Search Results

Search found 16410 results on 657 pages for 'game component'.

Page 343/657 | < Previous Page | 339 340 341 342 343 344 345 346 347 348 349 350  | Next Page >

  • Java Animation Memory Overload [on hold]

    - by user2425429
    I need a way to reduce the memory usage of these programs while keeping the functionality. Every time I add 50 milliseconds or so to the set&display loop in AnimationTest1, it throws an out of memory error. Here is the code I have now: import java.awt.DisplayMode; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Image; import java.awt.Polygon; import java.util.ArrayList; import java.util.List; import java.util.concurrent.Executor; import java.util.concurrent.Executors; import javax.swing.ImageIcon; public class AnimationTest1 { public static void main(String args[]) { AnimationTest1 test = new AnimationTest1(); test.run(); } private static final DisplayMode POSSIBLE_MODES[] = { new DisplayMode(800, 600, 32, 0), new DisplayMode(800, 600, 24, 0), new DisplayMode(800, 600, 16, 0), new DisplayMode(640, 480, 32, 0), new DisplayMode(640, 480, 24, 0), new DisplayMode(640, 480, 16, 0) }; private static final long DEMO_TIME = 4000; private ScreenManager screen; private Image bgImage; private Animation anim; public void loadImages() { // create animation List<Polygon> polygons=new ArrayList(); int[] x=new int[]{20,4,4,20,40,56,56,40}; int[] y=new int[]{20,32,40,44,44,40,32,20}; polygons.add(new Polygon(x,y,8)); anim = new Animation(); //# of frames long startTime = System.currentTimeMillis(); long currTimer = startTime; long elapsedTime = 0; boolean animated = false; Graphics2D g = screen.getGraphics(); int width=200; int height=200; //set&display loop while (currTimer - startTime < DEMO_TIME*2) { //draw the polygons if(!animated){ for(int j=0; j<polygons.size();j++){ for(int pos=0; pos<polygons.get(j).npoints; pos++){ polygons.get(j).xpoints[pos]+=1; } } anim.setNewPolyFrame(polygons , width , height , 64); } else{ // update animation anim.update(elapsedTime); draw(g); g.dispose(); screen.update(); try{ Thread.sleep(20); } catch(InterruptedException ie){} } if(currTimer - startTime == DEMO_TIME) animated=true; elapsedTime = System.currentTimeMillis() - currTimer; currTimer += elapsedTime; } } public void run() { screen = new ScreenManager(); try { DisplayMode displayMode = screen.findFirstCompatibleMode(POSSIBLE_MODES); screen.setFullScreen(displayMode); loadImages(); } finally { screen.restoreScreen(); } } public void draw(Graphics g) { // draw background g.drawImage(bgImage, 0, 0, null); // draw image g.drawImage(anim.getImage(), 0, 0, null); } } ScreenManager: import java.awt.Color; import java.awt.DisplayMode; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.GraphicsConfiguration; import java.awt.GraphicsDevice; import java.awt.GraphicsEnvironment; import java.awt.Toolkit; import java.awt.Window; import java.awt.event.KeyListener; import java.awt.event.MouseListener; import java.awt.image.BufferStrategy; import java.awt.image.BufferedImage; import javax.swing.JFrame; import javax.swing.JPanel; public class ScreenManager extends JPanel { private GraphicsDevice device; /** Creates a new ScreenManager object. */ public ScreenManager() { GraphicsEnvironment environment=GraphicsEnvironment.getLocalGraphicsEnvironment(); device = environment.getDefaultScreenDevice(); setBackground(Color.white); } /** Returns a list of compatible display modes for the default device on the system. */ public DisplayMode[] getCompatibleDisplayModes() { return device.getDisplayModes(); } /** Returns the first compatible mode in a list of modes. Returns null if no modes are compatible. */ public DisplayMode findFirstCompatibleMode( DisplayMode modes[]) { DisplayMode goodModes[] = device.getDisplayModes(); for (int i = 0; i < modes.length; i++) { for (int j = 0; j < goodModes.length; j++) { if (displayModesMatch(modes[i], goodModes[j])) { return modes[i]; } } } return null; } /** Returns the current display mode. */ public DisplayMode getCurrentDisplayMode() { return device.getDisplayMode(); } /** Determines if two display modes "match". Two display modes match if they have the same resolution, bit depth, and refresh rate. The bit depth is ignored if one of the modes has a bit depth of DisplayMode.BIT_DEPTH_MULTI. Likewise, the refresh rate is ignored if one of the modes has a refresh rate of DisplayMode.REFRESH_RATE_UNKNOWN. */ public boolean displayModesMatch(DisplayMode mode1, DisplayMode mode2) { if (mode1.getWidth() != mode2.getWidth() || mode1.getHeight() != mode2.getHeight()) { return false; } if (mode1.getBitDepth() != DisplayMode.BIT_DEPTH_MULTI && mode2.getBitDepth() != DisplayMode.BIT_DEPTH_MULTI && mode1.getBitDepth() != mode2.getBitDepth()) { return false; } if (mode1.getRefreshRate() != DisplayMode.REFRESH_RATE_UNKNOWN && mode2.getRefreshRate() != DisplayMode.REFRESH_RATE_UNKNOWN && mode1.getRefreshRate() != mode2.getRefreshRate()) { return false; } return true; } /** Enters full screen mode and changes the display mode. If the specified display mode is null or not compatible with this device, or if the display mode cannot be changed on this system, the current display mode is used. <p> The display uses a BufferStrategy with 2 buffers. */ public void setFullScreen(DisplayMode displayMode) { JFrame frame = new JFrame(); frame.setUndecorated(true); frame.setIgnoreRepaint(true); frame.setResizable(true); device.setFullScreenWindow(frame); if (displayMode != null && device.isDisplayChangeSupported()) { try { device.setDisplayMode(displayMode); } catch (IllegalArgumentException ex) { } } frame.createBufferStrategy(2); Graphics g=frame.getGraphics(); g.setColor(Color.white); g.drawRect(0, 0, frame.WIDTH, frame.HEIGHT); frame.paintAll(g); g.setColor(Color.black); g.dispose(); } /** Gets the graphics context for the display. The ScreenManager uses double buffering, so applications must call update() to show any graphics drawn. <p> The application must dispose of the graphics object. */ public Graphics2D getGraphics() { Window window = device.getFullScreenWindow(); if (window != null) { BufferStrategy strategy = window.getBufferStrategy(); return (Graphics2D)strategy.getDrawGraphics(); } else { return null; } } /** Updates the display. */ public void update() { Window window = device.getFullScreenWindow(); if (window != null) { BufferStrategy strategy = window.getBufferStrategy(); if (!strategy.contentsLost()) { strategy.show(); } } // Sync the display on some systems. // (on Linux, this fixes event queue problems) Toolkit.getDefaultToolkit().sync(); } /** Returns the window currently used in full screen mode. Returns null if the device is not in full screen mode. */ public Window getFullScreenWindow() { return device.getFullScreenWindow(); } /** Returns the width of the window currently used in full screen mode. Returns 0 if the device is not in full screen mode. */ public int getWidth() { Window window = device.getFullScreenWindow(); if (window != null) { return window.getWidth(); } else { return 0; } } /** Returns the height of the window currently used in full screen mode. Returns 0 if the device is not in full screen mode. */ public int getHeight() { Window window = device.getFullScreenWindow(); if (window != null) { return window.getHeight(); } else { return 0; } } /** Restores the screen's display mode. */ public void restoreScreen() { Window window = device.getFullScreenWindow(); if (window != null) { window.dispose(); } device.setFullScreenWindow(null); } /** Creates an image compatible with the current display. */ public BufferedImage createCompatibleImage(int w, int h, int transparency) { Window window = device.getFullScreenWindow(); if (window != null) { GraphicsConfiguration gc = window.getGraphicsConfiguration(); return gc.createCompatibleImage(w, h, transparency); } return null; } } Animation: import java.awt.Color; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Image; import java.awt.Polygon; import java.awt.image.BufferedImage; import java.util.ArrayList; import java.util.List; /** The Animation class manages a series of images (frames) and the amount of time to display each frame. */ public class Animation { private ArrayList frames; private int currFrameIndex; private long animTime; private long totalDuration; /** Creates a new, empty Animation. */ public Animation() { frames = new ArrayList(); totalDuration = 0; start(); } /** Adds an image to the animation with the specified duration (time to display the image). */ public synchronized void addFrame(BufferedImage image, long duration){ ScreenManager s = new ScreenManager(); totalDuration += duration; frames.add(new AnimFrame(image, totalDuration)); } /** Starts the animation over from the beginning. */ public synchronized void start() { animTime = 0; currFrameIndex = 0; } /** Updates the animation's current image (frame), if necessary. */ public synchronized void update(long elapsedTime) { if (frames.size() >= 1) { animTime += elapsedTime; /*if (animTime >= totalDuration) { animTime = animTime % totalDuration; currFrameIndex = 0; }*/ while (animTime > getFrame(0).endTime) { frames.remove(0); } } } /** Gets the Animation's current image. Returns null if this animation has no images. */ public synchronized Image getImage() { if (frames.size() > 0&&!(currFrameIndex>=frames.size())) { return getFrame(currFrameIndex).image; } else{ System.out.println("There are no frames!"); System.exit(0); } return null; } private AnimFrame getFrame(int i) { return (AnimFrame)frames.get(i); } private class AnimFrame { Image image; long endTime; public AnimFrame(Image image, long endTime) { this.image = image; this.endTime = endTime; } } public void setNewPolyFrame(List<Polygon> polys,int imagewidth,int imageheight,int time){ BufferedImage image=new BufferedImage(imagewidth, imageheight, 1); Graphics g=image.getGraphics(); for(int i=0;i<polys.size();i++){ g.drawPolygon(polys.get(i)); } addFrame(image,time); g.dispose(); } }

    Read the article

  • How to attach an object to a rotating circle?

    - by armands
    I am trying to make an object get attached on a collision point to a circle that is rotating, but the player needs to get attached with a constant point on the player. For example the player is moving back and forth and when the user touches the screen and the player jumps up but what I need is that when the player collides with the circle it attaches it's legs to it and continues rotating with the circle. So I wanted to know how to make this kind of collision joint in Cocos2d Box2d?

    Read the article

  • write to depth buffer while using multiple render targets

    - by DocSeuss
    Presently my engine is set up to use deferred shading. My pixel shader output struct is as follows: struct GBuffer { float4 Depth : DEPTH0; //depth render target float4 Normal : COLOR0; //normal render target float4 Diffuse : COLOR1; //diffuse render target float4 Specular : COLOR2; //specular render target }; This works fine for flat surfaces, but I'm trying to implement relief mapping which requires me to manually write to the depth buffer to get correct silhouettes. MSDN suggests doing what I'm already doing to output to my depth render target - however, this has no impact on z culling. I think it might be because XNA uses a different depth buffer for every RenderTarget2D. How can I address these depth buffers from the pixel shader?

    Read the article

  • 3d trajectory - calculate initial velocity

    - by Skoder
    Hey, I've got a 2D projectile code sample working, but would like to extend it to 3D. How would I calculate the initial velocity of the Z-axis? At the moment, I've got: initVel.X = (float)Math.Cos(45.0); initVel.Y = (float)Math.Sin(45.0); How would I convert this to work in 3D (and add the initial velocity for the Z-axis)? In my example, X is across, Y is up down and Z is going into the screen. I also normalize the vector and multiply it by the speed. Thanks

    Read the article

  • How to use mount points in MilkShape models?

    - by vividos
    I have bought the Warriors & Commoners model pack from Frogames and the pack contains (among other formats) two animated models and several non-animated objects (axe, shield, pilosities, etc.) in MilkShape3D format. I looked at the official "MilkShape 3D Viewer v2.0" (msViewer2.zip at http://www.chumba.ch/chumbalum-soft/ms3d/download.html) source code and implemented loading the model, calculating the joint matrices and everything looks fine. In the model there are several joints that are designated as the "mount points" for the static objects like axe and shield. I now want to "put" the axe into the hand of the animated model, and I couldn't quite figure out how. I put the animated vertices in a VBO that gets updated every frame (I know I should do this with a shader, but I didn't have time to do this yet). I put the static vertices in another VBO that I want to keep static and not updated every frame. I now tried to render the animated vertices first, then use the joint matrix for the "mount joint" to calculate the location of the static object. I tried many things, and what about seems to be right is to transpose the joint matrix, then use glMatrixMult() to transform the modelview matrix. For some objects like the axe this is working, but not for others, e.g. the pilosities. Now my question: How is this generally implemented when using bone/joint models, and especially with MilkShape3D models? Am I on the right track?

    Read the article

  • Calculating up-vector to avoid gimbal lock using euler angles

    - by jessejuicer
    I wish to orbit a camera around a sphere, yet the problem is that when the camera rotates so that it is at the north pole (and pointing down) or the south pole (and pointing up) of the sphere the camera doesn't handle itself very well. It spins rapidly until arriving 180 degrees in the opposite direction. I believe this is known as gimbal lock. I understand you can avoid this problem using quaternions. But I also read in another forum that it's possible to avoid this easily using euler angles as well. Which I would prefer to do. It was said that all you need to do is "calculate a proper up-vector every frame, and that avoids the problem entirely." Well, I tried aligning the up-vector with the vertical axis of the camera whenever the camera changed orientation, but this didn't seem to work. Meaning that the up-vector followed exactly the orientation of the camera's y-axis (or it's up vector), instead of using a constant up-vector aligned to the up-vector of the world (0, 1, 0). How exactly do I go about calculating a proper up-vector as my camera orientation changes to avoid the gimbal lock problem mentioned above?

    Read the article

  • How do I get my polygons to be lighted by either side?

    - by Molmasepic
    Okay, I am using Ogre3D and Gorilla(2D library for ogre3D) and I am making Gorilla::Screenrenderables in the open scene. The problem that I am having is that when I make a light and have my SR(screenrenderable) near it, it does not light up unless the face of the SR is facing the light... I am wondering if there is a way to maybe set the material or code(which would be harder) so the SR is lit up whether the vertices of the polygon are facing the light or not. I feel it is possible but the main obstacle is how I would go about doing this.

    Read the article

  • Help understand GLSL directional light on iOS (left handed coord system)

    - by Robse
    I now have changed from GLKBaseEffect to a own shader implementation. I have a shader management, which compiles and applies a shader to the right time and does some shader setup like lights. Please have a look at my vertex shader code. Now, light direction should be provided in eye space, but I think there is something I don't get right. After I setup my view with camera I save a lightMatrix to transform the light from global space to eye space. My modelview and projection setup: - (void)setupViewWithWidth:(int)width height:(int)height camera:(N3DCamera *)aCamera { aCamera.aspect = (float)width / (float)height; float aspect = aCamera.aspect; float far = aCamera.far; float near = aCamera.near; float vFOV = aCamera.fieldOfView; float top = near * tanf(M_PI * vFOV / 360.0f); float bottom = -top; float right = aspect * top; float left = -right; // projection GLKMatrixStackLoadMatrix4(projectionStack, GLKMatrix4MakeFrustum(left, right, bottom, top, near, far)); // identity modelview GLKMatrixStackLoadMatrix4(modelviewStack, GLKMatrix4Identity); // switch to left handed coord system (forward = z+) GLKMatrixStackMultiplyMatrix4(modelviewStack, GLKMatrix4MakeScale(1, 1, -1)); // transform camera GLKMatrixStackMultiplyMatrix4(modelviewStack, GLKMatrix4MakeWithMatrix3(GLKMatrix3Transpose(aCamera.orientation))); GLKMatrixStackTranslate(modelviewStack, -aCamera.position.x, -aCamera.position.y, -aCamera.position.z); } - (GLKMatrix4)modelviewMatrix { return GLKMatrixStackGetMatrix4(modelviewStack); } - (GLKMatrix4)projectionMatrix { return GLKMatrixStackGetMatrix4(projectionStack); } - (GLKMatrix4)modelviewProjectionMatrix { return GLKMatrix4Multiply([self projectionMatrix], [self modelviewMatrix]); } - (GLKMatrix3)normalMatrix { return GLKMatrix3InvertAndTranspose(GLKMatrix4GetMatrix3([self modelviewProjectionMatrix]), NULL); } After that, I save the lightMatrix like this: [self.renderer setupViewWithWidth:view.drawableWidth height:view.drawableHeight camera:self.camera]; self.lightMatrix = [self.renderer modelviewProjectionMatrix]; And just before I render a 3d entity of the scene graph, I setup the light config for its shader with the lightMatrix like this: - (N3DLight)transformedLight:(N3DLight)light transformation:(GLKMatrix4)matrix { N3DLight transformedLight = N3DLightMakeDisabled(); if (N3DLightIsDirectional(light)) { GLKVector3 direction = GLKVector3MakeWithArray(GLKMatrix4MultiplyVector4(matrix, light.position).v); direction = GLKVector3Negate(direction); // HACK -> TODO: get lightMatrix right! transformedLight = N3DLightMakeDirectional(direction, light.diffuse, light.specular); } else { ... } return transformedLight; } You see the line, where I negate the direction!? I can't explain why I need to do that, but if I do, the lights are correct as far as I can tell. Please help me, to get rid of the hack. I'am scared that this has something to do, with my switch to left handed coord system. My vertex shader looks like this: attribute highp vec4 inPosition; attribute lowp vec4 inNormal; ... uniform highp mat4 MVP; uniform highp mat4 MV; uniform lowp mat3 N; uniform lowp vec4 constantColor; uniform lowp vec4 ambient; uniform lowp vec4 light0Position; uniform lowp vec4 light0Diffuse; uniform lowp vec4 light0Specular; varying lowp vec4 vColor; varying lowp vec3 vTexCoord0; vec4 calcDirectional(vec3 dir, vec4 diffuse, vec4 specular, vec3 normal) { float NdotL = max(dot(normal, dir), 0.0); return NdotL * diffuse; } ... vec4 calcLight(vec4 pos, vec4 diffuse, vec4 specular, vec3 normal) { if (pos.w == 0.0) { // Directional Light return calcDirectional(normalize(pos.xyz), diffuse, specular, normal); } else { ... } } void main(void) { // position highp vec4 position = MVP * inPosition; gl_Position = position; // normal lowp vec3 normal = inNormal.xyz / inNormal.w; normal = N * normal; normal = normalize(normal); // colors vColor = constantColor * ambient; // add lights vColor += calcLight(light0Position, light0Diffuse, light0Specular, normal); ... }

    Read the article

  • Understanding Unity3d physics: where is the force applied?

    - by Heisenbug
    I'm trying to understand which is the right way to apply forces to a RigidBody. I noticed that there are AddForce and AddRelativeForce methods, one applied in world space coordinate system meanwhile the other in the local space. The thing that I do not understand is the following: usually in physics library (es. Bullet) we can specify the force vector and also the force application point. How can I do this in Unity? Is it possible to apply a force vector in a specific point relative to the given RigidBody coordinate system? Where does AddForce apply the force?

    Read the article

  • Control convention for circular movement?

    - by Christian
    I'm currently doing a kind of training project in Unity (still a beginner). It's supposed to be somewhat like Breakout, but instead of just going left and right I want the paddle to circle around the center point. This is all fine and dandy, but the problem I have is: how do you control this with a keyboard or gamepad? For touch and mouse control I could work around the problem by letting the paddle follow the cursor/finger, but with the other control methods I'm a bit stumped. With a keyboard for example, I could either make it so that the Left arrow always moves the paddle clockwise (it starts at the bottom of the circle), or I could link it to the actual direction - meaning that if the paddle is at the bottom, it goes left and up along the circle or, if it's in the upper hemisphere, it moves left and down, both times toward the outer left point of the circle. Both feel kind of weird. With the first one, it can be counter intuitive to press Left to move the paddle right when it's in the upper area, while in the second method you'd need to constantly switch buttons to keep moving. So, long story short: is there any kind of existing standard, convention or accepted example for this type of movement and the corresponding controls? I didn't really know what to google for (control conventions for circular movement was one of the searches I tried, but it didn't give me much), and I also didn't really find anything about this on here. If there is a Question that I simply didn't see, please excuse the duplicate.

    Read the article

  • draw bullet at the end of the barrel

    - by Alberto
    excuse my awkwardness, i have this code: [syntax="java"] int x2 = (int) (canon.getSceneCenterCoordinates()[0] + LENGTH_SPRITE/2* Math.cos(canon.getRotation())); int y2 = (int) (canon.getSceneCenterCoordinates()[1] + LENGTH_SPRITE/2* Math.sin(canon.getRotation())); projectile = new Sprite( (float) x2, (float) y2, mProjectileTextureRegion,this.getVertexBufferObjectManager() ); mMainScene.attachChild(projectile); [/syntax] and the bullet are drawn around the cannon in circle.. but not from the end of cannon :( help!

    Read the article

  • What is the purpose of bitdepth for the several components of the framebuffer in glfwWindowHint function of GLFW3?

    - by Rui d'Orey
    I would like to know what are the following "framebuffer related hints" of GLFW3 function glfwWindowHint : GLFW_RED_BITS GLFW_GREEN_BITS GLFW_BLUE_BITS GLFW_ALPHA_BITS GLFW_DEPTH_BITS GLFW_STENCIL_BITS What is the purpose of this? Usually their default values are enough? Where are those bits stored? In a buffer in the GPU? What do they affect? And by that I mean in what way Thank you in advance!

    Read the article

  • A Star Path finding endless loop

    - by PoeHaH
    I have implemented A* algorithm. Sometimes it works, sometimes it doesn't, and it goes through an endless loop. After days of debugging and googling, I hope you can come to the rescue. This is my code: The algorythm: public ArrayList<Coordinate> findClosestPathTo(Coordinate start, Coordinate goal) { ArrayList<Coordinate> closed = new ArrayList<Coordinate>(); ArrayList<Coordinate> open = new ArrayList<Coordinate>(); ArrayList<Coordinate> travelpath = new ArrayList<Coordinate>(); open.add(start); while(open.size()>0) { Coordinate current = searchCoordinateWithLowestF(open); if(current.equals(goal)) { return travelpath; } travelpath.add(current); open.remove(current); closed.add(current); ArrayList<Coordinate> neighbors = current.calculateCoordAdjacencies(true, rowbound, colbound); for(Coordinate n:neighbors) { if(closed.contains(n) || map.isWalkeable(n)) { continue; } int gScore = current.getGvalue() + 1; boolean gScoreIsBest = false; if(!open.contains(n)) { gScoreIsBest = true; n.setHvalue(manhattanHeuristic(n,goal)); open.add(n); } else { if(gScore<n.getGvalue()) { gScoreIsBest = true; } } if(gScoreIsBest) { n.setGvalue(gScore); n.setFvalue(n.getGvalue()+n.getHvalue()); } } } return null; } What I have found out is that it always fails whenever there's an obstacle in the path. If I'm running it on 'open terrain', it seems to work. It seems to be affected by this part: || map.isWalkeable(n) Though, the isWalkeable function seems to work fine. If additional code is needed, I will provide it. Your help is greatly appreciated, Thanks :)

    Read the article

  • How do I find which isometric tiles are inside the cameras current view?

    - by Steve
    I'm putting together an isometric engine and need to cull the tiles that aren't in the camera's current view. My tile coordinates go from left to right on the X and top to bottom on the Y with (0,0) being the top left corner. If I have access to say the top left, top right, bottom left and bottom right corner coordinates, is there a formula or something I could use to determine which tiles fall in range? This is a screenshot of the layout of the tiles for reference. If there isn't one, or there's a better way to determine which tiles are on screen and which to cull, I'm all ears and am grateful for any ideas. I've got a few other methods I may be able to try such as checking the position of the tile against a rectangle. I pretty much just need something quick. Thanks for giving this a read =)

    Read the article

  • Class Design - Space Simulator

    - by Peteyslatts
    I have pretty much taught myself everything I know about programming, so while I know how to teach myself (books, internet and reading API's), I'm finding that there hasn't been a whole lot in the way of good programming. So I have two questions: First the broad one: Does anyone have suggestions as to sources for learning about good programming habits and techniques? I'd prefer it if the resource wasn't a 5000 page tome. The more I can read it in installments the better. More specifically: I am finishing up learning the basics of XNA and I want to create a space simulator to test my knowledge. This isn't a full scale simulator, but just something that covers everything I learned. It's also going to be modular so I can build on it, after I get the basics down. One of the early features I want to implement is AI. And I want to take this into account as I'm designing my classes so I can minimize rewriting code. So my question: How should I design ship classes so that both the player and AI can use them? The only idea I have so far is: Create a ship class that contains stats, models, textures, collision data etc. The player and AI would then have the data for position, rotation, health, etc and would base their status off of the ship stats.

    Read the article

  • Make objects slide across the screen in random positions

    - by user3475907
    I want to make an object appear randomly at the right hand side of the screen and then slide across the screen and disapear at the left hand side. I am working with libgdx. I have this bit of code but it makes items fall from the top down. Please help. public EntityManager(int amount, OrthoCamera camera) { player = new Player(new Vector2(15, 230), new Vector2(0, 0), this, camera); for (int i = 0; i < amount; i++) { float x = MathUtils.random(0, MainGame.HEIGHT - TextureManager.ENEMY.getHeight()); float y = MathUtils.random(MainGame.WIDTH, MainGame.WIDTH * 10); float speed = MathUtils.random(2, 10); addEntity(new Enemy(new Vector2(x, y), new Vector2(-0, -speed))); }

    Read the article

  • XNA 4.0 Refresh AudioEngine, WaveBank and Others Not Found

    - by Peteyslatts
    I'm going through the Learning XNA 4.0 book, and unfortunately I installed XNA 4.0 refresh. All the code up until now has worked, with the exception of me needing to remove the Framework.Net and Framework.Storage. (As a side question, will this be problematic later?) The problem I'm having now is that in my Game1.cs file, I have imported all of the XNA.Framework libraries, and when I try and create instances of any of the following classes, an error pops up saying VisualStudio can't find them: AudiEngine, WaveBank, SoundBank, and Cue. I have googled around for a while, and the only solution I saw was to import Microsoft.Xna.Framework.Xact, but this doesn't seem to exist for me. Any help is much appreciated, Thanks Peter.

    Read the article

  • Adjust sprite bounds of the visible part of texture

    - by Crazy D0G
    Is there any way to adjust the boundaries of the visible part of the sprite? To make it easier to understand: I have a texture, such as shown at figure 1. Then I break it into pieces and fill the resulting fragments using PRKit (wood texture on figure 2 and 3). But the resulting fragments have the transparent (green color on figure 2 and 3) and when creating a sprite from the fragments they have the size of the initial texture. Is there a way to get rid of this transparency and to adjust the size of the visible part (wood texture), openGL or cocos2d-x means? Maybe it help - draw() method from PRKit: void PRFilledPolygon::draw() { //CCNode::draw(); glDisableClientState(GL_COLOR_ARRAY); // we have a pointer to vertex points so enable client state glBindTexture(GL_TEXTURE_2D, texture->getName()); glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_ONE_MINUS_SRC_ALPHA); glVertexPointer(2, GL_FLOAT, 0, areaTrianglePoints); glTexCoordPointer(2, GL_FLOAT, 0, textureCoordinates); glDrawArrays(GL_TRIANGLES, 0, areaTrianglePointCount); glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); //Restore texture matrix and switch back to modelview matrix glEnableClientState(GL_COLOR_ARRAY);}

    Read the article

  • XNA ModelMesh.Draw vs GraphicsDevice.DrawIndexedPrimitives

    - by cubrman
    I am using XNA 4.0 and I wonder if drawing models with multiple meshes is better by filling the vertex and index buffers first and calling GraphicsDevice.DrawIndexedPrimitives() or by simply using good ol' foreach(...) {ModelMesh.Draw()}. Is it possible to add data to vertex/index buffers at all in order to pack all the models on the scene in them and then call Draw only once per frame? I would appreciate a link to an in-depth explanation. Thanks.

    Read the article

  • Best C++ containers for UI in Games.

    - by Vijayendra
    I am writing some UI stuff for my games in C++. Basically its a very common problem, but I dont know the best answer yet. Suppose inside my UI Library I have a view class which renders 2D/3D scene. This view can contain many subviews. I needs a container which allows me to iterate over these views fast and also insert/delete subviews. I am not sure which container is best for the job - list, vector or something else?

    Read the article

  • GLSL: Strange light reflections

    - by Tom
    According to this tutorial I'm trying to make a normal mapping using GLSL, but something is wrong and I can't find the solution. The output render is in this image: Image1 in this image is a plane with two triangles and each of it is different illuminated (that is bad). The plane has 6 vertices. In the upper left side of this plane are 2 identical vertices (same in the lower right). Here are some vectors same for each vertice: normal vector = 0, 1, 0 (red lines on image) tangent vector = 0, 0,-1 (green lines on image) bitangent vector = -1, 0, 0 (blue lines on image) here I have one question: The two identical vertices does need to have the same tangent and bitangent? I have tried to make other values to the tangents but the effect was still similar. Here are my shaders Vertex shader: #version 130 // Input vertex data, different for all executions of this shader. in vec3 vertexPosition_modelspace; in vec2 vertexUV; in vec3 vertexNormal_modelspace; in vec3 vertexTangent_modelspace; in vec3 vertexBitangent_modelspace; // Output data ; will be interpolated for each fragment. out vec2 UV; out vec3 Position_worldspace; out vec3 EyeDirection_cameraspace; out vec3 LightDirection_cameraspace; out vec3 LightDirection_tangentspace; out vec3 EyeDirection_tangentspace; // Values that stay constant for the whole mesh. uniform mat4 MVP; uniform mat4 V; uniform mat4 M; uniform mat3 MV3x3; uniform vec3 LightPosition_worldspace; void main(){ // Output position of the vertex, in clip space : MVP * position gl_Position = MVP * vec4(vertexPosition_modelspace,1); // Position of the vertex, in worldspace : M * position Position_worldspace = (M * vec4(vertexPosition_modelspace,1)).xyz; // Vector that goes from the vertex to the camera, in camera space. // In camera space, the camera is at the origin (0,0,0). vec3 vertexPosition_cameraspace = ( V * M * vec4(vertexPosition_modelspace,1)).xyz; EyeDirection_cameraspace = vec3(0,0,0) - vertexPosition_cameraspace; // Vector that goes from the vertex to the light, in camera space. M is ommited because it's identity. vec3 LightPosition_cameraspace = ( V * vec4(LightPosition_worldspace,1)).xyz; LightDirection_cameraspace = LightPosition_cameraspace + EyeDirection_cameraspace; // UV of the vertex. No special space for this one. UV = vertexUV; // model to camera = ModelView vec3 vertexTangent_cameraspace = MV3x3 * vertexTangent_modelspace; vec3 vertexBitangent_cameraspace = MV3x3 * vertexBitangent_modelspace; vec3 vertexNormal_cameraspace = MV3x3 * vertexNormal_modelspace; mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); // You can use dot products instead of building this matrix and transposing it. See References for details. LightDirection_tangentspace = TBN * LightDirection_cameraspace; EyeDirection_tangentspace = TBN * EyeDirection_cameraspace; } Fragment shader: #version 130 // Interpolated values from the vertex shaders in vec2 UV; in vec3 Position_worldspace; in vec3 EyeDirection_cameraspace; in vec3 LightDirection_cameraspace; in vec3 LightDirection_tangentspace; in vec3 EyeDirection_tangentspace; // Ouput data out vec3 color; // Values that stay constant for the whole mesh. uniform sampler2D DiffuseTextureSampler; uniform sampler2D NormalTextureSampler; uniform sampler2D SpecularTextureSampler; uniform mat4 V; uniform mat4 M; uniform mat3 MV3x3; uniform vec3 LightPosition_worldspace; void main(){ // Light emission properties // You probably want to put them as uniforms vec3 LightColor = vec3(1,1,1); float LightPower = 40.0; // Material properties vec3 MaterialDiffuseColor = texture2D( DiffuseTextureSampler, vec2(UV.x,-UV.y) ).rgb; vec3 MaterialAmbientColor = vec3(0.1,0.1,0.1) * MaterialDiffuseColor; //vec3 MaterialSpecularColor = texture2D( SpecularTextureSampler, UV ).rgb * 0.3; vec3 MaterialSpecularColor = vec3(0.5,0.5,0.5); // Local normal, in tangent space. V tex coordinate is inverted because normal map is in TGA (not in DDS) for better quality vec3 TextureNormal_tangentspace = normalize(texture2D( NormalTextureSampler, vec2(UV.x,-UV.y) ).rgb*2.0 - 1.0); // Distance to the light float distance = length( LightPosition_worldspace - Position_worldspace ); // Normal of the computed fragment, in camera space vec3 n = TextureNormal_tangentspace; // Direction of the light (from the fragment to the light) vec3 l = normalize(LightDirection_tangentspace); // Cosine of the angle between the normal and the light direction, // clamped above 0 // - light is at the vertical of the triangle -> 1 // - light is perpendicular to the triangle -> 0 // - light is behind the triangle -> 0 float cosTheta = clamp( dot( n,l ), 0,1 ); // Eye vector (towards the camera) vec3 E = normalize(EyeDirection_tangentspace); // Direction in which the triangle reflects the light vec3 R = reflect(-l,n); // Cosine of the angle between the Eye vector and the Reflect vector, // clamped to 0 // - Looking into the reflection -> 1 // - Looking elsewhere -> < 1 float cosAlpha = clamp( dot( E,R ), 0,1 ); color = // Ambient : simulates indirect lighting MaterialAmbientColor + // Diffuse : "color" of the object MaterialDiffuseColor * LightColor * LightPower * cosTheta / (distance*distance) + // Specular : reflective highlight, like a mirror MaterialSpecularColor * LightColor * LightPower * pow(cosAlpha,5) / (distance*distance); //color.xyz = E; //color.xyz = LightDirection_tangentspace; //color.xyz = EyeDirection_tangentspace; } I have replaced the original color value by EyeDirection_tangentspace vector and then I got other strange effect but I can not link the image (not eunogh reputation) Is it possible that with this shaders is something wrong, or maybe in other place in my code e.g with my matrices? SOLVED Solved... 3 days needed for changing one letter from this: glBindBuffer(GL_ARRAY_BUFFER, vbo); glVertexAttribPointer ( 4, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? sizeof(VboVertex), // stride (void*)(12*sizeof(float)) // array buffer offset ); to this: glBindBuffer(GL_ARRAY_BUFFER, vbo); glVertexAttribPointer ( 4, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? sizeof(VboVertex), // stride (void*)(11*sizeof(float)) // array buffer offset ); see difference? :)

    Read the article

  • Why the clip space in OpenGL has 4 dimensions?

    - by user827992
    I will use this as a generic reference, but the more i browser online docs and books, the less i understand about this. const float vertexPositions[] = { 0.75f, 0.75f, 0.0f, 1.0f, 0.75f, -0.75f, 0.0f, 1.0f, -0.75f, -0.75f, 0.0f, 1.0f, }; in this online book there is an example about how to draw the first and classic hello world for OpenGL about making a triangle. The vertex structure for the triangle is declared as stated in the code above. The book, as all the other sources about this, stress the point that the Clip Space is a 4D structure that is used to basically decide what will be rasterized and rendered to the screen. Here I have my questions: i can't imagine something in 4D, i don't think that a human can do that, what is a 4D for this Clip space ? the most human-readable doc that i have read speaks about a camera, which is just an abstraction over the clipping concept, and i get that, the problem is, why not using the concept of a camera in the first place which is a more familiar 3D structure? The only problem with the concept of a camera is that you need to define the prospective in other way and so you basically have to add another statement about what kind of camera you wish to have. How i'm supposed to read this 0.75f, 0.75f, 0.0f, 1.0f ? All i get is that they are all float values and i get the meaning of the first 3 values, what does it mean the last one?

    Read the article

  • Optimized algorithm for line-sphere intersection in GLSL

    - by fernacolo
    Well, hello then! I need to find intersection between line and sphere in GLSL. Right now my solution is based on Paul Bourke's page and was ported to GLSL this way: // The line passes through p1 and p2: vec3 p1 = (...); vec3 p2 = (...); // Sphere center is p3, radius is r: vec3 p3 = (...); float r = ...; float x1 = p1.x; float y1 = p1.y; float z1 = p1.z; float x2 = p2.x; float y2 = p2.y; float z2 = p2.z; float x3 = p3.x; float y3 = p3.y; float z3 = p3.z; float dx = x2 - x1; float dy = y2 - y1; float dz = z2 - z1; float a = dx*dx + dy*dy + dz*dz; float b = 2.0 * (dx * (x1 - x3) + dy * (y1 - y3) + dz * (z1 - z3)); float c = x3*x3 + y3*y3 + z3*z3 + x1*x1 + y1*y1 + z1*z1 - 2.0 * (x3*x1 + y3*y1 + z3*z1) - r*r; float test = b*b - 4.0*a*c; if (test >= 0.0) { // Hit (according to Treebeard, "a fine hit"). float u = (-b - sqrt(test)) / (2.0 * a); vec3 hitp = p1 + u * (p2 - p1); // Now use hitp. } It works perfectly! But it seems slow... I'm new at GLSL. You can answer this questions in two ways: Tell me there is no solution, showing some proof or strong evidence. Tell me about GLSL features (vector APIs, primitive operations) that makes the above algorithm faster, showing some example. Thanks a lot!

    Read the article

  • How can I generate signed distance fields (2D) in real time, fast?

    - by heishe
    In a previous question, it was suggested that signed distance fields can be precomputed, loaded at runtime and then used from there. For reasons I will explain at the end of this question (for people interested), I need to create the distance fields in real time. There are some papers out there for different methods which are supposed to be viable in real-time environments, such as methods for Chamfer distance transforms and Voronoi diagram-approximation based transforms (as suggested in this presentation by the Pixeljunk Shooter dev guy), but I (and thus can be assumed a lot of other people) have a very hard time actually putting them to use, since they're usually long, largely bloated with math and not very algorithmic in their explanation. What algorithm would you suggest for creating the distance fields in real-time (favourably on the GPU) especially considering the resulting quality of the distance fields? Since I'm looking for an actual explanation/tutorial as opposed to a link to just another paper or slide, this question will receive a bounty once it's eligible for one :-). Here's why I need to do it in real time: There's something else:

    Read the article

  • Realtime rendering using a ray tracing engine

    - by Keyhan Asghari
    I want to render an object that has a mesh with one million hexagonal elements(100 * 100 * 100). Lights, shadows and textures is not important and each element has a solid color. and finally, the actions I want to have, is simply rotating the object, zooming and panning. I am wondering what ray tracing engine is better for my conditions. or, do I have to take another approach? any help will be appreciated.

    Read the article

< Previous Page | 339 340 341 342 343 344 345 346 347 348 349 350  | Next Page >