Blue colors coded by separate bytes. d) Packing small numbers into one single long... For b, c and d I can't imagine here a real sample. Does anyone know if we can accomplish all these items in C#? Is there more practical use for shift operators in C#?

    Read the article

  • Equality and Assigment Operators

    - by Jeremy Smith
    I have a assembly compiled in VB.NET that contains two operators: Public Shared Operator =(quarterA As CalendarQuarter, quarterB As CalendarQuarter) As Boolean Return quarterA.StartDate = quarterB.StartDate AndAlso quarterA.EndDate = quarterB.EndDate AndAlso quarterA.Quarter = quarterB.Quarter End Operator Public Shared Operator <>(quarterA As CalendarQuarter, quarterB As CalendarQuarter) As Boolean Return Not (quarterA = quarterB) End Operator However, when using the assembly in C# to perform equality checks if (qtr != null) I receive the error: Cannot implicity convert type 'object' to 'bool' My original intent with the = operator was only for assignment purposes in VB, so I may be way off base (I don't use custom operators too often). What do I need to do to make the operator behave with both equality and assignment operations?

    Read the article

  • SQL Operators as text in where clause

    - by suggy1982
    I have the following table, which is used for storing bandings. The table is maintained via a web frontend. CREATE TABLE [dbo].[Banding]( [BandingID] [int] IDENTITY(1,1) NOT NULL, [ValueLowerLimitOperator] [varchar](10) NULL, [ValueLowerLimit] [decimal](9, 2) NULL, [ValueUpperLimitOperator] [varchar](10) NULL, [ValueUpperLimit] [decimal](9, 2) NULL, [VolumeLowerLimitOperator] [varchar](10) NULL The operator fields store values such as < = <=. I want to get to a position where I can use the operators values stored in the table in a case statement in a where clause. Like this. SELECT * FROM table WHERE CASE ValueLowerLimitOperator WHEN '<' THEN VALUE < X WHEN '>' THEN VALUE > X END rather than having to write mutiple case or if statements for each permutation. Does anyone have any suggestions how I can decode the operators values stored in the table as part of my query and then use them in a case/where statement?

    Read the article

  • Creating a shim Stream

    - by spender
    A decompression API that I am using has the following API: Decode(Stream inStream,Stream outStream) I'd like to create a wrapper around this API, such that I can create my own Stream class which offers up the decoded data. Stream decodedStream=new BlaDecodeStream(inStream); So that I can than use this stream as a parameter to the XmlReader constructor in the same way one might use the System.IO.Compression.GZipStream. As far as I can tell, the only other option is set outStream stream to a MemoryStream or to a FileStream and go in two hops. The files I am dealing with are enormous, so neither of these options are particularly attractive. Before I go reinventing the wheel, is there any prior art that I might be able to draw from, or something in the BCL I might have missed? The CircularStream implementation here would go some of the way to helping, but I'm really looking for something similar that would block (as opposed to over/underrun) when the Stream's internal buffer is 'empty' when reading from it and block when the internal buffer is full when writing to it. In this way it could serve as parameter outStream and simultaneously (i.e. from another thread) could be read from by the XmlReader.

    Read the article

  • x-dom-event-stream in Opera 10 Only Working on First Event

    - by Brad
    I have a python script (in the CherryPy framework) that sends Event: and data: text as this Opera blog post describes to a client browser. The javascript that recieves the x-dom-event-stream content is almost identical to what they show in the blog post. However, the browser displays only the first event sent. Anyone know what I'm missing? I tried a few older versions of Opera and found that it works in Opera 9.52 but not in any newer versions. What did they change? Here is the python code: class dumpData(object): def index(self): cherrypy.response.headers['Content-Type'] = "application/x-dom-event-stream" def yieldData(): i = 0 while 1: yield "Event: count\n" yield "data: " yield i yield "\n\n" i = i + 1 time.sleep(3); return yieldData() index._cp_config = {'response.stream': True} index.exposed = True And here is the javascript/html. Making a request to /data/ runs the python function above. <head> <script> onload = function() { document.getElementById("count").addEventListener("cout", cout, false); } function count(e) { document.getElementById("stream").firstChild.nodeValue = e.data; } </script> <event-source id="count" src="/data/"> </head> <body> <div id="stream"></div> </body> Opening the direct /data/ url in Firefox saves the stream to a file. So I know the output is in the correct format and that the stream works at all.

    Read the article

  • Why Stream/lazy val implementation using is faster than ListBuffer one

    - by anrizal
    I coded the following implementation of lazy sieve algorithms using Stream and lazy val below : def primes(): Stream[Int] = { lazy val ps = 2 #:: sieve(3) def sieve(p: Int): Stream[Int] = { p #:: sieve( Stream.from(p + 2, 2). find(i=> ps.takeWhile(j => j * j <= i). forall(i % _ > 0)).get) } ps } and the following implementation using (mutable) ListBuffer: import scala.collection.mutable.ListBuffer def primes(): Stream[Int] = { def sieve(p: Int, ps: ListBuffer[Int]): Stream[Int] = { p #:: { val nextprime = Stream.from(p + 2, 2). find(i=> ps.takeWhile(j => j * j <= i). forall(i % _ > 0)).get sieve(nextprime, ps += nextprime) } } sieve(3, ListBuffer(3))} When I did primes().takeWhile(_ < 1000000).size , the first implementation is 3 times faster than the second one. What's the explanation for this ? I edited the second version: it should have been sieve(3, ListBuffer(3)) instead of sieve(3, ListBuffer()) .

    Read the article

  • Can't play stream from TorrentFlux stream

    - by thegreyspot
    Hi I am trying to stream a video from my TorrentFlux-b4rt server. I tried multiple media players, none work. Only VLC was able to produce an error message: input can't be opened: VLC is unable to open the MRL 'mms://...:8080/'. Check the log for details. I have tried multiple computers on different networks and all have the same issue. I am using Windows 7 to play the videos, and the server is Torrentflux-b4rt 1.0-beta2 with ubuntu 9.10. Thank you.

    Read the article

  • Implementing a robust async stream reader for a console

    - by Jon
    I recently provided an answer to this question: C# - Realtime console output redirection. As often happens, explaining stuff (here "stuff" was how I tackled a similar problem) leads you to greater understanding and/or, as is the case here, "oops" moments. I realized that my solution, as implemented, has a bug. The bug has little practical importance, but it has an extremely large importance to me as a developer: I can't rest easy knowing that my code has the potential to blow up. Squashing the bug is the purpose of this question. I apologize for the long intro, so let's get dirty. I wanted to build a class that allows me to receive input from a Stream in an event-based manner. The stream, in my scenario, is guaranteed to be a FileStream and there is also an associated StreamReader already present to leverage. The public interface of the class is this: public class MyStreamManager { public event EventHandler<ConsoleOutputReadEventArgs> StandardOutputRead; public void StartSendingEvents(); public void StopSendingEvents(); } Obviously this specific scenario has to do with a console's standard output. StartSendingEvents and StopSendingEvents do what they advertise; for the purposes of this discussion, we can assume that events are always being sent without loss of generality. The class uses these two fields internally: protected readonly StringBuilder inputAccumulator = new StringBuilder(); protected readonly byte[] buffer = new byte[256]; The functionality of the class is implemented in the methods below. To get the ball rolling: public void StartSendingEvents(); { this.stopAutomation = false; this.BeginReadAsync(); } To read data out of the Stream without blocking, and also without requiring a carriage return char, BeginRead is called: protected void BeginReadAsync() { if (!this.stopAutomation) { this.StandardOutput.BaseStream.BeginRead( this.buffer, 0, this.buffer.Length, this.ReadHappened, null); } } The challenging part: BeginRead requires using a buffer. This means that when reading from the stream, it is possible that the bytes available to read ("incoming chunk") are larger than the buffer. Since we are only handing off data from the stream to a consumer, and that consumer may well have inside knowledge about the size and/or format of these chunks, I want to call event subscribers exactly once for each chunk. Otherwise the abstraction breaks down and the subscribers have to buffer the incoming data and reconstruct the chunks themselves using said knowledge. This is much less convenient to the calling code, and detracts from the usefulness of my class. Edit: There are comments below correctly stating that since the data is coming from a stream, there is absolutely nothing that the receiver can infer about the structure of the data unless it is fully prepared to parse it. What I am trying to do here is leverage the "flush the output" "structure" that the owner of the console imparts while writing on it. I am prepared to assume (better: allow my caller to have the option to assume) that the OS will pass me the data written between two flushes of the stream in exactly one piece. To this end, if the buffer is full after EndRead, we don't send its contents to subscribers immediately but instead append them to a StringBuilder. The contents of the StringBuilder are only sent back whenever there is no more to read from the stream (thus preserving the chunks). private void ReadHappened(IAsyncResult asyncResult) { var bytesRead = this.StandardOutput.BaseStream.EndRead(asyncResult); if (bytesRead == 0) { this.OnAutomationStopped(); return; } var input = this.StandardOutput.CurrentEncoding.GetString( this.buffer, 0, bytesRead); this.inputAccumulator.Append(input); if (bytesRead < this.buffer.Length) { this.OnInputRead(); // only send back if we 're sure we got it all } this.BeginReadAsync(); // continue "looping" with BeginRead } After any read which is not enough to fill the buffer, all accumulated data is sent to the subscribers: private void OnInputRead() { var handler = this.StandardOutputRead; if (handler == null) { return; } handler(this, new ConsoleOutputReadEventArgs(this.inputAccumulator.ToString())); this.inputAccumulator.Clear(); } (I know that as long as there are no subscribers the data gets accumulated forever. This is a deliberate decision). The good This scheme works almost perfectly: Async functionality without spawning any threads Very convenient to the calling code (just subscribe to an event) Maintains the "chunkiness" of the data; this allows the calling code to use inside knowledge of the data without doing any extra work Is almost agnostic to the buffer size (it will work correctly with any size buffer irrespective of the data being read) The bad That last almost is a very big one. Consider what happens when there is an incoming chunk with length exactly equal to the size of the buffer. The chunk will be read and buffered, but the event will not be triggered. This will be followed up by a BeginRead that expects to find more data belonging to the current chunk in order to send it back all in one piece, but... there will be no more data in the stream. In fact, as long as data is put into the stream in chunks with length exactly equal to the buffer size, the data will be buffered and the event will never be triggered. This scenario may be highly unlikely to occur in practice, especially since we can pick any number for the buffer size, but the problem is there. Solution? Unfortunately, after checking the available methods on FileStream and StreamReader, I can't find anything which lets me peek into the stream while also allowing async methods to be used on it. One "solution" would be to have a thread wait on a ManualResetEvent after the "buffer filled" condition is detected. If the event is not signaled (by the async callback) in a small amount of time, then more data from the stream will not be forthcoming and the data accumulated so far should be sent to subscribers. However, this introduces the need for another thread, requires thread synchronization, and is plain inelegant. Specifying a timeout for BeginRead would also suffice (call back into my code every now and then so I can check if there's data to be sent back; most of the time there will not be anything to do, so I expect the performance hit to be negligible). But it looks like timeouts are not supported in FileStream. Since I imagine that async calls with timeouts are an option in bare Win32, another approach might be to PInvoke the hell out of the problem. But this is also undesirable as it will introduce complexity and simply be a pain to code. Is there an elegant way to get around the problem? Thanks for being patient enough to read all of this.

    Read the article

  • Dynamic Comparison Operators in PHP

    - by BenTheDesigner
    Hi All Is it possible, in any way, to pass comparison operators as variables to a function? I am looking at producing some convenience functions, for example (and I know this won't work): function isAnd($var, $value, $operator = '==') { if(isset($var) && $var $operator $value) return true; } if(isAnd(1, 1, '===')) echo 'worked'; Thanks in advance.

    Read the article

  • Other ternary operators besides ternary conditional (?:)

    - by Malcolm
    The "ternary operator" expression is now almost equivalent to the ternary conditional operator: condition ? trueExpression : falseExpression; However, "ternary operator" only means that it takes three arguments. I'm just curious, are there any languages with any other built-in ternary operators besides conditional operator and which ones?

    Read the article

  • Esoteric C++ operators

    - by Neil G
    What is the purpose of the following esoteric C++ operators? Pointer to member ::* Bind pointer to member by pointer ->* Bind pointer to member by reference .* (reference)

    Read the article

  • how to watch??? England vs Belgium live stream Soccer friendly match ESPN

    - by Dada Fafa
    Do you want to watch:England vs Belgium live streaming online on pc?Searching for a good way to watch England vs Belgium live streaming online today? You've come to the right place!We'll show you how to watch England vs BelgiumNBA games live stream online in perfect high definition quality using any PC or Mac computer! It's possible! Now you can watch every minute of England vs Belgiumonline live,and in true HD quality no matter where you are! WANNA WATCH England vs Belgium LIVE STREAM MATCH

    Read the article

  • Recording slow web stream

    - by Budric
    I'm trying to record an mpeg2 video stream from a website that doesn't have the greatest bandwidth. The video often buffers. I want to download the stream and watch it offline. The extract stream format received is: Stream #0.0[0x44]: Audio: mp2, 48000 Hz, stereo, s16, 192 kb/s Stream #0.1[0x45]: Video: mpeg2video (Main), yuv420p, 704x576 [PAR 16:11 DAR 16:9], 15000 kb/s, 27.19 fps, 25 tbr, 90k tbn, 50 tbc I use the following tool to transocde the stream: ffmpeg -i "http://url" -y -vcodec libx264 -b 3000k -acodec copy /tmp/stream.mp4 Unfortunately after a few seconds ffmpeg stops recording with an error [mpegts @ 0x1f0b9c0] PES packet size mismatch [mp2 @ 0x1f14640] incomplete frame Error while decoding stream #0.0 [mpeg2video @ 0x1f16860] ac-tex damaged at 0 26 [mpeg2video @ 0x1f16860] Warning MVs not available I've tried encoding with vlc as well with similar issues. Although vlc doesn't stop encoding, the output video has regions where it hangs. vlc -I dummy "http://url" --network-caching="1000" --sout="#transcode{vcodec=h264,vb=3000,acodec=mp3,ab=192}:std{access=file,mux=mp4,dst=/tmp/stream.mp4}" [mpeg2video @ 0x7f2d4c001e20] ac-tex damaged at 9 33 [mpeg2video @ 0x7f2d4c001e20] Warning MVs not available [mpeg2video @ 0x7f2d4c001e20] concealing 132 DC, 132 AC, 132 MV errors [mpeg2video @ 0x7f2d4c001e20] ac-tex damaged at 16 17 [mpeg2video @ 0x7f2d4c001e20] Warning MVs not available [mpeg2video @ 0x7f2d4c001e20] concealing 836 DC, 836 AC, 836 MV errors libdvbpsi error (PSI decoder): TS discontinuity (received 4, expected 3) for PID 0 I also tried flv transcoding and it shows up with its own set of issues, like output flv file hangs in certain parts. Anyone know what's wrong or how to fix this?

    Read the article

  • Writing String to Stream and reading it back does not work

    - by Binary255
    I want to write a String to a Stream (a MemoryStream in this case) and read the bytes one by one. stringAsStream = new MemoryStream(); UnicodeEncoding uniEncoding = new UnicodeEncoding(); String message = "Message"; stringAsStream.Write(uniEncoding.GetBytes(message), 0, message.Length); Console.WriteLine("This:\t\t" + (char)uniEncoding.GetBytes(message)[0]); Console.WriteLine("Differs from:\t" + (char)stringAsStream.ReadByte()); The (undesired) result I get is: This: M Differs from: ? It looks like it's not being read correctly, as the first char of "Message" is 'M', which works when getting the bytes from the UnicodeEncoding instance but not when reading them back from the stream. What am I doing wrong? The bigger picture: I have an algorithm which will work on the bytes of a Stream, I'd like to be as general as possible and work with any Stream. I'd like to convert an ASCII-String into a MemoryStream, or maybe use another method to be able to work on the String as a Stream. The algorithm in question will work on the bytes of the Stream.

    Read the article

  • Which namespace does operator<< (stream) go to?

    - by aaa
    If I have have some overloaded ostream operators, defined for library local objects, is its okay for them to go to std namespace? If I do not declare them in std namespace, then I must use using ns:: operator <<. As a possible follow-up question, are there any operators which should go to standard or global namespace?

    Read the article

  • C++ domain specific embedded language operators

    - by aaa
    hi. In numerical oriented languages (Matlab, Fortran) range operator and semantics is very handy when working with multidimensional data. For example: A(i:j,k,:n) // represents two-dimensional slice B(i:j,0:n) of A at index k unfortunately C++ does not have range operator (:). of course it can be emulated using range/slice functor, but semantics is less clean than Matlab. I am prototyping matrix/tensor domain language in C++ and am wondering if there any options to reproduce range operator. I still would like to rely on C++/prprocessor framework exclusively. So far I have looked through boost wave which might be an suitable option. is there any other means to introduce new operators to C++ DSL?

    Read the article

  • Implementing an async "read all currently available data from stream" operation

    - by Jon
    I recently provided an answer to this question: C# - Realtime console output redirection. As often happens, explaining stuff (here "stuff" was how I tackled a similar problem) leads you to greater understanding and/or, as is the case here, "oops" moments. I realized that my solution, as implemented, has a bug. The bug has little practical importance, but it has an extremely large importance to me as a developer: I can't rest easy knowing that my code has the potential to blow up. Squashing the bug is the purpose of this question. I apologize for the long intro, so let's get dirty. I wanted to build a class that allows me to receive input from a console's standard output Stream. Console output streams are of type FileStream; the implementation can cast to that, if needed. There is also an associated StreamReader already present to leverage. There is only one thing I need to implement in this class to achieve my desired functionality: an async "read all the data available this moment" operation. Reading to the end of the stream is not viable because the stream will not end unless the process closes the console output handle, and it will not do that because it is interactive and expecting input before continuing. I will be using that hypothetical async operation to implement event-based notification, which will be more convenient for my callers. The public interface of the class is this: public class ConsoleAutomator { public event EventHandler<ConsoleOutputReadEventArgs> StandardOutputRead; public void StartSendingEvents(); public void StopSendingEvents(); } StartSendingEvents and StopSendingEvents do what they advertise; for the purposes of this discussion, we can assume that events are always being sent without loss of generality. The class uses these two fields internally: protected readonly StringBuilder inputAccumulator = new StringBuilder(); protected readonly byte[] buffer = new byte[256]; The functionality of the class is implemented in the methods below. To get the ball rolling: public void StartSendingEvents(); { this.stopAutomation = false; this.BeginReadAsync(); } To read data out of the Stream without blocking, and also without requiring a carriage return char, BeginRead is called: protected void BeginReadAsync() { if (!this.stopAutomation) { this.StandardOutput.BaseStream.BeginRead( this.buffer, 0, this.buffer.Length, this.ReadHappened, null); } } The challenging part: BeginRead requires using a buffer. This means that when reading from the stream, it is possible that the bytes available to read ("incoming chunk") are larger than the buffer. Remember that the goal here is to read all of the chunk and call event subscribers exactly once for each chunk. To this end, if the buffer is full after EndRead, we don't send its contents to subscribers immediately but instead append them to a StringBuilder. The contents of the StringBuilder are only sent back whenever there is no more to read from the stream. private void ReadHappened(IAsyncResult asyncResult) { var bytesRead = this.StandardOutput.BaseStream.EndRead(asyncResult); if (bytesRead == 0) { this.OnAutomationStopped(); return; } var input = this.StandardOutput.CurrentEncoding.GetString( this.buffer, 0, bytesRead); this.inputAccumulator.Append(input); if (bytesRead < this.buffer.Length) { this.OnInputRead(); // only send back if we 're sure we got it all } this.BeginReadAsync(); // continue "looping" with BeginRead } After any read which is not enough to fill the buffer (in which case we know that there was no more data to be read during the last read operation), all accumulated data is sent to the subscribers: private void OnInputRead() { var handler = this.StandardOutputRead; if (handler == null) { return; } handler(this, new ConsoleOutputReadEventArgs(this.inputAccumulator.ToString())); this.inputAccumulator.Clear(); } (I know that as long as there are no subscribers the data gets accumulated forever. This is a deliberate decision). The good This scheme works almost perfectly: Async functionality without spawning any threads Very convenient to the calling code (just subscribe to an event) Never more than one event for each time data is available to be read Is almost agnostic to the buffer size The bad That last almost is a very big one. Consider what happens when there is an incoming chunk with length exactly equal to the size of the buffer. The chunk will be read and buffered, but the event will not be triggered. This will be followed up by a BeginRead that expects to find more data belonging to the current chunk in order to send it back all in one piece, but... there will be no more data in the stream. In fact, as long as data is put into the stream in chunks with length exactly equal to the buffer size, the data will be buffered and the event will never be triggered. This scenario may be highly unlikely to occur in practice, especially since we can pick any number for the buffer size, but the problem is there. Solution? Unfortunately, after checking the available methods on FileStream and StreamReader, I can't find anything which lets me peek into the stream while also allowing async methods to be used on it. One "solution" would be to have a thread wait on a ManualResetEvent after the "buffer filled" condition is detected. If the event is not signaled (by the async callback) in a small amount of time, then more data from the stream will not be forthcoming and the data accumulated so far should be sent to subscribers. However, this introduces the need for another thread, requires thread synchronization, and is plain inelegant. Specifying a timeout for BeginRead would also suffice (call back into my code every now and then so I can check if there's data to be sent back; most of the time there will not be anything to do, so I expect the performance hit to be negligible). But it looks like timeouts are not supported in FileStream. Since I imagine that async calls with timeouts are an option in bare Win32, another approach might be to PInvoke the hell out of the problem. But this is also undesirable as it will introduce complexity and simply be a pain to code. Is there an elegant way to get around the problem? Thanks for being patient enough to read all of this. Update: I definitely did not communicate the scenario well in my initial writeup. I have since revised the writeup quite a bit, but to be extra sure: The question is about how to implement an async "read all the data available this moment" operation. My apologies to the people who took the time to read and answer without me making my intent clear enough.

    Read the article

  • Implementing a robust async stream reader

    - by Jon
    I recently provided an answer to this question: C# - Realtime console output redirection. As often happens, explaining stuff (here "stuff" was how I tackled a similar problem) leads you to greater understanding and/or, as is the case here, "oops" moments. I realized that my solution, as implemented, has a bug. The bug has little practical importance, but it has an extremely large importance to me as a developer: I can't rest easy knowing that my code has the potential to blow up. Squashing the bug is the purpose of this question. I apologize for the long intro, so let's get dirty. I wanted to build a class that allows me to receive input from a Stream in an event-based manner. The stream, in my scenario, is guaranteed to be a FileStream and there is also an associated StreamReader already present to leverage. The public interface of the class is this: public class MyStreamManager { public event EventHandler<ConsoleOutputReadEventArgs> StandardOutputRead; public void StartSendingEvents(); public void StopSendingEvents(); } Obviously this specific scenario has to do with a console's standard output, but that is a detail and does not play an important role. StartSendingEvents and StopSendingEvents do what they advertise; for the purposes of this discussion, we can assume that events are always being sent without loss of generality. The class uses these two fields internally: protected readonly StringBuilder inputAccumulator = new StringBuilder(); protected readonly byte[] buffer = new byte[256]; The functionality of the class is implemented in the methods below. To get the ball rolling: public void StartSendingEvents(); { this.stopAutomation = false; this.BeginReadAsync(); } To read data out of the Stream without blocking, and also without requiring a carriage return char, BeginRead is called: protected void BeginReadAsync() { if (!this.stopAutomation) { this.StandardOutput.BaseStream.BeginRead( this.buffer, 0, this.buffer.Length, this.ReadHappened, null); } } The challenging part: BeginRead requires using a buffer. This means that when reading from the stream, it is possible that the bytes available to read ("incoming chunk") are larger than the buffer. Since we are only handing off data from the stream to a consumer, and that consumer may well have inside knowledge about the size and/or format of these chunks, I want to call event subscribers exactly once for each chunk. Otherwise the abstraction breaks down and the subscribers have to buffer the incoming data and reconstruct the chunks themselves using said knowledge. This is much less convenient to the calling code, and detracts from the usefulness of my class. To this end, if the buffer is full after EndRead, we don't send its contents to subscribers immediately but instead append them to a StringBuilder. The contents of the StringBuilder are only sent back whenever there is no more to read from the stream (thus preserving the chunks). private void ReadHappened(IAsyncResult asyncResult) { var bytesRead = this.StandardOutput.BaseStream.EndRead(asyncResult); if (bytesRead == 0) { this.OnAutomationStopped(); return; } var input = this.StandardOutput.CurrentEncoding.GetString( this.buffer, 0, bytesRead); this.inputAccumulator.Append(input); if (bytesRead < this.buffer.Length) { this.OnInputRead(); // only send back if we 're sure we got it all } this.BeginReadAsync(); // continue "looping" with BeginRead } After any read which is not enough to fill the buffer, all accumulated data is sent to the subscribers: private void OnInputRead() { var handler = this.StandardOutputRead; if (handler == null) { return; } handler(this, new ConsoleOutputReadEventArgs(this.inputAccumulator.ToString())); this.inputAccumulator.Clear(); } (I know that as long as there are no subscribers the data gets accumulated forever. This is a deliberate decision). The good This scheme works almost perfectly: Async functionality without spawning any threads Very convenient to the calling code (just subscribe to an event) Maintains the "chunkiness" of the data; this allows the calling code to use inside knowledge of the data without doing any extra work Is almost agnostic to the buffer size (it will work correctly with any size buffer irrespective of the data being read) The bad That last almost is a very big one. Consider what happens when there is an incoming chunk with length exactly equal to the size of the buffer. The chunk will be read and buffered, but the event will not be triggered. This will be followed up by a BeginRead that expects to find more data belonging to the current chunk in order to send it back all in one piece, but... there will be no more data in the stream. In fact, as long as data is put into the stream in chunks with length exactly equal to the buffer size, the data will be buffered and the event will never be triggered. This scenario may be highly unlikely to occur in practice, especially since we can pick any number for the buffer size, but the problem is there. Solution? Unfortunately, after checking the available methods on FileStream and StreamReader, I can't find anything which lets me peek into the stream while also allowing async methods to be used on it. One "solution" would be to have a thread wait on a ManualResetEvent after the "buffer filled" condition is detected. If the event is not signaled (by the async callback) in a small amount of time, then more data from the stream will not be forthcoming and the data accumulated so far should be sent to subscribers. However, this introduces the need for another thread, requires thread synchronization, and is plain inelegant. Specifying a timeout for BeginRead would also suffice (call back into my code every now and then so I can check if there's data to be sent back; most of the time there will not be anything to do, so I expect the performance hit to be negligible). But it looks like timeouts are not supported in FileStream. Since I imagine that async calls with timeouts are an option in bare Win32, another approach might be to PInvoke the hell out of the problem. But this is also undesirable as it will introduce complexity and simply be a pain to code. Is there an elegant way to get around the problem? Thanks for being patient enough to read all of this.

    Read the article

  • Dynamically created operators

    - by Gero
    I created a program using dev-cpp and wxwidgets which solves a puzzle. The user must fill the operations blocks and the results blocks, and the program will solve it. Im solving it using bruteforce, i generate all non repeated 9 length number combinations using a recursive algorithm. It does it pretty fast. Up to here all is great! But the problem is when my program operates depending the character on the blocks. Its extremely slow (it never gets the answer), because of the chars comparation against +, -, *, etc. Im doing a CASE. Is there some way or some programming language wich allows dinamic creation of operators? So i can define the operator ROW1COL2 to be a +, and the same way to all other operations. I leave a screenshot of the app, so its easier to understand how the puzzle works. http://www.imageshare.web.id/images/9gg5cev8vyokp8rhlot9.png PD: The algorithm works, i tryed it with a trivial puzzle, and solved it in a second.

    Read the article

  • What do these C operators mean?

    - by Melkhiah66
    I'm reading the book "Programming Challenges: The Programming Contest Training Manual" and are implementing a problem where I do not understand the use of operators c1 and the comparison if (n&1), someone could help me to know they mean? this is the example code #include <stdio.h> #define MAX_N 300 #define MAX_D 150 long cache[MAX_N/2][2]; void make_cache(int n,int d,int mode) { long tmp[MAX_D]; int i,count; for(i=0;i<MAX_D;i++) tmp[i]=0; tmp[0]=1;count=0; while(count<=n) { count++; for(i=(count&1);i<=d;i+=2) { if(i) tmp[i] = tmp[i-1] + tmp[i+1]; else if(!mode) tmp[0]=tmp[1]; else tmp[0]=0; } if((count&1)==(d&1)) cache[count>>1][mode]=tmp[d]; } } int main() { int n,d,i; long sum; while(1) { scanf("%d %d",&n,&d); if(n&1) sum=0; else if(d==1) sum=1; else if(n<(d<<1)) sum=0; else if(n==(d<<1)) sum=1; else { make_cache(n,d,0); make_cache(n,d,1); sum=0; for(i=0;i<=(n>>1);i++) sum+=cache[i][0]*cache[(n>>1)-i][1]; } printf("%ld\n",sum); } return 0; }

    Read the article

  • Using bitwise operators on > 32 bit integers

    - by dqhendricks
    I am using bitwise operations in order to represent many access control flags within one integer. ADMIN_ACCESS = 1; EDIT_ACCOUNT_ACCESS = 2; EDIT_ORDER_ACCESS = 4; var myAccess = 3; // ie: ( ADMIN_ACCESS | EDIT_ACCOUNT_ACCESS ) if ( myAccess & EDIT_ACCOUNT_ACCESS ) { // check for correct access // allow for editing of account } Most of this is occurring on the PHP side of my project. There is one piece however where Javascript is used to join several access flags using | when saving someone's access level. This works fine to a point. I have found that once an integer (flag) gets too large ( 32bit), it no longer works correctly with bitwise operators in Javascript. For instance: alert( 4294967296 | 1 ); // equals 1, but should equal 4294967297 I am trying to find a workaround for this so that I do not have to limit my number of access control flags to 32. Each access control flag is two times the previous control flag so that each control flag will not interfere with other control flags. dec(4) = bin(100) dec(8) = bin(1000) dec(16) = bin(10000) I have noticed that when adding two of these flags together with a simple +, it seems to come out with the same answer as a bitwise or operation, but am having trouble wrapping my head around whether this is a simple substitution, or if there might be problems with doing this. Can anyone comment on the validity of this workaround? Example: (4294967296 | 262144 | 524288) == (4294967296 + 262144 + 524288)

    Read the article

  • Stream classes ... design, pattern for creating views over streams

    - by ToxicAvenger
    A question regarding the design of stream classes - I need a pattern to create independent views over a single stream instance (in my case for reading). A view would be a consecutive part of the stream. The problem I have with the stream classes is that the state (reading or writing) is coupled with the underlying data/storage. So if I need to partition a stream into different segments (whether segments overlap or not doesn't matter), I cannot easily create views over the stream, the views would store start and end position. Because reading from a view - which would translate to reading from the underlying stream adjusted based on the start/end positions - would change the state of the underlying stream instance. So what I could do is take a read on a view instance, adjust the Position of the stream, read the chunks I need. But I cannot do that concurrently. Why is it designed in such a way, and what kind of pattern could I implement to create independet views over a single stream instance which would allow to read/write independently (and concurrently)?

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >