Search Results

Search found 6159 results on 247 pages for 'compile'.

Page 233/247 | < Previous Page | 229 230 231 232 233 234 235 236 237 238 239 240  | Next Page >

  • Binary Search Tree Contains Function

    - by Suede
    I am trying to write a "contains" function for a binary search tree. I receive the following error at compile "Unhandled exception at 0x77291CB3 (ntdll.dll) in BST.exe: 0xC00000FD: Stack overflow (parameters: 0x00000001, 0x001E2FFC)." The following is my code. struct Node { int data; Node* leftChild; Node* rightChild; Node() : leftChild(NULL), rightChild(NULL) {} }; struct BST { Node* root; BST() : root(NULL) {} void insert(int value); bool contains(int value); }; void BST::insert(int value) { Node* temp = new Node(); temp->data = value; if(root == NULL) { root = temp; return; } Node* current; current = root; Node* parent; parent = root; current = (temp->data < current->data ? (current->leftChild) : (current->rightChild) while(current != NULL) { parent = current; current = (temp->data < current->data) ? (current->leftChild) : (current->rightChild) } if(temp->data < parent->data) { parent->leftChild = temp; } if(temp->data > parent->data) { parent->rightChild = temp; } } bool BST::contains(int value) { Node* temp = new Node(); temp->data = value; Node* current; current = root; if(temp->data == current->data) { // base case for when node with value is found std::cout << "true" << std::endl; return true; } if(current == NULL) { // base case if BST is empty or if a leaf is reached before value is found std::cout << "false" << std::endl; return false; } else { // recursive step current = (temp->data < current->data) ? (current->leftChild) : (current->rightChild); return contains(temp->data); } } int main() { BST bst; bst.insert(5); bst.contains(4); system("pause"); } As it stands, I would insert a single node with value '5' and I would search the binary search tree for a node with value '4' - thus, I would expect the result to be false.

    Read the article

  • Detect if class has overloaded function fails on Comeau compiler

    - by Frank
    Hi Everyone, I'm trying to use SFINAE to detect if a class has an overloaded member function that takes a certain type. The code I have seems to work correctly in Visual Studio and GCC, but does not compile using the Comeau online compiler. Here is the code I'm using: #include <stdio.h> //Comeau doesnt' have boost, so define our own enable_if_c template<bool value> struct enable_if_c { typedef void type; }; template<> struct enable_if_c< false > {}; //Class that has the overloaded member function class TestClass { public: void Func(float value) { printf( "%f\n", value ); } void Func(int value) { printf( "%i\n", value ); } }; //Struct to detect if TestClass has an overloaded member function for type T template<typename T> struct HasFunc { template<typename U, void (TestClass::*)( U )> struct SFINAE {}; template<typename U> static char Test(SFINAE<U, &TestClass::Func>*); template<typename U> static int Test(...); static const bool Has = sizeof(Test<T>(0)) == sizeof(char); }; //Use enable_if_c to only allow the function call if TestClass has a valid overload for T template<typename T> typename enable_if_c<HasFunc<T>::Has>::type CallFunc(TestClass &test, T value) { test.Func( value ); } int main() { float value1 = 0.0f; int value2 = 0; TestClass testClass; CallFunc( testClass, value1 ); //Should call TestClass::Func( float ) CallFunc( testClass, value2 ); //Should call TestClass::Func( int ) } The error message is: no instance of function template "CallFunc" matches the argument list. It seems that HasFunc::Has is false for int and float when it should be true. Is this a bug in the Comeau compiler? Am I doing something that's not standard? And if so, what do I need to do to fix it?

    Read the article

  • C++ - Error: expected unqualified-id before ‘using’

    - by Francisco P.
    Hello, everyone. I am having some trouble on a project I'm working on. Here's the header file for the calor class: #ifndef _CALOR_ #define _CALOR_ #include "gradiente.h" using namespace std; class Calor : public Gradiente { public: Calor(); Calor(int a); ~Calor(); int getTemp(); int getMinTemp(); void setTemp(int a); void setMinTemp(int a); void mostraSensor(); }; #endif When I try to compile it: calor.h|6|error: expected unqualified-id before ‘using’| Why does this happen? I've been searching online and learned this error occurs mostly due to corrupted included files. Makes no sense to me, though. This class inherits from gradiente: #ifndef _GRADIENTE_ #define _GRADIENTE_ #include "sensor.h" using namespace std; class Gradiente : public Sensor { protected: int vActual, vMin; public: Gradiente(); ~Gradiente(); } #endif Which in turn inherits from sensor #ifndef _SENSOR_ #define _SENSOR_ #include <iostream> #include <fstream> #include <string> #include "definicoes.h" using namespace std; class Sensor { protected: int tipo; int IDsensor; bool estadoAlerta; bool estadoActivo; static int numSensores; public: Sensor(/*PARAMETROS*/); Sensor(ifstream &); ~Sensor(); int getIDsensor(); bool getEstadoAlerta(); bool getEstadoActivo(); void setEstadoAlerta(int a); void setEstadoActivo(int a); virtual void guardaSensor(ofstream &); virtual void mostraSensor(); // FUNÇÃO COMUM /* virtual int funcaoComum() = 0; virtual int funcaoComum(){return 0;};*/ }; #endif For completeness' sake, here's definicoes.h #ifndef _DEFINICOES_ #define _DEFINICOES_ const unsigned int SENSOR_MOVIMENTO = 0; const unsigned int SENSOR_SOM = 1; const unsigned int SENSOR_PRESSAO = 2; const unsigned int SENSOR_CALOR = 3; const unsigned int SENSOR_CONTACTO = 4; const unsigned int MIN_MOVIMENTO = 10; const unsigned int MIN_SOM = 10; const unsigned int MIN_PRESSAO = 10; const unsigned int MIN_CALOR = 35; #endif Any help'd be much appreciated. Thank you for your time. Thanks for your time!

    Read the article

  • Templated derived class in CRTP (Curiously Recurring Template Pattern)

    - by Butterwaffle
    Hi, I have a use of the CRTP that doesn't compile with g++ 4.2.1, perhaps because the derived class is itself a template? Does anyone know why this doesn't work or, better yet, how to make it work? Sample code and the compiler error are below. Source: foo.C #include <iostream> using namespace std; template<typename X, typename D> struct foo; template<typename X> struct bar : foo<X,bar<X> > { X evaluate() { return static_cast<X>( 5.3 ); } }; template<typename X> struct baz : foo<X,baz<X> > { X evaluate() { return static_cast<X>( "elk" ); } }; template<typename X, typename D> struct foo : D { X operator() () { return static_cast<D*>(this)->evaluate(); } }; template<typename X, typename D> void print_foo( foo<X,D> xyzzx ) { cout << "Foo is " << xyzzx() << "\n"; } int main() { bar<double> br; baz<const char*> bz; print_foo( br ); print_foo( bz ); return 0; } Compiler errors foo.C: In instantiation of ‘foo<double, bar<double> >’: foo.C:8: instantiated from ‘bar<double>’ foo.C:30: instantiated from here foo.C:18: error: invalid use of incomplete type ‘struct bar<double>’ foo.C:8: error: declaration of ‘struct bar<double>’ foo.C: In instantiation of ‘foo<const char*, baz<const char*> >’: foo.C:13: instantiated from ‘baz<const char*>’ foo.C:31: instantiated from here foo.C:18: error: invalid use of incomplete type ‘struct baz<const char*>’ foo.C:13: error: declaration of ‘struct baz<const char*>’

    Read the article

  • C++ class is not recognizing string data type

    - by reallythecrash
    I'm working on a program from my C++ textbook, and this this the first time I've really run into trouble. I just can't seem to see what is wrong here. Visual Studio is telling me Error: identifier "string" is undefined. I separated the program into three files. A header file for the class specification, a .cpp file for the class implementation and the main program file. These are the instructions from my book: Write a class named Car that has the following member variables: year. An int that holds the car's model year. make. A string that holds the make of the car. speed. An int that holds the car's current speed. In addition, the class should have the following member functions. Constructor. The constructor should accept the car's year and make as arguments and assign these values to the object's year and make member variables. The constructor should initialize the speed member variable to 0. Accessors. Appropriate accessor functions should be created to allow values to be retrieved from an object's year, make and speed member variables. There are more instructions, but they are not necessary to get this part to work. Here is my source code: // File Car.h -- Car class specification file #ifndef CAR_H #define CAR_H class Car { private: int year; string make; int speed; public: Car(int, string); int getYear(); string getMake(); int getSpeed(); }; #endif // File Car.cpp -- Car class function implementation file #include "Car.h" // Default Constructor Car::Car(int inputYear, string inputMake) { year = inputYear; make = inputMake; speed = 0; } // Accessors int Car::getYear() { return year; } string Car::getMake() { return make; } int Car::getSpeed() { return speed; } // Main program #include <iostream> #include <string> #include "Car.h" using namespace std; int main() { } I haven't written anything in the main program yet, because I can't get the class to compile. I've only linked the header file to the main program. Thanks in advance to all who take the time to investigate this problem for me.

    Read the article

  • stringindexoutofbounds with currency converter java program

    - by user1795926
    I am have trouble with a summary not showing up. I am supposed to modify a previous Java assignment by by adding an array of objects. Within the loop, instantiate each individual object. Make sure the user cannot keep adding another Foreign conversion beyond your array size. After the user selects quit from the menu, prompt if the user want to display a summary report. If they select ‘Y’ then, using your array of objects, display the following report: Item Conversion Dollars Amount 1 Japanese Yen 100.00 32,000.00 2 Mexican Peso 400.00 56,000.00 3 Canadian Dollar 100.00 156.00 etc. Number of Conversions = 3 There are no errors when I compile..but when I run the program it is fine until I hit 0 to end the conversion and have it ask if i want to see a summary. This error displays: Exception in thread "main" java.lang.StringIndexOutOfBoundsException: String index out of range: 0 at java.lang.String.charAt(String.java:658) at Lab8.main(Lab8.java:43) my code: import java.util.Scanner; import java.text.DecimalFormat; public class Lab8 { public static void main(String[] args) { final int Max = 10; String a; char summary; int c = 0; Foreign[] Exchange = new Foreign[Max]; Scanner Keyboard = new Scanner(System.in); Foreign.opening(); do { Exchange[c] = new Foreign(); Exchange[c].getchoice(); Exchange[c].dollars(); Exchange[c].amount(); Exchange[c].vertical(); System.out.println("\n" + Exchange[c]); c++; System.out.println("\n" + "Please select 1 through 4, or 0 to quit" + >"\n"); c= Keyboard.nextInt(); } while (c != 0); System.out.print("\nWould you like a summary of your conversions? (Y/N): "); a = Keyboard.nextLine(); summary = a.charAt(0); summary = Character.toUpperCase(summary); if (summary == 'Y') { System.out.println("\nCountry\t\tRate\t\tDollars\t\tAmount"); System.out.println("========\t\t=======\t\t=======\t\t========="); for (int i=0; i < Exchange.length; i++) System.out.println(Exchange[i]); Foreign.counter(); } } } I looked at line 43 and its this line: summary = a.charAt(0); But I am not sure what's wrong with it, can anyone point it out? Thank you.

    Read the article

  • Where can I find "canonical" sample programs that give quick refreshers for any given language? [on hold]

    - by acheong87
    Note to those close-voting this question: I understand this isn't a conventional programming question and I can agree with the reasoning that it's in the subjective domain (like best-of lists). In other ways though I think it's appropriate because, though it's not a "a specific programming problem," nor concerning "a software algorithm", nor (strictly) concerning "software tools commonly used by programmers", I think it is a "practical, answerable [problem that is] unique to the programming profession," and I think it is "based on an actual [problem I] face." I've been wanting this for some time now, because both approaches of (a) Googling for samples as I write every other line of code and (b) just winging it and seeing what errors crop up, distract me from coding efficiently. This note will be removed if the question gains popularity; this question will be deleted otherwise. I spend most of my time developing in C++, PHP, or Javascript, and every once in a while I have to do something in, say, VBA. In those times, it'd be convenient if I could just put up some sample code on a second monitor, something in between a cheat sheet (often too compact; and doesn't resemble anything that could actually compile/run), and a language reference (often too verbose, or segmented; requires extra steps to search or click through an index), so I can just glance at it and recall things, like how to loop through non-empty cells in a column. I think there's a hidden benefit to seeing formed code, that triggers the right spots in our brains to get back into a language we only need to brush up on. Similar in spirit is how http://ideone.com lets you click "Template" in any given language so you can get started without even doing a search. That template alone tells a lot, sometimes! Case-sensitivity, whitespace conventions, identifier conventions, the spelling of certain types, etc. I couldn't find a resource that pulled together such samples, so if there indeed doesn't exist such a repository, I was hoping this question would inspire professionals and experts to contribute links to the most useful sample code they've used for just this purpose: a keep-on-the-side, form-as-well-as-content, compilable/executable, reminder of a language's basic and oft-used features. Personally I am interested in seeing "samplers" for: VBA, Perl, Python, Java, C# (though for some of these autocompleters in Eclipse, Visual Studio, etc. help enough), awk, and sed. I'm tagging c++, php, and javascript because these are languages for which I'd best be able to evaluate whether proffered sample code matches what I had in mind.

    Read the article

  • Comparing char for validation in C++

    - by Corey Starbird
    /* PROGRAM: Ch6_14.cpp Written by Corey Starbird This program calculates the balance owed to a hospital for a patient. Last modified: 10/28/13 */ #include <iostream> #include <fstream> #include <iomanip> #include <string> using namespace std; // Prototypes for In-patient and Out-patient functions. double stayTotal (int, double, double, double); // For In-patients double stayTotal (double, double); // For Out-patients int main() { char patientType; // In-patient (I or i) or Out-patient (O or o) double rate, // Daily rate for the In-patient stay servCharge, // Service charge for the stay medCharge, // Medication charge for the stay inTotal, // Total for the In-patient stay outTotal; // Total for the Out-patient stay int days; // Number of days for the In-patient stay // Find out if they were an In-patient or an Out-patient cout << "Welcome, please enter (I) for an In-patient or (O) for an Out-patient:" << endl; cin >> patientType; while (patientType != 'I' || 'i' || 'O' || 'o') { cout << "Invalid entry. Please enter either (I) for an In-patient or (O) for an Out-patient:" << endl; cin >> patientType; } cout << "FIN"; return 0; } Hey, brand new to C++ here. I am working on a project and I'm having trouble figuring out why my validation for patientTypeisn't working properly. I first had double quotes, but realized that would denote strings. I changed them to single quotes, my program will compile and run now, but the while loop runs no matter what I enter, I, i, O, o, or anything else. I don't know why the while loop isn't checking the condition, seeing that I did enter one of the characters in the condition, and move on to cout. Probably a simple mistake, but I thank you in advance.

    Read the article

  • How to copy the memeory allocated in device function back to main memory

    - by xhe8
    I have a CUDA program containing a host function and a device function Execute(). In the host function, I allocate a global memory output which will then be passed to the device function and used to store the address of the global memory allocated within the device function. I want to access the in-kernel allocated memory in the host function. The following is the code: #include <stdio.h> typedef struct { int * p; int num; } Structure_A; \__global__ void Execute(Structure_A *output); int main(){ Structure_A *output; cudaMalloc((void***)&output,sizeof(Structure_A)*1); dim3 dimBlockExecute(1,1); dim3 dimGridExecute(1,1); Execute<<<dimGridExecute,dimBlockExecute>>>(output); Structure_A * output_cpu; int * p_cpu; cudaError_t err; output_cpu= (Structure_A*)malloc(1); err=cudaMemcpy(output_cpu,output,sizeof(Structure_A),cudaMemcpyDeviceToHost); if( err != cudaSuccess) { printf("CUDA error a: %s\n", cudaGetErrorString(err)); exit(-1); } p_cpu=(int *)malloc(1); err=cudaMemcpy(p_cpu,output_cpu[0].p,sizeof(int),cudaMemcpyDeviceToHost); if( err != cudaSuccess) { printf("CUDA error b: %s\n", cudaGetErrorString(err)); exit(-1); } printf("output=(%d,%d)\n",output_cpu[0].num,p_cpu[0]); return 0; } \__global__ void Execute(Structure_A *output){ int thid=threadIdx.x; output[thid].p= (int*)malloc(thid+1); output[thid].num=(thid+1); output[thid].p[0]=5; } I can compile the program. But when I run it, I got a error showing that there is a invalid argument in the following memory copy function. "err=cudaMemcpy(p_cpu,output_cpu[0].p,sizeof(int),cudaMemcpyDeviceToHost);" CUDA version is 4.2. CUDA card: Tesla C2075 OS: x86_64 GNU/Linux

    Read the article

  • Else without if

    - by user2808951
    I'm trying to write a code for my computer programming class for a project due Monday, and I'm pretty new to Java, but I'm trying to write a program that will first determine if a number the user inputs is even or odd and then determine if the number is prime or not. I'm not sure if I did the algorithm right or not, so if anyone has any corrections on the program to my algorithm or anything else please say so, but my real issue is that the program is refusing to compile. Every time I try, it says it's having an else without if problem. Here's a link to my command box: http://s1341.photobucket.com/user/Emi_Nightshade/media/Capture_zps45f9a2ea.png.html Here's my code: import java.io.*; import java.util.*; public class Lesson9p1_ThuotteEmily { public static void main(String args[]) { Scanner kbReader0=new Scanner(System.in); System.out.print("\n\nPlease enter an integer. An integer is whole number, and it can be either negative or positive. Please enter your number: "); long num=kbReader0.nextLong(); if(num%2==0) //if and else with braces { System.out.println("Your integer " + num + " is even."); } else { System.out.println("Your integer " + num + " is odd."); } Scanner kbReader1=new Scanner(System.in); System.out.print("\n\nWould you like to know if your number is prime? Please enter yes or no: "); String yn=kbReader1.nextLine(); if(yn.equals.IgnoreCase("Yes")) { System.out.println("Okay. Give me a moment."); { if(num%2==0) { System.out.println("Your number isn't prime."); } else if(num==2) { System.out.println("Your number is 2, which is the only even prime number in existence. Cool, right?"); } for(int i=3;i*i<=n;i+=2) { if(n%1==0) { System.out.println("Your number isn't prime."); } } else { System.out.println("Your number is prime!"); } } } if(yn.equals.IgnoreCase("No")) { System.out.println("Okay."); } } } If anyone could help me out with this and also any problems I may have made elsewhere in the program, I'd be very grateful! Thanks.

    Read the article

  • Boost MultiIndex - objects or pointers (and how to use them?)?

    - by Sarah
    I'm programming an agent-based simulation and have decided that Boost's MultiIndex is probably the most efficient container for my agents. I'm not a professional programmer, and my background is very spotty. I've two questions: Is it better to have the container contain the agents (of class Host) themselves, or is it more efficient for the container to hold Host *? Hosts will sometimes be deleted from memory (that's my plan, anyway... need to read up on new and delete). Hosts' private variables will get updated occasionally, which I hope to do through the modify function in MultiIndex. There will be no other copies of Hosts in the simulation, i.e., they will not be used in any other containers. If I use pointers to Hosts, how do I set up the key extraction properly? My code below doesn't compile. // main.cpp - ATTEMPTED POINTER VERSION ... #include <boost/multi_index_container.hpp> #include <boost/multi_index/hashed_index.hpp> #include <boost/multi_index/member.hpp> #include <boost/multi_index/ordered_index.hpp> #include <boost/multi_index/mem_fun.hpp> #include <boost/tokenizer.hpp> typedef multi_index_container< Host *, indexed_by< // hash by Host::id hashed_unique< BOOST_MULTI_INDEX_MEM_FUN(Host,int,Host::getID) > // arg errors here > // end indexed_by > HostContainer; ... int main() { ... HostContainer testHosts; Host * newHostPtr; newHostPtr = new Host( t, DOB, idCtr, 0, currentEvents ); testHosts.insert( newHostPtr ); ... } I can't find a precisely analogous example in the Boost documentation, and my knowledge of C++ syntax is still very weak. The code does appear to work when I replace all the pointer references with the class objects themselves. As best I can read it, the Boost documentation (see summary table at bottom) implies I should be able to use member functions with pointer elements.

    Read the article

  • The dynamic Type in C# Simplifies COM Member Access from Visual FoxPro

    - by Rick Strahl
    I’ve written quite a bit about Visual FoxPro interoperating with .NET in the past both for ASP.NET interacting with Visual FoxPro COM objects as well as Visual FoxPro calling into .NET code via COM Interop. COM Interop with Visual FoxPro has a number of problems but one of them at least got a lot easier with the introduction of dynamic type support in .NET. One of the biggest problems with COM interop has been that it’s been really difficult to pass dynamic objects from FoxPro to .NET and get them properly typed. The only way that any strong typing can occur in .NET for FoxPro components is via COM type library exports of Visual FoxPro components. Due to limitations in Visual FoxPro’s type library support as well as the dynamic nature of the Visual FoxPro language where few things are or can be described in the form of a COM type library, a lot of useful interaction between FoxPro and .NET required the use of messy Reflection code in .NET. Reflection is .NET’s base interface to runtime type discovery and dynamic execution of code without requiring strong typing. In FoxPro terms it’s similar to EVALUATE() functionality albeit with a much more complex API and corresponiding syntax. The Reflection APIs are fairly powerful, but they are rather awkward to use and require a lot of code. Even with the creation of wrapper utility classes for common EVAL() style Reflection functionality dynamically access COM objects passed to .NET often is pretty tedious and ugly. Let’s look at a simple example. In the following code I use some FoxPro code to dynamically create an object in code and then pass this object to .NET. An alternative to this might also be to create a new object on the fly by using SCATTER NAME on a database record. How the object is created is inconsequential, other than the fact that it’s not defined as a COM object – it’s a pure FoxPro object that is passed to .NET. Here’s the code: *** Create .NET COM InstanceloNet = CREATEOBJECT('DotNetCom.DotNetComPublisher') *** Create a Customer Object Instance (factory method) loCustomer = GetCustomer() loCustomer.Name = "Rick Strahl" loCustomer.Company = "West Wind Technologies" loCustomer.creditLimit = 9999999999.99 loCustomer.Address.StreetAddress = "32 Kaiea Place" loCustomer.Address.Phone = "808 579-8342" loCustomer.Address.Email = "[email protected]" *** Pass Fox Object and echo back values ? loNet.PassRecordObject(loObject) RETURN FUNCTION GetCustomer LOCAL loCustomer, loAddress loCustomer = CREATEOBJECT("EMPTY") ADDPROPERTY(loCustomer,"Name","") ADDPROPERTY(loCustomer,"Company","") ADDPROPERTY(loCUstomer,"CreditLimit",0.00) ADDPROPERTY(loCustomer,"Entered",DATETIME()) loAddress = CREATEOBJECT("Empty") ADDPROPERTY(loAddress,"StreetAddress","") ADDPROPERTY(loAddress,"Phone","") ADDPROPERTY(loAddress,"Email","") ADDPROPERTY(loCustomer,"Address",loAddress) RETURN loCustomer ENDFUNC Now prior to .NET 4.0 you’d have to access this object passed to .NET via Reflection and the method code to do this would looks something like this in the .NET component: public string PassRecordObject(object FoxObject) { // *** using raw Reflection string Company = (string) FoxObject.GetType().InvokeMember( "Company", BindingFlags.GetProperty,null, FoxObject,null); // using the easier ComUtils wrappers string Name = (string) ComUtils.GetProperty(FoxObject,"Name"); // Getting Address object – then getting child properties object Address = ComUtils.GetProperty(FoxObject,"Address");    string Street = (string) ComUtils.GetProperty(FoxObject,"StreetAddress"); // using ComUtils 'Ex' functions you can use . Syntax     string StreetAddress = (string) ComUtils.GetPropertyEx(FoxObject,"AddressStreetAddress"); return Name + Environment.NewLine + Company + Environment.NewLine + StreetAddress + Environment.NewLine + " FOX"; } Note that the FoxObject is passed in as type object which has no specific type. Since the object doesn’t exist in .NET as a type signature the object is passed without any specific type information as plain non-descript object. To retrieve a property the Reflection APIs like Type.InvokeMember or Type.GetProperty().GetValue() etc. need to be used. I made this code a little simpler by using the Reflection Wrappers I mentioned earlier but even with those ComUtils calls the code is pretty ugly requiring passing the objects for each call and casting each element. Using .NET 4.0 Dynamic Typing makes this Code a lot cleaner Enter .NET 4.0 and the dynamic type. Replacing the input parameter to the .NET method from type object to dynamic makes the code to access the FoxPro component inside of .NET much more natural: public string PassRecordObjectDynamic(dynamic FoxObject) { // *** using raw Reflection string Company = FoxObject.Company; // *** using the easier ComUtils class string Name = FoxObject.Name; // *** using ComUtils 'ex' functions to use . Syntax string Address = FoxObject.Address.StreetAddress; return Name + Environment.NewLine + Company + Environment.NewLine + Address + Environment.NewLine + " FOX"; } As you can see the parameter is of type dynamic which as the name implies performs Reflection lookups and evaluation on the fly so all the Reflection code in the last example goes away. The code can use regular object ‘.’ syntax to reference each of the members of the object. You can access properties and call methods this way using natural object language. Also note that all the type casts that were required in the Reflection code go away – dynamic types like var can infer the type to cast to based on the target assignment. As long as the type can be inferred by the compiler at compile time (ie. the left side of the expression is strongly typed) no explicit casts are required. Note that although you get to use plain object syntax in the code above you don’t get Intellisense in Visual Studio because the type is dynamic and thus has no hard type definition in .NET . The above example calls a .NET Component from VFP, but it also works the other way around. Another frequent scenario is an .NET code calling into a FoxPro COM object that returns a dynamic result. Assume you have a FoxPro COM object returns a FoxPro Cursor Record as an object: DEFINE CLASS FoxData AS SESSION OlePublic cAppStartPath = "" FUNCTION INIT THIS.cAppStartPath = ADDBS( JustPath(Application.ServerName) ) SET PATH TO ( THIS.cAppStartpath ) ENDFUNC FUNCTION GetRecord(lnPk) LOCAL loCustomer SELECT * FROM tt_Cust WHERE pk = lnPk ; INTO CURSOR TCustomer IF _TALLY < 1 RETURN NULL ENDIF SCATTER NAME loCustomer MEMO RETURN loCustomer ENDFUNC ENDDEFINE If you call this from a .NET application you can now retrieve this data via COM Interop and cast the result as dynamic to simplify the data access of the dynamic FoxPro type that was created on the fly: int pk = 0; int.TryParse(Request.QueryString["id"],out pk); // Create Fox COM Object with Com Callable Wrapper FoxData foxData = new FoxData(); dynamic foxRecord = foxData.GetRecord(pk); string company = foxRecord.Company; DateTime entered = foxRecord.Entered; This code looks simple and natural as it should be – heck you could write code like this in days long gone by in scripting languages like ASP classic for example. Compared to the Reflection code that previously was necessary to run similar code this is much easier to write, understand and maintain. For COM interop and Visual FoxPro operation dynamic type support in .NET 4.0 is a huge improvement and certainly makes it much easier to deal with FoxPro code that calls into .NET. Regardless of whether you’re using COM for calling Visual FoxPro objects from .NET (ASP.NET calling a COM component and getting a dynamic result returned) or whether FoxPro code is calling into a .NET COM component from a FoxPro desktop application. At one point or another FoxPro likely ends up passing complex dynamic data to .NET and for this the dynamic typing makes coding much cleaner and more readable without having to create custom Reflection wrappers. As a bonus the dynamic runtime that underlies the dynamic type is fairly efficient in terms of making Reflection calls especially if members are repeatedly accessed. © Rick Strahl, West Wind Technologies, 2005-2010Posted in COM  FoxPro  .NET  CSharp  

    Read the article

  • From Binary to Data Structures

    - by Cédric Menzi
    Table of Contents Introduction PE file format and COFF header COFF file header BaseCoffReader Byte4ByteCoffReader UnsafeCoffReader ManagedCoffReader Conclusion History This article is also available on CodeProject Introduction Sometimes, you want to parse well-formed binary data and bring it into your objects to do some dirty stuff with it. In the Windows world most data structures are stored in special binary format. Either we call a WinApi function or we want to read from special files like images, spool files, executables or may be the previously announced Outlook Personal Folders File. Most specifications for these files can be found on the MSDN Libarary: Open Specification In my example, we are going to get the COFF (Common Object File Format) file header from a PE (Portable Executable). The exact specification can be found here: PECOFF PE file format and COFF header Before we start we need to know how this file is formatted. The following figure shows an overview of the Microsoft PE executable format. Source: Microsoft Our goal is to get the PE header. As we can see, the image starts with a MS-DOS 2.0 header with is not important for us. From the documentation we can read "...After the MS DOS stub, at the file offset specified at offset 0x3c, is a 4-byte...". With this information we know our reader has to jump to location 0x3c and read the offset to the signature. The signature is always 4 bytes that ensures that the image is a PE file. The signature is: PE\0\0. To prove this we first seek to the offset 0x3c, read if the file consist the signature. So we need to declare some constants, because we do not want magic numbers.   private const int PeSignatureOffsetLocation = 0x3c; private const int PeSignatureSize = 4; private const string PeSignatureContent = "PE";   Then a method for moving the reader to the correct location to read the offset of signature. With this method we always move the underlining Stream of the BinaryReader to the start location of the PE signature.   private void SeekToPeSignature(BinaryReader br) { // seek to the offset for the PE signagure br.BaseStream.Seek(PeSignatureOffsetLocation, SeekOrigin.Begin); // read the offset int offsetToPeSig = br.ReadInt32(); // seek to the start of the PE signature br.BaseStream.Seek(offsetToPeSig, SeekOrigin.Begin); }   Now, we can check if it is a valid PE image by reading of the next 4 byte contains the content PE.   private bool IsValidPeSignature(BinaryReader br) { // read 4 bytes to get the PE signature byte[] peSigBytes = br.ReadBytes(PeSignatureSize); // convert it to a string and trim \0 at the end of the content string peContent = Encoding.Default.GetString(peSigBytes).TrimEnd('\0'); // check if PE is in the content return peContent.Equals(PeSignatureContent); }   With this basic functionality we have a good base reader class to try the different methods of parsing the COFF file header. COFF file header The COFF header has the following structure: Offset Size Field 0 2 Machine 2 2 NumberOfSections 4 4 TimeDateStamp 8 4 PointerToSymbolTable 12 4 NumberOfSymbols 16 2 SizeOfOptionalHeader 18 2 Characteristics If we translate this table to code, we get something like this:   [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Unicode)] public struct CoffHeader { public MachineType Machine; public ushort NumberOfSections; public uint TimeDateStamp; public uint PointerToSymbolTable; public uint NumberOfSymbols; public ushort SizeOfOptionalHeader; public Characteristic Characteristics; } BaseCoffReader All readers do the same thing, so we go to the patterns library in our head and see that Strategy pattern or Template method pattern is sticked out in the bookshelf. I have decided to take the template method pattern in this case, because the Parse() should handle the IO for all implementations and the concrete parsing should done in its derived classes.   public CoffHeader Parse() { using (var br = new BinaryReader(File.Open(_fileName, FileMode.Open, FileAccess.Read, FileShare.Read))) { SeekToPeSignature(br); if (!IsValidPeSignature(br)) { throw new BadImageFormatException(); } return ParseInternal(br); } } protected abstract CoffHeader ParseInternal(BinaryReader br);   First we open the BinaryReader, seek to the PE signature then we check if it contains a valid PE signature and rest is done by the derived implementations. Byte4ByteCoffReader The first solution is using the BinaryReader. It is the general way to get the data. We only need to know which order, which data-type and its size. If we read byte for byte we could comment out the first line in the CoffHeader structure, because we have control about the order of the member assignment.   protected override CoffHeader ParseInternal(BinaryReader br) { CoffHeader coff = new CoffHeader(); coff.Machine = (MachineType)br.ReadInt16(); coff.NumberOfSections = (ushort)br.ReadInt16(); coff.TimeDateStamp = br.ReadUInt32(); coff.PointerToSymbolTable = br.ReadUInt32(); coff.NumberOfSymbols = br.ReadUInt32(); coff.SizeOfOptionalHeader = (ushort)br.ReadInt16(); coff.Characteristics = (Characteristic)br.ReadInt16(); return coff; }   If the structure is as short as the COFF header here and the specification will never changed, there is probably no reason to change the strategy. But if a data-type will be changed, a new member will be added or ordering of member will be changed the maintenance costs of this method are very high. UnsafeCoffReader Another way to bring the data into this structure is using a "magically" unsafe trick. As above, we know the layout and order of the data structure. Now, we need the StructLayout attribute, because we have to ensure that the .NET Runtime allocates the structure in the same order as it is specified in the source code. We also need to enable "Allow unsafe code (/unsafe)" in the project's build properties. Then we need to add the following constructor to the CoffHeader structure.   [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Unicode)] public struct CoffHeader { public CoffHeader(byte[] data) { unsafe { fixed (byte* packet = &data[0]) { this = *(CoffHeader*)packet; } } } }   The "magic" trick is in the statement: this = *(CoffHeader*)packet;. What happens here? We have a fixed size of data somewhere in the memory and because a struct in C# is a value-type, the assignment operator = copies the whole data of the structure and not only the reference. To fill the structure with data, we need to pass the data as bytes into the CoffHeader structure. This can be achieved by reading the exact size of the structure from the PE file.   protected override CoffHeader ParseInternal(BinaryReader br) { return new CoffHeader(br.ReadBytes(Marshal.SizeOf(typeof(CoffHeader)))); }   This solution is the fastest way to parse the data and bring it into the structure, but it is unsafe and it could introduce some security and stability risks. ManagedCoffReader In this solution we are using the same approach of the structure assignment as above. But we need to replace the unsafe part in the constructor with the following managed part:   [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Unicode)] public struct CoffHeader { public CoffHeader(byte[] data) { IntPtr coffPtr = IntPtr.Zero; try { int size = Marshal.SizeOf(typeof(CoffHeader)); coffPtr = Marshal.AllocHGlobal(size); Marshal.Copy(data, 0, coffPtr, size); this = (CoffHeader)Marshal.PtrToStructure(coffPtr, typeof(CoffHeader)); } finally { Marshal.FreeHGlobal(coffPtr); } } }     Conclusion We saw that we can parse well-formed binary data to our data structures using different approaches. The first is probably the clearest way, because we know each member and its size and ordering and we have control about the reading the data for each member. But if add member or the structure is going change by some reason, we need to change the reader. The two other solutions use the approach of the structure assignment. In the unsafe implementation we need to compile the project with the /unsafe option. We increase the performance, but we get some security risks.

    Read the article

  • Using Unity – Part 1

    - by nmarun
    I have been going through implementing some IoC pattern using Unity and so I decided to share my learnings (I know that’s not an English word, but you get the point). Ok, so I have an ASP.net project named ProductWeb and a class library called ProductModel. In the model library, I have a class called Product: 1: public class Product 2: { 3: public string Name { get; set; } 4: public string Description { get; set; } 5:  6: public Product() 7: { 8: Name = "iPad"; 9: Description = "Not just a reader!"; 10: } 11:  12: public string WriteProductDetails() 13: { 14: return string.Format("Name: {0} Description: {1}", Name, Description); 15: } 16: } In the Page_Load event of the default.aspx, I’ll need something like: 1: Product product = new Product(); 2: productDetailsLabel.Text = product.WriteProductDetails(); Now, let’s go ‘Unity’fy this application. I assume you have all the bits for the pattern. If not, get it from here. I found this schematic representation of Unity pattern from the above link. This image might not make much sense to you now, but as we proceed, things will get better. The first step to implement the Inversion of Control pattern is to create interfaces that your types will implement. An IProduct interface is added to the ProductModel project. 1: public interface IProduct 2: { 3: string WriteProductDetails(); 4: } Let’s make our Product class to implement the IProduct interface. The application will compile and run as before despite the changes made. Add the following references to your web project: Microsoft.Practices.Unity Microsoft.Practices.Unity.Configuration Microsoft.Practices.Unity.StaticFactory Microsoft.Practices.ObjectBuilder2 We need to add a few lines to the web.config file. The line below tells what version of Unity pattern we’ll be using. 1: <configSections> 2: <section name="unity" type="Microsoft.Practices.Unity.Configuration.UnityConfigurationSection, Microsoft.Practices.Unity.Configuration, Version=1.2.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"/> 3: </configSections> Add another block with the same name as the section name declared above – ‘unity’. 1: <unity> 2: <typeAliases> 3: <!--Custom object types--> 4: <typeAlias alias="IProduct" type="ProductModel.IProduct, ProductModel"/> 5: <typeAlias alias="Product" type="ProductModel.Product, ProductModel"/> 6: </typeAliases> 7: <containers> 8: <container name="unityContainer"> 9: <types> 10: <type type="IProduct" mapTo="Product"/> 11: </types> 12: </container> 13: </containers> 14: </unity> From the Unity Configuration schematic shown above, you see that the ‘unity’ block has a ‘typeAliases’ and a ‘containers’ segment. The typeAlias element gives a ‘short-name’ for a type. This ‘short-name’ can be used to point to this type any where in the configuration file (web.config in our case, but all this information could be coming from an external xml file as well). The container element holds all the mapping information. This container is referenced through its name attribute in the code and you can have multiple of these container elements in the containers segment. The ‘type’ element in line 10 basically says: ‘When Unity requests to resolve the alias IProduct, return an instance of whatever the short-name of Product points to’. This is the most basic piece of Unity pattern and all of this is accomplished purely through configuration. So, in future you have a change in your model, all you need to do is - implement IProduct on the new model class and - either add a typeAlias for the new type and point the mapTo attribute to the new alias declared - or modify the mapTo attribute of the type element to point to the new alias (as the case may be). Now for the calling code. It’s a good idea to store your unity container details in the Application cache, as this is rarely bound to change and also adds for better performance. The Global.asax.cs file comes for our rescue: 1: protected void Application_Start(object sender, EventArgs e) 2: { 3: // create and populate a new Unity container from configuration 4: IUnityContainer unityContainer = new UnityContainer(); 5: UnityConfigurationSection section = (UnityConfigurationSection)ConfigurationManager.GetSection("unity"); 6: section.Containers["unityContainer"].Configure(unityContainer); 7: Application["UnityContainer"] = unityContainer; 8: } 9:  10: protected void Application_End(object sender, EventArgs e) 11: { 12: Application["UnityContainer"] = null; 13: } All this says is: create an instance of UnityContainer() and read the ‘unity’ section from the configSections segment of the web.config file. Then get the container named ‘unityContainer’ and store it in the Application cache. In my code-behind file, I’ll make use of this UnityContainer to create an instance of the Product type. 1: public partial class _Default : Page 2: { 3: private IUnityContainer unityContainer; 4: protected void Page_Load(object sender, EventArgs e) 5: { 6: unityContainer = Application["UnityContainer"] as IUnityContainer; 7: if (unityContainer == null) 8: { 9: productDetailsLabel.Text = "ERROR: Unity Container not populated in Global.asax.<p />"; 10: } 11: else 12: { 13: IProduct productInstance = unityContainer.Resolve<IProduct>(); 14: productDetailsLabel.Text = productInstance.WriteProductDetails(); 15: } 16: } 17: } Looking the ‘else’ block, I’m asking the unityContainer object to resolve the IProduct type. All this does, is to look at the matching type in the container, read its mapTo attribute value, get the full name from the alias and create an instance of the Product class. Fabulous!! I’ll go more in detail in the next blog. The code for this blog can be found here.

    Read the article

  • Pre-filtering and shaping OData feeds using WCF Data Services and the Entity Framework - Part 1

    - by rajbk
    The Open Data Protocol, referred to as OData, is a new data-sharing standard that breaks down silos and fosters an interoperative ecosystem for data consumers (clients) and producers (services) that is far more powerful than currently possible. It enables more applications to make sense of a broader set of data, and helps every data service and client add value to the whole ecosystem. WCF Data Services (previously known as ADO.NET Data Services), then, was the first Microsoft technology to support the Open Data Protocol in Visual Studio 2008 SP1. It provides developers with client libraries for .NET, Silverlight, AJAX, PHP and Java. Microsoft now also supports OData in SQL Server 2008 R2, Windows Azure Storage, Excel 2010 (through PowerPivot), and SharePoint 2010. Many other other applications in the works. * This post walks you through how to create an OData feed, define a shape for the data and pre-filter the data using Visual Studio 2010, WCF Data Services and the Entity Framework. A sample project is attached at the bottom of Part 2 of this post. Pre-filtering and shaping OData feeds using WCF Data Services and the Entity Framework - Part 2 Create the Web Application File –› New –› Project, Select “ASP.NET Empty Web Application” Add the Entity Data Model Right click on the Web Application in the Solution Explorer and select “Add New Item..” Select “ADO.NET Entity Data Model” under "Data”. Name the Model “Northwind” and click “Add”.   In the “Choose Model Contents”, select “Generate Model From Database” and click “Next”   Define a connection to your database containing the Northwind database in the next screen. We are going to expose the Products table through our OData feed. Select “Products” in the “Choose your Database Object” screen.   Click “Finish”. We are done creating our Entity Data Model. Save the Northwind.edmx file created. Add the WCF Data Service Right click on the Web Application in the Solution Explorer and select “Add New Item..” Select “WCF Data Service” from the list and call the service “DataService” (creative, huh?). Click “Add”.   Enable Access to the Data Service Open the DataService.svc.cs class. The class is well commented and instructs us on the next steps. public class DataService : DataService< /* TODO: put your data source class name here */ > { // This method is called only once to initialize service-wide policies. public static void InitializeService(DataServiceConfiguration config) { // TODO: set rules to indicate which entity sets and service operations are visible, updatable, etc. // Examples: // config.SetEntitySetAccessRule("MyEntityset", EntitySetRights.AllRead); // config.SetServiceOperationAccessRule("MyServiceOperation", ServiceOperationRights.All); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; } } Replace the comment that starts with “/* TODO:” with “NorthwindEntities” (the entity container name of the Model we created earlier).  WCF Data Services is initially locked down by default, FTW! No data is exposed without you explicitly setting it. You have explicitly specify which Entity sets you wish to expose and what rights are allowed by using the SetEntitySetAccessRule. The SetServiceOperationAccessRule on the other hand sets rules for a specified operation. Let us define an access rule to expose the Products Entity we created earlier. We use the EnititySetRights.AllRead since we want to give read only access. Our modified code is shown below. public class DataService : DataService<NorthwindEntities> { public static void InitializeService(DataServiceConfiguration config) { config.SetEntitySetAccessRule("Products", EntitySetRights.AllRead); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; } } We are done setting up our ODataFeed! Compile your project. Right click on DataService.svc and select “View in Browser” to see the OData feed. To view the feed in IE, you must make sure that "Feed Reading View" is turned off. You set this under Tools -› Internet Options -› Content tab.   If you navigate to “Products”, you should see the Products feed. Note also that URIs are case sensitive. ie. Products work but products doesn’t.   Filtering our data OData has a set of system query operations you can use to perform common operations against data exposed by the model. For example, to see only Products in CategoryID 2, we can use the following request: /DataService.svc/Products?$filter=CategoryID eq 2 At the time of this writing, supported operations are $orderby, $top, $skip, $filter, $expand, $format†, $select, $inlinecount. Pre-filtering our data using Query Interceptors The Product feed currently returns all Products. We want to change that so that it contains only Products that have not been discontinued. WCF introduces the concept of interceptors which allows us to inject custom validation/policy logic into the request/response pipeline of a WCF data service. We will use a QueryInterceptor to pre-filter the data so that it returns only Products that are not discontinued. To create a QueryInterceptor, write a method that returns an Expression<Func<T, bool>> and mark it with the QueryInterceptor attribute as shown below. [QueryInterceptor("Products")] public Expression<Func<Product, bool>> OnReadProducts() { return o => o.Discontinued == false; } Viewing the feed after compilation will only show products that have not been discontinued. We also confirm this by looking at the WHERE clause in the SQL generated by the entity framework. SELECT [Extent1].[ProductID] AS [ProductID], ... ... [Extent1].[Discontinued] AS [Discontinued] FROM [dbo].[Products] AS [Extent1] WHERE 0 = [Extent1].[Discontinued] Other examples of Query/Change interceptors can be seen here including an example to filter data based on the identity of the authenticated user. We are done pre-filtering our data. In the next part of this post, we will see how to shape our data. Pre-filtering and shaping OData feeds using WCF Data Services and the Entity Framework - Part 2 Foot Notes * http://msdn.microsoft.com/en-us/data/aa937697.aspx † $format did not work for me. The way to get a Json response is to include the following in the  request header “Accept: application/json, text/javascript, */*” when making the request. This is easily done with most JavaScript libraries.

    Read the article

  • Soapi.CS : A fully relational fluent .NET Stack Exchange API client library

    - by Sky Sanders
    Soapi.CS for .Net / Silverlight / Windows Phone 7 / Mono as easy as breathing...: var context = new ApiContext(apiKey).Initialize(false); Question thisPost = context.Official .StackApps .Questions.ById(386) .WithComments(true) .First(); Console.WriteLine(thisPost.Title); thisPost .Owner .Questions .PageSize(5) .Sort(PostSort.Votes) .ToList() .ForEach(q=> { Console.WriteLine("\t" + q.Score + "\t" + q.Title); q.Timeline.ToList().ForEach(t=> Console.WriteLine("\t\t" + t.TimelineType + "\t" + t.Owner.DisplayName)); Console.WriteLine(); }); // if you can think it, you can get it. Output Soapi.CS : A fully relational fluent .NET Stack Exchange API client library 21 Soapi.CS : A fully relational fluent .NET Stack Exchange API client library Revision code poet Revision code poet Votes code poet Votes code poet Revision code poet Revision code poet Revision code poet Votes code poet Votes code poet Votes code poet Revision code poet Revision code poet Revision code poet Revision code poet Revision code poet Revision code poet Revision code poet Revision code poet Revision code poet Revision code poet Votes code poet Comment code poet Revision code poet Votes code poet Revision code poet Revision code poet Revision code poet Answer code poet Revision code poet Revision code poet 14 SOAPI-WATCH: A realtime service that notifies subscribers via twitter when the API changes in any way. Votes code poet Revision code poet Votes code poet Comment code poet Comment code poet Comment code poet Votes lfoust Votes code poet Comment code poet Comment code poet Comment code poet Comment code poet Revision code poet Comment lfoust Votes code poet Revision code poet Votes code poet Votes lfoust Votes code poet Revision code poet Comment Dave DeLong Revision code poet Revision code poet Votes code poet Comment lfoust Comment Dave DeLong Comment lfoust Comment lfoust Comment Dave DeLong Revision code poet 11 SOAPI-EXPLORE: Self-updating single page JavaSript API test harness Votes code poet Votes code poet Votes code poet Votes code poet Votes code poet Comment code poet Revision code poet Votes code poet Revision code poet Revision code poet Revision code poet Comment code poet Revision code poet Votes code poet Comment code poet Question code poet Votes code poet 11 Soapi.JS V1.0: fluent JavaScript wrapper for the StackOverflow API Comment George Edison Comment George Edison Comment George Edison Comment George Edison Comment George Edison Comment George Edison Answer George Edison Votes code poet Votes code poet Votes code poet Votes code poet Revision code poet Revision code poet Answer code poet Comment code poet Revision code poet Comment code poet Comment code poet Comment code poet Revision code poet Revision code poet Votes code poet Votes code poet Votes code poet Votes code poet Comment code poet Comment code poet Comment code poet Comment code poet Comment code poet 9 SOAPI-DIFF: Your app broke? Check SOAPI-DIFF to find out what changed in the API Votes code poet Revision code poet Comment Dennis Williamson Answer Dennis Williamson Votes code poet Votes Dennis Williamson Comment code poet Question code poet Votes code poet About A robust, fully relational, easy to use, strongly typed, end-to-end StackOverflow API Client Library. Out of the box, Soapi provides you with a robust client library that abstracts away most all of the messy details of consuming the API and lets you concentrate on implementing your ideas. A few features include: A fully relational model of the API data set exposed via a fully 'dot navigable' IEnumerable (LINQ) implementation. Simply tell Soapi what you want and it will get it for you. e.g. "On my first question, from the author of the first comment, get the first page of comments by that person on any post" my.Questions.First().Comments.First().Owner.Comments.ToList(); (yes this is a real expression that returns the data as expressed!) Full coverage of the API, all routes and all parameters with an intuitive syntax. Strongly typed Domain Data Objects for all API data structures. Eager and Lazy Loading of 'stub' objects. Eager\Lazy loading may be disabled. When finer grained control of requests is desired, the core RouteMap objects may be leveraged to request data from any of the API paths using all available parameters as documented on the help pages. A rich Asynchronous implementation. A configurable request cache to reduce unnecessary network traffic and to simplify your usage logic. There is no need to go out of your way to be frugal. You may set a distinct cache duration for any particular route. A configurable request throttle to ensure compliance with the api terms of usage and to simplify your code in that you do not have to worry about and respond to 50X errors. The RequestCache and Throttled Queue are thread-safe, so can make as many requests as you like from as many threads as you like as fast as you like and not worry about abusing the api or having to write reams of management/compensation code. Configurable retry threshold that will, by default, make up to 3 attempts to retrieve a request before failing. Every request made by Soapi is properly formed and directed so most any http error will be the result of a timeout or other network infrastructure. A retry buffer provides a level of fault tolerance that you can rely on. An almost identical javascript library, Soapi.JS, and it's full figured big brother, Soapi.JS2, that will enable you to leverage your server cycles and bandwidth for only those tasks that require it and offload things like status updates to the client's browser. License Licensed GPL Version 2 license. Why is Soapi.CS GPL? Can I get an LGPL license for Soapi.CS? (hint: probably) Platforms .NET 3.5 .NET 4.0 Silverlight 3 Silverlight 4 Windows Phone 7 Mono Download Source code lives @ http://soapics.codeplex.com. Binary releases are forthcoming. codeplex is acting up again. get the source and binaries @ http://bitbucket.org/bitpusher/soapi.cs/downloads The source is C# 3.5. and includes projects and solutions for the following IDEs Visual Studio 2008 Visual Studio 2010 ModoDevelop 2.4 Documentation Full documentation is available at http://soapi.info/help/cs/index.aspx Sample Code / Usage Examples Sample code and usage examples will be added as answers to this question. Full API Coverage all API routes are covered Full Parameter Parity If the API exposes it, Soapi giftwraps it for you. Building a simple app with Soapi.CS - a simple app that gathers all traces of a user in the whole stackiverse. Fluent Configuration - Setting up a Soapi.ApiContext could not be easier Bulk Data Import - A tiny app that quickly loads a SQLite data file with all users in the stackiverse. Paged Results - Soapi.CS transparently handles multi-page operations. Asynchronous Requests - Soapi.CS provides a rich asynchronous model that is especially useful when writing api apps in Silverlight or Windows Phone 7. Caching and Throttling - how and why Apps that use Soapi.CS Soapi.FindUser - .net utility for locating a user anywhere in the stackiverse Soapi.Explore - The entire API at your command Soapi.LastSeen - List users by last access time Add your app/site here - I know you are out there ;-) if you are not comfortable editing this post, simply add a comment and I will add it. The CS/SL/WP7/MONO libraries all compile the same code and with the exception of environmental considerations of Silverlight, the code samples are valid for all libraries. You may also find guidance in the test suites. More information on the SOAPI eco-system. Contact This library is currently the effort of me, Sky Sanders (code poet) and can be reached at gmail - sky.sanders Any who are interested in improving this library are welcome. Support Soapi You can help support this project by voting for Soapi's Open Source Ad post For more information about the origins of Soapi.CS and the rest of the Soapi eco-system see What is Soapi and why should I care?

    Read the article

  • SQL Azure Reporting Limited CTP Arrived

    - by Shaun
    It’s about 3 months later when I registered the SQL Azure Reporting CTP on the Microsoft Connect after TechED 2010 China. Today when I checked my mailbox I found that the SQL Azure team had just accepted my request and sent the activation code over to me. So let’s have a look on the new SQL Azure Reporting.   Concept The SQL Azure Reporting provides cloud-based reporting as a service, built on SQL Server Reporting Services and SQL Azure technologies. Cloud-based reporting solutions such as SQL Azure Reporting provide many benefits, including rapid provisioning, cost-effective scalability, high availability, and reduced management overhead for report servers; and secure access, viewing, and management of reports. By using the SQL Azure Reporting service, we can do: Embed the Visual Studio Report Viewer ADO.NET Ajax control or Windows Form control to view the reports deployed on SQL Azure Reporting Service in our web or desktop application. Leverage the SQL Azure Reporting SOAP API to manage and retrieve the report content from any kinds of application. Use the SQL Azure Reporting Service Portal to navigate and view the reports deployed on the cloud. Since the SQL Azure Reporting was built based on the SQL Server 2008 R2 Reporting Service, we can use any tools we are familiar with, such as the SQL Server Integration Studio, Visual Studio Report Viewer. The SQL Azure Reporting Service runs as a remote SQL Server Reporting Service just on the cloud rather than on a server besides us.   Establish a New SQL Azure Reporting Let’s move to the windows azure deveploer portal and click the Reporting item from the left side navigation bar. If you don’t have the activation code you can click the Sign Up button to send a requirement to the Microsoft Connect. Since I already recieved the received code mail I clicked the Provision button. Then after agree the terms of the service I will select the subscription for where my SQL Azure Reporting CTP should be provisioned. In this case I selected my free Windows Azure Pass subscription. Then the final step, paste the activation code and enter the password of our SQL Azure Reporting Service. The user name of the SQL Azure Reporting will be generated by SQL Azure automatically. After a while the new SQL Azure Reporting Server will be shown on our developer portal. The Reporting Service URL and the user name will be shown as well. We can reset the password from the toolbar button.   Deploy Report to SQL Azure Reporting If you are familiar with SQL Server Reporting Service you will find this part will be very similar with what you know and what you did before. Firstly we open the SQL Server Business Intelligence Development Studio and create a new Report Server Project. Then we will create a shared data source where the report data will be retrieved from. This data source can be SQL Azure but we can use local SQL Server or other database if it opens the port up. In this case we use a SQL Azure database located in the same data center of our reporting service. In the Credentials tab page we entered the user name and password to this SQL Azure database. The SQL Azure Reporting CTP only available at the North US Data Center now so that the related SQL Server and hosted service might be better to select the same data center to avoid the external data transfer fee. Then we create a very simple report, just retrieve all records from a table named Members and have a table in the report to list them. In the data source selection step we choose the shared data source we created before, then enter the T-SQL to select all records from the Member table, then put all fields into the table columns. The report will be like this as following In order to deploy the report onto the SQL Azure Reporting Service we need to update the project property. Right click the project node from the solution explorer and select the property item. In the Target Server URL item we will specify the reporting server URL of our SQL Azure Reporting. We can go back to the developer portal and select the reporting node from the left side, then copy the Web Service URL and paste here. But notice that we need to append “/reportserver” after pasted. Then just click the Deploy menu item in the context menu of the project, the Visual Studio will compile the report and then upload to the reporting service accordingly. In this step we will be prompted to input the user name and password of our SQL Azure Reporting Service. We can get the user name from the developer portal, just next to the Web Service URL in the SQL Azure Reporting page. And the password is the one we specified when created the reporting service. After about one minute the report will be deployed succeed.   View the Report in Browser SQL Azure Reporting allows us to view the reports which deployed on the cloud from a standard browser. We copied the Web Service URL from the reporting service main page and appended “/reportserver” in HTTPS protocol then we will have the SQL Azure Reporting Service login page. After entered the user name and password of the SQL Azure Reporting Service we can see the directories and reports listed. Click the report will launch the Report Viewer to render the report.   View Report in a Web Role with the Report Viewer The ASP.NET and Windows Form Report Viewer works well with the SQL Azure Reporting Service as well. We can create a ASP.NET Web Role and added the Report Viewer control in the default page. What we need to change to the report viewer are Change the Processing Mode to Remote. Specify the Report Server URL under the Server Remote category to the URL of the SQL Azure Reporting Web Service URL with “/reportserver” appended. Specify the Report Path to the report which we want to display. The report name should NOT include the extension name. For example my report was in the SqlAzureReportingTest project and named MemberList.rdl then the report path should be /SqlAzureReportingTest/MemberList. And the next one is to specify the SQL Azure Reporting Credentials. We can use the following class to wrap the report server credential. 1: private class ReportServerCredentials : IReportServerCredentials 2: { 3: private string _userName; 4: private string _password; 5: private string _domain; 6:  7: public ReportServerCredentials(string userName, string password, string domain) 8: { 9: _userName = userName; 10: _password = password; 11: _domain = domain; 12: } 13:  14: public WindowsIdentity ImpersonationUser 15: { 16: get 17: { 18: return null; 19: } 20: } 21:  22: public ICredentials NetworkCredentials 23: { 24: get 25: { 26: return null; 27: } 28: } 29:  30: public bool GetFormsCredentials(out Cookie authCookie, out string user, out string password, out string authority) 31: { 32: authCookie = null; 33: user = _userName; 34: password = _password; 35: authority = _domain; 36: return true; 37: } 38: } And then in the Page_Load method, pass it to the report viewer. 1: protected void Page_Load(object sender, EventArgs e) 2: { 3: ReportViewer1.ServerReport.ReportServerCredentials = new ReportServerCredentials( 4: "<user name>", 5: "<password>", 6: "<sql azure reporting web service url>"); 7: } Finally deploy it to Windows Azure and enjoy the report.   Summary In this post I introduced the SQL Azure Reporting CTP which had just available. Likes other features in Windows Azure, the SQL Azure Reporting is very similar with the SQL Server Reporting. As you can see in this post we can use the existing and familiar tools to build and deploy the reports and display them on a website. But the SQL Azure Reporting is just in the CTP stage which means It is free. There’s no support for it. Only available at the North US Data Center. You can get more information about the SQL Azure Reporting CTP from the links following SQL Azure Reporting Limited CTP at MSDN SQL Azure Reporting Samples at TechNet Wiki You can download the solutions and the projects used in this post here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Using delegates in C# (Part 2)

    - by rajbk
    Part 1 of this post can be read here. We are now about to see the different syntaxes for invoking a delegate and some c# syntactic sugar which allows you to code faster. We have the following console application. 1: public delegate double Operation(double x, double y); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: Operation op1 = new Operation(Division); 9: double result = op1.Invoke(10, 5); 10: 11: Console.WriteLine(result); 12: Console.ReadLine(); 13: } 14: 15: static double Division(double x, double y) { 16: return x / y; 17: } 18: } Line 1 defines a delegate type called Operation with input parameters (double x, double y) and a return type of double. On Line 8, we create an instance of this delegate and set the target to be a static method called Division (Line 15) On Line 9, we invoke the delegate (one entry in the invocation list). The program outputs 5 when run. The language provides shortcuts for creating a delegate and invoking it (see line 9 and 11). Line 9 is a syntactical shortcut for creating an instance of the Delegate. The C# compiler will infer on its own what the delegate type is and produces intermediate language that creates a new instance of that delegate. Line 11 uses a a syntactical shortcut for invoking the delegate by removing the Invoke method. The compiler sees the line and generates intermediate language which invokes the delegate. When this code is compiled, the generated IL will look exactly like the IL of the compiled code above. 1: public delegate double Operation(double x, double y); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: //shortcut constructor syntax 9: Operation op1 = Division; 10: //shortcut invoke syntax 11: double result = op1(10, 2); 12: 13: Console.WriteLine(result); 14: Console.ReadLine(); 15: } 16: 17: static double Division(double x, double y) { 18: return x / y; 19: } 20: } C# 2.0 introduced Anonymous Methods. Anonymous methods avoid the need to create a separate method that contains the same signature as the delegate type. Instead you write the method body in-line. There is an interesting fact about Anonymous methods and closures which won’t be covered here. Use your favorite search engine ;-)We rewrite our code to use anonymous methods (see line 9): 1: public delegate double Operation(double x, double y); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: //Anonymous method 9: Operation op1 = delegate(double x, double y) { 10: return x / y; 11: }; 12: double result = op1(10, 2); 13: 14: Console.WriteLine(result); 15: Console.ReadLine(); 16: } 17: 18: static double Division(double x, double y) { 19: return x / y; 20: } 21: } We could rewrite our delegate to be of a generic type like so (see line 2 and line 9). You will see why soon. 1: //Generic delegate 2: public delegate T Operation<T>(T x, T y); 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: Operation<double> op1 = delegate(double x, double y) { 10: return x / y; 11: }; 12: double result = op1(10, 2); 13: 14: Console.WriteLine(result); 15: Console.ReadLine(); 16: } 17: 18: static double Division(double x, double y) { 19: return x / y; 20: } 21: } The .NET 3.5 framework introduced a whole set of predefined delegates for us including public delegate TResult Func<T1, T2, TResult>(T1 arg1, T2 arg2); Our code can be modified to use this delegate instead of the one we declared. Our delegate declaration has been removed and line 7 has been changed to use the Func delegate type. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: //Func is a delegate defined in the .NET 3.5 framework 7: Func<double, double, double> op1 = delegate (double x, double y) { 8: return x / y; 9: }; 10: double result = op1(10, 2); 11: 12: Console.WriteLine(result); 13: Console.ReadLine(); 14: } 15: 16: static double Division(double x, double y) { 17: return x / y; 18: } 19: } .NET 3.5 also introduced lambda expressions. A lambda expression is an anonymous function that can contain expressions and statements, and can be used to create delegates or expression tree types. We change our code to use lambda expressions. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: //lambda expression 7: Func<double, double, double> op1 = (x, y) => x / y; 8: double result = op1(10, 2); 9: 10: Console.WriteLine(result); 11: Console.ReadLine(); 12: } 13: 14: static double Division(double x, double y) { 15: return x / y; 16: } 17: } C# 3.0 introduced the keyword var (implicitly typed local variable) where the type of the variable is inferred based on the type of the associated initializer expression. We can rewrite our code to use var as shown below (line 7).  The implicitly typed local variable op1 is inferred to be a delegate of type Func<double, double, double> at compile time. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: //implicitly typed local variable 7: var op1 = (x, y) => x / y; 8: double result = op1(10, 2); 9: 10: Console.WriteLine(result); 11: Console.ReadLine(); 12: } 13: 14: static double Division(double x, double y) { 15: return x / y; 16: } 17: } You have seen how we can write code in fewer lines by using a combination of the Func delegate type, implicitly typed local variables and lambda expressions.

    Read the article

  • Flashing your Windows Phone Dummies

    - by Martin Hinshelwood
    The rate at which vendors release new updates for the HD2 is ridiculously slow. You have to wait for Microsoft to release the new OS, then you wait for HTC to build it into a ROM, and then you have to wait up to 6 months for your operator to badly customise it for their network. Once Windows Phone 7 is released this problem should go away as Microsoft is likely to be able to update the phone over the air, but what do we do until then? I want Windows Mobile 6.5.5 now!   I’m an early adopter. If there is a new version of something then that’s the version I want. As long as you accept that you are using something on a “let the early adopter beware” and accept that there may be bugs, sometimes serious crippling bugs the go for it. Note that I won't be responsible if you end up bricking your phone, unlocking or flashing your radio or ROM can be risky. If you follow the instructions then you should be fine, I've flashed my phones (SPV, M300, M1000, M2000, M3100, TyTN, TyTN 2, HD2) hundreds of times without any problems! I have been using Windows Mobile 6.5.5 before it was called 6.5.5 and for long enough that I don’t even remember when I first started using it. I was using it on my HTC TyTN 2 before I got an HD2 a couple of months before Christmas, and the first custom ROM’s for the HD2 were a couple of months after that. I always update to the latest ROM that I like, and occasionally I go back to the stock ROM’s to have a look see, but I am always disappointed. Terms: Soft Reset: Same as pulling out the battery, but is like a reboot for your phone Hard Reset: Reinstalls the Operating system from the Image that is stored on it ROM: This is Image that is loaded onto your phone and it is used to reinstall your phone whenever you do a “hard reset”. Stock ROM: A ROM from the original vendor… So HTC Cook a ROM: Referring to Cooking a ROM is the process a ROM developer goes through to take all of the parts (OS, Drivers and Applications) that make up a running phone and compiling them into a ROM. ROM Kitchen: A place where you get an SDK and all the component parts of the phone: OD, Drivers and Application. There are usually lots of Tools for making it easier to compile and build the image. Flashing: The process of updating one of the layers of your phone with a new layer Bricked: This is what happens when flashing goes wrong. Your phone is now good for only one thing… stopping paper blowing away in a windy place. You can “cook” you own ROM using one of the many good “ROM Kitchens” or you can use a ROM built and tested by someone else. I have cooked my own ROM before, and while the tutorials are good, it is a lot of hassle. You can only Flash new ROM’s that are specifically for your phone only so find a ROM for your phone and XDA Developers is the best place to look. It has a forum based structure and you can find your phone quite easily. XDA Developer Forum Installing a new ROM does have its risks. In the past there have been stories about phones being “bricked” but I have not heard of a bricked phone for quite some years. if you follow the instructions carefully you should not have any problems. note: Most of the tools are written by people for whom English is not their first language to you will need concentrate hard to understand some of the instructions. Have you ever read a manual that was just literally translated from another language? Enough said… There are a number of layers on your phone that you will need to know about: SPL: This is the lowest level, like a BIOS on a PC and is the Operating Systems gateway to the hardware Radio: I think of this as the hardware drivers, and you will need a different Radio for CDMA than GSM networks ROM: This is like your Windows CD, but it is stored internally to the Phone. Flashing your phone consists of replacing one Image with another and then wiping your phone and automatically reinstall from the Image. Sometimes when you download an Image wither it is for a Radio or for ROM you only get a file called *.nbh. What do you do with this? Well you need an RUU application to push that Image to your phone. The RUU’s are different per phone, but there is a CustomRUU for the HD2 that will update your phone with any *.nbh placed in the same directory. Download and Instructions for CustomRUU #1 Flash HardSPL An SPL is kind of like a BIOS, and the default one has checks to make sure that you are only installing a signed ROM. This would prevent you from installing one that comes from any other source but the vendor. NOTE: Installing a HARD SPL invalidates your warranty so remember to Flash your phone with a “stock” vendor ROM before trying to send your phone in for repairs. Is the warranty reinstated when you go back to a stock ROM? I don’t know… Updating your SPL to a HardSPL effectively unlocks your phone so you can install anything you like. I would recommend the HardSPL2. Download and Instructions for HardSPL2 #2 Task29 One of the problems that has been seen on the HD2 when flashing new ROM’s is that things are left over from the old ROM. For a while the recommendation was to Flash a stock ROM first, but some clever cookies have come up with “Task29” which formats your phone first. After running this your phone will be blank and will only boot to the white HTC logo and no further. You should follow the instructions and reboot (remove battery) and hold down the “volume down” button while turning you HD2 on to enter the bootloader. From here you can run CustomRUU once the USB message appears. Download and Instructions for Task29 #2 Flash Radio You may need to play around with this one, there is no good and bad version and the latest is not always the best. You know that annoying thing when you hit “end call” on your phone and nothing happens? Well that's down to the Radio. Get this version right for you and you may even be able to make calls. From a Windows Mobile as well Download There are no instructions here, but they are the same as th ROM, but you use this *.nbh file. #3 Flash ROM If you have gotten this far then you are probably a pro by now Just download the latest ROM below and Flash to your phone. I have been really impressed by the Artemis line of ROM’s but it is no way the only choice. I like this one as the developer builds them as close to the stock ROM as possible while updating to the latest of everything. Download and Instructions for  Artemis HD2 vXX Conclusion While updating your ROM is not for the faint hearted it provides more options than the Stock ROM’s and quicker feature updates than waiting… Technorati Tags: WM6

    Read the article

  • Code excavations, wishful invocations, perimeters and domain specific unit test frameworks

    - by RoyOsherove
    One of the talks I did at QCON London was about a subject that I’ve come across fairly recently , when I was building SilverUnit – a “pure” unit test framework for silverlight objects that depend on the silverlight runtime to run. It is the concept of “cogs in the machine” – when your piece of code needs to run inside a host framework or runtime that you have little or no control over for testability related matters. Examples of such cogs and machines can be: your custom control running inside silverlight runtime in the browser your plug-in running inside an IDE your activity running inside a windows workflow your code running inside a java EE bean your code inheriting from a COM+ (enterprise services) component etc.. Not all of these are necessarily testability problems. The main testability problem usually comes when your code actually inherits form something inside the system. For example. one of the biggest problems with testing objects like silverlight controls is the way they depend on the silverlight runtime – they don’t implement some silverlight interface, they don’t just call external static methods against the framework runtime that surrounds them – they actually inherit parts of the framework: they all inherit (in this case) from the silverlight DependencyObject Wrapping it up? An inheritance dependency is uniquely challenging to bring under test, because “classic” methods such as wrapping the object under test with a framework wrapper will not work, and the only way to do manually is to create parallel testable objects that get delegated with all the possible actions from the dependencies.    In silverlight’s case, that would mean creating your own custom logic class that would be called directly from controls that inherit from silverlight, and would be tested independently of these controls. The pro side is that you get the benefit of understanding the “contract” and the “roles” your system plays against your logic, but unfortunately, more often than not, it can be very tedious to create, and may sometimes feel unnecessary or like code duplication. About perimeters A perimeter is that invisible line that your draw around your pieces of logic during a test, that separate the code under test from any dependencies that it uses. Most of the time, a test perimeter around an object will be the list of seams (dependencies that can be replaced such as interfaces, virtual methods etc.) that are actually replaced for that test or for all the tests. Role based perimeters In the case of creating a wrapper around an object – one really creates a “role based” perimeter around the logic that is being tested – that wrapper takes on roles that are required by the code under test, and also communicates with the host system to implement those roles and provide any inputs to the logic under test. in the image below – we have the code we want to test represented as a star. No perimeter is drawn yet (we haven’t wrapped it up in anything yet). in the image below is what happens when you wrap your logic with a role based wrapper – you get a role based perimeter anywhere your code interacts with the system: There’s another way to bring that code under test – using isolation frameworks like typemock, rhino mocks and MOQ (but if your code inherits from the system, Typemock might be the only way to isolate the code from the system interaction.   Ad-Hoc Isolation perimeters the image below shows what I call ad-hoc perimeter that might be vastly different between different tests: This perimeter’s surface is much smaller, because for that specific test, that is all the “change” that is required to the host system behavior.   The third way of isolating the code from the host system is the main “meat” of this post: Subterranean perimeters Subterranean perimeters are Deep rooted perimeters  - “always on” seams that that can lie very deep in the heart of the host system where they are fully invisible even to the test itself, not just to the code under test. Because they lie deep inside a system you can’t control, the only way I’ve found to control them is with runtime (not compile time) interception of method calls on the system. One way to get such abilities is by using Aspect oriented frameworks – for example, in SilverUnit, I’ve used the CThru AOP framework based on Typemock hooks and CLR profilers to intercept such system level method calls and effectively turn them into seams that lie deep down at the heart of the silverlight runtime. the image below depicts an example of what such a perimeter could look like: As you can see, the actual seams can be very far away form the actual code under test, and as you’ll discover, that’s actually a very good thing. Here is only a partial list of examples of such deep rooted seams : disabling the constructor of a base class five levels below the code under test (this.base.base.base.base) faking static methods of a type that’s being called several levels down the stack: method x() calls y() calls z() calls SomeType.StaticMethod()  Replacing an async mechanism with a synchronous one (replacing all timers with your own timer behavior that always Ticks immediately upon calls to “start()” on the same caller thread for example) Replacing event mechanisms with your own event mechanism (to allow “firing” system events) Changing the way the system saves information with your own saving behavior (in silverunit, I replaced all Dependency Property set and get with calls to an in memory value store instead of using the one built into silverlight which threw exceptions without a browser) several questions could jump in: How do you know what to fake? (how do you discover the perimeter?) How do you fake it? Wouldn’t this be problematic  - to fake something you don’t own? it might change in the future How do you discover the perimeter to fake? To discover a perimeter all you have to do is start with a wishful invocation. a wishful invocation is the act of trying to invoke a method (or even just create an instance ) of an object using “regular” test code. You invoke the thing that you’d like to do in a real unit test, to see what happens: Can I even create an instance of this object without getting an exception? Can I invoke this method on that instance without getting an exception? Can I verify that some call into the system happened? You make the invocation, get an exception (because there is a dependency) and look at the stack trace. choose a location in the stack trace and disable it. Then try the invocation again. if you don’t get an exception the perimeter is good for that invocation, so you can move to trying out other methods on that object. in a future post I will show the process using CThru, and how you end up with something close to a domain specific test framework after you’re done creating the perimeter you need.

    Read the article

  • New Validation Attributes in ASP.NET MVC 3 Future

    - by imran_ku07
         Introduction:             Validating user inputs is an very important step in collecting information from users because it helps you to prevent errors during processing data. Incomplete or improperly formatted user inputs will create lot of problems for your application. Fortunately, ASP.NET MVC 3 makes it very easy to validate most common input validations. ASP.NET MVC 3 includes Required, StringLength, Range, RegularExpression, Compare and Remote validation attributes for common input validation scenarios. These validation attributes validates most of your user inputs but still validation for Email, File Extension, Credit Card, URL, etc are missing. Fortunately, some of these validation attributes are available in ASP.NET MVC 3 Future. In this article, I will show you how to leverage Email, Url, CreditCard and FileExtensions validation attributes(which are available in ASP.NET MVC 3 Future) in ASP.NET MVC 3 application.       Description:             First of all you need to download ASP.NET MVC 3 RTM Source Code from here. Then extract all files in a folder. Then open MvcFutures project from mvc3-rtm-sources\mvc3\src\MvcFutures folder. Build the project. In case, if you get compile time error(s) then simply remove the reference of System.Web.WebPages and System.Web.Mvc assemblies and add the reference of System.Web.WebPages and System.Web.Mvc 3 assemblies again but from the .NET tab and then build the project again, it will create a Microsoft.Web.Mvc assembly inside mvc3-rtm-sources\mvc3\src\MvcFutures\obj\Debug folder. Now we can use Microsoft.Web.Mvc assembly inside our application.             Create a new ASP.NET MVC 3 application. For demonstration purpose, I will create a dummy model UserInformation. So create a new class file UserInformation.cs inside Model folder and add the following code,   public class UserInformation { [Required] public string Name { get; set; } [Required] [EmailAddress] public string Email { get; set; } [Required] [Url] public string Website { get; set; } [Required] [CreditCard] public string CreditCard { get; set; } [Required] [FileExtensions(Extensions = "jpg,jpeg")] public string Image { get; set; } }             Inside UserInformation class, I am using Email, Url, CreditCard and FileExtensions validation attributes which are defined in Microsoft.Web.Mvc assembly. By default FileExtensionsAttribute allows png, jpg, jpeg and gif extensions. You can override this by using Extensions property of FileExtensionsAttribute class.             Then just open(or create) HomeController.cs file and add the following code,   public class HomeController : Controller { public ActionResult Index() { return View(); } [HttpPost] public ActionResult Index(UserInformation u) { return View(); } }             Next just open(or create) Index view for Home controller and add the following code,  @model NewValidationAttributesinASPNETMVC3Future.Model.UserInformation @{ ViewBag.Title = "Index"; Layout = "~/Views/Shared/_Layout.cshtml"; } <h2>Index</h2> <script src="@Url.Content("~/Scripts/jquery.validate.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")" type="text/javascript"></script> @using (Html.BeginForm()) { @Html.ValidationSummary(true) <fieldset> <legend>UserInformation</legend> <div class="editor-label"> @Html.LabelFor(model => model.Name) </div> <div class="editor-field"> @Html.EditorFor(model => model.Name) @Html.ValidationMessageFor(model => model.Name) </div> <div class="editor-label"> @Html.LabelFor(model => model.Email) </div> <div class="editor-field"> @Html.EditorFor(model => model.Email) @Html.ValidationMessageFor(model => model.Email) </div> <div class="editor-label"> @Html.LabelFor(model => model.Website) </div> <div class="editor-field"> @Html.EditorFor(model => model.Website) @Html.ValidationMessageFor(model => model.Website) </div> <div class="editor-label"> @Html.LabelFor(model => model.CreditCard) </div> <div class="editor-field"> @Html.EditorFor(model => model.CreditCard) @Html.ValidationMessageFor(model => model.CreditCard) </div> <div class="editor-label"> @Html.LabelFor(model => model.Image) </div> <div class="editor-field"> @Html.EditorFor(model => model.Image) @Html.ValidationMessageFor(model => model.Image) </div> <p> <input type="submit" value="Save" /> </p> </fieldset> } <div> @Html.ActionLink("Back to List", "Index") </div>             Now just run your application. You will find that both client side and server side validation for the above validation attributes works smoothly.                      Summary:             Email, URL, Credit Card and File Extension input validations are very common. In this article, I showed you how you can validate these input validations into your application. I explained this with an example. I am also attaching a sample application which also includes Microsoft.Web.Mvc.dll. So you can add a reference of Microsoft.Web.Mvc assembly directly instead of doing any manual work. Hope you will enjoy this article too.   SyntaxHighlighter.all()

    Read the article

  • Building extensions for Expression Blend 4 using MEF

    - by Timmy Kokke
    Introduction Although it was possible to write extensions for Expression Blend and Expression Design, it wasn’t very easy and out of the box only one addin could be used. With Expression Blend 4 it is possible to write extensions using MEF, the Managed Extensibility Framework. Until today there’s no documentation on how to build these extensions, so look thru the code with Reflector is something you’ll have to do very often. Because Blend and Design are build using WPF searching the visual tree with Snoop and Mole belong to the tools you’ll be using a lot exploring the possibilities.  Configuring the extension project Extensions are regular .NET class libraries. To create one, load up Visual Studio 2010 and start a new project. Because Blend is build using WPF, choose a WPF User Control Library from the Windows section and give it a name and location. I named mine DemoExtension1. Because Blend looks for addins named *.extension.dll  you’ll have to tell Visual Studio to use that in the Assembly Name. To change the Assembly Name right click your project and go to Properties. On the Application tab, add .Extension to name already in the Assembly name text field. To be able to debug this extension, I prefer to set the output path on the Build tab to the extensions folder of Expression Blend. This means that everything that used to go into the Debug folder is placed in the extensions folder. Including all referenced assemblies that have the copy local property set to false. One last setting. To be able to debug your extension you could start Blend and attach the debugger by hand. I like it to be able to just hit F5. Go to the Debug tab and add the the full path to Blend.exe in the Start external program text field. Extension Class Add a new class to the project.  This class needs to be inherited from the IPackage interface. The IPackage interface can be found in the Microsoft.Expression.Extensibility namespace. To get access to this namespace add Microsoft.Expression.Extensibility.dll to your references. This file can be found in the same folder as the (Expression Blend 4 Beta) Blend.exe file. Make sure the Copy Local property is set to false in this reference. After implementing the interface the class would look something like: using Microsoft.Expression.Extensibility; namespace DemoExtension1 { public class DemoExtension1:IPackage { public void Load(IServices services) { } public void Unload() { } } } These two methods are called when your addin is loaded and unloaded. The parameter passed to the Load method, IServices services, is your main entry point into Blend. The IServices interface exposes the GetService<T> method. You will be using this method a lot. Almost every part of Blend can be accessed thru a service. For example, you can use to get to the commanding services of Blend by calling GetService<ICommandService>() or to get to the Windowing services by calling GetService<IWindowService>(). To get Blend to load the extension we have to implement MEF. (You can get up to speed on MEF on the community site or read the blog of Mr. MEF, Glenn Block.)  In the case of Blend extensions, all that needs to be done is mark the class with an Export attribute and pass it the type of IPackage. The Export attribute can be found in the System.ComponentModel.Composition namespace which is part of the .NET 4 framework. You need to add this to your references. using System.ComponentModel.Composition; using Microsoft.Expression.Extensibility;   namespace DemoExtension1 { [Export(typeof(IPackage))] public class DemoExtension1:IPackage { Blend is able to find your addin now. Adding UI The addin doesn’t do very much at this point. The WPF User Control Library came with a UserControl so lets use that in this example. I just drop a Button and a TextBlock onto the surface of the control to have something to show in the demo. To get the UserControl to work in Blend it has to be registered with the WindowService.  Call GetService<IWindowService>() on the IServices interface to get access to the windowing services. The UserControl will be used in Blend on a Palette and has to be registered to enable it. This is done by calling the RegisterPalette on the IWindowService interface and passing it an identifier, an instance of the UserControl and a caption for the palette. public void Load(IServices services) { IWindowService windowService = services.GetService<IWindowService>(); UserControl1 uc = new UserControl1(); windowService.RegisterPalette("DemoExtension", uc, "Demo Extension"); } After hitting F5 to start debugging Expression Blend will start. You should be able to find the addin in the Window menu now. Activating this window will show the “Demo Extension” palette with the UserControl, style according to the settings of Blend. Now what? Because little is publicly known about how to access different parts of Blend adding breakpoints in Debug mode and browsing thru objects using the Quick Watch feature of Visual Studio is something you have to do very often. This demo extension can be used for that purpose very easily. Add the click event handler to the button on the UserControl. Change the contructor to take the IServices interface and store this in a field. Set a breakpoint in the Button_Click method. public partial class UserControl1 : UserControl { private readonly IServices _services;   public UserControl1(IServices services) { _services = services; InitializeComponent(); }   private void button1_Click(object sender, RoutedEventArgs e) { } } Change the call to the constructor in the load method and pass it the services property. public void Load(IServices services) { IWindowService service = services.GetService<IWindowService>(); UserControl1 uc = new UserControl1(services); service.RegisterPalette("DemoExtension", uc, "Demo Extension"); } Hit F5 to compile and start Blend. Got to the window menu and start show the addin. Click on  the button to hit the breakpoint. Now place the carrot text _services text in the code window and hit Shift+F9 to show the Quick Watch window. Now start exploring and discovering where to find everything you need.  More Information The are no official resources available yet. Microsoft has released one extension for expression Blend that is very useful as a reference, the Microsoft Expression Blend® Add-in Preview for Windows® Phone. This will install a .extension.dll file in the extension folder of Blend. You can load this file with Reflector and have a peek at how Microsoft is building his addins. Conclusion I hope this gives you something to get started building extensions for Expression Blend. Until Microsoft releases the final version, which hopefully includes more information about building extensions, we’ll have to work on documenting it in the community.

    Read the article

  • It's not just “Single Sign-on” by Steve Knott (aurionPro SENA)

    - by Greg Jensen
    It is true that Oracle Enterprise Single Sign-on (Oracle ESSO) started out as purely an application single sign-on tool but as we have seen in the previous articles in this series the product has matured into a suite of tools that can do more than just automated single sign-on and can also provide rapidly deployed, cost effective solution to many demanding password management problems. In the last article of this series I would like to discuss three cases where customers faced password scenarios that required more than just single sign-on and how some of the less well known tools in the Oracle ESSO suite “kitbag” helped solve these challenges. Case #1 One of the issues often faced by our customers is how to keep their applications compliant. I had a client who liked the idea of automated single sign-on for most of his applications but had a key requirement to actually increase the security for one specific SOX application. For the SOX application he wanted to secure access by using two-factor authentication with a smartcard. The problem was that the application did not support two-factor authentication. The solution was to use a feature from the Oracle ESSO suite called authentication manager. This feature enables you to have multiple authentication methods for the same user which in this case was a smartcard and the Windows password.  Within authentication manager each authenticator can be configured with a security grade so we gave the smartcard a high grade and the Windows password a normal grade. Security grading in Oracle ESSO can be configured on a per application basis so we set the SOX application to require the higher grade smartcard authenticator. The end result for the user was that they enjoyed automated single sign-on for most of the applications apart from the SOX application. When the SOX application was launched, the user was required by ESSO to present their smartcard before being given access to the application. Case #2 Another example solving compliance issues was in the case of a large energy company who had a number of core billing applications. New regulations required that users change their password regularly and use a complex password. The problem facing the customer was that the core billing applications did not have any native user password change functionality. The customer could not replace the core applications because of the cost and time required to re-develop them. With a reputation for innovation aurionPro SENA were approached to provide a solution to this problem using Oracle ESSO. Oracle ESSO has a password expiry feature that can be triggered periodically based on the timestamp of the users’ last password creation therefore our strategy here was to leverage this feature to provide the password change experience. The trigger can launch an application change password event however in this scenario there was no native change password feature that could be launched therefore a “dummy” change password screen was created that could imitate the missing change password function and connect to the application database on behalf of the user. Oracle ESSO was configured to trigger a change password event every 60 days. After this period if the user launched the application Oracle ESSO would detect the logon screen and invoke the password expiry feature. Oracle ESSO would trigger the “dummy screen,” detect it automatically as the application change password screen and insert a complex password on behalf of the user. After the password event had completed the user was logged on to the application with their new password. All this was provided at a fraction of the cost of re-developing the core applications. Case #3 Recent popular initiatives such as the BYOD and working from home schemes bring with them many challenges in administering “unmanaged machines” and sometimes “unmanageable users.” In a recent case, a client had a dispersed community of casual contractors who worked for the business using their own laptops to access applications. To improve security the around password management the security goal was to provision the passwords directly to these contractors. In a previous article we saw how Oracle ESSO has the capability to provision passwords through Provisioning Gateway but the challenge in this scenario was how to get the Oracle ESSO agent to the casual contractor on an unmanaged machine. The answer was to use another tool in the suite, Oracle ESSO Anywhere. This component can compile the normal Oracle ESSO functionality into a deployment package that can be made available from a website in a similar way to a streamed application. The ESSO Anywhere agent does not actually install into the registry or program files but runs in a folder within the user’s profile therefore no local administrator rights are required for installation. The ESSO Anywhere package can also be configured to stay persistent or disable itself at the end of the user’s session. In this case the user just needed to be told where the website package was located and download the package. Once the download was complete the agent started automatically and the user was provided with single sign-on to their applications without ever knowing the application passwords. Finally, as we have seen in these series Oracle ESSO not only has great utilities in its own tool box but also has direct integration with Oracle Privileged Account Manager, Oracle Identity Manager and Oracle Access Manager. Integrated together with these tools provides a complete and complementary platform to address even the most complex identity and access management requirements. So what next for Oracle ESSO? “Agentless ESSO available in the cloud” – but that will be a subject for a future Oracle ESSO series!                                                                                                                               

    Read the article

  • CodePlex Daily Summary for Sunday, April 18, 2010

    CodePlex Daily Summary for Sunday, April 18, 2010New ProjectsBare Bones Email Trace Listener: Bare Bones Email Trace Listener is about the simplest email trace listener you can have. No bells, no whistles, and no good if you need authenticat...Cartellino: Scopo del progetto è la realizzazione di un software in grado di rilevare i dati dai rilevatori 3Tec (www.3tec.it) e stampare i cartellini presenza...Castle Windsor app.config Properties: The Castle Windsor app.config Properties library makes it possible for users of Castle Windsor to reference appSettings values in Windsor's XML pro...DeskD: This is a simple desktop dictionary application(something like WordWeb) created in Java using Netbeans IDE. Since i am new to codeplex all updates ...FunPokerMakerOnline: It is a play of poker online with a game editor. It is done with .net 4 and WPF and SOAP or WCF. KLOCS Team GIN Project: This is a Master's Degree program group project. It may have academic interest, but won't be maintained after June 2010KNN: This is KNN projectProject Santa: Program to organize teams using mysql databases and c# in a clean and robust task and group system. For more information see my blog post at http:/...ProjetoIntegradoJuridico: Sistema Integrado de Acompanhamento JurídicoRSSR for Windows Phone 7: This is a simple RSS reader application, the project aims to show people that it is easy to build application for windows phones. The applicatio...Simple Rcon: Simple Rcon is a simple lightweight rcon client for HL1/HL2 Servers. It is developed in C# and WPFTAB METHOD SQL Create a data dictionary from your Transact SQL code: TABMETHODSQL makes it easier for data/information workers to document their work. Create a data governance solution that maps sql data process, inc...TM BF Tournament: WPF software to manage Trackmania tournament with Battle France RulesviBlog: visinia plugin, this plugin is used to add blogging facility in visinia cmsviNews: visinia plugin, this plugin can be used to create a news portal like cnn.com nytimeVolumeMaster: VolumeMaster is an On Screen Display (OSD) that gets activated whenever the volume changes. It's written in WPF and uses Vista Core Audio API by Ra...WiiCIS.NET: This is a managed port of WiiCIS, which is a Nintendo Wiimote library originally created by TheOboeNerd and posted on Sourceforge.New ReleasesCastle Windsor app.config Properties: Version 1.0: Initial release.Code for Rapid C# Windows Development eBook: Enumerable Debugger Visualizer Version 1.1: Second release of the Enumerable Debugger Visualizer. There are more classes registered and it is more robust. The list of classes I have register...Convection Game Engine (Basic Edition): Convection Basic (40223): Compiled version of Convection Basic change set 40223.CycleMania Starter Kit EAP - ASP.NET 4 Problem - Design - Solution: Cyclemania 0.08.59: See Source Code tab for recent change history.DbEntry.Net (Lephone Framework): DbEntry.Net 3.9: DbEntry.Net is a lightweight Object Relational Mapping (ORM) database access compnent for .Net 3.5. It has clearly and easily programing interface ...Hash Calculator: HashCalculator 2.0: Upgraded to .NET Framework 4.0 Added support to calculate CRC32 hash function Added "Cancel" button in the Windows 7 taskbar thumbnailHKGolden Express: HKGoldenExpress (Build 201004172120): New features: Added jump links at top of page of message. Bug fix: Fixed page count bug. Improvements: HKGolden Express now uses DocumentBuild...HTML Ruby: 6.21.4: Styles added to override those on some sites for better rendering of ruby Fix regression on complex ruby annotation rendering Better spacingHTML Ruby: 6.21.5: Removed debug code in preference handling Status bar indicator now resets for each action Replace ruby in place without using document fragment...IceChat: IceChat 2009 Alpha 12.4 EXE Update: This is simply an update to the main IceChat program files and DLL. Simpply overwrite the ones in the place where IceChat 2009 is installed.IceChat: IceChat 2009 Alpha 12.4 Full Install: Build Alpha 12.4 - April 17 2010 Added IceChatScript.dll , needs to be added in same folder with EXE and IPluginIceChat.dll Added Self Notice in ...PokeIn Comet Ajax Library: PokeIn Library v05 x64: With this version, PokeIn library has become a stable. Numerous tests have completed. This is the first release candidate of PokeIn. Cheers!PokeIn Comet Ajax Library: PokeIn Library v05 x86: PokeIn Library version 0.5 (x86) With this version, PokeIn library has become a stable. Numerous tests have completed. This is the first release c...Project Santa: Project Santa V1.0: The first initial release of my project manager program, for more information see http://coderplex.blogspot.com/2010/04/project-manager-using-mysq...Salient: TestingWithVSDevServer v1: Using code from Salient, I have assembled a few strategies for programmatic contol of the Visual Studio Development Server (WebDev.WebServer.exe). ...SharePoint Navigation Menu: spNavigationMenu 1.1: Changed the CAML query so it will order by Link Order, then Title. Added the ability to override the On Hover event on the parent menu to use On ...Simple Rcon: Simple Rcon Version 1: Version 1TAB METHOD SQL Create a data dictionary from your Transact SQL code: RELEASE 1: TESTING THE RELEASE SYSTEMTribe.Cache: Tribe.Cache Beta 0.1: Beta release of Tribe.Cache - Now with cache expiration serviceviBlog: viBlog_beta: visinia plugin to add blogging facility in visinia cmsviNews: viNews_beta: visinia plugin.visinia: visinia_beta2: visinia beta 2 released with many new feature.Visual Studio DSite: Visual C++ 2008 Login Form: A simple login form made in visual c 2008. Source code only.WiiCIS.NET: WiiCIS.NET v0.11: 0.11 Removed an unnecessary function from the Wiimote class, and improved the demo. You will need the latest version of SlimDX to compile the sourc...WinControls TreeListView: TreeListView 1.5.1: -fixes issue #5837 -Preliminary feature #5874WoW Character Viewer: Viewer Setup: Finally, I've brought out the next setup of WoW Viewer. Most loose ends have been tied up. Loading and Saving of character files has been fixed.Most Popular ProjectsRawrAJAX Control ToolkitMicrosoft SQL Server Product Samples: DatabaseMicrosoft SQL Server Community & Samplespatterns & practices – Enterprise LibraryPHPExcelFacebook Developer ToolkitBlogEngine.NETMvcContrib: a Codeplex Foundation projectIronPythonMost Active ProjectsRawrpatterns & practices – Enterprise LibraryIndustrial DashboardFarseer Physics EnginejQuery Library for SharePoint Web ServicesIonics Isapi Rewrite FilterGMap.NET - Great Maps for Windows Forms & PresentationProxi [Proxy Interface]BlogEngine.NETCaliburn: An Application Framework for WPF and Silverlight

    Read the article

  • Setup and Use SpecFlow BDD with DevExpress XAF

    - by Patrick Liekhus
    Let’s get started with using the SpecFlow BDD syntax for writing tests with the DevExpress XAF EasyTest scripting syntax.  In order for this to work you will need to download and install the prerequisites listed below.  Once they are installed follow the steps outlined below and enjoy. Prerequisites Install the following items: DevExpress eXpress Application Framework (XAF) found here SpecFlow found here Liekhus BDD/XAF Testing library found here Assumptions I am going to assume at this point that you have created your XAF application and have your Module, Win.Module and Win ready for usage.  You should have also set any attributes and/or settings as you see fit. Setup So where to start. Create a new testing project within your solution. I typically call this with a similar naming convention as used by XAF, my project name .FunctionalTests (i.e. AlbumManager.FunctionalTests). Add the following references to your project.  It should look like the reference list below. DevExpress.Data.v11.x DevExpress.Persistent.Base.v11.x DevExpress.Persistent.BaseImpl.v11.x DevExpress.Xpo.v11.2 Liekhus.Testing.BDD.Core Liekhus.Testing.BDD.DevExpress TechTalk.SpecFlow TestExecutor.v11.x (found in %Program Files%\DevExpress 2011.x\eXpressApp Framework\Tools\EasyTest Right click the TestExecutor reference and set the “Copy Local” setting to True.  This forces the TestExecutor executable to be available in the bin directory which is where the EasyTest script will be executed further down in the process. Add an Application Configuration File (app.config) to your test application.  You will need to make a few modifications to have SpecFlow generate Microsoft style unit tests.  First add the section handler for SpecFlow and then set your choice of testing framework.  I prefer MS Tests for my projects. Add the EasyTest configuration file to your project.  Add a new XML file and call it Config.xml. Open the properties window for the Config.xml file and set the “Copy to Ouput Directory” to “Copy Always”. You will setup the Config file according to the specifications of the EasyTest library my mapping to your executable and other settings.  You can find the details for the configuration of EasyTest here.  My file looks like this Create a new folder in your test project called “StepDefinitions”.  Add a new SpecFlow Step Definition file item under the StepDefinitions folder.  I typically call this class StepDefinition.cs. Have your step definition inherit from the Liekhus.Testing.BDD.DevExpress.StepDefinition class.  This will give you the default behaviors for your test in the next section. OK.  Now that we have done this series of steps, we will work on simplifying this.  This is an early preview of this new project and is not fully ready for consumption.  If you would like to experiment with it, please feel free.  Our goals are to make this a installable project on it’s own with it’s own project templates and default settings.  This will be coming in later versions.  Currently this project is in Alpha release. Let’s write our first test Remove the basic test that is created for you. We will not use the default test but rather create our own SpecFlow “Feature” files. Add a new item to your project and select the SpecFlow Feature file under C#. Name your feature file as you do your class files after the test they are performing. Writing a feature file uses the Cucumber syntax of Given… When… Then.  Think of it in these terms.  Givens are the pre-conditions for the test.  The Whens are the actual steps for the test being performed.  The Thens are the verification steps that confirm your test either passed or failed.  All of these steps are generated into a an EasyTest format and executed against your XAF project.  You can find more on the Cucumber syntax by using the Secret Ninja Cucumber Scrolls.  This document has several good styles of tests, plus you can get your fill of Chuck Norris vs Ninjas.  Pretty humorous document but full of great content. My first test is going to test the entry of a new Album into the application and is outlined below. The Feature section at the top is more for your documentation purposes.  Try to be descriptive of the test so that it makes sense to the next person behind you.  The Scenario outline is described in the Ninja Scrolls, but think of it as test template.  You can write one test outline and have multiple datasets (Scenarios) executed against that test.  Here are the steps of my test and their descriptions Given I am starting a new test – tells our test to create a new EasyTest file And (Given) the application is open – tells EasyTest to open our application defined in the Config.xml When I am at the “Albums” screen – tells XAF to navigate to the Albums list view And (When) I click the “New:Album” button – tells XAF to click the New Album button on the ribbon And (When) I enter the following information – tells XAF to find the field on the screen and put the value in that field And (When) I click the “Save and Close” button – tells XAF to click the “Save and Close” button on the detail window Then I verify results as “user” – tells the testing framework to execute the EasyTest as your configured user Once you compile and prepare your tests you should see the following in your Test View.  For each of your CreateNewAlbum lines in your scenarios, you will see a new test ready to execute. From here you will use your testing framework of choice to execute the test.  This in turn will execute the EasyTest framework to call back into your XAF application and test your business application. Again, please remember that this is an early preview and we are still working out the details.  Please let us know if you have any comments/questions/concerns. Thanks and happy testing.

    Read the article

< Previous Page | 229 230 231 232 233 234 235 236 237 238 239 240  | Next Page >