Search Results

Search found 12087 results on 484 pages for 'game mechanics'.

Page 292/484 | < Previous Page | 288 289 290 291 292 293 294 295 296 297 298 299  | Next Page >

  • Is good practice to optimize FPS even when it's above the lower limit to give illusion of movement?

    - by rraallvv
    I started over 50 FPS on the iPhone, but now I'm bellow 30 PFS, I've seen most iPhone games clamped to either 60 or 30 FPS, even when 24 or less would give the illusion of movement. I've concidered my limit to be a little bit over 15 FPS, in fact my physics simulation is updated at that rate (15.84 steps/s) as that is the lowest that still give fluid movement, a bit lower gives jerky motion. Is there a practical reason why to clamp FPS way above the lower limit? Update: The following image could help to clarify I can independently set the physic simulation step, frame rate, and simulation interval update. My concern is why should I clamp any of those to values greater than the minimum? For instance to conserve battery life I could just to choose the lower limits, but it seems that 60 or 30 FPS are the most used values.

    Read the article

  • Looping 3D environment in shmups

    - by kamziro
    So I was watching Ikaruga: http://www.youtube.com/watch?v=Aj23K8Ri68E And then raystorm: http://www.youtube.com/watch?v=TQ4V0G5ykAg After looking at their 3D backgrounds for a little bit, it appears that they use a lot of repeated segments. How would one start with the development with such systems? Would there be editors that can be used (or at least help) with creating the environments? Perhaps a 3D map with splines describing the path of the ship, as well as events on the splines?

    Read the article

  • Finding the shorter turning direction towards a target

    - by A.B.
    I'm trying to implement a type of movement where the object gradually faces the target. The problem I've run into is figuring out which turning direction is faster. The following code works until the object's orientation crosses the -PI or PI threshold, at which point it will start turning into the opposite direction void moveToPoint(sf::Vector2f destination) { if (destination == position) return; auto distance = distanceBetweenPoints(position, destination); auto direction = angleBetweenPoints(position, destination); /// Decides whether incrementing or decrementing orientation is faster /// the next line is the problem if (atan2(sin(direction - rotation), cos(direction - rotation)) > 0 ) { /// Increment rotation rotation += rotation_speed; } else { /// Decrement rotation rotation -= rotation_speed; } if (distance < movement_speed) { position = destination; } else { position.x = position.x + movement_speed*cos(rotation); position.y = position.y + movement_speed*sin(rotation); } updateGraphics(); } 'rotation' and 'rotation_speed' are implemented as custom data type for radians which cannot have values lower than -PI and greater than PI. Any excess or deficit "wraps around". For example, -3.2 becomes ~3.08.

    Read the article

  • Rendering order in an Entity System

    - by Daedalus
    Say I use a basic ES approach, and also inside Systems I hold lists of all entities that Systems are required to process. How do I maintain this list of entities in desired rendering order, i.e. for a dumb 2D RenderingSystem? I saw this discussion, and what they suggest is to do something like Z ordering - what I would probably do is just to store a "layer" int in DrawableComponent and then, inside RenderingSystem, just sort entities by mentioned "layer" whenever the entity list for RenderingSystem changes. They also say we could just delete and recreate the entity whenever we want it on the top, but it seems too inflexible to me. How is this problem usually solved?

    Read the article

  • Camera doesn't move

    - by hugo
    Here is my code, as my subject indicates i have implemented a camera but I couldn't make it move. #define PI_OVER_180 0.0174532925f #define GL_CLAMP_TO_EDGE 0x812F #include "metinalifeyyaz.h" #include <GL/glu.h> #include <GL/glut.h> #include <QTimer> #include <cmath> #include <QKeyEvent> #include <QWidget> #include <QDebug> metinalifeyyaz::metinalifeyyaz(QWidget *parent) : QGLWidget(parent) { this->setFocusPolicy(Qt:: StrongFocus); time = QTime::currentTime(); timer = new QTimer(this); timer->setSingleShot(true); connect(timer, SIGNAL(timeout()), this, SLOT(updateGL())); xpos = yrot = zpos = 0; walkbias = walkbiasangle = lookupdown = 0.0f; keyUp = keyDown = keyLeft = keyRight = keyPageUp = keyPageDown = false; } void metinalifeyyaz::drawBall() { //glTranslatef(6,0,4); glutSolidSphere(0.10005,300,30); } metinalifeyyaz:: ~metinalifeyyaz(){ glDeleteTextures(1,texture); } void metinalifeyyaz::initializeGL(){ glShadeModel(GL_SMOOTH); glClearColor(1.0,1.0,1.0,0.5); glClearDepth(1.0f); glEnable(GL_DEPTH_TEST); glEnable(GL_TEXTURE_2D); glDepthFunc(GL_LEQUAL); glClearColor(1.0,1.0,1.0,1.0); glShadeModel(GL_SMOOTH); GLfloat mat_specular[]={1.0,1.0,1.0,1.0}; GLfloat mat_shininess []={30.0}; GLfloat light_position[]={1.0,1.0,1.0}; glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT,GL_SHININESS,mat_shininess); glLightfv(GL_LIGHT0, GL_POSITION, light_position); glEnable(GL_LIGHT0); glEnable(GL_LIGHTING); QImage img1 = convertToGLFormat(QImage(":/new/prefix1/halisaha2.bmp")); QImage img2 = convertToGLFormat(QImage(":/new/prefix1/white.bmp")); glGenTextures(2,texture); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img1.width(), img1.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img1.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img2.width(), img2.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img2.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really nice perspective calculations } void metinalifeyyaz::resizeGL(int w, int h){ if(h==0) h=1; glViewport(0,0,w,h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0f, static_cast<GLfloat>(w)/h,0.1f,100.0f); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } void metinalifeyyaz::paintGL(){ movePlayer(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); GLfloat xtrans = -xpos; GLfloat ytrans = -walkbias - 0.50f; GLfloat ztrans = -zpos; GLfloat sceneroty = 360.0f - yrot; glLoadIdentity(); glRotatef(lookupdown, 1.0f, 0.0f, 0.0f); glRotatef(sceneroty, 0.0f, 1.0f, 0.0f); glTranslatef(xtrans, ytrans+50, ztrans-130); glLoadIdentity(); glTranslatef(1.0f,0.0f,-18.0f); glRotatef(45,1,0,0); drawScene(); int delay = time.msecsTo(QTime::currentTime()); if (delay == 0) delay = 1; time = QTime::currentTime(); timer->start(qMax(0,10 - delay)); } void metinalifeyyaz::movePlayer() { if (keyUp) { xpos -= sin(yrot * PI_OVER_180) * 0.5f; zpos -= cos(yrot * PI_OVER_180) * 0.5f; if (walkbiasangle >= 360.0f) walkbiasangle = 0.0f; else walkbiasangle += 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } else if (keyDown) { xpos += sin(yrot * PI_OVER_180)*0.5f; zpos += cos(yrot * PI_OVER_180)*0.5f ; if (walkbiasangle <= 7.0f) walkbiasangle = 360.0f; else walkbiasangle -= 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } if (keyLeft) yrot += 0.5f; else if (keyRight) yrot -= 0.5f; if (keyPageUp) lookupdown -= 0.5; else if (keyPageDown) lookupdown += 0.5; } void metinalifeyyaz::keyPressEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_Escape: close(); break; case Qt::Key_F1: setWindowState(windowState() ^ Qt::WindowFullScreen); break; default: QGLWidget::keyPressEvent(event); case Qt::Key_PageUp: keyPageUp = true; break; case Qt::Key_PageDown: keyPageDown = true; break; case Qt::Key_Left: keyLeft = true; break; case Qt::Key_Right: keyRight = true; break; case Qt::Key_Up: keyUp = true; break; case Qt::Key_Down: keyDown = true; break; } } void metinalifeyyaz::changeEvent(QEvent *event) { switch (event->type()) { case QEvent::WindowStateChange: if (windowState() == Qt::WindowFullScreen) setCursor(Qt::BlankCursor); else unsetCursor(); break; default: break; } } void metinalifeyyaz::keyReleaseEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_PageUp: keyPageUp = false; break; case Qt::Key_PageDown: keyPageDown = false; break; case Qt::Key_Left: keyLeft = false; break; case Qt::Key_Right: keyRight = false; break; case Qt::Key_Up: keyUp = false; break; case Qt::Key_Down: keyDown = false; break; default: QGLWidget::keyReleaseEvent(event); } } void metinalifeyyaz::drawScene(){ glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,1.0f); // glColor3f(0,0,1); //back glVertex3f(-6,0,-4); glVertex3f(-6,-0.5,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,-1.0f); //front glVertex3f(6,0,4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,0,4); glEnd(); glBegin(GL_QUADS); glNormal3f(-1.0f,0.0f,0.0f); // glColor3f(0,0,1); //left glVertex3f(-6,0,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); // glColor3f(0,0,1); //right glVertex3f(6,0,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(6,0,4); glEnd(); glBindTexture(GL_TEXTURE_2D, texture[0]); glBegin(GL_QUADS); glNormal3f(0.0f,1.0f,0.0f);//top glTexCoord2f(1.0f,0.0f); glVertex3f(6,0,-4); glTexCoord2f(1.0f,1.0f); glVertex3f(6,0,4); glTexCoord2f(0.0f,1.0f); glVertex3f(-6,0,4); glTexCoord2f(0.0f,0.0f); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,-1.0f,0.0f); //glColor3f(0,0,1); //bottom glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glEnd(); // glPushMatrix(); glBindTexture(GL_TEXTURE_2D, texture[1]); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); glTexCoord2f(1.0f,0.0f); //right far goal post front face glVertex3f(5,0.5,-0.95); glTexCoord2f(1.0f,1.0f); glVertex3f(5,0,-0.95); glTexCoord2f(0.0f,1.0f); glVertex3f(5,0,-1); glTexCoord2f(0.0f,0.0f); glVertex3f(5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(5,0.5,-1); glVertex3f(5,0,-1); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5,0,-0.95); glVertex3f(5, 0.5, -0.95); glColor3f(1,1,1); //right near goal post front face glVertex3f(5,0.5,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0,1); glVertex3f(5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(5,0.5,1); glVertex3f(5,0,1); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0.5, 0.95); glColor3f(1,1,1); //right crossbar front face glVertex3f(5,0.55,-1); glVertex3f(5,0.55,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5.05,0.5,1); glVertex3f(5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(5.05,0.5,-1); glVertex3f(5.05,0.5,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5,0.55,1); glVertex3f(5,0.55,-1); glColor3f(1,1,1); //left far goal post front face glVertex3f(-5,0.5,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5,0,-1); glVertex3f(-5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(-5,0.5,-1); glVertex3f(-5,0,-1); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5, 0.5, -0.95); glColor3f(1,1,1); //left near goal post front face glVertex3f(-5,0.5,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0,1); glVertex3f(-5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(-5,0.5,1); glVertex3f(-5,0,1); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0.5, 0.95); glColor3f(1,1,1); //left crossbar front face glVertex3f(-5,0.55,-1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5.05,0.5,1); glVertex3f(-5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(-5.05,0.5,-1); glVertex3f(-5.05,0.5,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.55,-1); glEnd(); // glPopMatrix(); // glPushMatrix(); // glTranslatef(0,0,0); // glutSolidSphere(0.10005,500,30); // glPopMatrix(); }

    Read the article

  • object detection in bitmmap javacanvas

    - by user1538127
    i want to detect clicks on canvas elements which are drawn using paths. so far i have think of to store elements path in javascript data structure and then check the cordinates of hits which matches the elements cordinates. i belive there is algorithm already for thins kind o cordinate search. rendering each of element path and checking the hits would be inefficient when elements number is larger. can anyone point on me that?

    Read the article

  • How to perform efficient 2D picking in HTML5?

    - by jSepia
    I'm currently using an R-Tree for both picking and collision testing. Each entity on screen has a bounding box for collisions and a separate one for picking. Since entities may change position very frequently, both trees must be updated/reordered once per frame. While this is very efficient for collisions, because the tree is used in hundreds of collision queries every frame, I'm finding it too costly for picking, because it only gets queried when the user clicks, thus leading to a lot of wasted tree updates. What would be a more efficient way to implement picking without as much overhead?

    Read the article

  • Architecture a for a central renderer rather than self-rendering

    - by The Communist Duck
    For the architectural side of rendering, there's two main ways: having each object render itself, and having a single renderer which renders everything. I'm currently aiming for the second idea, for the following reasons: The list can be sorted to only use shaders once. Else each object would have to bind the shader, because it's not sure if it's active. The objects could be sorted and grouped. Easier to swap APIs. With a few macro lines, it can be easy to swap between a DirectX renderer and an OpenGL renderer (not a reason for my project, but still a good point) Easier to manage rendering code Of course, if anyone has strong recommendations for the first method, I will listen to them. But I was wondering how make this work. First idea The renderer has a list of pointers to the renderable components of each entity, which register themselves on RenderCompoent creation. However, I'm worrying that this may end up as a lot of extra pointer weight. But I can sort the list of pointers every so often. Second idea The entire list of entities is passed to the renderer each render call. The renderer then sorts the list (each call, or maybe once?) and gets what it wants. That's a lot of passing and/or sorting, however. Other ideas ??? PROFIT Anyone got ideas? Thank you.

    Read the article

  • Slick 2d scrolling off screen

    - by Peter
    I have something scrolling in and out of the screen. Now when it goes off screen, I want it to scroll into the screen at another location. What I do is I grab the last pixels at the screens edge using g.copyArea and then g.drawImage on the edge of the screen. And then I do a g.translate to create room for the next row which is next render cycle. My problem is that I get a single pixel row, which is not copied onto the canvas. Where as I want each row to be added and then translated, so that the image that scrolled off screen is recreated on the other side of the screen. Here is my code, maybe there is a better way of doing this, open to any suggests, cause I'm totally stuck @Override public void render(GameContainer gc, Graphics g) throws SlickException { //g.setClip(0, 0, 300, gc.getHeight()); g.translate(0, y); g.drawImage(image,0,200); g.resetTransform(); //g.clearClip(); g.copyArea(rightImage, 0, gc.getHeight() - 1); g.drawImage(rightImage, 300, 0); g.translate(0, y); y=y+3; }

    Read the article

  • Managing constant buffers without FX interface

    - by xcrypt
    I am aware that there is a sample on working without FX in the samplebrowser, and I already checked that one. However, some questions arise: In the sample: D3DXMATRIXA16 mWorldViewProj; D3DXMATRIXA16 mWorld; D3DXMATRIXA16 mView; D3DXMATRIXA16 mProj; mWorld = g_World; mView = g_View; mProj = g_Projection; mWorldViewProj = mWorld * mView * mProj; VS_CONSTANT_BUFFER* pConstData; g_pConstantBuffer10->Map( D3D10_MAP_WRITE_DISCARD, NULL, ( void** )&pConstData ); pConstData->mWorldViewProj = mWorldViewProj; pConstData->fTime = fBoundedTime; g_pConstantBuffer10->Unmap(); They are copying their D3DXMATRIX'es to D3DXMATRIXA16. Checked on msdn, these new matrices are 16 byte aligned and optimised for intel pentium 4. So as my first question: 1) Is it necessary to copy matrices to D3DXMATRIXA16 before sending them to the constant buffer? And if no, why don't we just use D3DXMATRIXA16 all the time? I have another question about managing multiple constant buffers within one shader. Suppose that, within your shader, you have multiple constant buffers that need to be updated at different times: cbuffer cbNeverChanges { matrix View; }; cbuffer cbChangeOnResize { matrix Projection; }; cbuffer cbChangesEveryFrame { matrix World; float4 vMeshColor; }; Then how would I set these buffers all at different times? g_pd3dDevice->VSSetConstantBuffers( 0, 1, &g_pConstantBuffer10 ); gives me the possibility to set multiple buffers, but that is within one call. 2) Is that okay even if my constant buffers are updated at different times? And do I suppose I have to make sure the constantbuffers are in the same position in the array as the order they appear in the shader?

    Read the article

  • Basics of drawing in 2d with OpenGL 3 shaders

    - by davidism
    I am new to OpenGL 3 and graphics programming, and want to create some basic 2d graphics. I have the following scenario of how I might go about drawing a basic (but general) 2d rectangle. I'm not sure if this is the correct way to think about it, or, if it is, how to implement it. In my head, here's how I imagine doing it: t = make_rectangle(width, height) build general VBO, centered at 0, 0 optionally: t.set_scale(2) optionally: t.set_angle(30) t.draw_at(x, y) calculates some sort of scale/rotate/translate matrix (or matrices), passes the VBO and the matrix to a shader program Something happens to clip the world to the view visible on screen. I'm really unclear on how 4 and 5 will work. The main problem is that all the tutorials I find either: use fixed function pipeline, are for 3d, or are unclear how to do something this "simple". Can someone provide me with either a better way to think of / do this, or some concrete code detailing performing the transformations in a shader and constructing and passing the data required for this shader transformation?

    Read the article

  • Where to start? (3D Modeling)

    - by herfus
    I'm looking for a good resource to start learning 3d modeling. I'm looking for something that starts with the basics (e.g. terminology; what are quads, triangles etc.) before/while going into the actual modeling. Book, website, video, anything will do. I'm only concerned with the quality of the tutorials, how thorough they are. I have experience with texturing, level design and so on - but I've never created anything more than simple shapes/editing existing assets.

    Read the article

  • Unable to Call Instantiate in Class Member Function

    - by onguarde
    The following javascript is attached to a gameObject. var instance : GameObject; class eg_class { function eg_func(){ var thePrefab : GameObject; instance = Instantiate(thePrefab); } } Error, Unknown identifier: 'instance'. Unknown identifier: 'Instantiate'. Questions, 1) Why is it that "instance" cannot be accessed within a class? Isn't it supposed to be a public variable? 2) "Instantiate" function works in Start()/Update() root functions. Is there a way to make it work from within member functions? Thanks in advance!

    Read the article

  • Incorrect results for frustum cull

    - by DeadMG
    Previously, I had a problem with my frustum culling producing too optimistic results- that is, including many objects that were not in the view volume. Now I have refactored that code and produced a cull that should be accurate to the actual frustum, instead of an axis-aligned box approximation. The problem is that now it never returns anything to be in the view volume. As the mathematical support library I'm using does not provide plane support functions, I had to code much of this functionality myself, and I'm not really the mathematical type, so it's likely that I've made some silly error somewhere. As follows is the relevant code: class Plane { public: Plane() { r0 = Math::Vector(0,0,0); normal = Math::Vector(0,1,0); } Plane(Math::Vector p1, Math::Vector p2, Math::Vector p3) { r0 = p1; normal = Math::Cross((p2 - p1), (p3 - p1)); } Math::Vector r0; Math::Vector normal; }; This class represents one plane as a point and a normal vector. class Frustum { public: Frustum( const std::array<Math::Vector, 8>& points ) { planes[0] = Plane(points[0], points[1], points[2]); planes[1] = Plane(points[4], points[5], points[6]); planes[2] = Plane(points[0], points[1], points[4]); planes[3] = Plane(points[2], points[3], points[6]); planes[4] = Plane(points[0], points[2], points[4]); planes[5] = Plane(points[1], points[3], points[5]); } Plane planes[6]; }; The points are passed in order where (the inverse of) each bit of the index of each point indicates whether it's the left, top, and back of the frustum, respectively. As such, I just picked any three points where they all shared one bit in common to define the planes. My intersection test is as follows (based on this): bool Intersects(Math::AABB lhs, const Frustum& rhs) const { for(int i = 0; i < 6; i++) { Math::Vector pvertex = lhs.TopRightFurthest; Math::Vector nvertex = lhs.BottomLeftClosest; if (rhs.planes[i].normal.x <= -0.0f) { std::swap(pvertex.x, nvertex.x); } if (rhs.planes[i].normal.y <= -0.0f) { std::swap(pvertex.y, nvertex.y); } if (rhs.planes[i].normal.z <= -0.0f) { std::swap(pvertex.z, nvertex.z); } if (Math::Dot(rhs.planes[i].r0, nvertex) < 0.0f) { return false; } } return true; } Also of note is that because I'm using a left-handed co-ordinate system, I wrote my Cross function to return the negative of the formula given on Wikipedia. Any suggestions as to where I've made a mistake?

    Read the article

  • How do I show a minimap in a 3D world?

    - by Bubblewrap
    Got a really typical use-case here. I have large map made up of hexagons and at any given time only a small section of the map is visible. To provide an overview of the complete map, I want to show a small 2D representation of the map in a corner of the screen. What is the recommended approach for this in libgdx? Keep in mind the minimap must be updated when the currently visible section changes and when the map is updated. I've found SpriteBatch(info here), but the warning label on it made me think twice: A SpriteBatch is a pretty heavy object so you should only ever have one in your program. I'm not sure I'm supposed to use the one SpriteBatch that I can have on the minimap, and I'm also not sure how to interpret "heavy" in this context. Another thing to possibly keep in mind is that the minimap will probably be part of a larger UI, is there any way to integrate these two?

    Read the article

  • Box2D relations

    - by Valentino Ru
    As far as I know, the unit in Box2D is meters. When I use Box2D in Processing with JBox2D, I set the "world size" as the window size specified in the setup(). Now I'm wondering if there is any function that scales down the world. For example, how can I simulate the throw of tennis ball within a room, without using a window of only 5 x 5 pixels? Additionally, is there any good documentation like the Java API?

    Read the article

  • Calculate velocity of a bullet ricocheting on a circle

    - by SteveL
    I made a picture to demostrate what I need,basecaly I have a bullet with velocity and I want it to bounce with the correct angle after it hits a circle Solved(look the accepted answer for explain): Vector.vector.set(bullet.vel); //->v Vector.vector2.setDirection(pos, bullet.pos); //->n normal from center of circle to bullet float dot=Vector.vector.dot(Vector.vector2); //->dot product Vector.vector2.mul(dot).mul(2); Vector.vector.sub(Vector.vector2); Vector.vector.y=-Vector.vector.y; //->for some reason i had to invert the y bullet.vel.set(Vector.vector);

    Read the article

  • how can i get rotation vector from matrix4x4 in xna?

    - by mr.Smyle
    i want to get rotation vector from matrix to realize some parent-children system for models. Matrix bonePos = link.Bone.Transform * World; Matrix m = Matrix.CreateTranslation(link.Offset) * Matrix.CreateScale(link.gameObj.Scale.X, link.gameObj.Scale.Y, link.gameObj.Scale.Z) * Matrix.CreateFromYawPitchRoll(MathHelper.ToRadians(link.gameObj.Rotation.Y), MathHelper.ToRadians(link.gameObj.Rotation.X), MathHelper.ToRadians(link.gameObj.Rotation.Z)) //need rotation vector from bone matrix here (now it's global model rotation vector) * Matrix.CreateFromYawPitchRoll(MathHelper.ToRadians(Rotation.Y), MathHelper.ToRadians(Rotation.X), MathHelper.ToRadians(Rotation.Z)) * Matrix.CreateTranslation(bonePos.Translation); link.gameObj.World = m; where : link - struct with children model settings, like position, rotation etc. And link.Bone - Parent Bone

    Read the article

  • Render angles of a 3D model into 2D images?

    - by Ricket
    Is there a tool out there that you can give a 3D model file, and it will output 2D renders of it from various angles? For example if you were making a 2D RPG but you want to make your character look nice, you might make the character in 3D and then just render the character from 8 or more angles into images which then are used by the 2D engine to give a pseudo-3D look. Does such a tool exist or will it need to be custom-written or done manually?

    Read the article

  • 3ds Max CAT to XNA

    - by user12214
    Has anyone successfully used the CAT bone system in 3ds Max and exported the file into XNA? If so, what was your method of doing so? There are a number of methods of doing this apparently, but the ones I've tried have not worked. I used the Panda Exporter which creates a .X file. This seems to be the latest way of going about this, but when it's loaded in XNA, there is an error saying something about the bone weights. This happens when I export with and without CAT bones.

    Read the article

  • OpenGL error LNK2019

    - by Ghilliedrone
    I'm trying to compile a basic OpenGL program. I linked opengl32.lib and glu32.lib but I'm getting errors. The errors I get are: error LNK1120: 7 unresolved externals error LNK2019: unresolved external symbol _main referenced in function ___tmainCRTStartup error LNK2019: unresolved external symbol "public: float __thiscall GLWindow::getElapsedSeconds(void)" (?getElapsedSeconds@GLWindow@@QAEMXZ) referenced in function _WinMain@16 error LNK2019: unresolved external symbol "public: bool __thiscall GLWindow::isRunning(void)" (?isRunning@GLWindow@@QAE_NXZ) referenced in function _WinMain@16 error LNK2019: unresolved external symbol "public: void __thiscall GLWindow::attachExample(class Example *)" (?attachExample@GLWindow@@QAEXPAVExample@@@Z) referenced in function _WinMain@16 error LNK2019: unresolved external symbol "public: void __thiscall GLWindow::destroy(void)" (?destroy@GLWindow@@QAEXXZ) referenced in function _WinMain@16 error LNK2019: unresolved external symbol "public: __thiscall GLWindow::GLWindow(struct HINSTANCE__ *)" (??0GLWindow@@QAE@PAUHINSTANCE__@@@Z) referenced in function _WinMain@16 error LNK2019: unresolved external symbol "private: void __thiscall GLWindow::setupPixelFormat(void)" (?setupPixelFormat@GLWindow@@AAEXXZ) referenced in function "public: long __stdcall GLWindow::WndProc(struct HWND__ *,unsigned int,unsigned int,long)" (?WndProc@GLWindow@@QAGJPAUHWND__@@IIJ@Z)

    Read the article

  • OpenGL setup on Windows

    - by kevin james
    I have been trying to use OpenGL for two days now. First on Mac, then on Windows. The problem with Mac is that it doesn't support the newer versions of OpenGL. I ran a tutorial that actually did get some things working, but it only works in XCode (i.e., I can't create a new file, paste in the same code, and get it to work). Because of these issues, I moved to Windows. My Windows 7 has OpenGL 4.3, which is the same that is used in alot of other tutorials. However, not one of these tutorials gives any instruction on how to set it up for the first time. I have come across some vague posts saying that some libraries need to be linked. But WHAT libraries, and HOW do I link them? Please help. I am pretty desperate to set this up as this project is due for work soon. I have actually used OpenGL before at my university, but the computers already had everything set up. The project itself is very easy, but setting up OpenGL is not something I know how to do.

    Read the article

  • Ease Rotate RigidBody2D toward arbitrary angle

    - by Plastic Sturgeon
    I'm trying to make a rigidbody2D circle return to an orientation after a collision. But there is a weird behavior I do not expect - it always orients to the same direction. This is what I call in FixedUpdate(): rotationdifference = -halfPI + rigidbody2D.rotation; rigidbody2D.AddTorque (rotationdifference * ease); I would expect this would rotate 90 degrees (1/2 Pi Radians) off of the neutral axis. But it does not. In fact it performs exactly the same as: rotationdifference = rigidbody2D.rotation; rigidbody2D.AddTorque (rotationdifference * ease); What is going on? How would I be able to set an angle I want it to ease towards, and then have it ease towards it when its not colliding with some other force?

    Read the article

  • Quaternion LookAt for camera

    - by Homar
    I am using the following code to rotate entities to look at points. glm::vec3 forwardVector = glm::normalize(point - position); float dot = glm::dot(glm::vec3(0.0f, 0.0f, 1.0f), forwardVector); float rotationAngle = (float)acos(dot); glm::vec3 rotationAxis = glm::normalize(glm::cross(glm::vec3(0.0f, 0.0f, 1.0f), forwardVector)); rotation = glm::normalize(glm::quat(rotationAxis * rotationAngle)); This works fine for my usual entities. However, when I use this on my Camera entity, I get a black screen. If I flip the subtraction in the first line, so that I take the forward vector to be the direction from the point to my camera's position, then my camera works but naturally my entities rotate to look in the opposite direction of the point. I compute the transformation matrix for the camera and then take the inverse to be the View Matrix, which I pass to my OpenGL shaders: glm::mat4 viewMatrix = glm::inverse( cameraTransform->GetTransformationMatrix() ); The orthographic projection matrix is created using glm::ortho. What's going wrong?

    Read the article

  • How to derive euler angles from matrix or quaternion?

    - by KlashnikovKid
    Currently working on steering behavior for my AI and just hit a little mathematical bump. I'm in the process of writing an align function, which basically tries to match the agent's orientation with a target orientation. I've got a good source material for implementing this behavior but it uses euler angles to calculate the rotational delta, acceleration, and so on. This is nice, however I store orientation as a quaternion and the math library I'm using doesn't provide any functionality for deriving the euler angles. But if it helps I also have rotational matrices at my disposal too. What would be the best way to decompose the quaternion or rotational matrix to get the euler information? I found one source for decomposing the matrix, but I'm not quite getting the correct results. I'm thinking it may be a difference of column/row ordering of my matrices but then again, math isn't my strong point. http://nghiaho.com/?page_id=846

    Read the article

< Previous Page | 288 289 290 291 292 293 294 295 296 297 298 299  | Next Page >