Search Results

Search found 16050 results on 642 pages for 'linq to objects'.

Page 207/642 | < Previous Page | 203 204 205 206 207 208 209 210 211 212 213 214  | Next Page >

  • How to structure game states in an entity/component-based system

    - by Eva
    I'm making a game designed with the entity-component paradigm that uses systems to communicate between components as explained here. I've reached the point in my development that I need to add game states (such as paused, playing, level start, round start, game over, etc.), but I'm not sure how to do it with my framework. I've looked at this code example on game states which everyone seems to reference, but I don't think it fits with my framework. It seems to have each state handling its own drawing and updating. My framework has a SystemManager that handles all the updating using systems. For example, here's my RenderingSystem class: public class RenderingSystem extends GameSystem { private GameView gameView_; /** * Constructor * Creates a new RenderingSystem. * @param gameManager The game manager. Used to get the game components. */ public RenderingSystem(GameManager gameManager) { super(gameManager); } /** * Method: registerGameView * Registers gameView into the RenderingSystem. * @param gameView The game view registered. */ public void registerGameView(GameView gameView) { gameView_ = gameView; } /** * Method: triggerRender * Adds a repaint call to the event queue for the dirty rectangle. */ public void triggerRender() { Rectangle dirtyRect = new Rectangle(); for (GameObject object : getRenderableObjects()) { GraphicsComponent graphicsComponent = object.getComponent(GraphicsComponent.class); dirtyRect.add(graphicsComponent.getDirtyRect()); } gameView_.repaint(dirtyRect); } /** * Method: renderGameView * Renders the game objects onto the game view. * @param g The graphics object that draws the game objects. */ public void renderGameView(Graphics g) { for (GameObject object : getRenderableObjects()) { GraphicsComponent graphicsComponent = object.getComponent(GraphicsComponent.class); if (!graphicsComponent.isVisible()) continue; GraphicsComponent.Shape shape = graphicsComponent.getShape(); BoundsComponent boundsComponent = object.getComponent(BoundsComponent.class); Rectangle bounds = boundsComponent.getBounds(); g.setColor(graphicsComponent.getColor()); if (shape == GraphicsComponent.Shape.RECTANGULAR) { g.fill3DRect(bounds.x, bounds.y, bounds.width, bounds.height, true); } else if (shape == GraphicsComponent.Shape.CIRCULAR) { g.fillOval(bounds.x, bounds.y, bounds.width, bounds.height); } } } /** * Method: getRenderableObjects * @return The renderable game objects. */ private HashSet<GameObject> getRenderableObjects() { return gameManager.getGameObjectManager().getRelevantObjects( getClass()); } } Also all the updating in my game is event-driven. I don't have a loop like theirs that simply updates everything at the same time. I like my framework because it makes it easy to add new GameObjects, but doesn't have the problems some component-based designs encounter when communicating between components. I would hate to chuck it just to get pause to work. Is there a way I can add game states to my game without removing the entity-component design? Does the game state example actually fit my framework, and I'm just missing something? EDIT: I might not have explained my framework well enough. My components are just data. If I was coding in C++, they'd probably be structs. Here's an example of one: public class BoundsComponent implements GameComponent { /** * The position of the game object. */ private Point pos_; /** * The size of the game object. */ private Dimension size_; /** * Constructor * Creates a new BoundsComponent for a game object with initial position * initialPos and initial size initialSize. The position and size combine * to make up the bounds. * @param initialPos The initial position of the game object. * @param initialSize The initial size of the game object. */ public BoundsComponent(Point initialPos, Dimension initialSize) { pos_ = initialPos; size_ = initialSize; } /** * Method: getBounds * @return The bounds of the game object. */ public Rectangle getBounds() { return new Rectangle(pos_, size_); } /** * Method: setPos * Sets the position of the game object to newPos. * @param newPos The value to which the position of the game object is * set. */ public void setPos(Point newPos) { pos_ = newPos; } } My components do not communicate with each other. Systems handle inter-component communication. My systems also do not communicate with each other. They have separate functionality and can easily be kept separate. The MovementSystem doesn't need to know what the RenderingSystem is rendering to move the game objects correctly; it just need to set the right values on the components, so that when the RenderingSystem renders the game objects, it has accurate data. The game state could not be a system, because it needs to interact with the systems rather than the components. It's not setting data; it's determining which functions need to be called. A GameStateComponent wouldn't make sense because all the game objects share one game state. Components are what make up objects and each one is different for each different object. For example, the game objects cannot have the same bounds. They can have overlapping bounds, but if they share a BoundsComponent, they're really the same object. Hopefully, this explanation makes my framework less confusing.

    Read the article

  • Scripts won't affect clones - Unity3d

    - by user3666251
    I made a script which swaps two game objects on click.But the script won't work because the objects are actualy clones of the original prefab. This is the script (UnityScript): #pragma strict var object1 : GameObject; var object2 : GameObject; function OnMouseDown () { Instantiate(object2,object1.transform.position,object1.transform.rotation); Destroy(object1); } I use this script to create other game objects (clones)[c#] : using UnityEngine; using System.Collections; public class Spawner : MonoBehaviour { public GameObject[] obj; public float spawnMin = 1f; public float spawnMax = 2f; // Use this for initialization void Start () { Spawn (); } void Spawn() { Instantiate(obj[Random.Range(0, obj.GetLength(0))],transform.position, Quaternion.identity); Invoke ("Spawn", Random.Range (spawnMin, spawnMax)); } } The objects get renamed to NAME (Clone). What I wanna do is make the script affect clones too.So they will swap when I click on them.

    Read the article

  • array and array_view from amp.h

    - by Daniel Moth
    This is a very long post, but it also covers what are probably the classes (well, array_view at least) that you will use the most with C++ AMP, so I hope you enjoy it! Overview The concurrency::array and concurrency::array_view template classes represent multi-dimensional data of type T, of N dimensions, specified at compile time (and you can later access the number of dimensions via the rank property). If N is not specified, it is assumed that it is 1 (i.e. single-dimensional case). They are rectangular (not jagged). The difference between them is that array is a container of data, whereas array_view is a wrapper of a container of data. So in that respect, array behaves like an STL container, whereas the closest thing an array_view behaves like is an STL iterator (albeit with random access and allowing you to view more than one element at a time!). The data in the array (whether provided at creation time or added later) resides on an accelerator (which is specified at creation time either explicitly by the developer, or set to the default accelerator at creation time by the runtime) and is laid out contiguously in memory. The data provided to the array_view is not stored by/in the array_view, because the array_view is simply a view over the real source (which can reside on the CPU or other accelerator). The underlying data is copied on demand to wherever the array_view is accessed. Elements which differ by one in the least significant dimension of the array_view are adjacent in memory. array objects must be captured by reference into the lambda you pass to the parallel_for_each call, whereas array_view objects must be captured by value (into the lambda you pass to the parallel_for_each call). Creating array and array_view objects and relevant properties You can create array_view objects from other array_view objects of the same rank and element type (shallow copy, also possible via assignment operator) so they point to the same underlying data, and you can also create array_view objects over array objects of the same rank and element type e.g.   array_view<int,3> a(b); // b can be another array or array_view of ints with rank=3 Note: Unlike the constructors above which can be called anywhere, the ones in the rest of this section can only be called from CPU code. You can create array objects from other array objects of the same rank and element type (copy and move constructors) and from other array_view objects, e.g.   array<float,2> a(b); // b can be another array or array_view of floats with rank=2 To create an array from scratch, you need to at least specify an extent object, e.g. array<int,3> a(myExtent);. Note that instead of an explicit extent object, there are convenience overloads when N<=3 so you can specify 1-, 2-, 3- integers (dependent on the array's rank) and thus have the extent created for you under the covers. At any point, you can access the array's extent thought the extent property. The exact same thing applies to array_view (extent as constructor parameters, incl. convenience overloads, and property). While passing only an extent object to create an array is enough (it means that the array will be written to later), it is not enough for the array_view case which must always wrap over some other container (on which it relies for storage space and actual content). So in addition to the extent object (that describes the shape you'd like to be viewing/accessing that data through), to create an array_view from another container (e.g. std::vector) you must pass in the container itself (which must expose .data() and a .size() methods, e.g. like std::array does), e.g.   array_view<int,2> aaa(myExtent, myContainerOfInts); Similarly, you can create an array_view from a raw pointer of data plus an extent object. Back to the array case, to optionally initialize the array with data, you can pass an iterator pointing to the start (and optionally one pointing to the end of the source container) e.g.   array<double,1> a(5, myVector.begin(), myVector.end()); We saw that arrays are bound to an accelerator at creation time, so in case you don’t want the C++ AMP runtime to assign the array to the default accelerator, all array constructors have overloads that let you pass an accelerator_view object, which you can later access via the accelerator_view property. Note that at the point of initializing an array with data, a synchronous copy of the data takes place to the accelerator, and then to copy any data back we'll see that an explicit copy call is required. This does not happen with the array_view where copying is on demand... refresh and synchronize on array_view Note that in the previous section on constructors, unlike the array case, there was no overload that accepted an accelerator_view for array_view. That is because the array_view is simply a wrapper, so the allocation of the data has already taken place before you created the array_view. When you capture an array_view variable in your call to parallel_for_each, the copy of data between the non-CPU accelerator and the CPU takes place on demand (i.e. it is implicit, versus the explicit copy that has to happen with the array). There are some subtleties to the on-demand-copying that we cover next. The assumption when using an array_view is that you will continue to access the data through the array_view, and not through the original underlying source, e.g. the pointer to the data that you passed to the array_view's constructor. So if you modify the data through the array_view on the GPU, the original pointer on the CPU will not "know" that, unless one of two things happen: you access the data through the array_view on the CPU side, i.e. using indexing that we cover below you explicitly call the array_view's synchronize method on the CPU (this also gets called in the array_view's destructor for you) Conversely, if you make a change to the underlying data through the original source (e.g. the pointer), the array_view will not "know" about those changes, unless you call its refresh method. Finally, note that if you create an array_view of const T, then the data is copied to the accelerator on demand, but it does not get copied back, e.g.   array_view<const double, 5> myArrView(…); // myArrView will not get copied back from GPU There is also a similar mechanism to achieve the reverse, i.e. not to copy the data of an array_view to the GPU. copy_to, data, and global copy/copy_async functions Both array and array_view expose two copy_to overloads that allow copying them to another array, or to another array_view, and these operations can also be achieved with assignment (via the = operator overloads). Also both array and array_view expose a data method, to get a raw pointer to the underlying data of the array or array_view, e.g. float* f = myArr.data();. Note that for array_view, this only works when the rank is equal to 1, due to the data only being contiguous in one dimension as covered in the overview section. Finally, there are a bunch of global concurrency::copy functions returning void (and corresponding concurrency::copy_async functions returning a future) that allow copying between arrays and array_views and iterators etc. Just browse intellisense or amp.h directly for the full set. Note that for array, all copying described throughout this post is deep copying, as per other STL container expectations. You can never have two arrays point to the same data. indexing into array and array_view plus projection Reading or writing data elements of an array is only legal when the code executes on the same accelerator as where the array was bound to. In the array_view case, you can read/write on any accelerator, not just the one where the original data resides, and the data gets copied for you on demand. In both cases, the way you read and write individual elements is via indexing as described next. To access (or set the value of) an element, you can index into it by passing it an index object via the subscript operator. Furthermore, if the rank is 3 or less, you can use the function ( ) operator to pass integer values instead of having to use an index object. e.g. array<float,2> arr(someExtent, someIterator); //or array_view<float,2> arr(someExtent, someContainer); index<2> idx(5,4); float f1 = arr[idx]; float f2 = arr(5,4); //f2 ==f1 //and the reverse for assigning, e.g. arr(idx[0], 7) = 6.9; Note that for both array and array_view, regardless of rank, you can also pass a single integer to the subscript operator which results in a projection of the data, and (for both array and array_view) you get back an array_view of rank N-1 (or if the rank was 1, you get back just the element at that location). Not Covered In this already very long post, I am not going to cover three very cool methods (and related overloads) that both array and array_view expose: view_as, section, reinterpret_as. We'll revisit those at some point in the future, probably on the team blog. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • 2D non-tile based map editor

    - by user5468
    I am currently developing a relatively simple 2D, topdown oriented adventure game for the iPhone and was wondering what would be the easiest way to create the maps for my game. I figured I would need some kind of visual editor that would give me immediate feedback and would allow me to place all objects in the world exactly where I want them. I could then load the saved representation of the world I create in the editor in my game. So, I am looking for a simple map editor that allows me to do this. All the objects in my game are simply textured rectangles build up from two triangles. All I need to be able to do is position different rectangles/objects in the map, and give them a texture. I am using texture atlases, so it would be useful to be able to assign portions of textures to the objects. I then need to be able to extract all the objects from the saved representation of my maps, together with the name/identifier of the texture(atlas) they use, and the area of the texture atlas. I have looked at some tile-based map editors like Tiled and Ogmo, but they don't seem to be able to do what I want. Any suggestions? EDIT: a more concrete example: something like the GameMaker level editor, but then with added export functionality in a handy format.

    Read the article

  • Class Design -- Multiple Calls from One Method or One Call from Multiple Methods?

    - by Andrew
    I've been working on some code recently that interfaces with a CMS we use and it's presented me with a question on class design that I think is applicable in a number of situations. Essentially, what I am doing is extracting information from the CMS and transforming this information into objects that I can use programatically for other purposes. This consists of two steps: Retrieve the data from the CMS (we have a DAL that I use, so this is essentially just specifying what data from the CMS I want--no connection logic or anything like that) Map the parsed data to my own [C#] objects There are basically two ways I can approach this: One call from multiple methods public void MainMethodWhereIDoStuff() { IEnumerable<MyObject> myObjects = GetMyObjects(); // Do other stuff with myObjects } private static IEnumerable<MyObject> GetMyObjects() { IEnumerable<CmsDataItem> cmsDataItems = GetCmsDataItems(); List<MyObject> mappedObjects = new List<MyObject>(); // do stuff to map the CmsDataItems to MyObjects return mappedObjects; } private static IEnumerable<CmsDataItem> GetCmsDataItems() { List<CmsDataItem> cmsDataItems = new List<CmsDataItem>(); // do stuff to get the CmsDataItems I want return cmsDataItems; } Multiple calls from one method public void MainMethodWhereIDoStuff() { IEnumerable<CmsDataItem> cmsDataItems = GetCmsDataItems(); IEnumerable<MyObject> myObjects = GetMyObjects(cmsDataItems); // do stuff with myObjects } private static IEnumerable<MyObject> GetMyObjects(IEnumerable<CmsDataItem> itemsToMap) { // ... } private static IEnumerable<CmsDataItem> GetCmsDataItems() { // ... } I am tempted to say that the latter is better than the former, as GetMyObjects does not depend on GetCmsDataItems, and it is explicit in the calling method the steps that are executed to retrieve the objects (I'm concerned that the first approach is kind of an object-oriented version of spaghetti code). On the other hand, the two helper methods are never going to be used outside of the class, so I'm not sure if it really matters whether one depends on the other. Furthermore, I like the fact that in the first approach the objects can be retrieved from one line-- most likely anyone working with the main method doesn't care how the objects are retrieved, they just need to retrieve the objects, and the "daisy chained" helper methods hide the exact steps needed to retrieve them (in practice, I actually have a few more methods but am still able to retrieve the object collection I want in one line). Is one of these methods right and the other wrong? Or is it simply a matter of preference or context dependent?

    Read the article

  • Clean way to use mutable implementation of Immutable interfaces for encapsulation

    - by dsollen
    My code is working on some compost relationship which creates a tree structure, class A has many children of type B, which has many children of type C etc. The lowest level class, call it bar, also points to a connected bar class. This effectively makes nearly every object in my domain inter-connected. Immutable objects would be problematic due to the expense of rebuilding almost all of my domain to make a single change to one class. I chose to go with an interface approach. Every object has an Immutable interface which only publishes the getter methods. I have controller objects which constructs the domain objects and thus has reference to the full objects, thus capable of calling the setter methods; but only ever publishes the immutable interface. Any change requested will go through the controller. So something like this: public interface ImmutableFoo{ public Bar getBar(); public Location getLocation(); } public class Foo implements ImmutableFoo{ private Bar bar; private Location location; @Override public Bar getBar(){ return Bar; } public void setBar(Bar bar){ this.bar=bar; } @Override public Location getLocation(){ return Location; } } public class Controller{ Private Map<Location, Foo> fooMap; public ImmutableFoo addBar(Bar bar){ Foo foo=fooMap.get(bar.getLocation()); if(foo!=null) foo.addBar(bar); return foo; } } I felt the basic approach seems sensible, however, when I speak to others they always seem to have trouble envisioning what I'm describing, which leaves me concerned that I may have a larger design issue then I'm aware of. Is it problematic to have domain objects so tightly coupled, or to use the quasi-mutable approach to modifying them? Assuming that the design approach itself isn't inherently flawed the particular discussion which left me wondering about my approach had to do with the presence of business logic in the domain objects. Currently I have my setter methods in the mutable objects do error checking and all other logic required to verify and make a change to the object. It was suggested that this should be pulled out into a service class, which applies all the business logic, to simplify my domain objects. I understand the advantage in mocking/testing and general separation of logic into two classes. However, with a service method/object It seems I loose some of the advantage of polymorphism, I can't override a base class to add in new error checking or business logic. It seems, if my polymorphic classes were complicated enough, I would end up with a service method that has to check a dozen flags to decide what error checking and business logic applies. So, for example, if I wanted to have a childFoo which also had a size field which should be compared to bar before adding par my current approach would look something like this. public class Foo implements ImmutableFoo{ public void addBar(Bar bar){ if(!getLocation().equals(bar.getLocation()) throw new LocationException(); this.bar=bar; } } public interface ImmutableChildFoo extends ImmutableFoo{ public int getSize(); } public ChildFoo extends Foo implements ImmutableChildFoo{ private int size; @Override public int getSize(){ return size; } @Override public void addBar(Bar bar){ if(getSize()<bar.getSize()){ throw new LocationException(); super.addBar(bar); } My colleague was suggesting instead having a service object that looks something like this (over simplified, the 'service' object would likely be more complex). public interface ImmutableFoo{ ///original interface, presumably used in other methods public Location getLocation(); public boolean isChildFoo(); } public interface ImmutableSizedFoo implements ImmutableFoo{ public int getSize(); } public class Foo implements ImmutableSizedFoo{ public Bar bar; @Override public void addBar(Bar bar){ this.bar=bar; } @Override public int getSize(){ //default size if no size is known return 0; } @Override public boolean isChildFoo return false; } } public ChildFoo extends Foo{ private int size; @Override public int getSize(){ return size; } @Override public boolean isChildFoo(); return true; } } public class Controller{ Private Map<Location, Foo> fooMap; public ImmutableSizedFoo addBar(Bar bar){ Foo foo=fooMap.get(bar.getLocation()); service.addBarToFoo(foo, bar); returned foo; } public class Service{ public static void addBarToFoo(Foo foo, Bar bar){ if(foo==null) return; if(!foo.getLocation().equals(bar.getLocation())) throw new LocationException(); if(foo.isChildFoo() && foo.getSize()<bar.getSize()) throw new LocationException(); foo.setBar(bar); } } } Is the recommended approach of using services and inversion of control inherently superior, or superior in certain cases, to overriding methods directly? If so is there a good way to go with the service approach while not loosing the power of polymorphism to override some of the behavior?

    Read the article

  • Organising levels / rooms in a MUD-style text based world

    - by Polynomial
    I'm thinking of writing a small text-based adventure game, but I'm not particularly sure how I should design the world from a technical standpoint. My first thought is to do it in XML, designed something like the following. Apologies for the huge pile of XML, but I felt it important to fully explain what I'm doing. <level> <start> <!-- start in kitchen with empty inventory --> <room>Kitchen</room> <inventory></inventory> </start> <rooms> <room> <name>Kitchen</name> <description>A small kitchen that looks like it hasn't been used in a while. It has a table in the middle, and there are some cupboards. There is a door to the north, which leads to the garden.</description> <!-- IDs of the objects the room contains --> <objects> <object>Cupboards</object> <object>Knife</object> <object>Batteries</object> </objects> </room> <room> <name>Garden</name> <description>The garden is wild and full of prickly bushes. To the north there is a path, which leads into the trees. To the south there is a house.</description> <objects> </objects> </room> <room> <name>Woods</name> <description>The woods are quite dark, with little light bleeding in from the garden. It is eerily quiet.</description> <objects> <object>Trees01</object> </objects> </room> </rooms> <doors> <!-- a door isn't necessarily a door. each door has a type, i.e. "There is a <type> leading to..." from and to are references the rooms that this door joins. direction specifies the direction (N,S,E,W,Up,Down) from <from> to <to> --> <door> <type>door</type> <direction>N</direction> <from>Kitchen</from> <to>Garden</to> </door> <door> <type>path</type> <direction>N</direction> <from>Garden</type> <to>Woods</type> </door> </doors> <variables> <!-- variables set by actions --> <variable name="cupboard_open">0</variable> </variables> <objects> <!-- definitions for objects --> <object> <name>Trees01</name> <displayName>Trees</displayName> <actions> <!-- any actions not defined will show the default failure message --> <action> <command>EXAMINE</command> <message>The trees are tall and thick. There aren't any low branches, so it'd be difficult to climb them.</message> </action> </actions> </object> <object> <name>Cupboards</name> <displayName>Cupboards</displayName> <actions> <action> <!-- requirements make the command only work when they are met --> <requirements> <!-- equivilent of "if(cupboard_open == 1)" --> <require operation="equal" value="1">cupboard_open</require> </requirements> <command>EXAMINE</command> <!-- fail message is the message displayed when the requirements aren't met --> <failMessage>The cupboard is closed.</failMessage> <message>The cupboard contains some batteires.</message> </action> <action> <requirements> <require operation="equal" value="0">cupboard_open</require> </requirements> <command>OPEN</command> <failMessage>The cupboard is already open.</failMessage> <message>You open the cupboard. It contains some batteries.</message> <!-- assigns is a list of operations performed on variables when the action succeeds --> <assigns> <assign operation="set" value="1">cupboard_open</assign> </assigns> </action> <action> <requirements> <require operation="equal" value="1">cupboard_open</require> </requirements> <command>CLOSE</command> <failMessage>The cupboard is already closed.</failMessage> <message>You closed the cupboard./message> <assigns> <assign operation="set" value="0">cupboard_open</assign> </assigns> </action> </actions> </object> <object> <name>Batteries</name> <displayName>Batteries</displayName> <!-- by setting inventory to non-zero, we can put it in our bag --> <inventory>1</inventory> <actions> <action> <requirements> <require operation="equal" value="1">cupboard_open</require> </requirements> <command>GET</command> <!-- failMessage isn't required here, it'll just show the usual "You can't see any <blank>." message --> <message>You picked up the batteries.</message> </action> </actions> </object> </objects> </level> Obviously there'd need to be more to it than this. Interaction with people and enemies as well as death and completion are necessary additions. Since the XML is quite difficult to work with, I'd probably create some sort of world editor. I'd like to know if this method has any downfalls, and if there's a "better" or more standard way of doing it.

    Read the article

  • Dynamic character animation - Using the physics engine or not

    - by Lex Webb
    I'm planning on building a dynamic reactant animation engine for the characters in my 2D Game. I have already built templates for a skeleton based animation system using key frames and interpolation to specify a limbs position at any given moment in time. I am using Farseer physics (an extension of Box2D) in Monogame/XNA in C# My real question lies in how i go about tying this character animation into the physics engine. I have two options: Moving limbs using physics engine - applying a interpolated force to each limb (dynamic body) in order to attempt to get it to its position as donated by the skeleton animation. Moving limbs by simply changing the position of a fixed body - Updating the new position of each limb manually, attempting to take into account physics collisions. Then stepping the physics after the animation to allow for environment interaction. Each of these methods have their distinct advantages and disadvantages. Physics based movement Advantages: Possibly more natural/realistic movement Better interaction with game objects as force applying to objects colliding with characters would be calculated for me. No need to convert to dynamic bodies when reacting to projectiles/death/fighting. Disadvantages: Possible difficulty in calculating correct amount of force to move a limb a certain distance at a constant rate. Underlying character balance system would need to be created that would need to be robust enough to prevent characters falling over at the touch of a feather. Added code complexity and processing time for the above. Static Object movement Advantages: Easy to interpolate movement of limbs between game steps Moving limbs is as simple as applying a rotation to the skeleton bone. Greater control over limbs, wont need to worry about characters falling over as all animation would be pre-defined. Disadvantages: Possible unnatural movement (Depends entirely on my animation skills!) Bad physics collision reactions with physics engine (Dynamic bodies simply slide out of the way of static objects) Need to calculate collisions with physics objects and my limbs myself and apply directional forces to them. Hard to account for slopes/stairs/non standard planes when animating walking/running animations. Need to convert objects to dynamic when reacting to projectile/fighting/death physics objects. The Question! As you can see, i have thought about this extensively, i have also had Google into physics based animation and have found mostly dissertation papers! Which is filling me with sense that it may a lot more advanced than my mathematics skills. My question is mostly subjective based on my findings above/any experience you may have: Which of the above methods should i use when creating my game? I am willing to spend the time to get a physics solution working if you think it would be possible. In the end i want to provide the most satisfying experience for the gamer, as well as a robust and dynamic system i can use to animate pretty much anything i need.

    Read the article

  • moore's law and quadratic algorithm

    - by damon
    I was going thru a video (from coursera - by sedgewick) in which he argues that you cannot sustain Moore's law using a quadratic algorithm.He elaborates like this In year 197* you build a computer of power X ,and need to count N objects.This takes M days According to Moore's law,you have a computer of power 2X after 1.5 years.But now you have 2N objects to count. If you use a quadratic algorithm, In year 197*+1.5 ,it takes (4M)/2 = 2M days 4M because the algorithm is quadratic,and division by 2 because of doubling computer power. I find this hard to understand.I tried to work thru this as below To count N objects using comp=X , it takes M days. -> N/X = M After 1.5 yrs ,you need to count 2N objects using comp=2X -> 2N/(2X) -> N/X -> M days where do I go wrong? can someone please help me understand?

    Read the article

  • Using unordered_multimap as entity and component storage

    - by natebot13
    The Setup I've made a few games (more like animations) using the Object Oriented method with base classes for objects that extend them, and objects that extend those, and found I couldn't wrap my head around expanding that system to larger game ideas. So I did some research and discovered the Entity-Component system of designing games. I really like the idea, and thoroughly understood the usefulness of it after reading Byte54's perfect answer here: Role of systems in entity systems architecture. With that said, I have decided to create my current game idea using the described Entity-Component system. Having basic knowledge of C++, and SFML, I would like to implement the backbone of this entity component system using an unordered_multimap without classes for the entities themselves. Here's the idea: An unordered_mulitmap stores entity IDs as the lookup term, while the value is an inherited Component object. Examlpe: ____________________________ |ID |Component | ---------------------------- |0 |Movable | |0 |Accelable | |0 |Renderable | |1 |Movable | |1 |Renderable | |2 |Renderable | ---------------------------- So, according to this map of objects, the entity with ID 0 has three components: Movable, Accelable, and Renderable. These component objects store the entity specific data, such as the location, the acceleration, and render flags. The entity is simply and ID, with the components attached to that ID describing its attributes. Problem I want to store the component objects within the map, allowing the map have full ownership of the components. The problem I'm having, is I don't quite understand enough about pointers, shared pointers, and references in order to get that set up. How can I go about initializing these components, with their various member variables, within the unordered_multimap? Can the base component class take on the member variables of its child classes, when defining the map as unordered_multimap<int, component>? Requirements I need a system to be able to grab an entity, with all of its' attached components, and access members from the components in order to do the necessary calculations and reassignments for position, velocity, etc. Need a clarification? Post a comment with your concerns and I will gladly edit or comment back! Thanks in advance! natebot13

    Read the article

  • Relative encapsulation design

    - by taher1992
    Let's say I am doing a 2D application with the following design: There is the Level object that manages the world, and there are world objects which are entities inside the Level object. A world object has a location and velocity, as well as size and a texture. However, a world object only exposes get properties. The set properties are private (or protected) and are only available to inherited classes. But of course, Level is responsible for these world objects, and must somehow be able to manipulate at least some of its private setters. But as of now, Level has no access, meaning world objects must change its private setters to public (violating encapsulation). How to tackle this problem? Should I just make everything public? Currently what I'm doing is having a inner class inside game object that does the set work. So when Level needs to update an objects location it goes something like this: void ChangeObject(GameObject targetObject, int newX, int newY){ // targetObject.SetX and targetObject.SetY cannot be set directly var setter = new GameObject.Setter(targetObject); setter.SetX(newX); setter.SetY(newY); } This code feels like overkill, but it doesn't feel right to have everything public so that anything can change an objects location for example.

    Read the article

  • Part 8: How to name EBS Customizations

    - by volker.eckardt(at)oracle.com
    You might wonder why I am discussing this here. The reason is simple: nearly every project has a bit different naming conventions, which makes a the life always a bit complicated (for developers, but also setup responsible, and also for consultants).  Although we always create a document to describe the technical object naming conventions, I have rarely seen a dedicated document  with functional naming conventions. To be precisely, from my stand point, there should always be one global naming definition for an implementation! Let me discuss some related questions: What is the best convention for the customization reference? How to name database objects (tables, packages etc.)? How to name functional objects like Value Sets, Concurrent Programs, etc. How to separate customizations from standard objects best? What is the best convention for the customization reference? The customization reference is the key you use to reference your customization from other lists, from the project plan etc. Usually it is something like XXHU_CONV_22 (HU=customer abbreviation, CONV=Conversion object #22) or XXFA_DEPRN_RPT_02 (FA=Fixed Assets, DEPRN=Short object group, here depreciation, RPT=Report, 02=2nd report in this area) As this is just a reference (not an object name yet), I would prefer the second option. XX=Customization, FA=Main EBS Module linked (you may have sometimes more, but FA is the main) DEPRN_RPT=Short name to specify the customization 02=a unique number Important here is that the HU isn’t used, because XX is enough to mark a custom object, and the 3rd+4th char can be used by the EBS module short name. How to name database objects (tables, packages etc.)? I was leading different developer teams, and I know that one common way is it to take the Customization reference and add more chars behind to classify the object (like _V for view and _T1 for triggers etc.). The only concern I have with this approach is the reusability. If you name your view XXFA_DEPRN_RPT_02_V, no one will by choice reuse this nice view, as it seams to be specific for this CEMLI. My suggestion is rather to name the view XXFA_DEPRN_PERIODS_V and allow herewith reusability for other CEMLIs (although the view will be deployed primarily with CEMLI package XXFA_DEPRN_RPT_02). (check also one of the following Blogs where I will talk about deployment.) How to name Value Sets, Concurrent Programs, etc. For Value Sets I would go with the same convention as for database objects, starting with XX<Module> …. For Concurrent Programs the situation is a bit different. This “object” is seen and used by a lot of users, and they will search for. In many projects it is common to start again with the company short name, or with XX. My proposal would differ. If you have created your own report and you name it “XX: Invoice Report”, the user has to remember that this report does not start with “I”, it starts with X. Would you like typing an X if you are looking for an Invoice report? No, you wouldn’t! So my advise would be to name it:   “Invoice Report (XXAP)”. Still we know it is custom (because of the XXAP), but the end user will type the key “i” to get it (and will see similar reports starting also with “i”). I hope that the general schema behind has now become obvious. How to separate customizations from standard objects best? I would not have this section here if the naming would not play an important role. Unfortunately, we can not always link a custom application to our own object, therefore the naming is really important. In the file system structure we use our $XXyy_TOP, in JAVA_TOP it is perhaps also “xx” in front. But in the database itself? Although there are different concepts in place, still many implementations are using the standard “apps” approach, means custom objects are stored in the apps schema (which should not cause any trouble). Final advise: review the naming conventions regularly, once a month. You may have to add more! And, publish them! To summarize: Technical and functional customized objects should always follow a naming convention. This naming convention should be project wide, and only one place shall be used to maintain (like in a Wiki). If the name is for the end user, rather put a customization identifier at the end; if it is an internal name, start with XX…

    Read the article

  • Physics not synchronizing correctly over the network when using Bullet

    - by Lucas
    I'm trying to implement a client/server physics system using Bullet however I'm having problems getting things to sync up. I've implemented a custom motion state which reads and write the transform from my game objects and it works locally but I've tried two different approaches for networked games: Dynamic objects on the client that are also on the server (eg not random debris and other unimportant stuff) are made kinematic. This works correctly but the objects don't move very smoothly Objects are dynamic on both but after each message from the server that the object has moved I set the linear and angular velocity to the values from the server and call btRigidBody::proceedToTransform with the transform on the server. I also call btCollisionObject::activate(true); to force the object to update. My intent with method 2 was to basically do method 1 but hijacking Bullet to do a poor-man's prediction instead of doing my own to smooth out method 1, but this doesn't seem to work (for reasons that are not 100% clear to me even stepping through Bullet) and the objects sometimes end up in different places. Am I heading in the right direction? Bullet seems to have it's own interpolation code built-in. Can that help me make method 1 work better? Or is my method 2 code not working because I am accidentally stomping that?

    Read the article

  • Linear search vs Octree (Frustum cull)

    - by Dave
    I am wondering whether I should look into implementing an octree of some kind. I have a very simple game which consists of a 3d plane for the floor. There are multiple objects scattered around on the ground, each one has an aabb in world space. Currently I just do a loop through the list of all these objects and check if its bounding box intersects with the frustum, it works great but I am wondering if if it would be a good investment in an octree. I only have max 512 of these objects on the map and they all contain bounding boxes. I am not sure if an octree would make it faster since I have so little objects in the scene.

    Read the article

  • Caching factory design

    - by max
    I have a factory class XFactory that creates objects of class X. Instances of X are very large, so the main purpose of the factory is to cache them, as transparently to the client code as possible. Objects of class X are immutable, so the following code seems reasonable: # module xfactory.py import x class XFactory: _registry = {} def get_x(self, arg1, arg2, use_cache = True): if use_cache: hash_id = hash((arg1, arg2)) if hash_id in _registry: return _registry[hash_id] obj = x.X(arg1, arg2) _registry[hash_id] = obj return obj # module x.py class X: # ... Is it a good pattern? (I know it's not the actual Factory Pattern.) Is there anything I should change? Now, I find that sometimes I want to cache X objects to disk. I'll use pickle for that purpose, and store as values in the _registry the filenames of the pickled objects instead of references to the objects. Of course, _registry itself would have to be stored persistently (perhaps in a pickle file of its own, in a text file, in a database, or simply by giving pickle files the filenames that contain hash_id). Except now the validity of the cached object depends not only on the parameters passed to get_x(), but also on the version of the code that created these objects. Strictly speaking, even a memory-cached object could become invalid if someone modifies x.py or any of its dependencies, and reloads it while the program is running. So far I ignored this danger since it seems unlikely for my application. But I certainly cannot ignore it when my objects are cached to persistent storage. What can I do? I suppose I could make the hash_id more robust by calculating hash of a tuple that contains arguments arg1 and arg2, as well as the filename and last modified date for x.py and every module and data file that it (recursively) depends on. To help delete cache files that won't ever be useful again, I'd add to the _registry the unhashed representation of the modified dates for each record. But even this solution isn't 100% safe since theoretically someone might load a module dynamically, and I wouldn't know about it from statically analyzing the source code. If I go all out and assume every file in the project is a dependency, the mechanism will still break if some module grabs data from an external website, etc.). In addition, the frequency of changes in x.py and its dependencies is quite high, leading to heavy cache invalidation. Thus, I figured I might as well give up some safety, and only invalidate the cache only when there is an obvious mismatch. This means that class X would have a class-level cache validation identifier that should be changed whenever the developer believes a change happened that should invalidate the cache. (With multiple developers, a separate invalidation identifier is required for each.) This identifier is hashed along with arg1 and arg2 and becomes part of the hash keys stored in _registry. Since developers may forget to update the validation identifier or not realize that they invalidated existing cache, it would seem better to add another validation mechanism: class X can have a method that returns all the known "traits" of X. For instance, if X is a table, I might add the names of all the columns. The hash calculation will include the traits as well. I can write this code, but I am afraid that I'm missing something important; and I'm also wondering if perhaps there's a framework or package that can do all of this stuff already. Ideally, I'd like to combine in-memory and disk-based caching.

    Read the article

  • Import FBX with multiple meshes into UDK

    - by Tom
    I used this script to generate a few buildings that I was hoping to import into UDK. Each building is made of about 1000 separate objects. When I export a building as FBX and import the file into UDK it breaks it up into its individual objects again, so I was wondering how I would avoid this. Whether there was a tool to combine all of the objects into one mesh automatically before exporting or if I could prevent UDK from breaking them upon import.

    Read the article

  • What is SMO?

    SQL Server Management Objects (SMO) are objects designed for programmatic management of Microsoft SQL Server.

    Read the article

  • Which physics phenomenons can be simulated properly with Box2d or bullet physics? [on hold]

    - by user3585425
    Knowing that box2d or bullet physics can't simulate Newton's cradle (because of multiple bodies being in contact at the same time if I understand correctly), is there a sets of physics phenomenons that imply two or more objects that still can be simulated properly ? For example, I'm thinking about lightweight objects launched towards heavyweight objects. If the object is destroyed on contact, this would not make a difference if the energy is not transmitted correctly on impact.

    Read the article

  • How to safely copy an object?

    - by Prog
    This question is going to be a little long. Please bear with me. Something that happened in a project of mine made me think about how to safely copy objects. I'll present the situation I had and then ask a question. There was a class SomeClass: class SomeClass{ Thing[] things; public SomeClass(Thing[] things){ this.things = things; } // irrelevant stuff omitted public SomeClass copy(){ return new SomeClass(things); } } There was another class Processor that takes SomeClass objects, copies them (via someClassInstance.copy()), manipulates the copy's state, and returns the copy. Here it is: class Processor{ public SomeClass processObject(SomeClass object){ SomeClass copy = object.copy(); manipulateTheCopy(copy); return copy; } // irrelevant stuff omitted } I ran this, and it had bugs. I looked into these bugs, and it turned out that the manipulations Processor does on copy actually affect not only the copy, but also the original SomeClass object that was passed into processObject. I found out that it was because the original and the copy shared state - because the original passed it's field things into the copy when creating it. This made me realize that copying objects is harder than simply instantiating them with the same fields as the original. For the two objects to be completely disconnected, without any shared state, each of the fields passed to the copy also has to be copied. And if that object contains other objects - they have to be copied too. And so on. So basically, in order to be able to actually copy an object, each class in the system must have a copy() method, that also invokes copy() on all of it's fields, and so on. So for example, for copy() in SomeClass to work, it needs to look like this: public SomeClass copy(){ Thing[] copyThings = new Thing[things.length]; for(int i=0; i<things.length; i++) copyThings[i] = things[i].copy(); return new SomeClass(copyThings); } And if Thing has object fields of it's own, than it's own copy() method must be appropriate: class Thing{ Apple apple; Pencil pencil; int number; public Thing(Apple apple, Pencil pencil, int number){ this.apple = apple; this.pencil = pencil; this.number = number; } public Thing copy(){ // 'number' is a primitve. return new Thing(apple.getCopy(), pencil.getCopy(), number); } } And so on. Of course, instead of all classes having a copy() method, the copying mechanism can happen in all of the getters and the constructors of classes (unless places where it isn't suitable, for example when the field points to an external object, not to an object that 'is part' of this object). Still, that means that in order to be able to safely copy an object - most classes would have to have copying mechanisms in their getters. My question is divided into two parts: How frequently do you need to get a copy of an object? Is this a regular issue? Is the technique described common and/or reasonable? Or is there a better way to make safe copies of objects? Or is there an easier way to safely copy objects, without them sharing any state?

    Read the article

  • Central renderer for a given scene

    - by Loggie
    When creating a central rendering system for all game objects in a given scene I am trying to work out the best way to go about passing the scene to the render system to be rendered. If I have a scene managed by an arbitrary structure, i.e., an octree, bsp trees, quad-tree, kd tree, etc. What is the best way to pass this to the render system? The obvious problem is that if simply given the root node of the structure, the render system would require an intrinsic knowledge of the structure in order to traverse the structure. My solution to this is to clip all objects outside the frustum in the scene manager and then create a list of the objects which are left and pass this simple list to the render system, be it an array, a vector, a linked list, etc. (This would be a structure required by the render system as a means to know which objects should be rendered). The list would of course attempt to minimise OpenGL state changes by grouping objects that require the same rendering operations to be performed on them. I have been thinking a lot about this and started searching various terms on here and followed any additional information/links but I have not really found a definitive answer. The case may be that there is no definitive answer but I would appreciate some advice and tips. My question is, is this a reasonable solution to the problem? Are there any improvements that I could make? Are there any caveats I should know about? Side question: Am I right in assuming that octrees, bsp trees, etc are all forms of BVH?

    Read the article

  • SQL Server Authentication vs Windows Authentication

    - by Nandu
    Hi, I am a SQL Server newbie and would really appreciate any help. I have created a new login (test2) with sql server authentication and granted select & vierw definition permission on another schema (test1) to test2. I am however not able to see the objects of test1 in the object explorer. However I can select the objects from the Query Window. Since this new login is being used to develop reports the user would like to view the objects in the Object Explorer. Another user test3 created using windows authentication and similar permissions is able to see test1's objects in the explorer. Please let me if this is the cause and if not how can help test2 see the objects in Object Explorer.

    Read the article

  • Sorting for 2D Drawing

    - by Nexian
    okie, looked through quite a few similar questions but still feel the need to ask mine specifically (I know, crazy). Anyhoo: I am drawing a game in 2D (isometric) My objects have their own arrays. (i.e. Tiles[], Objects[], Particles[], etc) I want to have a draw[] array to hold anything that will be drawn. Because it is 2D, I assume I must prioritise depth over any other sorting or things will look weird. My game is turn based so Tiles and Objects won't be changing position every frame. However, Particles probably will. So I am thinking I can populate the draw[] array (probably a vector?) with what is on-screen and have it add/remove object, tile & particle references when I pan the screen or when a tile or object is specifically moved. No idea how often I'm going to have to update for particles right now. I want to do this because my game may have many thousands of objects and I want to iterate through as few as possible when drawing. I plan to give each element a depth value to sort by. So, my questions: Does the above method sound like a good way to deal with the actual drawing? What is the most efficient way to sort a vector? Most of the time it wont require efficiency. But for panning the screen it will. And I imagine if I have many particles on screen moving across multiple tiles, it may happen quite often. For reference, my screen will be drawing about 2,800 objects at any one time. When panning, it will be adding/removing about ~200 elements every second, and each new element will need adding in the correct location based on depth.

    Read the article

  • Dealing with Fine-Grained Cache Entries in Coherence

    - by jpurdy
    On occasion we have seen significant memory overhead when using very small cache entries. Consider the case where there is a small key (say a synthetic key stored in a long) and a small value (perhaps a number or short string). With most backing maps, each cache entry will require an instance of Map.Entry, and in the case of a LocalCache backing map (used for expiry and eviction), there is additional metadata stored (such as last access time). Given the size of this data (usually a few dozen bytes) and the granularity of Java memory allocation (often a minimum of 32 bytes per object, depending on the specific JVM implementation), it is easily possible to end up with the case where the cache entry appears to be a couple dozen bytes but ends up occupying several hundred bytes of actual heap, resulting in anywhere from a 5x to 10x increase in stated memory requirements. In most cases, this increase applies to only a few small NamedCaches, and is inconsequential -- but in some cases it might apply to one or more very large NamedCaches, in which case it may dominate memory sizing calculations. Ultimately, the requirement is to avoid the per-entry overhead, which can be done either at the application level by grouping multiple logical entries into single cache entries, or at the backing map level, again by combining multiple entries into a smaller number of larger heap objects. At the application level, it may be possible to combine objects based on parent-child or sibling relationships (basically the same requirements that would apply to using partition affinity). If there is no natural relationship, it may still be possible to combine objects, effectively using a Coherence NamedCache as a "map of maps". This forces the application to first find a collection of objects (by performing a partial hash) and then to look within that collection for the desired object. This is most naturally implemented as a collection of entry processors to avoid pulling unnecessary data back to the client (and also to encapsulate that logic within a service layer). At the backing map level, the NIO storage option keeps keys on heap, and so has limited benefit for this situation. The Elastic Data features of Coherence naturally combine entries into larger heap objects, with the caveat that only data -- and not indexes -- can be stored in Elastic Data.

    Read the article

< Previous Page | 203 204 205 206 207 208 209 210 211 212 213 214  | Next Page >