Search Results

Search found 1380 results on 56 pages for 'texture atlas'.

Page 2/56 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • NPOT texture and video memory usage

    - by Eonil
    I read in this QA that NPOT will take memory as much as next POT sized texture. It means it doesn't give any benefit than POT texture with proper management. (maybe even worse because NPOT should be slower!) Is this true? Does NPOT texture take and waste same memory like POT texture? I am considering NPOT texture for post-processing, so if it doesn't give memory space benefit, using of NPOT texture is meaningless to me. Maybe answer can be different for each platforms. I am targeting mobile devices. Such as iPhone or Androids. Does NPOT texture takes same amount of memory on mobile GPUs?

    Read the article

  • Atlas style map index for static google map

    - by Ben Holland
    Hello, I'm using a static google map, but really this problem could apply to any maps project. I want to divide a map into multiple quadrants (of say 50x50 pixels) and label the columns as A, B, C.... and the rows as 1, 2, 3... Next I plan to do something like, 1) Find the markers which are the farthest north, east, south, and west 2) Use that info to to define the bounding boxes of each row and column box 3) Classify each marker by its row and column (Example Marker 1 = [A,2]) A few requirements, I don't know the zoom level because I let Google set the zoom level appropriately for me and I would rather not use an algorithm that is dependent on a zoom level. I do however know the locations of all of the markers that are shown on the map. Here is an example of a map that I would like to classify the markers for, static map example link. I found these which look like a good start, Resource 1, Resource 2 But I think I'm still in need of some help getting started. Can anyone help write out some pseudo code or post a few more resources? I'm kind of in a rut at the moment. Thanks! Much appreciated of any help!

    Read the article

  • How to properly add texture to multi-fixture/shape b2Body

    - by Blazej Wdowikowski
    Hello to everyone this is my first poste here I hope that will be not fail start. At start I must say I make part 1 in Ray's Tutorial "How To Make A Game Like Fruit Ninja With Box2D and Cocos2D". But I wonder what when I want make more complex body with texture? Simple just add n b2FixtureDef to the same body. OK but what about texture? If I will take code from that tutorial it only fill last fixture. Probably it does not takes every b2Vec2 point. I was right, it did not. So quick refactor and from that -(id)initWithTexture:(CCTexture2D*)texture body:(b2Body*)body original:(BOOL)original { // gather all the vertices from our Box2D shape b2Fixture *originalFixture = body->GetFixtureList(); b2PolygonShape *shape = (b2PolygonShape*)originalFixture->GetShape(); int vertexCount = shape->GetVertexCount(); NSMutableArray *points = [NSMutableArray arrayWithCapacity:vertexCount]; for(int i = 0; i < vertexCount; i++) { CGPoint p = ccp(shape->GetVertex(i).x * PTM_RATIO, shape->GetVertex(i).y * PTM_RATIO); [points addObject:[NSValue valueWithCGPoint:p]]; } if ((self = [super initWithPoints:points andTexture:texture])) { _body = body; _body->SetUserData(self); _original = original; // gets the center of the polygon _centroid = self.body->GetLocalCenter(); // assign an anchor point based on the center self.anchorPoint = ccp(_centroid.x * PTM_RATIO / texture.contentSize.width, _centroid.y * PTM_RATIO / texture.contentSize.height); } return self; } I came up with that -(id)initWithTexture:(CCTexture2D*)texture body:(b2Body*)body original:(BOOL)original { int vertexCount = 0; //gather total number of b2Vect2 points b2Fixture *currentFixture = body->GetFixtureList(); while (currentFixture) { //new b2PolygonShape *shape = (b2PolygonShape*)currentFixture->GetShape(); vertexCount += shape->GetVertexCount(); currentFixture = currentFixture->GetNext(); } NSMutableArray *points = [NSMutableArray arrayWithCapacity:vertexCount]; // gather all the vertices from our Box2D shape b2Fixture *originalFixture = body->GetFixtureList(); while (originalFixture) { //new NSLog((NSString*)@"-"); b2PolygonShape *shape = (b2PolygonShape*)originalFixture->GetShape(); int currentVertexCount = shape->GetVertexCount(); for(int i = 0; i < currentVertexCount; i++) { CGPoint p = ccp(shape->GetVertex(i).x * PTM_RATIO, shape->GetVertex(i).y * PTM_RATIO); [points addObject:[NSValue valueWithCGPoint:p]]; } originalFixture = originalFixture->GetNext(); } if ((self = [super initWithPoints:points andTexture:texture])) { _body = body; _body->SetUserData(self); _original = original; // gets the center of the polygon _centroid = self.body->GetLocalCenter(); // assign an anchor point based on the center self.anchorPoint = ccp(_centroid.x * PTM_RATIO / texture.contentSize.width,_centroid.y * PTM_RATIO / texture.contentSize.height); } return self; } I was working for simple two fixtures body like b2BodyDef bodyDef; bodyDef.type = b2_dynamicBody; bodyDef.position = position; bodyDef.angle = rotation; b2Body *body = world->CreateBody(&bodyDef); b2FixtureDef fixtureDef; fixtureDef.density = 1.0; fixtureDef.friction = 0.5; fixtureDef.restitution = 0.2; fixtureDef.filter.categoryBits = 0x0001; fixtureDef.filter.maskBits = 0x0001; b2Vec2 vertices[] = { b2Vec2(0.0/PTM_RATIO,50.0/PTM_RATIO), b2Vec2(0.0/PTM_RATIO,0.0/PTM_RATIO), b2Vec2(50.0/PTM_RATIO,30.1/PTM_RATIO), b2Vec2(60.0/PTM_RATIO,60.0/PTM_RATIO) }; b2PolygonShape shape; shape.Set(vertices, 4); fixtureDef.shape = &shape; body->CreateFixture(&fixtureDef); b2Vec2 vertices2[] = { b2Vec2(20.0/PTM_RATIO,50.0/PTM_RATIO), b2Vec2(20.0/PTM_RATIO,0.0/PTM_RATIO), b2Vec2(70.0/PTM_RATIO,30.1/PTM_RATIO), b2Vec2(80.0/PTM_RATIO,60.0/PTM_RATIO) }; shape.Set(vertices2, 4); fixtureDef.shape = &shape; body->CreateFixture(&fixtureDef); But if I try put secondary shape upper than first it starting wierd, texture goes crazy. For example not mention about more complex shapes. What's more if shapes have one common point texture will not render for them at all [For that I use Physics Edytor like in tutorial part1] BTW. I use PolygonSprite and in method createWithWorld... another shapes. Uff.. Question So my question is, why texture coords are in such a mess up? It's my modify method or just wrong approach? Maybe I should remove duplicated from points array?

    Read the article

  • Modifying a model and texture mid-game code

    - by MicroPirate
    Just have a question for anyone out there who knows some sort of game engine pretty well. What I am trying to implement is some sort of script or code that will allow me to make a custom game character and textures mid-game. A few examples would be along the lines of changing facial expressions and body part positions in the game SecondLife. I don't really need a particular language, feel free to use your favorite, I'm just really looking for an example on how to go about this. Also I was wondering if there is anyway to combine textures for optimization; for example if i wanted to add a tattoo to a character midgame, is there any code that could combine his body texture and the tattoo texture into one texture to use (this way I can simply just render one texture per body.) Any tips would be appreciated, sorry if the question is a wee bit to vauge.

    Read the article

  • OpenGL: Disable texture colors?

    - by Newbie
    Is it possible to disable texture colors, and use only white as the color? It would still read the texture, so i cant use glDisable(GL_TEXTURE_2D) because i want to render the alpha channels too. All i can think of now is to make new texture where all color data is white, remaining alpha as it is. I need to do this without shaders, so is this even possible?

    Read the article

  • android opengl es texture mapping into polygons

    - by kamil
    I wrote opengl es code for android to map textures on a square but i want to draw texture on polygons. When user moved the image, texture will be mapped on polygons have more vertexes. I tried the arrays combination below for pentagon but i could not find the correct triangle combination in indices array. public float vertices[] = { // -1.0f, 1.0f, 0.0f, //Top Left // -1.0f, -1.0f, 0.0f, //Bottom Left // 1.0f, -1.0f, 0.0f, //Bottom Right // 1.0f, 1.0f, 0.0f //Top Right -1.0f, 1.0f, 0.0f, //Top Left -1.0f, -1.0f, 0.0f, //Bottom Left 1.0f, -1.0f, 0.0f, //Bottom Right 1.0f, 1.0f, 0.0f, //Top Right 0.4f, 1.4f, 0.0f }; /** Our texture pointer */ private int[] textures = new int[1]; /** The initial texture coordinates (u, v) */ private float texture[] = { //Mapping coordinates for the vertices // 1.0f, 0.0f, // 1.0f, 1.0f, // 0.0f, 1.0f, // 0.0f, 0.0f, // 0.0f, 1.0f, // 0.0f, 0.0f, // 1.0f, 0.0f, // 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.7f, }; /** The initial indices definition */ private byte indices[] = { //2 triangles // 0,1,2, 2,3,0, 0,1,2, 2,3,4, 3,4,0, //triangles for five vertexes }; i draw with the code below gl.glDrawElements(GL10.GL_TRIANGLES, indices.length, GL10.GL_UNSIGNED_BYTE, indexBuffer);

    Read the article

  • Texture mapping an NGon?

    - by user146780
    I'm not sure how to go about figuring out how to map texture cooridnates for a 2D NGon (N sided polygon) How can this be done? The effect i'm trying to achieve is for the texture to fit on the polygon and stretch out accordingly so the whole texture fits on it. Thanks

    Read the article

  • problems texture mapping in modern OpenGL 3.3 using GLSL #version 150

    - by RubyKing
    Hi all I'm trying to do texture mapping using Modern OpenGL and GLSL 150. The problem is the texture shows but has this weird flicker I can show a video here http://www.youtube.com/watch?v=xbzw_LMxlHw and I have everything setup best I can have my texcords in my vertex array sent up to opengl I have my fragment color set to the texture values and texel values I have my vertex sending the textures cords to texture cordinates to be used in the fragment shader I have my ins and outs setup and I still don't know what I'm missing that could be causing that flicker. here is my code FRAGMENT SHADER #version 150 uniform sampler2D texture; in vec2 texture_coord; varying vec3 texture_coordinate; void main(void){ gl_FragColor = texture(texture, texture_coord); } VERTEX SHADER #version 150 in vec4 position; out vec2 texture_coordinate; out vec2 texture_coord; uniform vec3 translations; void main() { texture_coord = (texture_coordinate); gl_Position = vec4(position.xyz + translations.xyz, 1.0); } Last bit here is my vertex array with texture cordinates GLfloat vVerts[] = { 0.5f, 0.5f, 0.0f, 0.0f, 1.0f , 0.0f, 0.5f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f}; //tex x and y HERE IS THE ACTUAL FULL SOURCE CODE if you need to see all the code in its fullest glory here is a link to every file http://ideone.com/7kQN3 thank you for your help

    Read the article

  • Fourth texture = segmentation fault

    - by Robin92
    I keep on getting segmentation fault each time I load fourth texture - what type of texture, I mean filename, does not matter. I checked value of GL_TEXTURES_STACK_SIZE which turned out to be 10 so quite more than 4, isn't it? Here're code fragments: funciton to load texture from png static GLuint gl_loadTexture(const char filename[]) { static int iTexNum = 1; GLuint texture = 0; img_s *img = NULL; img = img_loadPNG(filename); if (img) { glGenTextures(iTexNum++, &texture); glBindTexture(GL_TEXTURE_2D, texture); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR); glTexImage2D(GL_TEXTURE_2D, 0, img->iGlFormat, img->uiWidth, img->uiHeight, 0, img->iGlFormat, GL_UNSIGNED_BYTE, img->p_ubaData); img_free(img); //it may cause errors on windows } else printf("Error: loading texture '%s' failed!\n", filename); return texture; } actual loading static GLuint textures[4]; static void gl_init() { (...) //setting up OpenGL /* loading textures */ textures[0] = gl_loadTexture("images/background.png"); textures[1] = gl_loadTexture("images/spaceship.png"); textures[2] = gl_loadTexture("images/asteroid.png"); textures[3] = gl_loadTexture("images/asteroid2.png"); //this is causing SegFault no matter which file I load! } Any ideas? Problem is present on both Linux and Windows.

    Read the article

  • another question about OpenGL ES rendering to texture

    - by ensoreus
    Hello, pros and gurus! Here is another question about rendering to texture. The whole stuff is all about saving texture between passing image into different filters. Maybe all iPhone developers knows about Apple's sample code with OpenGL processing where they used GL filters(functions), but pass into them the same source image. I need to edit an image by passing it sequentelly with saving the state of the image to edit. I am very noob in OpenGL, so I spent increadibly a lot of to solve the issue. So, I desided to create 2 FBO's and attach source image and temporary image as a textures to render in. Here is my init routine: glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glEnable(GL_TEXTURE_2D); glPixelStorei(GL_UNPACK_ALIGNMENT, 1); glGetIntegerv(GL_FRAMEBUFFER_BINDING_OES, (GLint *)&SystemFBO); glImage = [self loadTexture:preparedImage]; //source image for (int i = 0; i < 4; i++) { fullquad[i].s *= glImage->s; fullquad[i].t *= glImage->t; flipquad[i].s *= glImage->s; flipquad[i].t *= glImage->t; } tmpImage = [self loadEmptyTexture]; //editing image glGenFramebuffersOES(1, &tmpImageFBO); glBindFramebufferOES(GL_FRAMEBUFFER_OES, tmpImageFBO); glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES, GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tmpImage->texID, 0); GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES); if(status != GL_FRAMEBUFFER_COMPLETE_OES) { NSLog(@"failed to make complete tmp framebuffer object %x", status); } glBindTexture(GL_TEXTURE_2D, 0); glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0); glGenRenderbuffersOES(1, &glImageFBO); glBindFramebufferOES(GL_FRAMEBUFFER_OES, glImageFBO); glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES, GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, glImage->texID, 0); status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES) ; if(status != GL_FRAMEBUFFER_COMPLETE_OES) { NSLog(@"failed to make complete cur framebuffer object %x", status); } glBindTexture(GL_TEXTURE_2D, 0); glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0); When user drag the slider, this routine invokes to apply changes -(void)setContrast:(CGFloat)value{ contrast = value; if(flag!=mfContrast){ NSLog(@"contrast: dumped"); flag = mfContrast; glBindFramebufferOES(GL_FRAMEBUFFER_OES, glImageFBO); glClearColor(1,1,1,1); glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glOrthof(0, 512, 0, 512, -1, 1); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glScalef(512, 512, 1); glBindTexture(GL_TEXTURE_2D, tmpImage->texID); glViewport(0, 0, 512, 512); glVertexPointer(2, GL_FLOAT, sizeof(V2fT2f), &fullquad[0].x); glTexCoordPointer(2, GL_FLOAT, sizeof(V2fT2f), &fullquad[0].s); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0); } glBindFramebufferOES(GL_FRAMEBUFFER_OES,tmpImageFBO); glClearColor(0,0,0,1); glClear(GL_COLOR_BUFFER_BIT); glEnable(GL_TEXTURE_2D); glActiveTexture(GL_TEXTURE0); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glOrthof(0, 512, 0, 512, -1, 1); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glScalef(512, 512, 1); glBindTexture(GL_TEXTURE_2D, glImage->texID); glViewport(0, 0, 512, 512); [self contrastProc:fullquad value:contrast]; glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0); [self redraw]; } Here are two cases: if it is the same filter(edit mode) to use, I bind tmpFBO to draw into tmpImage texture and edit glImage texture. contrastProc is a pure routine from Apples's sample. If it is another mode, than I save edited image by drawing tmpImage texture in source texture glImage, binded with glImageFBO. After that I call redraw: glBindFramebufferOES(GL_FRAMEBUFFER_OES, SystemFBO); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glOrthof(0, kTexWidth, 0, kTexHeight, -1, 1); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glScalef(kTexWidth, kTexHeight, 1); glBindTexture(GL_TEXTURE_2D, glImage->texID); glViewport(0, 0, kTexWidth, kTexHeight); glVertexPointer(2, GL_FLOAT, sizeof(V2fT2f), &flipquad[0].x); glTexCoordPointer(2, GL_FLOAT, sizeof(V2fT2f), &flipquad[0].s); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0); And here it binds visual framebuffer and dispose glImage texture. So, the result is VERY aggresive filtering. Increasing contrast volume by just 0.2 brings image to state that comparable with 0.9 contrast volume in Apple's sample code project. I miss something obvious, I guess. Interesting, if I disabple line glBindTexture(GL_TEXTURE_2D, glImage->texID); in setContrast routine it brings no effect. At all. If I replace tmpImageFBO with SystemFBO to draw glImage directly on display(and disabling redraw invoking line), all works fine. Please, HELP ME!!! :(

    Read the article

  • texture mapping with lib3ds and SOIL help

    - by Adam West
    I'm having trouble with my project for loading a texture map onto a model. Any insight into what is going wrong with my code is fantastic. Right now the code only renders a teapot which I have assinged after creating it in 3DS Max. 3dsloader.cpp #include "3dsloader.h" Object::Object(std:: string filename) { m_TotalFaces = 0; m_model = lib3ds_file_load(filename.c_str()); // If loading the model failed, we throw an exception if(!m_model) { throw strcat("Unable to load ", filename.c_str()); } // set properties of texture coordinate generation for both x and y coordinates glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR); glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR); // if not already enabled, enable texture generation if(! glIsEnabled(GL_TEXTURE_GEN_S)) glEnable(GL_TEXTURE_GEN_S); if(! glIsEnabled(GL_TEXTURE_GEN_T)) glEnable(GL_TEXTURE_GEN_T); } Object::~Object() { if(m_model) // if the file isn't freed yet lib3ds_file_free(m_model); //free up memory glDisable(GL_TEXTURE_GEN_S); glDisable(GL_TEXTURE_GEN_T); } void Object::GetFaces() { m_TotalFaces = 0; Lib3dsMesh * mesh; // Loop through every mesh. for(mesh = m_model->meshes;mesh != NULL;mesh = mesh->next) { // Add the number of faces this mesh has to the total number of faces. m_TotalFaces += mesh->faces; } } void Object::CreateVBO() { assert(m_model != NULL); // Calculate the number of faces we have in total GetFaces(); // Allocate memory for our vertices and normals Lib3dsVector * vertices = new Lib3dsVector[m_TotalFaces * 3]; Lib3dsVector * normals = new Lib3dsVector[m_TotalFaces * 3]; Lib3dsTexel* texCoords = new Lib3dsTexel[m_TotalFaces * 3]; Lib3dsMesh * mesh; unsigned int FinishedFaces = 0; // Loop through all the meshes for(mesh = m_model->meshes;mesh != NULL;mesh = mesh->next) { lib3ds_mesh_calculate_normals(mesh, &normals[FinishedFaces*3]); // Loop through every face for(unsigned int cur_face = 0; cur_face < mesh->faces;cur_face++) { Lib3dsFace * face = &mesh->faceL[cur_face]; for(unsigned int i = 0;i < 3;i++) { memcpy(&texCoords[FinishedFaces*3 + i], mesh->texelL[face->points[ i ]], sizeof(Lib3dsTexel)); memcpy(&vertices[FinishedFaces*3 + i], mesh->pointL[face->points[ i ]].pos, sizeof(Lib3dsVector)); } FinishedFaces++; } } // Generate a Vertex Buffer Object and store it with our vertices glGenBuffers(1, &m_VertexVBO); glBindBuffer(GL_ARRAY_BUFFER, m_VertexVBO); glBufferData(GL_ARRAY_BUFFER, sizeof(Lib3dsVector) * 3 * m_TotalFaces, vertices, GL_STATIC_DRAW); // Generate another Vertex Buffer Object and store the normals in it glGenBuffers(1, &m_NormalVBO); glBindBuffer(GL_ARRAY_BUFFER, m_NormalVBO); glBufferData(GL_ARRAY_BUFFER, sizeof(Lib3dsVector) * 3 * m_TotalFaces, normals, GL_STATIC_DRAW); // Generate a third VBO and store the texture coordinates in it. glGenBuffers(1, &m_TexCoordVBO); glBindBuffer(GL_ARRAY_BUFFER, m_TexCoordVBO); glBufferData(GL_ARRAY_BUFFER, sizeof(Lib3dsTexel) * 3 * m_TotalFaces, texCoords, GL_STATIC_DRAW); // Clean up our allocated memory delete vertices; delete normals; delete texCoords; // We no longer need lib3ds lib3ds_file_free(m_model); m_model = NULL; } void Object::applyTexture(const char*texfilename) { float imageWidth; float imageHeight; glGenTextures(1, & textureObject); // allocate memory for one texture textureObject = SOIL_load_OGL_texture(texfilename,SOIL_LOAD_AUTO,SOIL_CREATE_NEW_ID,SOIL_FLAG_MIPMAPS); glPixelStorei(GL_UNPACK_ALIGNMENT,1); glBindTexture(GL_TEXTURE_2D, textureObject); // use our newest texture glGetTexLevelParameterfv(GL_TEXTURE_2D,0,GL_TEXTURE_WIDTH,&imageWidth); glGetTexLevelParameterfv(GL_TEXTURE_2D,0,GL_TEXTURE_HEIGHT,&imageHeight); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // give the best result for texture magnification glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); //give the best result for texture minification glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP); // don't repeat texture glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP); // don't repeat textureglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP); // don't repeat texture glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,GL_MODULATE); glTexImage2D(GL_TEXTURE_2D,0,GL_RGB,imageWidth,imageHeight,0,GL_RGB,GL_UNSIGNED_BYTE,& textureObject); } void Object::Draw() const { // Enable vertex, normal and texture-coordinate arrays. glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); glEnableClientState(GL_TEXTURE_COORD_ARRAY); // Bind the VBO with the normals. glBindBuffer(GL_ARRAY_BUFFER, m_NormalVBO); // The pointer for the normals is NULL which means that OpenGL will use the currently bound VBO. glNormalPointer(GL_FLOAT, 0, NULL); glBindBuffer(GL_ARRAY_BUFFER, m_TexCoordVBO); glTexCoordPointer(2, GL_FLOAT, 0, NULL); glBindBuffer(GL_ARRAY_BUFFER, m_VertexVBO); glVertexPointer(3, GL_FLOAT, 0, NULL); // Render the triangles. glDrawArrays(GL_TRIANGLES, 0, m_TotalFaces * 3); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); } 3dsloader.h #include "main.h" #include "lib3ds/file.h" #include "lib3ds/mesh.h" #include "lib3ds/material.h" class Object { public: Object(std:: string filename); virtual ~Object(); virtual void Draw() const; virtual void CreateVBO(); void applyTexture(const char*texfilename); protected: void GetFaces(); unsigned int m_TotalFaces; Lib3dsFile * m_model; Lib3dsMesh* Mesh; GLuint textureObject; GLuint m_VertexVBO, m_NormalVBO, m_TexCoordVBO; }; Called in the main cpp file with: VBO,apply texture and draw (pretty simple, how ironic) and thats it, please help me forum :)

    Read the article

  • Alpha blend 3D png texture in XNA

    - by ProgrammerAtWork
    I'm trying to draw a partly transparent texture a plane, but the problem is that it's incorrectly displaying what is behind that texture. Pseudo code: vertices1 basiceffect1 // The vertices of vertices1 are located BEHIND vertices2 vertices2 basiceffect2 // The vertices of vertices2 are located IN FRONT vertices1 GraphicsDevice.Clear(Blue); PrimitiveBatch.Begin(); //if I draw like this: PrimitiveBatch.Draw(vertices1, trianglestrip, basiceffect1) PrimitiveBatch.Draw(vertices2, trianglestrip, basiceffect2) //Everything gets draw correctly, I can see the texture of vertices2 trough //the transparent parts of vertices1 //but if I draw like this: PrimitiveBatch.Draw(vertices2, trianglestrip, basiceffect2) PrimitiveBatch.Draw(vertices1, trianglestrip, basiceffect1) //I cannot see the texture of vertices1 in behind the texture of vertices2 //Instead, the texture vertices2 gets drawn, and the transparent parts are blue //The clear color PrimitiveBatch.Draw(vertice PrimitiveBatch.End(); My question is, Why does the order in which I call draw matter?

    Read the article

  • How can I view an R32G32B32 texture?

    - by bobobobo
    I have a texture with R32G32B32 floats. I create this texture in-program on D3D11, using DXGI_FORMAT_R32G32B32_FLOAT. Now I need to see the texture data for debug purposes, but it will not save to anything but dds, showing the error in debug output, "Can't find matching WIC format, please save this file to a DDS". So, I write it to DDS but I can't open it now! The DirectX texture tool says "An error occurred trying to open that file". I know the texture is working because I can read it in the GPU and the colors seem correct. How can I view an R32G32B32 texture in an image viewer?

    Read the article

  • Map and fill texture using PBO (OpenGL 3.3)

    - by NtscCobalt
    I'm learning OpenGL 3.3 trying to do the following (as it is done in D3D)... Create Texture of Width, Height, Pixel Format Map texture memory Loop write pixels Unmap texture memory Set Texture Render Right now though it renders as if the entire texture is black. I can't find a reliable source for information on how to do this though. Almost every tutorial I've found just uses glTexSubImage2D and passes a pointer to memory. Here is basically what my code does... (In this case it is generating an 1-byte Alpha Only texture but it is rendering it as the red channel for debugging) GLuint pixelBufferID; glGenBuffers(1, &pixelBufferID); glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pixelBufferID); glBufferData(GL_PIXEL_UNPACK_BUFFER, 512 * 512 * 1, nullptr, GL_STREAM_DRAW); glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0); GLuint textureID; glGenTextures(1, &textureID); glBindTexture(GL_TEXTURE_2D, textureID); glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, 512, 512, 0, GL_RED, GL_UNSIGNED_BYTE, nullptr); glBindTexture(GL_TEXTURE_2D, 0); glBindTexture(GL_TEXTURE_2D, textureID); glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pixelBufferID); void *Memory = glMapBuffer(GL_PIXEL_UNPACK_BUFFER, GL_WRITE_ONLY); // Memory copied here, I know this is valid because it is the same loop as in my working D3D version glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER); glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0); And then here is the render loop. // This chunk left in for completeness glUseProgram(glProgramId); glBindVertexArray(glVertexArrayId); glBindBuffer(GL_ARRAY_BUFFER, glVertexBufferId); glEnableVertexAttribArray(0); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 20, 0); glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 20, 12); GLuint transformLocationID = glGetUniformLocation(3, 'transform'); glUniformMatrix4fv(transformLocationID , 1, true, somematrix) // Not sure if this is all I need to do glBindTexture(GL_TEXTURE_2D, pTex->glTextureId); GLuint textureLocationID = glGetUniformLocation(glProgramId, "texture"); glUniform1i(textureLocationID, 0); glDrawArrays(GL_TRIANGLES, Offset*3, Triangles*3); Vertex Shader #version 330 core in vec3 Position; in vec2 TexCoords; out vec2 TexOut; uniform mat4 transform; void main() { TexOut = TexCoords; gl_Position = vec4(Position, 1.0) * transform; } Pixel Shader #version 330 core uniform sampler2D texture; in vec2 TexCoords; out vec4 fragColor; void main() { // Output color fragColor.r = texture2D(texture, TexCoords).r; fragColor.g = 0.0f; fragColor.b = 0.0f; fragColor.a = 1.0; }

    Read the article

  • OpenGL problem with FBO integer texture and color attachment

    - by Grieverheart
    In my simple renderer, I have 2 FBOs one that contains diffuse, normals, instance ID and depth in that order and one that I use store the ssao result. The textures I use for the first FBO are RGB8, RGBA16F, R32I and GL_DEPTH_COMPONENT32F for the depth. For the second FBO I use an R16F texture. My rendering process is to first render to everything I mentioned in the first FBO, then bind depth and normals textures for reading for the ssao pass and write to the second FBO. After that I bind the second FBO's texture for reading in my blur shader and bind the first FBO for writing. What I intend to do is to write the blurred ssao value to the alpha component of the Normals texture. Here are where the problems start. First of all, I use shading language 3.3, which my graphics card does support. I manage ouputs in my shaders using layout(location = #). Now, the normals texture should be bound to color attachment 1, but when I use 1, it seems to write to my diffuse texture which should be in color attachment 0. When I instead use layout(location = 0), it gets correctly written to my normals texture. Besides this, my instance ID texture also gets resets after running the blur shader which is weird because if I use a float texture and write to it instanceID / nInstances, the texture doesn't get reset after the blur shader has ran. Here is how I prepare my first FBO: bool CGBuffer::Init(unsigned int WindowWidth, unsigned int WindowHeight){ //Create FBO glGenFramebuffers(1, &m_fbo); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, m_fbo); //Create gbuffer and Depth Buffer Textures glGenTextures(GBUFF_NUM_TEXTURES, &m_textures[0]); glGenTextures(1, &m_depthTexture); //prepare gbuffer for(unsigned int i = 0; i < GBUFF_NUM_TEXTURES; i++){ glBindTexture(GL_TEXTURE_2D, m_textures[i]); if(i == GBUFF_TEXTURE_TYPE_NORMAL) glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F, WindowWidth, WindowHeight, 0, GL_RGBA, GL_FLOAT, NULL); else if(i == GBUFF_TEXTURE_TYPE_DIFFUSE) glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB8, WindowWidth, WindowHeight, 0, GL_RGB, GL_FLOAT, NULL); else if(i == GBUFF_TEXTURE_TYPE_ID) glTexImage2D(GL_TEXTURE_2D, 0, GL_R32I, WindowWidth, WindowHeight, 0, GL_RED_INTEGER, GL_INT, NULL); else{ std::cout << "Error in FBO initialization" << std::endl; return false; } glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + i, GL_TEXTURE_2D, m_textures[i], 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP); } //prepare depth buffer glBindTexture(GL_TEXTURE_2D, m_depthTexture); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT32F, WindowWidth, WindowHeight, 0, GL_DEPTH_COMPONENT, GL_FLOAT, NULL); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, m_depthTexture, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP); GLenum DrawBuffers[] = {GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1, GL_COLOR_ATTACHMENT2}; glDrawBuffers(GBUFF_NUM_TEXTURES, DrawBuffers); GLenum Status = glCheckFramebufferStatus(GL_FRAMEBUFFER); if(Status != GL_FRAMEBUFFER_COMPLETE){ std::cout << "FB error, status 0x" << std::hex << Status << std::endl; return false; } //Restore default framebuffer glBindFramebuffer(GL_FRAMEBUFFER, 0); return true; } where I use an enum defined as, enum GBUFF_TEXTURE_TYPE{ GBUFF_TEXTURE_TYPE_DIFFUSE, GBUFF_TEXTURE_TYPE_NORMAL, GBUFF_TEXTURE_TYPE_ID, GBUFF_NUM_TEXTURES }; Am I missing some kind of restriction? Does the color attachment of the FBO's textures somehow gets reset i.e. I'm using a re-size function which re-sizes the textures of the FBO but should I perhaps call glFramebufferTexture2D again too? EDIT: Here is the shader in question: #version 330 core uniform sampler2D aoSampler; uniform vec2 TEXEL_SIZE; // x = 1/res x, y = 1/res y uniform bool use_blur; noperspective in vec2 TexCoord; layout(location = 0) out vec4 out_AO; void main(void){ if(use_blur){ float result = 0.0; for(int i = -1; i < 2; i++){ for(int j = -1; j < 2; j++){ vec2 offset = vec2(TEXEL_SIZE.x * i, TEXEL_SIZE.y * j); result += texture(aoSampler, TexCoord + offset).r; // -0.004 because the texture seems to be a bit displaced } } out_AO = vec4(vec3(0.0), result / 9); } else out_AO = vec4(vec3(0.0), texture(aoSampler, TexCoord).r); }

    Read the article

  • Best practices of texture size

    - by psal
    I wanted to know how should I determine a good texture size ? Currently, I always create UV texture that are 1024x1024px but if I create for example, a big house with a 1024px texture size, it will looks pretty bad. So, should I create different texture size (512, 1024, ...) for different mesh size like this ? : or is it better to always do high-resolution texture and then reduce it in the software (ie : increase the LODBias settings in UDK reduce the size of the texture) ? Thanks for your answer. ps : sorry for my english !

    Read the article

  • (Ogre3D) Using a 3D texture slice as a 2D texture input.

    - by ~mech
    Hello, I am trying to do something with Ogre using 3D textures. I would like to update a 3D-texture by going through it slice-by-slice and recalculating the color values. However, in each step I also need to access the previous slice somehow to read the values. Setting up a slice as a render target is easy, but is it possible to feed such a slice as a 2D-texture input to a shader, or do I need to explicitly copy it into a separate 2D texture? Thanks.

    Read the article

  • Speeding up procedural texture generation

    - by FalconNL
    Recently I've begun working on a game that takes place in a procedurally generated solar system. After a bit of a learning curve (having neither worked with Scala, OpenGL 2 ES or Libgdx before), I have a basic tech demo going where you spin around a single procedurally textured planet: The problem I'm running into is the performance of the texture generation. A quick overview of what I'm doing: a planet is a cube that has been deformed to a sphere. To each side, a n x n (e.g. 256 x 256) texture is applied, which are bundled in one 8n x n texture that is sent to the fragment shader. The last two spaces are not used, they're only there to make sure the width is a power of 2. The texture is currently generated on the CPU, using the updated 2012 version of the simplex noise algorithm linked to in the paper 'Simplex noise demystified'. The scene I'm using to test the algorithm contains two spheres: the planet and the background. Both use a greyscale texture consisting of six octaves of 3D simplex noise, so for example if we choose 128x128 as the texture size there are 128 x 128 x 6 x 2 x 6 = about 1.2 million calls to the noise function. The closest you will get to the planet is about what's shown in the screenshot and since the game's target resolution is 1280x720 that means I'd prefer to use 512x512 textures. Combine that with the fact the actual textures will of course be more complicated than basic noise (There will be a day and night texture, blended in the fragment shader based on sunlight, and a specular mask. I need noise for continents, terrain color variation, clouds, city lights, etc.) and we're looking at something like 512 x 512 x 6 x 3 x 15 = 70 million noise calls for the planet alone. In the final game, there will be activities when traveling between planets, so a wait of 5 or 10 seconds, possibly 20, would be acceptable since I can calculate the texture in the background while traveling, though obviously the faster the better. Getting back to our test scene, performance on my PC isn't too terrible, though still too slow considering the final result is going to be about 60 times worse: 128x128 : 0.1s 256x256 : 0.4s 512x512 : 1.7s This is after I moved all performance-critical code to Java, since trying to do so in Scala was a lot worse. Running this on my phone (a Samsung Galaxy S3), however, produces a more problematic result: 128x128 : 2s 256x256 : 7s 512x512 : 29s Already far too long, and that's not even factoring in the fact that it'll be minutes instead of seconds in the final version. Clearly something needs to be done. Personally, I see a few potential avenues, though I'm not particularly keen on any of them yet: Don't precalculate the textures, but let the fragment shader calculate everything. Probably not feasible, because at one point I had the background as a fullscreen quad with a pixel shader and I got about 1 fps on my phone. Use the GPU to render the texture once, store it and use the stored texture from then on. Upside: might be faster than doing it on the CPU since the GPU is supposed to be faster at floating point calculations. Downside: effects that cannot (easily) be expressed as functions of simplex noise (e.g. gas planet vortices, moon craters, etc.) are a lot more difficult to code in GLSL than in Scala/Java. Calculate a large amount of noise textures and ship them with the application. I'd like to avoid this if at all possible. Lower the resolution. Buys me a 4x performance gain, which isn't really enough plus I lose a lot of quality. Find a faster noise algorithm. If anyone has one I'm all ears, but simplex is already supposed to be faster than perlin. Adopt a pixel art style, allowing for lower resolution textures and fewer noise octaves. While I originally envisioned the game in this style, I've come to prefer the realistic approach. I'm doing something wrong and the performance should already be one or two orders of magnitude better. If this is the case, please let me know. If anyone has any suggestions, tips, workarounds, or other comments regarding this problem I'd love to hear them.

    Read the article

  • Doubt about texture waves in CG Ocean Shader

    - by Alexandre
    I'm new on graphical programming, and I'm having some trouble understanding the Ocean Shader described on "Effective Water Simulation from Physical Models" from GPU Gems. The source code associated to this article is here. My problem has been to understand the concept of texture waves. First of all, what is achieved by texture waves? I'm having a hard time trying to figure out it's usefulness. In the section 1.2.4 of the article, it does say that the waves summed into the texture have the same parametrization as the waves used for vertex positioning. Does it mean that I can't use the texture provided by the source code if I change the parameters of the waves, or add more waves to sum? And in the section 1.4.1, is said that we can assume that there is no rotation between texture space and world space if the texture coordinates for our normal map are implicit. What does mean that the "normal map are implicit'? And why do I need a rotation between texture and world spaces if the normal map are not implicit? I would be very grateful for any help on this.

    Read the article

  • texture colours opengl

    - by user1324894
    Hi I am making a simple 2D game in c++ and for the map I am doing texture mapping by using tiles and assigning textures to those tiles. However, when I run the programme the textures become black and white when I want them to be the colour they are in the .png image. This is my code: int worldMap[10][10] = { {0,0,0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0,0,0}, }; void background() { glClearColor(0.0,0.0,0.0,0.0); /**********************************************************************************************/ // Texture loading object nv::Image img; // Return true on success if(img.loadImageFromFile("Image_Loading/field.png")) { glGenTextures(1, &myTexture); glBindTexture(GL_TEXTURE_2D, myTexture); glTexParameteri(GL_TEXTURE_2D, GL_GENERATE_MIPMAP, GL_TRUE); glTexImage2D(GL_TEXTURE_2D, 0, img.getInternalFormat(), img.getWidth(), img.getHeight(), 0, img.getFormat(), img.getType(), img.getLevel(0)); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT ); glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT ); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 16.0f); } else MessageBox(NULL, "Failed to load texture", "End of the world", MB_OK | MB_ICONINFORMATION); /**********************************************************************************************/ } void drawTiles (void) { //our function to draw the tiles for (int i = 0; i < 10; i++) //loop through the height of the map { for (int j = 0; j < 10; j++) //loop through the width of the map { if (worldMap[i][j] == 0) //if the map at this position contains a 0 { glBindTexture( GL_TEXTURE_2D, myTexture ); //bind our grass texture to our shape } glPushMatrix(); //push the matrix so that our translations only affect this tile glTranslatef(j, -i, 0); //translate the tile to where it should belong glBegin (GL_QUADS); //begin drawing our quads glTexCoord2d(10, 0); glVertex2f((-10 + mapX),(-10 + mapY)); //with our vertices we have to assign a texcoord glTexCoord2d(10, 0); glVertex2f((10 + mapX),(-10 + mapY)); //so that our texture has some points to draw to glTexCoord2d(10, 10); glVertex2f((10 + mapX),(10 + mapY)); glTexCoord2d(0, 10); glVertex2f((-10 + mapX),(10 + mapY)); glEnd(); glPopMatrix(); //pop the matrix } //end first loop } //end second loop } void display() { glClearColor (0.0,0.0,0.0,1.0); glClear(GL_COLOR_BUFFER_BIT); /**********************************************************************************************/ glMatrixMode( GL_PROJECTION ); glLoadIdentity(); gluOrtho2D( -5, 5, -5, 5); glMatrixMode( GL_MODELVIEW ); glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, myTexture); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); drawTiles(); glDisable(GL_TEXTURE_2D); glDisable(GL_BLEND); /**********************************************************************************************/ } void character () { glBegin(GL_POLYGON); glVertex2f((-0.5+characterX),(-0.5 +characterY)); glVertex2f((-0.5+characterX),(0.5+characterY)); glVertex2f((0.5+characterX),(0.5+characterY)); glVertex2f((0.5+characterX),(-0.5+characterY)); glTranslatef(characterX, characterY, 0.0f); glEnd(); } Can anybody help please?

    Read the article

  • OpenGL : sluggish performance in extracting texture from GPU

    - by Cyan
    I'm currently working on an algorithm which creates a texture within a render buffer. The operations are pretty complex, but for the GPU this is a simple task, done very quickly. The problem is that, after creating the texture, i would like to save it. This requires to extract it from GPU memory. For this operation, i'm using glGetTexImage(). It works, but the performance is sluggish. No, i mean even slower than that. For example, an 8MB texture (uncompressed) requires 3 seconds (yes, seconds) to be extracted. That's mind puzzling. I'm almost wondering if my graphic card is connected by a serial link... Well, anyway, i've looked around, and found some people complaining about the same, but no working solution so far. The most promising advise was to "extract data in the native format of the GPU". Which i've tried and tried, but failed so far. Edit : by moving the call to glGetTexImage() in a different place, the speed has been a bit improved for the most dramatic samples : looking again at the 8MB texture, it knows requires 500ms, instead of 3sec. It's better, but still much too slow. Smaller texture sizes were not affected by the change (typical timing remained into the 60-80ms range). Using glFinish() didn't help either. Note that, if i call glFinish() (without glGetTexImage), i'm getting a fixed 16ms result, whatever the texture size or complexity. It really looks like the timing for a frame at 60fps. The timing is measured for the full rendering + saving sequence. The call to glGetTexImage() alone does not really matter. That being said, it is this call which changes the performance. And yes, of course, as stated at the beginning, the texture is "created into the GPU", hence the need to save it.

    Read the article

  • Render To Texture Using OpenGL is not working but normal rendering works just fine

    - by Franky Rivera
    things I initialize at the beginning of the program I realize not all of these pertain to my issue I just copy and pasted what I had //overall initialized //things openGL related I initialize earlier on in the project glClearColor( 0.0f, 0.0f, 0.0f, 1.0f ); glClearDepth( 1.0f ); glEnable(GL_ALPHA_TEST); glEnable( GL_STENCIL_TEST ); glEnable(GL_DEPTH_TEST); glDepthFunc( GL_LEQUAL ); glEnable(GL_CULL_FACE); glFrontFace( GL_CCW ); glEnable(GL_COLOR_MATERIAL); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glHint( GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST ); //we also initialize our shader programs //(i added some shader program functions for definitions) //this enum list is else where in code //i figured it would help show you guys more about my //shader compile creation function right under this enum list VVVVVV /*enum eSHADER_ATTRIB_LOCATION { VERTEX_ATTRIB = 0, NORMAL_ATTRIB = 2, COLOR_ATTRIB, COLOR2_ATTRIB, FOG_COORD, TEXTURE_COORD_ATTRIB0 = 8, TEXTURE_COORD_ATTRIB1, TEXTURE_COORD_ATTRIB2, TEXTURE_COORD_ATTRIB3, TEXTURE_COORD_ATTRIB4, TEXTURE_COORD_ATTRIB5, TEXTURE_COORD_ATTRIB6, TEXTURE_COORD_ATTRIB7 }; */ //if we fail making our shader leave if( !testShader.CreateShader( "SimpleShader.vp", "SimpleShader.fp", 3, VERTEX_ATTRIB, "vVertexPos", NORMAL_ATTRIB, "vNormal", TEXTURE_COORD_ATTRIB0, "vTexCoord" ) ) return false; if( !testScreenShader.CreateShader( "ScreenShader.vp", "ScreenShader.fp", 3, VERTEX_ATTRIB, "vVertexPos", NORMAL_ATTRIB, "vNormal", TEXTURE_COORD_ATTRIB0, "vTexCoord" ) ) return false; SHADER PROGRAM FUNCTIONS bool CShaderProgram::CreateShader( const char* szVertexShaderName, const char* szFragmentShaderName, ... ) { //here are our handles for the openGL shaders int iGLVertexShaderHandle = -1, iGLFragmentShaderHandle = -1; //get our shader data char *vData = 0, *fData = 0; int vLength = 0, fLength = 0; LoadShaderFile( szVertexShaderName, &vData, &vLength ); LoadShaderFile( szFragmentShaderName, &fData, &fLength ); //data if( !vData ) return false; //data if( !fData ) { delete[] vData; return false; } //create both our shader objects iGLVertexShaderHandle = glCreateShader( GL_VERTEX_SHADER ); iGLFragmentShaderHandle = glCreateShader( GL_FRAGMENT_SHADER ); //well we got this far so we have dynamic data to clean up //load vertex shader glShaderSource( iGLVertexShaderHandle, 1, (const char**)(&vData), &vLength ); //load fragment shader glShaderSource( iGLFragmentShaderHandle, 1, (const char**)(&fData), &fLength ); //we are done with our data delete it delete[] vData; delete[] fData; //compile them both glCompileShader( iGLVertexShaderHandle ); //get shader status int iShaderOk; glGetShaderiv( iGLVertexShaderHandle, GL_COMPILE_STATUS, &iShaderOk ); if( iShaderOk == GL_FALSE ) { char* buffer; //get what happend with our shader glGetShaderiv( iGLVertexShaderHandle, GL_INFO_LOG_LENGTH, &iShaderOk ); buffer = new char[iShaderOk]; glGetShaderInfoLog( iGLVertexShaderHandle, iShaderOk, NULL, buffer ); //sprintf_s( buffer, "Failure Our Object For %s was not created", szFileName ); MessageBoxA( NULL, buffer, szVertexShaderName, MB_OK ); //delete our dynamic data free( buffer ); glDeleteShader(iGLVertexShaderHandle); return false; } glCompileShader( iGLFragmentShaderHandle ); //get shader status glGetShaderiv( iGLFragmentShaderHandle, GL_COMPILE_STATUS, &iShaderOk ); if( iShaderOk == GL_FALSE ) { char* buffer; //get what happend with our shader glGetShaderiv( iGLFragmentShaderHandle, GL_INFO_LOG_LENGTH, &iShaderOk ); buffer = new char[iShaderOk]; glGetShaderInfoLog( iGLFragmentShaderHandle, iShaderOk, NULL, buffer ); //sprintf_s( buffer, "Failure Our Object For %s was not created", szFileName ); MessageBoxA( NULL, buffer, szFragmentShaderName, MB_OK ); //delete our dynamic data free( buffer ); glDeleteShader(iGLFragmentShaderHandle); return false; } //lets check to see if the fragment shader compiled int iCompiled = 0; glGetShaderiv( iGLVertexShaderHandle, GL_COMPILE_STATUS, &iCompiled ); if( !iCompiled ) { //this shader did not compile leave return false; } //lets check to see if the fragment shader compiled glGetShaderiv( iGLFragmentShaderHandle, GL_COMPILE_STATUS, &iCompiled ); if( !iCompiled ) { char* buffer; //get what happend with our shader glGetShaderiv( iGLFragmentShaderHandle, GL_INFO_LOG_LENGTH, &iShaderOk ); buffer = new char[iShaderOk]; glGetShaderInfoLog( iGLFragmentShaderHandle, iShaderOk, NULL, buffer ); //sprintf_s( buffer, "Failure Our Object For %s was not created", szFileName ); MessageBoxA( NULL, buffer, szFragmentShaderName, MB_OK ); //delete our dynamic data free( buffer ); glDeleteShader(iGLFragmentShaderHandle); return false; } //make our new shader program m_iShaderProgramHandle = glCreateProgram(); glAttachShader( m_iShaderProgramHandle, iGLVertexShaderHandle ); glAttachShader( m_iShaderProgramHandle, iGLFragmentShaderHandle ); glLinkProgram( m_iShaderProgramHandle ); int iLinked = 0; glGetProgramiv( m_iShaderProgramHandle, GL_LINK_STATUS, &iLinked ); if( !iLinked ) { //we didn't link return false; } //NOW LETS CREATE ALL OUR HANDLES TO OUR PROPER LIKING //start from this parameter va_list parseList; va_start( parseList, szFragmentShaderName ); //read in number of variables if any unsigned uiNum = 0; uiNum = va_arg( parseList, unsigned ); //for loop through our attribute pairs int enumType = 0; for( unsigned x = 0; x < uiNum; ++x ) { //specify our attribute locations enumType = va_arg( parseList, int ); char* name = va_arg( parseList, char* ); glBindAttribLocation( m_iShaderProgramHandle, enumType, name ); } //end our list parsing va_end( parseList ); //relink specify //we have custom specified our attribute locations glLinkProgram( m_iShaderProgramHandle ); //fill our handles InitializeHandles( ); //everything went great return true; } void CShaderProgram::InitializeHandles( void ) { m_uihMVP = glGetUniformLocation( m_iShaderProgramHandle, "mMVP" ); m_uihWorld = glGetUniformLocation( m_iShaderProgramHandle, "mWorld" ); m_uihView = glGetUniformLocation( m_iShaderProgramHandle, "mView" ); m_uihProjection = glGetUniformLocation( m_iShaderProgramHandle, "mProjection" ); ///////////////////////////////////////////////////////////////////////////////// //texture handles m_uihDiffuseMap = glGetUniformLocation( m_iShaderProgramHandle, "diffuseMap" ); if( m_uihDiffuseMap != -1 ) { //store what texture index this handle will be in the shader glUniform1i( m_uihDiffuseMap, RM_DIFFUSE+GL_TEXTURE0 ); (0)+ } m_uihNormalMap = glGetUniformLocation( m_iShaderProgramHandle, "normalMap" ); if( m_uihNormalMap != -1 ) { //store what texture index this handle will be in the shader glUniform1i( m_uihNormalMap, RM_NORMAL+GL_TEXTURE0 ); (1)+ } } void CShaderProgram::SetDiffuseMap( const unsigned& uihDiffuseMap ) { (0)+ glActiveTexture( RM_DIFFUSE+GL_TEXTURE0 ); glBindTexture( GL_TEXTURE_2D, uihDiffuseMap ); } void CShaderProgram::SetNormalMap( const unsigned& uihNormalMap ) { (1)+ glActiveTexture( RM_NORMAL+GL_TEXTURE0 ); glBindTexture( GL_TEXTURE_2D, uihNormalMap ); } //MY 2 TEST SHADERS also my math order is correct it pertains to my matrix ordering in my math library once again i've tested the basic rendering. rendering to the screen works fine ----------------------------------------SIMPLE SHADER------------------------------------- //vertex shader looks like this #version 330 in vec3 vVertexPos; in vec3 vNormal; in vec2 vTexCoord; uniform mat4 mWorld; // Model Matrix uniform mat4 mView; // Camera View Matrix uniform mat4 mProjection;// Camera Projection Matrix out vec2 vTexCoordVary; // Texture coord to the fragment program out vec3 vNormalColor; void main( void ) { //pass the texture coordinate vTexCoordVary = vTexCoord; vNormalColor = vNormal; //calculate our model view projection matrix mat4 mMVP = (( mWorld * mView ) * mProjection ); //result our position gl_Position = vec4( vVertexPos, 1 ) * mMVP; } //fragment shader looks like this #version 330 in vec2 vTexCoordVary; in vec3 vNormalColor; uniform sampler2D diffuseMap; uniform sampler2D normalMap; out vec4 fragColor[2]; void main( void ) { //CORRECT fragColor[0] = texture( normalMap, vTexCoordVary ); fragColor[1] = vec4( vNormalColor, 1.0 ); }; ----------------------------------------SCREEN SHADER------------------------------------- //vertext shader looks like this #version 330 in vec3 vVertexPos; // This is the position of the vertex coming in in vec2 vTexCoord; // This is the texture coordinate.... out vec2 vTexCoordVary; // Texture coord to the fragment program void main( void ) { vTexCoordVary = vTexCoord; //set our position gl_Position = vec4( vVertexPos.xyz, 1.0f ); } //fragment shader looks like this #version 330 in vec2 vTexCoordVary; // Incoming "varying" texture coordinate uniform sampler2D diffuseMap;//the tile detail texture uniform sampler2D normalMap; //the normal map from earlier out vec4 vTheColorOfThePixel; void main( void ) { //CORRECT vTheColorOfThePixel = texture( normalMap, vTexCoordVary ); }; .Class RenderTarget Main Functions //here is my render targets create function bool CRenderTarget::Create( const unsigned uiNumTextures, unsigned uiWidth, unsigned uiHeight, int iInternalFormat, bool bDepthWanted ) { if( uiNumTextures <= 0 ) return false; //generate our variables glGenFramebuffers(1, &m_uifboHandle); // Initialize FBO glBindFramebuffer(GL_FRAMEBUFFER, m_uifboHandle); m_uiNumTextures = uiNumTextures; if( bDepthWanted ) m_uiNumTextures += 1; m_uiTextureHandle = new unsigned int[uiNumTextures]; glGenTextures( uiNumTextures, m_uiTextureHandle ); for( unsigned x = 0; x < uiNumTextures-1; ++x ) { glBindTexture( GL_TEXTURE_2D, m_uiTextureHandle[x]); // Reserve space for our 2D render target glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexImage2D(GL_TEXTURE_2D, 0, iInternalFormat, uiWidth, uiHeight, 0, GL_RGB, GL_UNSIGNED_BYTE, NULL); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + x, GL_TEXTURE_2D, m_uiTextureHandle[x], 0); } //if we need one for depth testing if( bDepthWanted ) { glFramebufferTexture2D(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, m_uiTextureHandle[uiNumTextures-1], 0); glFramebufferTexture2D(GL_FRAMEBUFFER_EXT, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D, m_uiTextureHandle[uiNumTextures-1], 0);*/ // Must attach texture to framebuffer. Has Stencil and depth glBindRenderbuffer(GL_RENDERBUFFER, m_uiTextureHandle[uiNumTextures-1]); glRenderbufferStorage(GL_RENDERBUFFER, /*GL_DEPTH_STENCIL*/GL_DEPTH24_STENCIL8, TEXTURE_WIDTH, TEXTURE_HEIGHT ); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, m_uiTextureHandle[uiNumTextures-1]); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_RENDERBUFFER, m_uiTextureHandle[uiNumTextures-1]); } glBindFramebuffer(GL_FRAMEBUFFER, 0); //everything went fine return true; } void CRenderTarget::Bind( const int& iTargetAttachmentLoc, const unsigned& uiWhichTexture, const bool bBindFrameBuffer ) { if( bBindFrameBuffer ) glBindFramebuffer( GL_FRAMEBUFFER, m_uifboHandle ); if( uiWhichTexture < m_uiNumTextures ) glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + iTargetAttachmentLoc, m_uiTextureHandle[uiWhichTexture], 0); } void CRenderTarget::UnBind( void ) { //default our binding glBindFramebuffer( GL_FRAMEBUFFER, 0 ); } //this is all in a test project so here's my straight forward rendering function for testing this render function does basic rendering steps keep in mind i have already tested my textures i have already tested my box thats being rendered all basic rendering works fine its just when i try to render to a texture then display it in a render surface that it does not work. Also I have tested my render surface it is bound exactly to the screen coordinate space void TestRenderSteps( void ) { //Clear the color and the depth glClearColor( 0.0f, 0.0f, 0.0f, 1.0f ); glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT ); //bind the shader program glUseProgram( testShader.m_iShaderProgramHandle ); //1) grab the vertex buffer related to our rendering glBindBuffer( GL_ARRAY_BUFFER, CVertexBufferManager::GetInstance()->GetPositionNormalTexBuffer().GetBufferHandle() ); //2) how our stream will be split here ( 4 bytes position, ..ext ) CVertexBufferManager::GetInstance()->GetPositionNormalTexBuffer().MapVertexStride(); //3) set the index buffer if needed glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, CIndexBuffer::GetInstance()->GetBufferHandle() ); //send the needed information into the shader testShader.SetWorldMatrix( boxPosition ); testShader.SetViewMatrix( Static_Camera.GetView( ) ); testShader.SetProjectionMatrix( Static_Camera.GetProjection( ) ); testShader.SetDiffuseMap( iTextureID ); testShader.SetNormalMap( iTextureID2 ); GLenum buffers[] = { GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1 }; glDrawBuffers(2, buffers); //bind to our render target //RM_DIFFUSE, RM_NORMAL are enums (0 && 1) renderTarget.Bind( RM_DIFFUSE, 1, true ); renderTarget.Bind( RM_NORMAL, 1, false); //false because buffer is already bound //i clear here just to clear the texture to make it a default value of white //by doing this i can see if what im rendering to my screen is just drawing to the screen //or if its my render target defaulted glClearColor( 1.0f, 1.0f, 1.0f, 1.0f ); glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT ); //i have this box object which i draw testBox.Draw(); //the draw call looks like this //my normal rendering works just fine so i know this draw is fine // glDrawElementsBaseVertex( m_sides[x].GetPrimitiveType(), // m_sides[x].GetPrimitiveCount() * 3, // GL_UNSIGNED_INT, // BUFFER_OFFSET(sizeof(unsigned int) * m_sides[x].GetStartIndex()), // m_sides[x].GetStartVertex( ) ); //we unbind the target back to default renderTarget.UnBind(); //i stop mapping my vertex format CVertexBufferManager::GetInstance()->GetPositionNormalTexBuffer().UnMapVertexStride(); //i go back to default in using no shader program glUseProgram( 0 ); //now that everything is drawn to the textures //lets draw our screen surface and pass it our 2 filled out textures //NOW RENDER THE TEXTURES WE COLLECTED TO THE SCREEN QUAD //bind the shader program glUseProgram( testScreenShader.m_iShaderProgramHandle ); //1) grab the vertex buffer related to our rendering glBindBuffer( GL_ARRAY_BUFFER, CVertexBufferManager::GetInstance()->GetPositionTexBuffer().GetBufferHandle() ); //2) how our stream will be split here CVertexBufferManager::GetInstance()->GetPositionTexBuffer().MapVertexStride(); //3) set the index buffer if needed glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, CIndexBuffer::GetInstance()->GetBufferHandle() ); //pass our 2 filled out textures (in the shader im just using the diffuse //i wanted to see if i was rendering anything before i started getting into other techniques testScreenShader.SetDiffuseMap( renderTarget.GetTextureHandle(0) ); //SetDiffuseMap definitions in shader program class testScreenShader.SetNormalMap( renderTarget.GetTextureHandle(1) ); //SetNormalMap definitions in shader program class //DO the draw call drawing our screen rectangle glDrawElementsBaseVertex( m_ScreenRect.GetPrimitiveType(), m_ScreenRect.GetPrimitiveCount() * 3, GL_UNSIGNED_INT, BUFFER_OFFSET(sizeof(unsigned int) * m_ScreenRect.GetStartIndex()), m_ScreenRect.GetStartVertex( ) );*/ //unbind our vertex mapping CVertexBufferManager::GetInstance()->GetPositionTexBuffer().UnMapVertexStride(); //default to no shader program glUseProgram( 0 ); } Last words: 1) I can render my box just fine 2) i can render my screen rect just fine 3) I cannot render my box into a texture then display it into my screen rect 4) This entire project is just a test project I made to test different rendering practices. So excuse any "ugly-ish" unclean code. This was made just on a fly run through when I was trying new test cases.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >