Search Results

Search found 12882 results on 516 pages for 'procedural programming'.

Page 29/516 | < Previous Page | 25 26 27 28 29 30 31 32 33 34 35 36  | Next Page >

  • Render rivers in a grid.

    - by Gabriel A. Zorrilla
    I have created a random height map and now i want to create rivers. I've made an algorithm based on a* to make rivers flow from peaks to sea and now i'm in the quest of figuring out an elegant algorithm to render them. It's a 2D, square, mapgrid. The cells which the river pases has a simple integer value with this form :rivernumber && pointOrder. Ie: 10, 11, 12, 13, 14, 15, 16...1+N for the first river, 20,21,22,23...2+N for the second, etc. This is created in the map grid generation time and it's executed just once, when the world is generated. I wanted to treat each river as a vector, but there is a problem, if the same river has branches (because i put some noise to generate branches), i can not just connect the points in order. The second alternative is to generate a complex algorithm where analizes each point, checks if the next is not a branch, if so trigger another algorithm that take care of the branch then returns to the main river, etc. Very complex and inelegant. Perhaps there is a solution in the world generation algorithm or in the river rendering algorithm that is commonly used in these cases and i'm not aware of. Any tips? Thanks!!

    Read the article

  • Heightmap generation

    - by Ziaix
    I want to implement something like this to create a heightmap: 'Place a group of coordinates evenly across a map, and give them height values within a certain range. Repeatedly create coordinates between all of those coordinates, setting their height by deriving a value that was a mean value of all the surrounding coordinates.' However, I'm not sure how I would go about it - I'm not sure how I could code the part where I place the coordinates in between the existing coordinates. Can anyone give any help/advice?

    Read the article

  • Embedded Prolog Interpreter/Compiler for Java

    - by Sami
    I'm working on an application in Java, that needs to do some complex logic rule deductions as part of its functionality. I'd like to code my logic deductions in Prolog or some other logic/constraint programming language, instead of Java, as I believe the resulting code will be significantly simpler and more maintainable. I Googled for embedded Java implementations on Prolog, and found number of them, each with very little documentation. My (modest) selection criteria are: should be embeddable in Java (e.g. can be bundled up with my java package instead of requiring any native installations on external programs) simple interface to use from Java (for initiating deductions, inspecting results, and adding rules) come with at least a few examples on how to use it doesn't necessarely have to be Prolog, but other logic/constraint programming languages with the above criteria would suit my needs, too. What choices do I have and what are their advantages and disadvantages?

    Read the article

  • Which useful alternative control structures do you know?

    - by bigown
    Similar question was closed on SO. Sometimes when we're programming, we find that some particular control structure would be very useful to us, but is not directly available in our programming language. What alternative control structures do you think are a useful way of organizing computation? The goal here is to get new ways of thinking about structuring code, in order to improve chunking and reasoning. You can create a wishful syntax/semantic not available now or cite a less known control structure on an existent programming language. Answers should give ideas for a new programming language or enhancing an actual language. Think of this as brainstorming, so post something you think is a crazy idea but it can be viable in some scenario. It's about imperative programming.

    Read the article

  • Atmospheric scattering sky from space artifacts

    - by ollipekka
    I am in the process of implementing atmospheric scattering of a planets from space. I have been using Sean O'Neil's shaders from http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter16.html as a starting point. I have pretty much the same problem related to fCameraAngle except with SkyFromSpace shader as opposed to GroundFromSpace shader as here: http://www.gamedev.net/topic/621187-sean-oneils-atmospheric-scattering/ I get strange artifacts with sky from space shader when not using fCameraAngle = 1 in the inner loop. What is the cause of these artifacts? The artifacts disappear when fCameraAngle is limtied to 1. I also seem to lack the hue that is present in O'Neil's sandbox (http://sponeil.net/downloads.htm) Camera position X=0, Y=0, Z=500. GroundFromSpace on the left, SkyFromSpace on the right. Camera position X=500, Y=500, Z=500. GroundFromSpace on the left, SkyFromSpace on the right. I've found that the camera angle seems to handled very differently depending the source: In the original shaders the camera angle in SkyFromSpaceShader is calculated as: float fCameraAngle = dot(v3Ray, v3SamplePoint) / fHeight; Whereas in ground from space shader the camera angle is calculated as: float fCameraAngle = dot(-v3Ray, v3Pos) / length(v3Pos); However, various sources online tinker with negating the ray. Why is this? Here is a C# Windows.Forms project that demonstrates the problem and that I've used to generate the images: https://github.com/ollipekka/AtmosphericScatteringTest/ Update: I have found out from the ScatterCPU project found on O'Neil's site that the camera ray is negated when the camera is above the point being shaded so that the scattering is calculated from point to the camera. Changing the ray direction indeed does remove artifacts, but introduces other problems as illustrated here: Furthermore, in the ScatterCPU project, O'Neil guards against situations where optical depth for light is less than zero: float fLightDepth = Scale(fLightAngle, fScaleDepth); if (fLightDepth < float.Epsilon) { continue; } As pointed out in the comments, along with these new artifacts this still leaves the question, what is wrong with the images where camera is positioned at 500, 500, 500? It feels like the halo is focused on completely wrong part of the planet. One would expect that the light would be closer to the spot where the sun should hits the planet, rather than where it changes from day to night. The github project has been updated to reflect changes in this update.

    Read the article

  • C# XNA: Effecient mesh building algorithm for voxel based terrain ("top" outside layer only, non-destructible)

    - by Tim Hatch
    To put this bluntly, for non-destructible/non-constructible voxel style terrain, are generated meshes handled much better than instancing? Is there another method to achieve millions of visible quad faces per scene with ease? If generated meshes per chunk is the way to go, what kind of algorithm might I want to use based on only EVER needing the outer layer rendered? I'm using 3D Perlin Noise for terrain generation (for overhangs/caves/etc). The layout is fantastic, but even for around 20k visible faces, it's quite slow using instancing (whether it's one big draw call or multiple smaller chunks). I've simplified it to the point of removing non-visible cubes and only having the top faces of my cube-like terrain be rendered, but with 20k quad instances, it's still pretty sluggish (30fps on my machine). My goal is for the world to be made using quite small cubes. Where multiple games (IE: Minecraft) have the player 1x1 cube in width/length and 2 high, I'm shooting for 6x6 width/length and 9 high. With a lot of advantages as far as gameplay goes, it also means I could quite easily have a single scene with millions of truly visible quads. So, I have been trying to look into changing my method from instancing to mesh generation on a chunk by chunk basis. Do video cards handle this type of processing better than separate quads/cubes through instancing? What kind of existing algorithms should I be looking into? I've seen references to marching cubes a few times now, but I haven't spent much time investigating it since I don't know if it's the better route for my situation or not. I'm also starting to doubt my need of using 3D Perlin noise for terrain generation since I won't want the kind of depth it would seem best at. I just like the idea of overhangs and occasional cave-like structures, but could find no better 'surface only' algorithms to cover that. If anyone has any better suggestions there, feel free to throw them at me too. Thanks, Mythics

    Read the article

  • Why is permadeath essential to a roguelike design?

    - by Gregory Weir
    Roguelikes and roguelike-likes (Spelunky, The Binding of Isaac) tend to share a number of game design elements: Procedurally generated worlds Character growth by way of new abilities and powers Permanent death I can understand why starting with permadeath as a premise would lead you to the other ideas: if you're going to be starting over a lot, you'll want variety in your experiences. But why do the first two elements imply a permadeath approach?

    Read the article

  • Is it better to hard code data or find an algorithm?

    - by OghmaOsiris
    I've been working on a boardgame that has a hex grid as the board (the upper right grid in the image below) Since the board will never change and the spaces on the board will always be linked to the same other spaces around it, should I just hard code every space with the values that I need? Or should I use various algorithms to calculate links and traversals? To be more specific, my board game is a 4 player game where each player has a 5x5x5x5x5x5 hex grid (again, the upper right grid in th eimage above). The object is to get from the bottom of the grid to the top, with various obstacles in the way, and each players being able to attack eachother from the edge of their grid onto other players based on a range multiplier. Since the players grid will never change and the distance of any arbitrary space from the edge of the grid will always be the same, should I just hard code this number into each of the spaces, or should I still use a breadth first search algorithm when players are attacking? The only con I can think of for hard coding everything is that I'm going to code 9+ 2(5+6+7+8) = 61 individual cells. Is there anything else that I'm missing that I should consider using more complex algorithms?

    Read the article

  • Diamond-square terrain generation problem

    - by kafka
    I've implemented a diamond-square algorithm according to this article: http://www.lighthouse3d.com/opengl/terrain/index.php?mpd2 The problem is that I get these steep cliffs all over the map. It happens on the edges, when the terrain is recursively subdivided: Here is the source: void DiamondSquare(unsigned x1,unsigned y1,unsigned x2,unsigned y2,float range) { int c1 = (int)x2 - (int)x1; int c2 = (int)y2 - (int)y1; unsigned hx = (x2 - x1)/2; unsigned hy = (y2 - y1)/2; if((c1 <= 1) || (c2 <= 1)) return; // Diamond stage float a = m_heightmap[x1][y1]; float b = m_heightmap[x2][y1]; float c = m_heightmap[x1][y2]; float d = m_heightmap[x2][y2]; float e = (a+b+c+d) / 4 + GetRnd() * range; m_heightmap[x1 + hx][y1 + hy] = e; // Square stage float f = (a + c + e + e) / 4 + GetRnd() * range; m_heightmap[x1][y1+hy] = f; float g = (a + b + e + e) / 4 + GetRnd() * range; m_heightmap[x1+hx][y1] = g; float h = (b + d + e + e) / 4 + GetRnd() * range; m_heightmap[x2][y1+hy] = h; float i = (c + d + e + e) / 4 + GetRnd() * range; m_heightmap[x1+hx][y2] = i; DiamondSquare(x1, y1, x1+hx, y1+hy, range / 2.0); // Upper left DiamondSquare(x1+hx, y1, x2, y1+hy, range / 2.0); // Upper right DiamondSquare(x1, y1+hy, x1+hx, y2, range / 2.0); // Lower left DiamondSquare(x1+hx, y1+hy, x2, y2, range / 2.0); // Lower right } Parameters: (x1,y1),(x2,y2) - coordinates that define a region on a heightmap (default (0,0)(128,128)). range - basically max. height. (default 32) Help would be greatly appreciated.

    Read the article

  • Dynamic Environment Creation

    - by Jack
    I was wondering, I'm thinking on a more small-scale, abstracted level, but how does one create a dynamic environment a la Minecraft? In specific, I'm thinking of the world as a 3 dimensional array of block objects, how is it made so that large features such as oceans are created? The language isn't important, I'm thinking on a conceptual level, but if it helps, I use C# or C++. Thanks for any help!

    Read the article

  • Stack Overflow Error

    - by dylanisawesome1
    I recently created a recursive cave algorithm, and would like to have more extensive caves, but get a stack overflow after re-cursing a couple times. Any advice? Here's my code: for(int i=0;i<100;i++) { int rand = new Random().nextInt(100); if(rand<=20) { if(curtile.bounds.y-40>500+new Random().nextInt(20)) digDirection(Direction.UP); } if(rand<=40 && rand>20) { if(curtile.bounds.y+40<m.height) digDirection(Direction.DOWN); } if(rand<=60 && rand>40) { if(curtile.bounds.x-40>0) digDirection(Direction.LEFT); } if(rand<=80 && rand>60) { if(curtile.bounds.x+40<m.width) digDirection(Direction.RIGHT); } } } public void digDirection(Direction d) { if(new Random().nextInt(100)<=10) { new Miner(curtile, map); // try { // Thread.sleep(2); // } catch (InterruptedException e) { // // TODO Auto-generated catch block // e.printStackTrace(); // } //Tried this to avoid stack overflow. Didn't work. }

    Read the article

  • What is a simple deformer in which vertices deform linearly with control points?

    - by sebf
    In my project I want to deform a complex mesh, using a simpler 'proxy' mesh. In effect, each vertex of the proxy/collision mesh will be a control point/bone, which should deform the vertices of the main mesh attached to it depending on weight, but where the weight is not dependant on the absolute distance from the control point but rather distance relative to the other affecting control points. The point of this is to preserve complex three dimensional features of the main mesh while using physics implementations which expect something far simpler, low resolution, single surface, etc. Therefore, the vertices must deform linearly with their respective weighted control points (i.e. no falloff fields or all the mesh features will end up collapsed) - as if each vertex was linked to a point on the plane created by the attached control points and deformed with it. I have tried implementing the weight computation algorithm in this paper (page 4) but it is not working as expected and I am wondering if it is really the best way to do what I want. What is the simplest way to 'skin'* an arbitrary mesh, to another arbitrary mesh? *By skin I mean I need an algorithm to determine the best control points for a vertex, and their weights.

    Read the article

  • What is the best way to "carve" a terrain created from a heightmap?

    - by tigrou
    I have a 3d landscape created from a heightmap. I'd like to "carve" some holes in that terrain. That will allow me to create bridges, caverns and tunnels inside it. That operation will be done in the game editor so it doesn't need to be realtime. In the end, rendering is done using traditional polygons. What would be the best/easiest way to do that ? I already think about several solutions : Solution 1 1) Create voxels from the heightmap (very easy). In other words, fill a 3D array like this : voxels[32][32][32] from the heightmap values. 2) Carve holes in the voxels as i want (easy too). 3) Convert voxels to polygons using some iso-surface extraction technique (like marching cubes). 4) Reduce (decimate) polygons created in 3). This technique seems to be the most promising for giving good results (untested). However the problem with marching cubes is that they tends to produce lots of polygons thus reducing them is mandatory. Implementing 4) also seems not trivial, i have read several papers on the web and it seems pretty complex. I was also unable to find an example, code snippet or something to start writing an algorithm for triangle mesh decimation. Maybe there is a special decimation algorithm (simpler) for meshes created from marching cubes ? Solution 2 1) Create some triangle mesh from the heighmap (easy). 2) Apply severals 3D boolean operation (eg: subtraction with a sphere) to carve the mesh. 3) apply some procedure to reduce polygons (optional). Operation 2) seems to be very complex and to be honest i have no idea how to do that. Also applying many boolean operation seems to be slow and will maybe degrade the triangle mesh every time a boolean operation is applied.

    Read the article

  • Need ideas for an algorithm to draw irregular blotchy shapes

    - by Yttermayn
    I'm looking to draw irregular shapes on an x,y grid, and I'd like to come up with a simple, fast method if possible. My only idea so far is to draw a bunch of circles of random sizes very near each other, but at a random distance apart from a more or less central coordinate, then fill in any blank spaces. I realize this is a clunky, inelegant method, hopefully it will give you a rough idea of the kinds of rounded, random blotchy shapesI'm shooting for. Please suggest methods to accomplish this, I'm not so much interested in code. I can noodle that part out myself. Thanks!

    Read the article

  • Long delays in Unity3D substance generation

    - by Josh Buhler
    Currently working on an iOS/Android project in Unity3d, and we're seeing some incredibly long times for generating substances between testing runs. We can run the game, but once we shut down the playback, Unity begins to re-import all off the substances built using Substance Designer. As we've got a lot of these in our game, it's starting to lead to 5 minute delays between testing runs just to test a small change. Any suggestions or parameters we should check that could possibly prevent Unity from needing to regenerate these substances every time? Shouldn't it be caching these things somewhere?

    Read the article

  • Realistic planetary terrain generation with weights

    - by Programmdude
    I need terrain generation for a planet. The planet will be divided up into several hundred hexes, and I need it to be realistic and based on weights. I have dabbled in terrain generation before, but nothing like this. So I figure it would be a good idea to ask the community for answers, recommended articles or the like. By realistic, I mean not just random hexes, but continent shaped things with a few islands. More desert around the equator and more ice around the poles. I also have two weights I need to base it around: ice percentage and water percentage. That means that around XX% of the planet will need to be water. Does anyone have any advice or places to start? Generating arbitrary terrain is easy, but something a bit more "organic" like this seems rather difficult. It also needs to be seamless. Should be obvious since it's a planet, but no harm in pointing it out.

    Read the article

  • How can I apply different actions to different parts of a 2D character?

    - by Praveen Sharath
    I am developing a 2D platform game in Java. The player has a gun in his hand every time. He needs to walk and shoot with the gun(arrow keys for walk and X key to shoot). The walk cycle takes 6 frames and i am able to import the sprite sheet and animate the sequence when I press arrow key. But i need to add the gun motion. The player holds the gun upwards and when X key is pressed he brings it straight and shoots. How to implement the walk + shoot action?

    Read the article

  • Manipulating Perlin Noise

    - by Numeri
    I've been learning about Procedurally Generated Content lately (in particular, Perlin noise). Perlin noise works great for making things like landscapes, height maps, and stuff like that. But now I am trying to generate structures more like mountain ranges (in 2D, as 3D would be way over my head right now) or underground veins of ores. I can't manage to manipulate Perlin Noise to do this. Making a cut off point (i.e. using only the tops of the 'mountains' of a heightmap) wouldn't work, because I would get lumps of mountains/veins. Any suggestions? Thanks, Numeri

    Read the article

  • Algorithm for creating spheres?

    - by Dan the Man
    Does anyone have an algorithm for creating a sphere proceduraly with la amount of latitude lines, lo amount of longitude lines, and a radius of r? I need it to work with Unity, so the vertex positions need to be defined and then, the triangles defined via indexes (more info). EDIT I managed to get the code working in unity. But I think I might have done something wrong. When I turn up the detailLevel, All it does is add more vertices and polygons without moving them around. Did I forget something?

    Read the article

  • Level of detail algorithm not functioning correctly

    - by Darestium
    I have been working on this problem for months; I have been creating Planet Generator of sorts, after more than 6 months of work I am no closer to finishing it then I was 4 months ago. My problem; The terrain does not subdivide in the correct locations properly, it almost seems as if there is a ghost camera next to me, and the quads subdivide based on the position of this "ghost camera". Here is a video of the broken program: http://www.youtube.com/watch?v=NF_pHeMOju8 The best example of the problem occurs around 0:36. For detail limiting, I am going for a chunked LOD approach, which subdivides the terrain based on how far you are away from it. I use a "depth table" to determine how many subdivisions should take place. void PQuad::construct_depth_table(float distance) { tree[0] = -1; for (int i = 1; i < MAX_DEPTH; i++) { tree[i] = distance; distance /= 2.0f; } } The chuncked LOD relies on the child/parent structure of quads, the depth is determined by a constant e.g: if the constant is 6, there are six levels of detail. The quads which should be drawn go through a distance test from the player to the centre of the quad. void PQuad::get_recursive(glm::vec3 player_pos, std::vector<PQuad*>& out_children) { for (size_t i = 0; i < children.size(); i++) { children[i].get_recursive(player_pos, out_children); } if (this->should_draw(player_pos) || this->depth == 0) { out_children.emplace_back(this); } } bool PQuad::should_draw(glm::vec3 player_position) { float distance = distance3(player_position, centre); if (distance < tree[depth]) { return true; } return false; } The root quad has four children which could be visualized like the following: [] [] [] [] Where each [] is a child. Each child has the same amount of children up until the detail limit, the quads which have are 6 iterations deep are leaf nodes, these nodes have no children. Each node has a corresponding Mesh, each Mesh structure has 16x16 Quad-shapes, each Mesh's Quad-shapes halves in size each detail level deeper - creating more detail. void PQuad::construct_children() { // Calculate the position of the Quad based on the parent's location calculate_position(); if (depth < (int)MAX_DEPTH) { children.reserve((int)NUM_OF_CHILDREN); for (int i = 0; i < (int)NUM_OF_CHILDREN; i++) { children.emplace_back(PQuad(this->face_direction, this->radius)); PQuad *child = &children.back(); child->set_depth(depth + 1); child->set_child_index(i); child->set_parent(this); child->construct_children(); } } else { leaf = true; } } The following function creates the vertices for each quad, I feel that it may play a role in the problem - I just can't determine what is causing the problem. void PQuad::construct_vertices(std::vector<glm::vec3> *vertices, std::vector<Color3> *colors) { vertices->reserve(quad_width * quad_height); for (int y = 0; y < quad_height; y++) { for (int x = 0; x < quad_width; x++) { switch (face_direction) { case YIncreasing: vertices->emplace_back(glm::vec3(position.x + x * element_width, quad_height - 1.0f, -(position.y + y * element_width))); break; case YDecreasing: vertices->emplace_back(glm::vec3(position.x + x * element_width, 0.0f, -(position.y + y * element_width))); break; case XIncreasing: vertices->emplace_back(glm::vec3(quad_width - 1.0f, position.y + y * element_width, -(position.x + x * element_width))); break; case XDecreasing: vertices->emplace_back(glm::vec3(0.0f, position.y + y * element_width, -(position.x + x * element_width))); break; case ZIncreasing: vertices->emplace_back(glm::vec3(position.x + x * element_width, position.y + y * element_width, 0.0f)); break; case ZDecreasing: vertices->emplace_back(glm::vec3(position.x + x * element_width, position.y + y * element_width, -(quad_width - 1.0f))); break; } // Position the bottom, right, front vertex of the cube from being (0,0,0) to (-16, -16, 16) (*vertices)[vertices->size() - 1] -= glm::vec3(quad_width / 2.0f, quad_width / 2.0f, -(quad_width / 2.0f)); colors->emplace_back(Color3(255.0f, 255.0f, 255.0f, false)); } } switch (face_direction) { case YIncreasing: this->centre = glm::vec3(position.x + quad_width / 2.0f, quad_height - 1.0f, -(position.y + quad_height / 2.0f)); break; case YDecreasing: this->centre = glm::vec3(position.x + quad_width / 2.0f, 0.0f, -(position.y + quad_height / 2.0f)); break; case XIncreasing: this->centre = glm::vec3(quad_width - 1.0f, position.y + quad_height / 2.0f, -(position.x + quad_width / 2.0f)); break; case XDecreasing: this->centre = glm::vec3(0.0f, position.y + quad_height / 2.0f, -(position.x + quad_width / 2.0f)); break; case ZIncreasing: this->centre = glm::vec3(position.x + quad_width / 2.0f, position.y + quad_height / 2.0f, 0.0f); break; case ZDecreasing: this->centre = glm::vec3(position.x + quad_width / 2.0f, position.y + quad_height / 2.0f, -(quad_height - 1.0f)); break; } this->centre -= glm::vec3(quad_width / 2.0f, quad_width / 2.0f, -(quad_width / 2.0f)); } Any help in discovering what is causing this "subdivding in the wrong place" would be greatly appreciated.

    Read the article

  • How can I easily create cloud texture maps?

    - by EdwardTeach
    I am making 3d planets in my game; these will be viewed as "globes". Some of them will need cloud layers. I looked at various Blender tutorials for creating "earth", and for their cloud layers they use earth cloud maps from NASA. However I will be creating a fictional universe with many procedurally-generated planets. So I would like to use many variations. I'm hoping there's a way to procedurally generate cloud maps such as the NASA link. I will also need to create gas giants, so I will also need other kinds of cloud texture maps. If that is too difficult, I could fall back to creating several variations of cloud maps. For example, 3 for earth-like, 3 for gas giants, etc. So how do I statically create or programmatically generate such cloud maps?

    Read the article

  • Character movement on a 2D tile map

    - by Chris Morris
    I'm working at making a HTML5 game. Top down, closest thing I can equate it to is the gameboy zeldas, but open world and no rooms. What I have so far is a procedurally generated map in a multi dimensional array. And a starting position on the map. Along with this I have an array of movable and non movable tile ID's. I also have a class for my player and have him being rendered out in the center of the starting tile. My problem however is getting the movement sorted out for the player. I want to be able to have the character free move around the map (pixel by pixel essentially) ontop of this 2D generated world. Ideally this would allow the user to move around the walk able area of the canvas. this is simple enough for me to do, but I am having problems now moving the world. If the user is 20% from the edge of the screen i want the world to start panning in the direction the player is heading. But I'm rather lacking in ideas of how to do this. I've looked around for some tutorials, but am coming up blank on ideas of how to generate the playable area (zoomed in) and to then move this generated area under the player when they reach near the end of the screen. My current idea was to generate a certain amount of tiles full size to fill the screen and place the player i the middle. Then when the user approaches the edge of the screen start generating the tiles offset by the distance moved and the direction. I can kind of see this working but I really have no idea if this is the best or easiest to code of methods for generating the world. sorry for the lack of code but I'm still just in the theory stages of working this all out.

    Read the article

  • Subdividing a polygon into boxes of varying size

    - by Michael Trouw
    I would like to be pointed to information / resources for creating algorithms like the one illustrated on this blog, which is a subdivision of a polygon (in my case a voronoi cell) into several boxes of varying size: http://procworld.blogspot.nl/2011/07/city-lots.html In the comments a paper by among others the author of the blog can be found, however the only formula listed is about candidate location suitability: http://www.groenewegen.de/delft/thesis-final/ProceduralCityLayoutGeneration-Preprint.pdf Any language will do, but if examples can be given Javascript is preferred (as it is the language i am currently working with) A similar question is this one: What is an efficient packing algorithm for packing rectangles into a polygon?

    Read the article

  • Applying prerecorded animations to models with the same skeleton

    - by Jeremias Pflaumbaum
    well my question sounds a bit like, how do I apply mo-cap animations to my model, but thats not really it I guess. Animations and model share the same skeleton, but the models vary in size and proportion, but I still want to be able to apply any animation to any model. I think this should be possible since the models got the same skeleton bone structure and the bones are always in the same area only their position varies from model to model. In particular Im trying to apply this to 2D characters that got 2arm, 2legs, a head and a body, but if you got anything related to that topic even if its 3D related or keywords, articles, books whatever Im gratefull for everything cause Im a bit stuck at the moment. cheers Jery

    Read the article

  • Biome Transition in a Grid & Borderless World

    - by API-Beast
    I have a universe: a list of "Systems", each with their own center, type and radius. A small part of such a universe could look like this: Systems: Can be very close to a different system, e.g. overlap Can be inside another, much bigger system Can be very far away from any other systems Spawn system specific entities and particles inside the system radius Have some properties like background color So far so good. However, the player can fly around freely, inside and outside of systems, in real time. How do I interpolate and determine things like the background color now, depending on camera position? E.g. if you are halfway between a green and a red system you should see a background halfway between red and green, or if you are inside a lilac system near the center and at the border of a green system you should get a mostly lilac background etc.

    Read the article

< Previous Page | 25 26 27 28 29 30 31 32 33 34 35 36  | Next Page >