Search Results

Search found 1725 results on 69 pages for 'compute shader'.

Page 32/69 | < Previous Page | 28 29 30 31 32 33 34 35 36 37 38 39  | Next Page >

  • OpenGL ES 2.0: Filtering Polygons within VBO

    - by Bunkai.Satori
    Say, I send 10 polygon pairs (one polygon pair == one 2d sprite == one rectangle == two triangles) into OpenGL ES 2.0 VBO. The 10 polygon pairs represent one animated 2D object consisting of 10 frames. The 10 frames, of course, can not be rendered all at the same time, but will be rendered in particular order to make up smooth animation. Would you have an advice, how to pick up proper polygon pair for rendering (4 vertices) inside Vertex Shader from the VBO? Creating separate VBO for each frame would end up with thousands of VBOs, which is not the right way of doing it. I use OpenGL ES 2.0, and VBOs for both Vertices and Indices.

    Read the article

  • How to achieve best performance in DirectX 9.0 while rendering on multiple monitors

    - by Vibhore Tanwer
    I am new to DirectX, and trying to learn best practice. Please suggest what are the best practices for rendering on multiple monitors different things at the same time? how can I boost performance of application? I have gone through this article http://msdn.microsoft.com/en-us/library/windows/desktop/bb147263%28v=vs.85%29.aspx . I am making use of some pixel shaders to achieve some effects. At most 4 effect(4 shader effects) can be applied at same time. What are the best practices to achieve best performance with DirectX 9.0. I read somewhere that DirectX 11 provides support for parallel rendering, but I am not able to get any working sample for DirectX 11.0. Please help me with this, Any help would be of great value. Thanks

    Read the article

  • GLSL Atmospheric Scattering Issue

    - by mtf1200
    I am attempting to use Sean O'Neil's shaders to accomplish atmospheric scattering. For now I am just using SkyFromSpace and GroundFromSpace. The atmosphere works fine but the planet itself is just a giant dark sphere with a white blotch that follows the camera. I think the problem might rest in the "v3Attenuation" variable as when this is removed the sphere is show (albeit without scattering). Here is the vertex shader. Thanks for the time! uniform mat4 g_WorldViewProjectionMatrix; uniform mat4 g_WorldMatrix; uniform vec3 m_v3CameraPos; // The camera's current position uniform vec3 m_v3LightPos; // The direction vector to the light source uniform vec3 m_v3InvWavelength; // 1 / pow(wavelength, 4) for the red, green, and blue channels uniform float m_fCameraHeight; // The camera's current height uniform float m_fCameraHeight2; // fCameraHeight^2 uniform float m_fOuterRadius; // The outer (atmosphere) radius uniform float m_fOuterRadius2; // fOuterRadius^2 uniform float m_fInnerRadius; // The inner (planetary) radius uniform float m_fInnerRadius2; // fInnerRadius^2 uniform float m_fKrESun; // Kr * ESun uniform float m_fKmESun; // Km * ESun uniform float m_fKr4PI; // Kr * 4 * PI uniform float m_fKm4PI; // Km * 4 * PI uniform float m_fScale; // 1 / (fOuterRadius - fInnerRadius) uniform float m_fScaleDepth; // The scale depth (i.e. the altitude at which the atmosphere's average density is found) uniform float m_fScaleOverScaleDepth; // fScale / fScaleDepth attribute vec4 inPosition; vec3 v3ELightPos = vec3(g_WorldMatrix * vec4(m_v3LightPos, 1.0)); vec3 v3ECameraPos= vec3(g_WorldMatrix * vec4(m_v3CameraPos, 1.0)); const int nSamples = 2; const float fSamples = 2.0; varying vec4 color; float scale(float fCos) { float x = 1.0 - fCos; return m_fScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25)))); } void main(void) { gl_Position = g_WorldViewProjectionMatrix * inPosition; // Get the ray from the camera to the vertex and its length (which is the far point of the ray passing through the atmosphere) vec3 v3Pos = vec3(g_WorldMatrix * inPosition); vec3 v3Ray = v3Pos - v3ECameraPos; float fFar = length(v3Ray); v3Ray /= fFar; // Calculate the closest intersection of the ray with the outer atmosphere (which is the near point of the ray passing through the atmosphere) float B = 2.0 * dot(m_v3CameraPos, v3Ray); float C = m_fCameraHeight2 - m_fOuterRadius2; float fDet = max(0.0, B*B - 4.0 * C); float fNear = 0.5 * (-B - sqrt(fDet)); // Calculate the ray's starting position, then calculate its scattering offset vec3 v3Start = m_v3CameraPos + v3Ray * fNear; fFar -= fNear; float fDepth = exp((m_fInnerRadius - m_fOuterRadius) / m_fScaleDepth); float fCameraAngle = dot(-v3Ray, v3Pos) / fFar; float fLightAngle = dot(v3ELightPos, v3Pos) / fFar; float fCameraScale = scale(fCameraAngle); float fLightScale = scale(fLightAngle); float fCameraOffset = fDepth*fCameraScale; float fTemp = (fLightScale + fCameraScale); // Initialize the scattering loop variables float fSampleLength = fFar / fSamples; float fScaledLength = fSampleLength * m_fScale; vec3 v3SampleRay = v3Ray * fSampleLength; vec3 v3SamplePoint = v3Start + v3SampleRay * 0.5; // Now loop through the sample rays vec3 v3FrontColor = vec3(0.0, 0.0, 0.0); vec3 v3Attenuate; for(int i=0; i<nSamples; i++) { float fHeight = length(v3SamplePoint); float fDepth = exp(m_fScaleOverScaleDepth * (m_fInnerRadius - fHeight)); float fScatter = fDepth*fTemp - fCameraOffset; v3Attenuate = exp(-fScatter * (m_v3InvWavelength * m_fKr4PI + m_fKm4PI)); v3FrontColor += v3Attenuate * (fDepth * fScaledLength); v3SamplePoint += v3SampleRay; } vec3 first = v3FrontColor * (m_v3InvWavelength * m_fKrESun + m_fKmESun); vec3 secondary = v3Attenuate; color = vec4((first + vec3(0.25,0.25,0.25) * secondary), 1.0); // ^^ that color is passed to the frag shader and is used as the gl_FragColor } Here is also an image of the problem image

    Read the article

  • How can I create a fast, real-time, fixed length glowing ray?

    - by igf
    Similar to the disintegrate skill in Diablo 3. It should not light other objects in scene. Just glowing and animated. Like in this video http://www.youtube.com/watch?v=D_c4x6aQAG8. Should I use pack of pre-computed glow sources textures for each frame of ray animation like in this article http://http.developer.nvidia.com/GPUGems/gpugems_ch21.html and put it in bloom shader? Is there any other efficient ways to achive this effect? I'm using OpenGL ES 2.0.

    Read the article

  • ASSIMP in my program is much slower to import than ASSIMP view program

    - by Marco
    The problem is really simple: if I try to load with the function aiImportFileExWithProperties a big model in my software (around 200.000 vertices), it takes more than one minute. If I try to load the very same model with ASSIMP view, it takes 2 seconds. For this comparison, both my software and Assimp view are using the dll version of the library at 64 bit, compiled by myself (Assimp64.dll). This is the relevant piece of code in my software // default pp steps unsigned int ppsteps = aiProcess_CalcTangentSpace | // calculate tangents and bitangents if possible aiProcess_JoinIdenticalVertices | // join identical vertices/ optimize indexing aiProcess_ValidateDataStructure | // perform a full validation of the loader's output aiProcess_ImproveCacheLocality | // improve the cache locality of the output vertices aiProcess_RemoveRedundantMaterials | // remove redundant materials aiProcess_FindDegenerates | // remove degenerated polygons from the import aiProcess_FindInvalidData | // detect invalid model data, such as invalid normal vectors aiProcess_GenUVCoords | // convert spherical, cylindrical, box and planar mapping to proper UVs aiProcess_TransformUVCoords | // preprocess UV transformations (scaling, translation ...) aiProcess_FindInstances | // search for instanced meshes and remove them by references to one master aiProcess_LimitBoneWeights | // limit bone weights to 4 per vertex aiProcess_OptimizeMeshes | // join small meshes, if possible; aiProcess_SplitByBoneCount | // split meshes with too many bones. Necessary for our (limited) hardware skinning shader 0; cout << "Loading " << pFile << "... "; aiPropertyStore* props = aiCreatePropertyStore(); aiSetImportPropertyInteger(props,AI_CONFIG_IMPORT_TER_MAKE_UVS,1); aiSetImportPropertyFloat(props,AI_CONFIG_PP_GSN_MAX_SMOOTHING_ANGLE,80.f); aiSetImportPropertyInteger(props,AI_CONFIG_PP_SBP_REMOVE, aiPrimitiveType_LINE | aiPrimitiveType_POINT); aiSetImportPropertyInteger(props,AI_CONFIG_GLOB_MEASURE_TIME,1); //aiSetImportPropertyInteger(props,AI_CONFIG_PP_PTV_KEEP_HIERARCHY,1); // Call ASSIMPs C-API to load the file scene = (aiScene*)aiImportFileExWithProperties(pFile.c_str(), ppsteps | /* default pp steps */ aiProcess_GenSmoothNormals | // generate smooth normal vectors if not existing aiProcess_SplitLargeMeshes | // split large, unrenderable meshes into submeshes aiProcess_Triangulate | // triangulate polygons with more than 3 edges //aiProcess_ConvertToLeftHanded | // convert everything to D3D left handed space aiProcess_SortByPType | // make 'clean' meshes which consist of a single typ of primitives 0, NULL, props); aiReleasePropertyStore(props); if(!scene){ cout << aiGetErrorString() << endl; return 0; } this is the relevant piece of code in assimp view code // default pp steps unsigned int ppsteps = aiProcess_CalcTangentSpace | // calculate tangents and bitangents if possible aiProcess_JoinIdenticalVertices | // join identical vertices/ optimize indexing aiProcess_ValidateDataStructure | // perform a full validation of the loader's output aiProcess_ImproveCacheLocality | // improve the cache locality of the output vertices aiProcess_RemoveRedundantMaterials | // remove redundant materials aiProcess_FindDegenerates | // remove degenerated polygons from the import aiProcess_FindInvalidData | // detect invalid model data, such as invalid normal vectors aiProcess_GenUVCoords | // convert spherical, cylindrical, box and planar mapping to proper UVs aiProcess_TransformUVCoords | // preprocess UV transformations (scaling, translation ...) aiProcess_FindInstances | // search for instanced meshes and remove them by references to one master aiProcess_LimitBoneWeights | // limit bone weights to 4 per vertex aiProcess_OptimizeMeshes | // join small meshes, if possible; aiProcess_SplitByBoneCount | // split meshes with too many bones. Necessary for our (limited) hardware skinning shader 0; aiPropertyStore* props = aiCreatePropertyStore(); aiSetImportPropertyInteger(props,AI_CONFIG_IMPORT_TER_MAKE_UVS,1); aiSetImportPropertyFloat(props,AI_CONFIG_PP_GSN_MAX_SMOOTHING_ANGLE,g_smoothAngle); aiSetImportPropertyInteger(props,AI_CONFIG_PP_SBP_REMOVE,nopointslines ? aiPrimitiveType_LINE | aiPrimitiveType_POINT : 0 ); aiSetImportPropertyInteger(props,AI_CONFIG_GLOB_MEASURE_TIME,1); //aiSetImportPropertyInteger(props,AI_CONFIG_PP_PTV_KEEP_HIERARCHY,1); // Call ASSIMPs C-API to load the file g_pcAsset->pcScene = (aiScene*)aiImportFileExWithProperties(g_szFileName, ppsteps | /* configurable pp steps */ aiProcess_GenSmoothNormals | // generate smooth normal vectors if not existing aiProcess_SplitLargeMeshes | // split large, unrenderable meshes into submeshes aiProcess_Triangulate | // triangulate polygons with more than 3 edges aiProcess_ConvertToLeftHanded | // convert everything to D3D left handed space aiProcess_SortByPType | // make 'clean' meshes which consist of a single typ of primitives 0, NULL, props); aiReleasePropertyStore(props); As you can see the code is nearly identical because I copied from assimp view. What could be the reason for such a difference in performance? The two software are using the same dll Assimp64.dll (compiled in my computer with vc++ 2010 express) and the same function aiImportFileExWithProperties to load the model, so I assume that the actual code employed is the same. How is it possible that the function aiImportFileExWithProperties is 100 times slower when called by my sotware than when called by assimp view? What am I missing? I am not good with dll, dynamic and static libraries so I might be missing something obvious. ------------------------------ UPDATE I found out the reason why the code is going slower. Basically I was running my software with "Start debugging" in VC++ 2010 Express. If I run the code outside VC++ 2010 I get same performance of assimp view. However now I have a new question. Why does the dll perform slower in VC++ debugging? I compiled it in release mode without debugging information. Is there any way to have the dll go fast in debugmode i.e. not debugging the dll? Because I am interested in debugging only my own code, not the dll that I assume is already working fine. I do not want to wait 2 minutes every time I want to load my software to debug. Does this request make sense?

    Read the article

  • C# XNA - Sky Sphere Question

    - by Wade
    I have been banging my head against the wall trying to get a sky sphere to work appropriately in XNA 4.0. I have the sphere loading correctly, and even textured, but i would like something a little more dynamic that can support a day/night cycle. My issue is that, while i know a good amount of C# and XNA, i know next to nothing about HLSL. (I could make an ambient light shader if my life depended on it...) I also have not been able to find a tutorial on how to build a sky sphere like this. Of course i don't expect to be able to make an amazing one right off the bat, i would like to start small, with a dynamic coloring sky i'll work out the clouds and sun later. My first question: Does anyone know of any good tutorial sites that could help me get a decent grasp around HLSL? Second: Does anyone have a good example of or know where to find one of a gradient sky using XNA and C#?

    Read the article

  • Render 2 images that uses different shaders

    - by Code Vader
    Based on the giawa/nehe tutorials, how can I render 2 images with different shaders. I'm pretty new to OpenGl and shaders so I'm not completely sure whats happening in my code, but I think the shaders that is called last overwrites the first one. private static void OnRenderFrame() { // calculate how much time has elapsed since the last frame watch.Stop(); float deltaTime = (float)watch.ElapsedTicks / System.Diagnostics.Stopwatch.Frequency; watch.Restart(); // use the deltaTime to adjust the angle of the cube angle += deltaTime; // set up the OpenGL viewport and clear both the color and depth bits Gl.Viewport(0, 0, width, height); Gl.Clear(ClearBufferMask.ColorBufferBit | ClearBufferMask.DepthBufferBit); // use our shader program and bind the crate texture Gl.UseProgram(program); //<<<<<<<<<<<< TOP PYRAMID // set the transformation of the top_pyramid program["model_matrix"].SetValue(Matrix4.CreateRotationY(angle * rotate_cube)); program["enable_lighting"].SetValue(lighting); // bind the vertex positions, UV coordinates and element array Gl.BindBufferToShaderAttribute(top_pyramid, program, "vertexPosition"); Gl.BindBufferToShaderAttribute(top_pyramidNormals, program, "vertexNormal"); Gl.BindBufferToShaderAttribute(top_pyramidUV, program, "vertexUV"); Gl.BindBuffer(top_pyramidTrianlges); // draw the textured top_pyramid Gl.DrawElements(BeginMode.Triangles, top_pyramidTrianlges.Count, DrawElementsType.UnsignedInt, IntPtr.Zero); //<<<<<<<<<< CUBE // set the transformation of the cube program["model_matrix"].SetValue(Matrix4.CreateRotationY(angle * rotate_cube)); program["enable_lighting"].SetValue(lighting); // bind the vertex positions, UV coordinates and element array Gl.BindBufferToShaderAttribute(cube, program, "vertexPosition"); Gl.BindBufferToShaderAttribute(cubeNormals, program, "vertexNormal"); Gl.BindBufferToShaderAttribute(cubeUV, program, "vertexUV"); Gl.BindBuffer(cubeQuads); // draw the textured cube Gl.DrawElements(BeginMode.Quads, cubeQuads.Count, DrawElementsType.UnsignedInt, IntPtr.Zero); //<<<<<<<<<<<< BOTTOM PYRAMID // set the transformation of the bottom_pyramid program["model_matrix"].SetValue(Matrix4.CreateRotationY(angle * rotate_cube)); program["enable_lighting"].SetValue(lighting); // bind the vertex positions, UV coordinates and element array Gl.BindBufferToShaderAttribute(bottom_pyramid, program, "vertexPosition"); Gl.BindBufferToShaderAttribute(bottom_pyramidNormals, program, "vertexNormal"); Gl.BindBufferToShaderAttribute(bottom_pyramidUV, program, "vertexUV"); Gl.BindBuffer(bottom_pyramidTrianlges); // draw the textured bottom_pyramid Gl.DrawElements(BeginMode.Triangles, bottom_pyramidTrianlges.Count, DrawElementsType.UnsignedInt, IntPtr.Zero); //<<<<<<<<<<<<< STAR Gl.Disable(EnableCap.DepthTest); Gl.Enable(EnableCap.Blend); Gl.BlendFunc(BlendingFactorSrc.SrcAlpha, BlendingFactorDest.One); Gl.BindTexture(starTexture); //calculate the camera position using some fancy polar co-ordinates Vector3 position = 20 * new Vector3(Math.Cos(phi) * Math.Sin(theta), Math.Cos(theta), Math.Sin(phi) * Math.Sin(theta)); Vector3 upVector = ((theta % (Math.PI * 2)) > Math.PI) ? Vector3.Up : Vector3.Down; program_2["view_matrix"].SetValue(Matrix4.LookAt(position, Vector3.Zero, upVector)); // make sure the shader program and texture are being used Gl.UseProgram(program_2); // loop through the stars, drawing each one for (int i = 0; i < stars.Count; i++) { // set the position and color of this star program_2["model_matrix"].SetValue(Matrix4.CreateTranslation(new Vector3(stars[i].dist, 0, 0)) * Matrix4.CreateRotationZ(stars[i].angle)); program_2["color"].SetValue(stars[i].color); Gl.BindBufferToShaderAttribute(star, program_2, "vertexPosition"); Gl.BindBufferToShaderAttribute(starUV, program_2, "vertexUV"); Gl.BindBuffer(starQuads); Gl.DrawElements(BeginMode.Quads, starQuads.Count, DrawElementsType.UnsignedInt, IntPtr.Zero); // update the position of the star stars[i].angle += (float)i / stars.Count * deltaTime * 2 * rotate_stars; stars[i].dist -= 0.2f * deltaTime * rotate_stars; // if we've reached the center then move this star outwards and give it a new color if (stars[i].dist < 0f) { stars[i].dist += 5f; stars[i].color = new Vector3(generator.NextDouble(), generator.NextDouble(), generator.NextDouble()); } } Glut.glutSwapBuffers(); } The same goes for the textures, whichever one I mention last gets applied to both object?

    Read the article

  • Rotate sprite to face 3D camera

    - by omikun
    I am trying to rotate a sprite so it is always facing a 3D camera. shaders->setUniform("camera", gCamera.matrix()); glm::mat4 scale = glm::scale(glm::mat4(), glm::vec3(5e5, 5e5, 5e5)); glm::vec3 look = gCamera.position(); glm::vec3 right = glm::cross(gCamera.up(), look); glm::vec3 up = glm::cross(look, right); glm::mat4 newTransform = glm::lookAt(glm::vec3(0), gCamera.position(), up) * scale; shaders->setUniform("model", newTransform); In the vertex shader: gl_Position = camera * model * vec4(vert, 1); The object will track the camera if I move the camera up or down, but if I rotate the camera around it, it will rotate in the other direction so I end up seeing its front twice and its back twice as I rotate around it 360. What am I doing wrong?

    Read the article

  • Why do my 512x512 bitmaps look jaggy on Android OpenGL?

    - by Milo Mordaunt
    This is sort of driving me nuts, I've googled and googled and tried everything I can think of, but my sprites still look super blurry and super jaggy. Example: Here: https://docs.google.com/open?id=0Bx9Gbwnv9Hd2TmpiZkFycUNmRTA If you click through to the actual full size image you should see what I mean, it's like it's taking and average of every 5*5 pixels or something, the background looks really blurry and blocky, but the ball is the worst. The clouds look all right for some reason, probably because they're mostly transparent. I know the pngs aren't top notch themselves but hey, I'm no artist! I would imagine it's a problem with either: a. How the pngs are made example sprite (512x512): https://docs.google.com/open?id=0Bx9Gbwnv9Hd2a2RRQlJiQTFJUEE b. How my Matrices work This is the relevant parts of the renderer: public void onDrawFrame(GL10 unused) { if(world != null) { dt = System.currentTimeMillis() - endTime; world.update( (float) dt); // Redraw background color GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT); Matrix.setIdentityM(mvMatrix, 0); Matrix.translateM(mvMatrix, 0, 0f, 0f, 0f); world.draw(mvMatrix, mProjMatrix); endTime = System.currentTimeMillis(); } else { Log.d(TAG, "There is no world...."); } } public void onSurfaceChanged(GL10 unused, int width, int height) { GLES20.glViewport(0, 0, width, height); Matrix.orthoM(mProjMatrix, 0, 0, width /2, 0, height /2, -1.f, 1.f); } And this is what each Quad does when draw is called: public void draw(float[] mvMatrix, float[] pMatrix) { Matrix.setIdentityM(mMatrix, 0); Matrix.setIdentityM(mvMatrix, 0); Matrix.translateM(mMatrix, 0, xPos, yPos, 0.f); Matrix.multiplyMM(mvMatrix, 0, mvMatrix, 0, mMatrix, 0); Matrix.scaleM(mvMatrix, 0, scale, scale, 0f); Matrix.rotateM(mvMatrix, 0, angle, 0f, 0f, -1f); GLES20.glUseProgram(mProgram); posAttr = GLES20.glGetAttribLocation(mProgram, "vPosition"); texAttr = GLES20.glGetAttribLocation(mProgram, "aTexCo"); uSampler = GLES20.glGetUniformLocation(mProgram, "uSampler"); int alphaHandle = GLES20.glGetUniformLocation(mProgram, "alpha"); GLES20.glVertexAttribPointer(posAttr, COORDS_PER_VERTEX, GLES20.GL_FLOAT, false, 0, vertexBuffer); GLES20.glVertexAttribPointer(texAttr, 2, GLES20.GL_FLOAT, false, 0, texCoBuffer); GLES20.glEnableVertexAttribArray(posAttr); GLES20.glEnableVertexAttribArray(texAttr); GLES20.glActiveTexture(GLES20.GL_TEXTURE0); GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, texture); GLES20.glUniform1i(uSampler, 0); GLES20.glUniform1f(alphaHandle, alpha); mMVMatrixHandle = GLES20.glGetUniformLocation(mProgram, "uMVMatrix"); mPMatrixHandle = GLES20.glGetUniformLocation(mProgram, "uPMatrix"); GLES20.glUniformMatrix4fv(mMVMatrixHandle, 1, false, mvMatrix, 0); GLES20.glUniformMatrix4fv(mPMatrixHandle, 1, false, pMatrix, 0); GLES20.glDrawElements(GLES20.GL_TRIANGLE_STRIP, 4, GLES20.GL_UNSIGNED_SHORT, indicesBuffer); GLES20.glDisableVertexAttribArray(posAttr); GLES20.glDisableVertexAttribArray(texAttr); GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, 0); } c. How my texture loading/blending/shaders setup works Here is the renderer setup: public void onSurfaceCreated(GL10 unused, EGLConfig config) { // Set the background frame color GLES20.glClearColor(0.0f, 0.0f, 0.0f, 1.0f); GLES20.glDisable(GLES20.GL_DEPTH_TEST); GLES20.glDepthMask(false); GLES20.glBlendFunc(GLES20.GL_ONE, GLES20.GL_ONE_MINUS_SRC_ALPHA); GLES20.glEnable(GLES20.GL_BLEND); GLES20.glEnable(GLES20.GL_DITHER); } Here is the vertex shader: attribute vec4 vPosition; attribute vec2 aTexCo; varying vec2 vTexCo; uniform mat4 uMVMatrix; uniform mat4 uPMatrix; void main() { gl_Position = uPMatrix * uMVMatrix * vPosition; vTexCo = aTexCo; } And here's the fragment shader: precision mediump float; uniform sampler2D uSampler; uniform vec4 vColor; varying vec2 vTexCo; varying float alpha; void main() { vec4 color = texture2D(uSampler, vec2(vTexCo)); gl_FragColor = color; if(gl_FragColor.a == 0.0) { "discard; } } This is how textures are loaded: private int loadTexture(int rescource) { int[] texture = new int[1]; BitmapFactory.Options opts = new BitmapFactory.Options(); opts.inScaled = false; Bitmap temp = BitmapFactory.decodeResource(context.getResources(), rescource, opts); GLES20.glGenTextures(1, texture, 0); GLES20.glActiveTexture(GLES20.GL_TEXTURE0); GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, texture[0]); GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MAG_FILTER, GLES20.GL_LINEAR); GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MIN_FILTER, GLES20.GL_LINEAR); GLUtils.texImage2D(GLES20.GL_TEXTURE_2D, 0, temp, 0); GLES20.glGenerateMipmap(GLES20.GL_TEXTURE_2D); GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, 0); temp.recycle(); return texture[0]; } I'm sure I'm doing about 20,000 things wrong, so I'm really sorry if the problem is blindingly obvious... The test device is a Galaxy Note, running a JellyBean custom ROM, if that matters at all. So the screen resolution is 1280x800, which means... The background is 1024x1024, so yeah it might be a little blurry, but shouldn't be made of lego. Thank you so much, any answer at all would be appreciated.

    Read the article

  • Omni-directional shadow mapping

    - by gridzbi
    What is a good/the best way to fill a cube map with depth values that are going to give me the least amount of trouble with floating point imprecision? To get up and running I'm just writing the raw depth to the buffer, as you can imagine it's pretty terrible - I need to to improve it, but I'm not sure how. A few tutorials on directional lights divide the depth by W and store the Z/W value in the cube map - How would I perform the depth comparison in my shadow mapping step? The nvidia article here http://http.developer.nvidia.com/GPUGems/gpugems_ch12.html appears to do something completely different and use the dot of the light vector, presumably to counter the depth precision worsening over distance? He also scales the geometry so that it fits into the range -.5 +.5 - The article looks a bit dated, though - is this technique still reasonable? Shader code http://pastebin.com/kNBzX4xU Screenshot http://imgur.com/54wFI

    Read the article

  • Migration from XNA to SharpDX

    - by Wouter
    My fear is that XNA has reached the end of the road. To keep up with the latest technology a shift to another game framework might be needed. We have many games in a large codebase, all based on XNA. My question is, how much work would it be to migrate to SharpDX and are there other possibilities? Our code base mainly uses basic 3D rendering and the SpriteBatch, no fancy shader stuff. Update: I should have mentioned we only use 2.5D, we have a simple engine that builds textured quads to render text and animated sprites. Also for sound we use XACT (what else..) with some effects.

    Read the article

  • Problem using glm::lookat

    - by omikun
    I am trying to rotate a sprite so it is always facing a 3D camera. Object GLfloat vertexData[] = { // X Y Z U V 0.0f, 0.8f, 0.0f, 0.5f, 1.0f, -0.8f,-0.8f, 0.0f, 0.0f, 0.0f, 0.8f,-0.8f, 0.0f, 1.0f, 0.0f, }; Per frame transform glm::mat4 newTransform = glm::lookAt(glm::vec3(0), gCamera.position(), gCamera.up()); shaders->setUniform("camera", gCamera.matrix()); shaders->setUniform("model", newTransform); In the vertex shader: gl_Position = camera * model * vec4(vert, 1); The object will track the camera if I move the camera up or down, but if I move the camera left/right (spin the camera around the object's y axis), it will rotate in the other direction so I end up seeing its front twice and its back twice as I rotate around it 360. If I use -gCamera.up() instead, it would track the camera side to side, but spin the opposite direction when I move the camera up/down. What am I doing wrong?

    Read the article

  • Avoid if statements in DirectX 10 shaders?

    - by PolGraphic
    I have heard that if statements should be avoid in shaders, because both parts of the statements will be execute, and than the wrong will be dropped (which harms the performance). It's still a problem in DirectX 10? Somebody told me, that in it only the right branch will be execute. For the illustration I have the code: float y1 = 5; float y2 = 6; float b1 = 2; float b2 = 3; if(x>0.5){ x = 10 * y1 + b1; }else{ x = 10 * y2 + b2; } Is there an other way to make it faster? If so, how do it? Both branches looks similar, the only difference is the values of "constants" (y1, y2, b1, b2 are the same for all pixels in Pixel Shader).

    Read the article

  • Calculate an AABB for bone animated model

    - by Byte56
    I have a model that has its initial bounding box calculated by finding the maximum and minimum on the x, y and z axes. Producing a correct result like so: The vertices are then stored in a VBO and only altered with matrices for rotation and bone animation. Currently the bounds are not updated when the model is altered. So the animated and rotated model has bounds like so: (Maybe it's hard to tell, but the bounds are the same as before, and don't accurately represent the rotated/animated model) So my question is, how can I calculate the bounding box using the armature matrices and rotation/translation matrices for each model? Keep in mind the modified vertex data is not available because those calculations are performed on the GPU in the shader. The end result I want is to have an accurate AABB the represents the animated model for picking/basic collision checks.

    Read the article

  • Normals vs Normal maps

    - by KaiserJohaan
    I am using Assimp asset importer (http://assimp.sourceforge.net/lib_html/index.html) to parse 3d models. So far, I've simply pulled out the normal vectors which are defined for each vertex in my meshes. Yet I have also found various tutorials on normal maps... As I understand it for normal maps, the normal vectors are stored in each texel of a normal map, and you pull these out of the normal texture in the shader. Why is there two ways to get the normals, which one is considered best-practice and why?

    Read the article

  • Looking for literature about graphics pipeline optimization

    - by zacharmarz
    I am looking for some books, articles or tutorials about graphics architecture and graphics pipeline optimizations. It shouldn't be too old (2008 or newer) - the newer, the better. I have found something in [Optimising the Graphics Pipeline, NVIDIA, Koji Ashida] - too old, [Real-time rendering, Akenine Moller], [OpenGL Bindless Extensions, NVIDIA, Jeff Bolz], [Efficient multifragment effects on graphics processing units, Louis Frederic Bavoil] and some internet discussions. But there is not too much information and I want to read more. It should contain something about application, driver, memory and shader units communication and data transfers. About vertices and attributes. Also pre and post T&L cache (if they still exist in nowadays architectures) etc. I don't need anything about textures, frame buffers and rasterization. It can also be about OpenGL (not about DirecX) and optimizing extensions (not old extensions like VBOs, but newer like vertex_buffer_unified_memory).

    Read the article

  • Drawing simple geometric figures with DrawUserPrimitives?

    - by Navy Seal
    I'm trying to draw a simple triangle based on an array of vertex. I've been searching for a tutorial and I found a simple example on riemers but I couldn't get it to work. I think it was made for XNA 3 and it seems there were some changes to XNA 4? Using this example: http://www.riemers.net/eng/Tutorials/XNA/Csharp/Series1/The_first_triangle.php I get this error: Additional information: The current vertex declaration does not include all the elements required by the current vertex shader. TextureCoordinate0 is missing. I'm not english so I'm having some trouble to understand everything. For what I understand error is confusing because I'm trying to draw a triangle color based and not texture based and it shouldn't need a texture. Also I saw some articles about dynamic shadows and lights and I would like to know if this is the kind of code used to do it with some tweaks like culling because I'm wondering if its heavy code for performance in real time.

    Read the article

  • Fast pixelshader 2D raytracing

    - by heishe
    I'd like to do a simple 2D shadow calculation algorithm by rendering my environment into a texture, and then use raytracing to determine what pixels of the texture are not visible to the point light (simply handed to the shader as a vec2 position) . A simple brute force algorithm per pixel would looks like this: line_segment = line segment between current pixel of texture and light source For each pixel in the texture: { if pixel is not just empty space && pixel is on line_segment output = black else output = normal color of the pixel } This is, of course, probably not the fastest way to do it. Question is: What are faster ways to do it or what are some optimizations that can be applied to this technique?

    Read the article

  • Texturing a mesh generated from voxel data

    - by Minja
    I have implemented the Marching Cubes algorithm to display an isosurface based on voxel data. Currently, it is displayed with triplanar texturing. I'm working with unity, so I have a material with the triplanar shader attached. Now, the whole isosurface is rendered using this material. And thats my problem: I want the texture to represent the voxel data. I'm storing a material value for every point in the grid, and based on this value, I want the texture of the isosurface to change. Sadly, I have no clue how to do this. So if the voxel is sand, I want sand to be displayed; if it's stone, then there should be stone. Right now, everything is displayed as sand. Thanks in advance!

    Read the article

  • How many vertices are needed to draw reasonably good-looking terrain?

    - by bobbaluba
    I have some pretty expensive code in my terrain vertex shader, and I am trying to figure out if it will still be fast enough. I haven't yet developed a level-of-detail system for my terrain rendering, but I can easily benchmark my code by just drawing mock triangles. My problem is, how do I know how many vertices to test with? Are there for example rendering engines that will tell me how many terrain vertices are currently on-screen? Or maybe it is possible to create a formula that will give me an estimate based on screen resolution?

    Read the article

  • Colorize with a given color a texture

    - by Pacha
    I have a texture and I want to "colorize" it with a given color, lets say cyan (#00ffff) or purple (#800080). What I want to do, is get all the pixel values from the texture, and remove the color and keep the "brightness" and "saturation" and apply to the desired color. There is a tool in GIMP to do this called Colorize (Colors -> Colorize.. while editing), I made an example below. This is will all be done in a shader (GLSL), although this is probably a general algorithm.

    Read the article

  • how to add water effect to an image

    - by brainydexter
    This is what I am trying to achieve: A given image would occupy say 3/4th height of the screen. The remaining 1/4th area would be a reflection of it with some waves (water effect) on it. I'm not sure how to do this. But here's my approach: render the given texture to another texture called mirror texture (maybe FBOs can help me?) invert mirror texture (scale it by -1 along Y) render mirror texture at height = 3/4 of the screen add some sense of noise to it OR using pixel shader and time, put pixel.z = sin(time) to make it wavy (Tech: C++/OpenGL/glsl) Is my approach correct ? Is there a better way to do this ? Also, can someone please recommend me if using FrameBuffer Objects would be the right thing here ? Thanks

    Read the article

  • Lwjgl or opengl double pixels

    - by Philippe Paré
    I'm working in java with LWJGL and trying to double all my pixels. I'm trying to draw in an area of 800x450 and then stretch all the frame image to the complete 1600x900 pixels without them getting blured. I can't figure out how to do that in java, everything I find is in c++... A hint would be great! Thanks a lot. EDIT : I've tried drawing to a texture created in opengl by setting it to the framebuffer, but I can't find a way to use glGenTextures() in java... so this is not working... also I though about using a shader but I would not be able to draw only in the smaller region...

    Read the article

  • Tangent basis calculation problem

    - by Kirill Daybov
    I have the problem with seams with calculating a tangent basis in my application. I'm using a seems to be right algorithm, but it gives wrong result on the seams. What am I doing wrong? Is there a problem with an algorithm, or with the model? The designer says that our models with our normal maps are rendered correctly in Xoliul Shader Plugin in 3Ds Max, so there should be a way to calculate correct tangent basis programmatically. Here's an example of the problem I'm talking about. Steps, I've already taken: - Tried different algorithm (from Gamasutra, I can't post the link because I don't have enough reputation yet). I got wrong, much worse, results; - Tried to average basis vectors for vertexes are used in multiple faces; - Tried to average basis vectors for vertexes that have same world coordinates (this would be obviously wrong solution, but I've tried it anyway).

    Read the article

  • Rendering oily/polluted water?

    - by Fraser
    Any shader wizards out there have an idea of how to achieve an oily/polluted water effect, similar to this: Ideally, the water would not be uniformly oily, but instead the oil could be generated from some source (such as a polluting drain from a chemical plant) and then diffuse throughout the water body. My thought for this part would be to keep an "oil map" as a 2D texture that determines the density of oil at each point on the water surface. It would diffuse and move naturally with the water vel;ocity at that point (I have a wave-particle simulation for dynamic waves, and am already doing something similar for foam on the water surface). However, I'm not sure how physically correct that would be, since oil might not move at the same velocity as the water. And I have no idea how to make all those trippy colors :-). Thoughts?

    Read the article

< Previous Page | 28 29 30 31 32 33 34 35 36 37 38 39  | Next Page >