Search Results

Search found 3349 results on 134 pages for 'geometry conversion'.

Page 31/134 | < Previous Page | 27 28 29 30 31 32 33 34 35 36 37 38  | Next Page >

  • Find point which sum of distances to set of other points is minimal

    - by Pawel Markowski
    I have one set (X) of points (not very big let's say 1-20 points) and the second (Y), much larger set of points. I need to choose some point from Y which sum of distances to all points from X is minimal. I came up with an idea that I would treat X as a vertices of a polygon and find centroid of this polygon, and then I will choose a point from Y nearest to the centroid. But I'm not sure whether centroid minimizes sum of its distances to the vertices of polygon, so I'm not sure whether this is a good way? Is there any algorithm for solving this problem? Points are defined by geographical coordinates.

    Read the article

  • Generate 2D cross-section polygon from 3D mesh

    - by nornagon
    I'm writing a game which uses 3D models to draw a scene (top-down orthographic projection), but a 2D physics engine to calculate response to collisions, etc. I have a few 3D assets for which I'd like to be able to automatically generate a hitbox by 'slicing' the 3D mesh with the X-Y plane and creating a polygon from the resultant edges. Google is failing me on this one (and not much helpful material on SO either). Suggestions?

    Read the article

  • GIS: line_locate_point() in Python

    - by miracle2k
    I'm pretty much a beginner when it comes to GIS, but I think I understand the basics - it doesn't seem to hard. But: All these acronyms and different libraries, GEOS, GDAL, PROJ, PCL, Shaply, OpenGEO, OGR, OGC, OWS and what not, each seemingly depending on any number of others, is slightly overwhelming me. Here's what I would like to do: Given a number of points and a linestring, I want to determine the location on the line closest to a certain point. In other words, what PostGIS's line_locate_point() does: http://postgis.refractions.net/documentation/manual-1.3/ch06.html#line%5Flocate%5Fpoint Except I want do use plain Python. Which library or libraries should I have a look at generally for doing these kinds of spatial calculations in Python, and is there one that specifically supports a line_locate_point() equivalent?

    Read the article

  • Determining line orientation using vertex shaders

    - by Brett
    Hi, I want to be able to calculate the direction of a line to eye coordinates and store this value for every pixel on the line using a vertex and fragment shader. My idea was to calculate the direction gradient using atan2(Gy/Gx) after a modelview tranformation for each pair of vertices then quantize this value as a color intensity to pass to a fragment shader. How can I get access to the positions of pairs of vertices to achieve this or is there another method I should use? Thanks

    Read the article

  • How can I group an array of rectangles into "Islands" of connected regions?

    - by Eric
    The problem I have an array of java.awt.Rectangles. For those who are not familiar with this class, the important piece of information is that they provide an .intersects(Rectangle b) function. I would like to write a function that takes this array of Rectangles, and breaks it up into groups of connected rectangles. Lets say for example, that these are my rectangles (constructor takes the arguments x, y, width,height): Rectangle[] rects = new Rectangle[] { new Rectangle(0, 0, 4, 2), //A new Rectangle(1, 1, 2, 4), //B new Rectangle(0, 4, 8, 2), //C new Rectangle(6, 0, 2, 2) //D } A quick drawing shows that A intersects B and B intersects C. D intersects nothing. A tediously drawn piece of ascii art does the job too: +-------+ +---+ ¦A+---+ ¦ ¦ D ¦ +-+---+-+ +---+ ¦ B ¦ +-+---+---------+ ¦ +---+ C ¦ +---------------+ Therefore, the output of my function should be: new Rectangle[][]{ new Rectangle[] {A,B,C}, new Rectangle[] {D} } The failed code This was my attempt at solving the problem: public List<Rectangle> getIntersections(ArrayList<Rectangle> list, Rectangle r) { List<Rectangle> intersections = new ArrayList<Rectangle>(); for(Rectangle rect : list) { if(r.intersects(rect)) { list.remove(rect); intersections.add(rect); intersections.addAll(getIntersections(list, rect)); } } return intersections; } public List<List<Rectangle>> mergeIntersectingRects(Rectangle... rectArray) { List<Rectangle> allRects = new ArrayList<Rectangle>(rectArray); List<List<Rectangle>> groups = new ArrayList<ArrayList<Rectangle>>(); for(Rectangle rect : allRects) { allRects.remove(rect); ArrayList<Rectangle> group = getIntersections(allRects, rect); group.add(rect); groups.add(group); } return groups; } Unfortunately, there seems to be an infinite recursion loop going on here. My uneducated guess would be that java does not like me doing this: for(Rectangle rect : allRects) { allRects.remove(rect); //... } Can anyone shed some light on the issue?

    Read the article

  • Categorize the approximate shape of an array of Points in 3D Space

    - by user1295133
    I have a set of points in 3d space and I want to be able to categorize the shape that best fits them - cube, sphere, cylinder, planar (flat) etc. I've looked at supervised/machine learning but since I need first generate a large training data set that's not really suitable. My dream solution would be a java library with a wonderful magical function something like : public enum ShapeType { CUBE, SPHERE, CYLINDER, PLANAR } public ShapeType CategorizeShapeFromPoints( 3DPoint[] points ) However, any and all help will be appreciated. Thanks

    Read the article

  • A simple algorithm for polygon intersection

    - by Elazar Leibovich
    I'm looking for a very simple algorithm for computing the polygon intersection/clipping. That is, given polygons P, Q, I wish to find polygon T which is contained in P and in Q, and I wish T to be maximal among all possible polygons. I don't mind the run time (I have a few very small polygons), I can also afford getting an approximation of the polygons' intersection (that is, a polygon with less points, but which is still contained in the polygons' intersection). But it is really important for me that the algorithm will be simple (cheaper testing) and preferably short (less code). edit: please note, I wish to obtain a polygon which represent the intersection. I don't need only a boolean answer to the question of whether the two polygons intersect.

    Read the article

  • How can I test if a point lies within a 3d shape with its surface defined by a point cloud?

    - by Ben
    Hi I have a collection of points which describe the surface of a shape that should be roughly spherical, and I need a method with which to determine if any other given point lies within this shape. I've previously been approximating the shape as an exact sphere, but this has proven too inaccurate and I need a more accurate method. Simplicity and speed is favourable over complete accuracy, a good approximation will suffice. I've come across techniques for converting a point cloud to a 3d mesh, but most things I have found have been very complicated, and I am looking for something as simple as possible. Any ideas? Many thanks, Ben.

    Read the article

  • Most "thorough" distribution of points around a circle

    - by hippietrail
    This question is intended to both abstract and focus one approach to my problem expressed at "Find the most colourful image in a collection of images". Imagine we have a set of circles, each has a number of points around its circumference. We want to find a metric that gives a higher rating to a circle with points distributed evenly around the circle. Circles with some points scattered through the full 360° are better but circles with far greater numbers of points in one area compared to a smaller number in another area are less good. The number of points is not limited. Two or more points may coincide. Coincidental points are still relevant. A circle with one point at 0° and one point at 180° is better than a circle with 100 points at 0° and 1000 points at 180°. A circle with one point every degree around the circle is very good. A circle with a point every half degree around the circle is better. In my other (colour based question) it was suggested that standard deviation would be useful but with caveat. Is this a good suggestion and does it cope with the closeness of 359° to 1°?

    Read the article

  • Fastest way of converting a quad to a triangle strip?

    - by Tina Brooks
    What is the fastest way of converting a quadrilateral (made up of foyr x,y points) to a triangle strip? I'm well aware of the general triangulation algorithms that exist, but I need a short, well optimized algorithm that deals with quadrilaterals only. My current algorithm does this, which works for most quads but still gets the points mixed up for some: #define fp(f) bounds.p##f /* Sort four points in ascending order by their Y values */ point_sort4_y(&fp(1), &fp(2), &fp(3), &fp(4)); /* Bottom two */ if (fminf(-fp(1).x, -fp(2).x) == -fp(2).x) { out_quad.p1 = fp(2); out_quad.p2 = fp(1); } else { out_quad.p1 = fp(1); out_quad.p2 = fp(2); } /* Top two */ if (fminf(-fp(3).x, -fp(4).x) == -fp(3).x) { out_quad.p3 = fp(3); out_quad.p4 = fp(4); } else { out_quad.p3 = fp(4); out_quad.p4 = fp(3); }

    Read the article

  • signed angle between two 3d vectors with same origin within the same plane? recipe?

    - by Advanced Customer
    Was looking through the web for an answer but it seems like there is no clear recipe for it. What I need is a signed angle of rotation between two vectors Va and Vb lying within the same 3D plane and having the same origin knowing that: the plane contatining both vectors is an arbitrary and is not parallel to XY or any other of cardinal planes Vn - is a plane normal both vectors along with the normal have the same origin O = { 0, 0, 0 } Va - is a reference for measuring the left handed rotation at Vn The angle should be measured in such a way so if the plane would be XY plane the Va would stand for X axis unit vector of it. I guess I should perform a kind of coordinate space transformation by using the Va as the X-axis and the cross product of Vb and Vn as the Y-axis and then just using some 2d method like with atan2() or something. Any ideas? Formulas?

    Read the article

  • finding a point on an ellipse circumference which is inside a rectangle having center point, height

    - by Shlomi Assaf
    Hi all. I have a rectangle in .NET in which I draw an ellipse. I know the width, height and center point of that rectangle. Ofcourse the cetner point of the rectangle is also the center point of the ellipse. I know how to calculate a point on a circle, however I have no clue about an ellipse. I have those parameters and an angle, i need the point on the ellipse, can someone post the formula? I saw somewhere you need to calculate 2 points in which 2 raduises will go, the sum of the radiuses will be fixed and they will change in size accordingly. I dont know how to do that, I only have the rectange height, width and center point and ofcourse the angle I wish to find the point at. thanks for any help Shlomi

    Read the article

  • How to calculate the normal of points on a 3D cubic Bézier curve given normals for its start and end points?

    - by Robert
    I'm trying to render a "3D ribbon" using a single 3D cubic Bézier curve to describe it (the width of the ribbon is some constant). The first and last control points have a normal vector associated with them (which are always perpendicular to the tangents at those points, and describe the surface normal of the ribbon at those points), and I'm trying to smoothly interpolate the normal vector over the course of the curve. For example, given a curve which forms the letter 'C', with the first and last control points both having surface normals pointing upwards, the ribbon should start flat, parallel to the ground, slowly turn, and then end flat again, facing the same way as the first control point. To do this "smoothly", it would have to face outwards half-way through the curve. At the moment (for this case), I've only been able to get all the surfaces facing upwards (and not outwards in the middle), which creates an ugly transition in the middle. It's quite hard to explain, I've attached some images below of this example with what it currently looks like (all surfaces facing upwards, sharp flip in the middle) and what it should look like (smooth transition, surfaces slowly rotate round). Silver faces represent the front, black faces the back. Incorrect, what it currently looks like: Correct, what it should look like: All I really need is to be able to calculate this "hybrid normal vector" for any point on the 3D cubic bézier curve, and I can generate the polygons no problem, but I can't work out how to get them to smoothly rotate round as depicted. Completely stuck as to how to proceed!

    Read the article

  • What algorithm can I use to determine points within a semi-circle?

    - by khayman218
    I have a list of two-dimensional points and I want to obtain which of them fall within a semi-circle. Originally, the target shape was a rectangle aligned with the x and y axis. So the current algorithm sorts the pairs by their X coord and binary searches to the first one that could fall within the rectangle. Then it iterates over each point sequentially. It stops when it hits one that is beyond both the X and Y upper-bound of the target rectangle. This does not work for a semi-circle as you cannot determine an effective upper/lower x and y bounds for it. The semi-circle can have any orientation. Worst case, I will find the least value of a dimension (say x) in the semi-circle, binary search to the first point which is beyond it and then sequentially test the points until I get beyond the upper bound of that dimension. Basically testing an entire band's worth of points on the grid. The problem being this will end up checking many points which are not within the bounds.

    Read the article

  • Prims vs Polys: what are the pros and cons of each?

    - by Richard Inglis
    I've noticed that most 3d gaming/rendering environments represent solids as a mesh of (usually triangular) 3d polygons. However some examples, such as Second Life, or PovRay use solids built from a set of 3d primitives (cube, sphere, cone, torus etc) on which various operations can be performed to create more complex shapes. So my question is: why choose one method over the other for representing 3d data? I can see there might be benefits for complex ray-tracing operations to be able to describe a surface as a single mathematical function (like PovRay does), but SL surely isn't attempting anything so ambitious with their rendering engine. Equally, I can imagine it might be more bandwidth-efficient to serve descriptions of generalised solids instead of arbitrary meshes, but is it really worth the downside that SL suffers from (ie modelling stuff is really hard, and usually the results are ugly) - was this just a bad decision made early in SL's development that they're now stuck with? Or is it an artefact of what's easiest to implement in OpenGL?

    Read the article

  • How to convert any text/font to its bezier path representation?

    - by yizzreel
    I have a bezier path library to draw complex bezier paths without problem. Now, I need to know how to read a text or font and extract its path information to draw it as a path instead of as text. I came across a C applicaiton, FontForge. It does exactly what I need, picks any font and extract its path information. But what I need to know is how it does it to add that feature to my drawing library.

    Read the article

  • drawing circle without floating point calculation

    - by zaharpopov
    This is common interview question (according to some interview sites) but I can find no normal answers in Internet - some are wrong and some point to complex theory I expect not looked for in interview (like Bressenham algorithm). The question is simple: The circle equation is: x^2 + y^2 = R^2. Given R, draw 0,0-centered circle as best as possible without using any floating point (no trigo, square roots, and so on, only integers)

    Read the article

  • Algorithm: Determine shape of two sectors delineated by an arbitrary path, and then fill one.

    - by Arseniy Banayev
    NOTE: This is a challenging problem for anybody who likes logic problems, etc. Consider a rectangular two-dimensional grid of height H and width W. Every space on the grid has a value, either 0 1 or 2. Initially, every space on the grid is a 0, except for the spaces along each of the four edges, which are initially a 2. Then consider an arbitrary path of adjacent (horizontally or vertically) grid spaces. The path begins on a 2 and ends on a different 2. Every space along the path is a 1. The path divides the grid into two "sectors" of 0 spaces. There is an object that rests on an unspecified 0 space. The "sector" that does NOT contain the object must be filled completely with 2. Define an algorithm that determines the spaces that must become 2 from 0, given an array (list) of values (0, 1, or 2) that correspond to the values in the grid, going from top to bottom and then from left to right. In other words, the element at index 0 in the array contains the value of the top-left space in the grid (initially a 2). The element at index 1 contains the value of the space in the grid that is in the left column, second from the top, and so forth. The element at index H contains the value of the space in the grid that is in the top row but second from the left, and so forth. Once the algorithm finishes and the empty "sector" is filled completely with 2s, the SAME algorithm must be sufficient to do the same process again. The second (and on) time, the path is still drawn from a 2 to a different 2, across spaces of 0, but the "grid" is smaller because the 2s that are surrounded by other 2s cannot be touched by the path (since the path is along spaces of 0). I thank whomever is able to figure this out for me, very very much. This does not have to be in a particular programming language; in fact, pseudo-code or just English is sufficient. Thanks again! If you have any questions, just leave a comment and I'll specify what needs to be specified.

    Read the article

  • Largest triangle from a set of points

    - by Faken
    I have a set of random points from which i want to find the largest triangle by area who's verticies are each on one of those points. So far I have figured out that the largest triangle's verticies will only lie on the outside points of the cloud of points (or the convex hull) so i have programmed a function to do just that (using Graham scan in nlogn time). However that's where I'm stuck. The only way I can figure out how to find the largest triangle from these points is to use brute force at n^3 time which is still acceptable in an average case as the convex hull algorithm usually kicks out the vast majority of points. However in a worst case scenario where points are on a circle, this method would fail miserably. Dose anyone know an algorithm to do this more efficiently? Note: I know that CGAL has this algorithm there but they do not go into any details on how its done. I don't want to use libraries, i want to learn this and program it myself (and also allow me to tweak it to exactly the way i want it to operate, just like the graham scan in which other implementations pick up collinear points that i don't want).

    Read the article

  • smallest perimiter rectangle with given integer area and integer sides

    - by remuladgryta
    Given an integer area A, how can one find integer sides w and h of a rectangle such that w*h = A and w+h is as small as possible? I'd rather the algorithm be simple than efficient (although within reasonable efficiency). What would be the best way to accomplish this? Finding out the prime factors of A, then combining them in some way that tries to balance w and h? Finding the two squares with integer sides with areas closest to A and then somehow interpolating between them? Any other method i'm not thinking of?

    Read the article

< Previous Page | 27 28 29 30 31 32 33 34 35 36 37 38  | Next Page >