Search Results

Search found 3265 results on 131 pages for 'parallel coordinates'.

Page 36/131 | < Previous Page | 32 33 34 35 36 37 38 39 40 41 42 43  | Next Page >

  • SSIS - Parallel Execution of Tasks - How efficient is it?

    - by Randy Minder
    I am building an SSIS package that will contain dozens of Sequence tasks. Each Sequence task will contain three tasks. One to truncate a destination table and remove indexes on the table, another to import data from a source table, and a third to add back indexes to the destination table. My question is this. I currently have nine of these Sequences tasks built, and none are dependent on any of the others. When I execute the package, SSIS seems to do a pretty good job of determining which tasks in which Sequence to execute, which, by the way, appears to be quite random. As I continue adding more Sequences, should I attempt to be smarter about how SSIS should execute these Sequences, or is SSIS smart enough to do it itself? Thanks.

    Read the article

  • How would you sample a real-time stream of coordinates to create a Speed Graph?

    - by Andrew Johnson
    I have a GPS device, and I am receiving continuous points, which I store in an array. These points are time stamped. I would like to graph distance/time (speed) vs. distance in real-time; however, I can only plot 50 of the points because of hardware constraints. How would you select points from the array to graph? For example, one algorithm might be to select every Nth point from the array, where N results in 50 points total. Code: float indexModifier = 1; if (MIN(50,track.lastPointIndex) == 50) { indexModifier = track.lastPointIndex/50.0f; } index = ceil(index*indexModifier); Another algorithm might be to keep an array of 50 points, and throw out the point with the least speed change each time you get a new point.

    Read the article

  • Incorrect logic flow? function that gets coordinates for a sudoku game

    - by igor
    This function of mine keeps on failing an autograder, I am trying to figure out if there is a problem with its logic flow? Any thoughts? Basically, if the row is wrong, "invalid row" should be printed, and clearInput(); called, and return false. When y is wrong, "invalid column" printed, and clearInput(); called and return false. When both are wrong, only "invalid row" is to be printed (and still clearInput and return false. Obviously when row and y are correct, print no error and return true. My function gets through most of the test cases, but fails towards the end, I'm a little lost as to why. bool getCoords(int & x, int & y) { char row; bool noError=true; cin>>row>>y; row=toupper(row); if(row>='A' && row<='I' && isalpha(row) && y>=1 && y<=9) { x=row-'A'; y=y-1; return true; } else if(!(row>='A' && row<='I')) { cout<<"Invalid row"<<endl; noError=false; clearInput(); return false; } else { if(noError) { cout<<"Invalid column"<<endl; } clearInput(); return false; } }

    Read the article

  • which layout engine for finding coordinates of html elements on the web page?

    - by Mexx
    I am doing some web data classification task and was thinking if I could get the co-ordinates of html elements as they would appear on a web-browser without taking into consideration any css or javascript being referred in the web page. My language of programming is c++ and the need results for a couple million of pages, so it has to be fast. I know there is a Microsoft COM component which renders the page in a web browser control and then can be queried for position of different html tags. But this is not suitable in my case as it first renders the whole page which takes up a lot of time. So as I found out, there are open-source layout engines WebKit, Gecko that can probably be used for this. But that's a huge piece of code and I need someone to direct me to the right classes or right modules to look into or any previous/similar work someone has done previously. Also, please let me know what you guys think is a good choice if I want to customize the existing code for use with multiple threads to make it faster. Thanks

    Read the article

  • Parallel Dev: Should developers work within the same branch?

    - by Zombies
    Should multiple developers work within the same branch, and update - modify - commit ? Or should each developer have his/her own each branch exclusively? And how would sharing branches impact an environment where you are doing routine maintenance as opposed to unmaintained code streams? Also, how would this work if you deploy each developers work as soon as it is done and passes testing (rapidly, as opposed to putting all of their work into a single release).

    Read the article

  • In Perl, how can I wait for threads to end in parallel?

    - by Pmarcoen
    I have a Perl script that launches 2 threads,one for each processor. I need it to wait for a thread to end, if one thread ends a new one is spawned. It seems that the join method blocks the rest of the program, therefore the second thread can't end until everything the first thread does is done which sort of defeats its purpose. I tried the is_joinable method but that doesn't seem to do it either. Here is some of my code : use threads; use threads::shared; @file_list = @ARGV; #Our file list $nofiles = $#file_list + 1; #Real number of files $currfile = 1; #Current number of file to process my %MSG : shared; #shared hash $thr0 = threads->new(\&process, shift(@file_list)); $currfile++; $thr1 = threads->new(\&process, shift(@file_list)); $currfile++; while(1){ if ($thr0->is_joinable()) { $thr0->join; #check if there are files left to process if($currfile <= $nofiles){ $thr0 = threads->new(\&process, shift(@file_list)); $currfile++; } } if ($thr1->is_joinable()) { $thr1->join; #check if there are files left to process if($currfile <= $nofiles){ $thr1 = threads->new(\&process, shift(@file_list)); $currfile++; } } } sub process{ print "Opening $currfile of $nofiles\n"; #do some stuff if(some condition){ lock(%MSG); #write stuff to hash } print "Closing $currfile of $nofiles\n"; } The output of this is : Opening 1 of 4 Opening 2 of 4 Closing 1 of 4 Opening 3 of 4 Closing 3 of 4 Opening 4 of 4 Closing 2 of 4 Closing 4 of 4

    Read the article

  • how do I convert a php array of names and coordinates to a javascript array for google map points?

    - by princyp
    I have a php array that has a bunch of data that I need but specifically I need just the name and longitude and latitude from each item in the array so that I can display points on a google map. The google map array needs to look like this in the end var points = [ ['test name', 37.331689, -122.030731, 4] ['test name 2', 37.331689, -122.030731, 4] ]; What is the best way to put my php data into a js array?

    Read the article

  • Android - determine specific locations (X,Y coordinates) on a Bitmap on different resolutions?

    - by Mike
    My app that I am trying to create is a board game. It will have one bitmap as the board and pieces that will move to different locations on the board. The general design of the board is square, has a certain number of columns and rows and has a border for looks. Think of a chess board or scrabble board. Before using bitmaps, I first created the board and boarder by manually drawing it - drawLine & drawRect. I decided how many pixels in width the border would be based on the screen width and height passed in on "onSizeChanged". The remaining screen I divided by the number of columns or rows I needed. For examples sake, let's say the screen dimensions are 102 x 102. I may have chosen to set the border at 1 and set the number of rows & columns at 10. That would leave 100 x 100 left (reduced by two to account for the top & bottom border, as well as left/right border). Then with columns and rows set to 10, that would leave 10 pixels left for both height and width. No matter what screen size is passed in, I store exactly how many pixels in width the boarder is and the height & width of each square on the board. I know exactly what location on the screen to move the pieces to based on a simple formula and I know exactly what cell a user touched to make a move. Now how does that work with bitmaps? Meaning, if I create 3 different background bitmaps, once for each density, won't they still be resized to fit each devices screen resolution, because from what I read there were not just 3 screen resolutions, but 5 and now with tablets - even more. If I or Android scales the bitmaps up or down to fit the current devices screen size, how will I know how wide the border is scaled to and the dimensions of each square in order to figure out where to move a piece or calculate where a player touched. So far the examples I have looked at just show how to scale the overall bitmap and get the overall bitmaps width and height. But, I don't see how to tell how many pixels wide or tall each part of the board would be after it was scaled. When I draw each line and rectangle myself based in the screen dimensions from onSizeChanged, I always know these dimensions. If anyone has any sample code or a URL to point me to that I can a read about this with bitmaps, I would appreciate it. Thanks, --Mike BTW, here is some sample code (very simplified) on how I know the dimensions of my game board (border and squares) no matter the screen size. Now I just need to know how to do this with the board as a bitmap that gets scaled to any screen size. @Override protected void onSizeChanged(int w, int h, int oldw, int oldh) { intScreenWidth = w; intScreenHeight = h; // Set Border width - my real code changes this value based on the dimensions of w // and h that are passed in. In other words bigger screens get a slightly larger // border. intOuterBorder = 1; /** Reserve part of the board for the boardgame and part for player controls & score My real code forces this to be square, but this is good enough to get the point across. **/ floatBoardHeight = intScreenHeight / 4 * 3; // My real code actually causes floatCellWidth and floatCellHeight to // be equal (Square). floatCellWidth = (intScreenWidth - intOuterBorder * 2 ) / intNumColumns; floatCellHeight = (floatBoardHeight - intOuterBorder * 2) / intNumRows; super.onSizeChanged(w, h, oldw, oldh); }

    Read the article

  • SSIS: Way to handle hot folder items in parallel?

    - by Dr. Zim
    We have eight Xeon (i7) cores and 16 gig of RAM on our SSIS box. We have about 200 image files we want to convert using a command line utility every day. Currently the process is using Adobe Photoshop and droplets (very manual, taking upwards of two hours a day) Using SSIS hot folders, is there a way to execute up to eight conversions at once? Is there any way to tell a process completed or execute code upon it's completion?

    Read the article

  • How (and if) to write a single-consumer queue using the task parallel library?

    - by Eric
    I've heard a bunch of podcasts recently about the TPL in .NET 4.0. Most of them describe background activities like downloading images or doing a computation, using tasks so that the work doesn't interfere with a GUI thread. Most of the code I work on has more of a multiple-producer / single-consumer flavor, where work items from multiple sources must be queued and then processed in order. One example would be logging, where log lines from multiple threads are sequentialized into a single queue for eventual writing to a file or database. All the records from any single source must remain in order, and records from the same moment in time should be "close" to each other in the eventual output. So multiple threads or tasks or whatever are all invoking a queuer: lock( _queue ) // or use a lock-free queue! { _queue.enqueue( some_work ); _queueSemaphore.Release(); } And a dedicated worker thread processes the queue: while( _queueSemaphore.WaitOne() ) { lock( _queue ) { some_work = _queue.dequeue(); } deal_with( some_work ); } It's always seemed reasonable to dedicate a worker thread for the consumer side of these tasks. Should I write future programs using some construct from the TPL instead? Which one? Why?

    Read the article

  • Are parallel calls to send/recv on the same socket valid?

    - by Jay
    Can we call send from one thread and recv from another on the same socket? Can we call multiple sends parallely from different threads on the same socket? I know that a good design should avoid this, but I am not clear how these system APIs will behave. I am unable to find a good documentation also for the same. Any pointers in the direction will be helpful.

    Read the article

  • Parallel MySQL queries for HTML table - WHILE(x or y)?

    - by Beti Chode
    I'm trying to create a table using PHP. What I need is a table with two columns. So I have an SQL table with 4 fields - primary key id, language, word and definition. The language for each is either Arabic or Russian. I want a table that does the following: | defintion | |____________________| | | | rus1 | arab1 | | rus2 | arab2 | | rus3 | arab3 | | rus4 | | So it divides the list by English word, creates a for each English word, then lists Russian equivalents in the left column and Arabic in the right. However there are often not the same number for both. What I am doing right now is running a WHILE loop in a WHILE loop. The outer loop is running fine but I think I am doing the inner loop wrong. Here is the bulk of the code: $definitions=mysql_query("SELECT DISTINCT definition FROM words") WHILE($row=mysql_fetch_array($definitions) { ECHO '<tr><th colspan="2">' . $row['definition'] . '</th></tr>'; $russian="SELECT * FROM words WHERE language='Russian' AND definition='".$row['definition']."'"; $arabic="SELECT * FROM words WHERE language='Arabic' AND definition='".$row['definition']."'"; WHILE($rus=mysql_fetch_array($russian) or $arb=mysql_fetch_array($arabic)) { ECHO '<tr><td>'.$rus['word'].'</td><td>'.$arb['word'].'</td></tr>'; } } Sadly I am getting soemthing like this: | defintion | |____________________| | | | rus1 | | | rus2 | | | rus3 | | | rus4 | | | | arab1 | | | arab2 | | | arab3 | Not sure what other way I can do this? I tried changing the or to || thinking the different precedence would cause another outcome, but then I get ONLY the Russian column. I'm out of ideas, you guys are my only hope!

    Read the article

  • LWJGL: Camera distance from image plane?

    - by Rogem
    Let me paste some code before I ask the question... public static void createWindow(int[] args) { try { Display.setFullscreen(false); DisplayMode d[] = Display.getAvailableDisplayModes(); for (int i = 0; i < d.length; i++) { if (d[i].getWidth() == args[0] && d[i].getHeight() == args[1] && d[i].getBitsPerPixel() == 32) { displayMode = d[i]; break; } } Display.setDisplayMode(displayMode); Display.create(); } catch (Exception e) { e.printStackTrace(); System.exit(0); } } public static void initGL() { GL11.glEnable(GL11.GL_TEXTURE_2D); GL11.glShadeModel(GL11.GL_SMOOTH); GL11.glClearColor(0.0f, 0.0f, 0.0f, 0.0f); GL11.glClearDepth(1.0); GL11.glEnable(GL11.GL_DEPTH_TEST); GL11.glDepthFunc(GL11.GL_LEQUAL); GL11.glMatrixMode(GL11.GL_PROJECTION); GL11.glLoadIdentity(); GLU.gluPerspective(45.0f, (float) displayMode.getWidth() / (float) displayMode.getHeight(), 0.1f, 100.0f); GL11.glMatrixMode(GL11.GL_MODELVIEW); GL11.glHint(GL11.GL_PERSPECTIVE_CORRECTION_HINT, GL11.GL_NICEST); } So, with the camera and screen setup out of the way, I can now ask the actual question: How do I know what the camera distance is from the image plane? I also would like to know what the angle between the image plane's center normal and a line drawn from the middle of one of the edges to the camera position is. This will be used to consequently draw a vector from the camera's position through the player's click-coordinates to determine the world coordinates they clicked (or could've clicked). Also, when I set the camera coordinates, do I set the coordinates of the camera or do I set the coordinates of the image plane? Thank you for your help. EDIT: So, I managed to solve how to calculate the distance of the camera... Here's the relevant code... private static float getScreenFOV(int dim) { if (dim == 0) { float dist = (float) Math.tan((Math.PI / 2 - Math.toRadians(FOV_Y))/2) * 0.5f; float FOV_X = 2 * (float) Math.atan(getScreenRatio() * 0.5f / dist); return FOV_X; } else if (dim == 1) { return FOV_Y; } return 0; } FOV_Y is the Field of View that one defines in gluPerspective (float fovy in javadoc). This seems to be (and would logically be) for the height of the screen. Now I just need to figure out how to calculate that vector.

    Read the article

  • how to use kml file in my code..

    - by zjm1126
    i download a kml file : <?xml version="1.0" encoding="UTF-8"?> <kml xmlns="http://www.opengis.net/kml/2.2"> <Document> <Style id="transGreenPoly"> <LineStyle> <width>1.5</width> </LineStyle> <PolyStyle> <color>7d00ff00</color> </PolyStyle> </Style> <Style id="transYellowPoly"> <LineStyle> <width>1.5</width> </LineStyle> <PolyStyle> <color>7d00ffff</color> </PolyStyle> </Style> <Style id="transRedPoly"> <LineStyle> <width>1.5</width> </LineStyle> <PolyStyle> <color>7d0000ff</color> </PolyStyle> </Style> <Style id="transBluePoly"> <LineStyle> <width>1.5</width> </LineStyle> <PolyStyle> <color>7dff0000</color> </PolyStyle> </Style> <Folder> <name>Placemarks</name> <open>0</open> <Placemark> <name>Simple placemark</name> <description>Attached to the ground. Intelligently places itself at the height of the underlying terrain.</description> <Point> <coordinates>-122.0822035425683,37.42228990140251,0</coordinates> </Point> </Placemark> <Placemark> <name>Descriptive HTML</name> <description><![CDATA[Click on the blue link!<br/><br/> Placemark descriptions can be enriched by using many standard HTML tags.<br/> For example: <hr/> Styles:<br/> <i>Italics</i>, <b>Bold</b>, <u>Underlined</u>, <s>Strike Out</s>, subscript<sub>subscript</sub>, superscript<sup>superscript</sup>, <big>Big</big>, <small>Small</small>, <tt>Typewriter</tt>, <em>Emphasized</em>, <strong>Strong</strong>, <code>Code</code> <hr/> Fonts:<br/> <font color="red">red by name</font>, <font color="#408010">leaf green by hexadecimal RGB</font> <br/> <font size=1>size 1</font>, <font size=2>size 2</font>, <font size=3>size 3</font>, <font size=4>size 4</font>, <font size=5>size 5</font>, <font size=6>size 6</font>, <font size=7>size 7</font> <br/> <font face=times>Times</font>, <font face=verdana>Verdana</font>, <font face=arial>Arial</font><br/> <hr/> Links: <br/> <a href="http://earth.google.com/">Google Earth!</a> <br/> or: Check out our website at www.google.com <hr/> Alignment:<br/> <p align=left>left</p> <p align=center>center</p> <p align=right>right</p> <hr/> Ordered Lists:<br/> <ol><li>First</li><li>Second</li><li>Third</li></ol> <ol type="a"><li>First</li><li>Second</li><li>Third</li></ol> <ol type="A"><li>First</li><li>Second</li><li>Third</li></ol> <hr/> Unordered Lists:<br/> <ul><li>A</li><li>B</li><li>C</li></ul> <ul type="circle"><li>A</li><li>B</li><li>C</li></ul> <ul type="square"><li>A</li><li>B</li><li>C</li></ul> <hr/> Definitions:<br/> <dl> <dt>Google:</dt><dd>The best thing since sliced bread</dd> </dl> <hr/> Centered:<br/><center> Time present and time past<br/> Are both perhaps present in time future,<br/> And time future contained in time past.<br/> If all time is eternally present<br/> All time is unredeemable.<br/> </center> <hr/> Block Quote: <br/> <blockquote> We shall not cease from exploration<br/> And the end of all our exploring<br/> Will be to arrive where we started<br/> And know the place for the first time.<br/> <i>-- T.S. Eliot</i> </blockquote> <br/> <hr/> Headings:<br/> <h1>Header 1</h1> <h2>Header 2</h2> <h3>Header 3</h3> <h3>Header 4</h4> <h3>Header 5</h5> <hr/> Images:<br/> <i>Remote image</i><br/> <img src="http://code.google.com/apis/kml/documentation/googleSample.png"><br/> <i>Scaled image</i><br/> <img src="http://code.google.com/apis/kml/documentation/googleSample.png" width=100><br/> <hr/> Simple Tables:<br/> <table border="1" padding="1"> <tr><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td></tr> <tr><td>a</td><td>b</td><td>c</td><td>d</td><td>e</td></tr> </table> <br/>]]></description> <Point> <coordinates>-122,37,0</coordinates> </Point> </Placemark> </Folder> <Folder> <name>Google Campus - Polygons</name> <open>0</open> <description>A collection showing how easy it is to create 3-dimensional buildings</description> <Placemark> <name>Building 40</name> <styleUrl>#transRedPoly</styleUrl> <Polygon> <extrude>1</extrude> <altitudeMode>relativeToGround</altitudeMode> <outerBoundaryIs> <LinearRing> <coordinates> -122.0848938459612,37.42257124044786,17 -122.0849580979198,37.42211922626856,17 -122.0847469573047,37.42207183952619,17 -122.0845725380962,37.42209006729676,17 -122.0845954886723,37.42215932700895,17 -122.0838521118269,37.42227278564371,17 -122.083792243335,37.42203539112084,17 -122.0835076656616,37.42209006957106,17 -122.0834709464152,37.42200987395161,17 -122.0831221085748,37.4221046494946,17 -122.0829247374572,37.42226503990386,17 -122.0829339169385,37.42231242843094,17 -122.0833837359737,37.42225046087618,17 -122.0833607854248,37.42234159228745,17 -122.0834204551642,37.42237075460644,17 -122.083659133885,37.42251292011001,17 -122.0839758438952,37.42265873093781,17 -122.0842374743331,37.42265143972521,17 -122.0845036949503,37.4226514386435,17 -122.0848020460801,37.42261133916315,17 -122.0847882750515,37.42256395055121,17 -122.0848938459612,37.42257124044786,17 </coordinates> </LinearRing> </outerBoundaryIs> </Polygon> </Placemark> <Placemark> <name>Building 41</name> <styleUrl>#transBluePoly</styleUrl> <Polygon> <extrude>1</extrude> <altitudeMode>relativeToGround</altitudeMode> <outerBoundaryIs> <LinearRing> <coordinates> -122.0857412771483,37.42227033155257,17 -122.0858169768481,37.42231408832346,17 -122.085852582875,37.42230337469744,17 -122.0858799945639,37.42225686138789,17 -122.0858860101409,37.4222311076138,17 -122.0858069157288,37.42220250173855,17 -122.0858379542653,37.42214027058678,17 -122.0856732640519,37.42208690214408,17 -122.0856022926407,37.42214885429042,17 -122.0855902778436,37.422128290487,17 -122.0855841672237,37.42208171967246,17 -122.0854852065741,37.42210455874995,17 -122.0855067264352,37.42214267949824,17 -122.0854430712915,37.42212783846172,17 -122.0850990714904,37.42251282407603,17 -122.0856769818632,37.42281815323651,17 -122.0860162273783,37.42244918858723,17 -122.0857260327004,37.42229239604253,17 -122.0857412771483,37.42227033155257,17 </coordinates> </LinearRing> </outerBoundaryIs> </Polygon> </Placemark> <Placemark> <name>Building 42</name> <styleUrl>#transGreenPoly</styleUrl> <Polygon> <extrude>1</extrude> <altitudeMode>relativeToGround</altitudeMode> <outerBoundaryIs> <LinearRing> <coordinates> -122.0857862287242,37.42136208886969,25 -122.0857312990603,37.42136935989481,25 -122.0857312992918,37.42140934910903,25 -122.0856077073679,37.42138390166565,25 -122.0855802426516,37.42137299550869,25 -122.0852186221971,37.42137299504316,25 -122.0852277765639,37.42161656508265,25 -122.0852598189347,37.42160565894403,25 -122.0852598185499,37.42168200156,25 -122.0852369311478,37.42170017860346,25 -122.0852643957828,37.42176197982575,25 -122.0853239032746,37.42176198013907,25 -122.0853559454324,37.421852864452,25 -122.0854108752463,37.42188921823734,25 -122.0854795379357,37.42189285337048,25 -122.0855436229819,37.42188921797546,25 -122.0856260178042,37.42186013499926,25 -122.085937287963,37.42186013453605,25 -122.0859428718666,37.42160898590042,25 -122.0859655469861,37.42157992759144,25 -122.0858640462341,37.42147115002957,25 -122.0858548911215,37.42140571326184,25 -122.0858091162768,37.4214057134039,25 -122.0857862287242,37.42136208886969,25 </coordinates> </LinearRing> </outerBoundaryIs> </Polygon> </Placemark> <Placemark> <name>Building 43</name> <styleUrl>#transYellowPoly</styleUrl> <Polygon> <extrude>1</extrude> <altitudeMode>relativeToGround</altitudeMode> <outerBoundaryIs> <LinearRing> <coordinates> -122.0844371128284,37.42177253003091,19 -122.0845118855746,37.42191111542896,19 -122.0850470999805,37.42178755121535,19 -122.0850719913391,37.42143663023161,19 -122.084916406232,37.42137237822116,19 -122.0842193868167,37.42137237801626,19 -122.08421938659,37.42147617161496,19 -122.0838086419991,37.4214613409357,19 -122.0837899728564,37.42131306410796,19 -122.0832796534698,37.42129328840593,19 -122.0832609819207,37.42139213944298,19 -122.0829373621737,37.42137236399876,19 -122.0829062425667,37.42151569778871,19 -122.0828502269665,37.42176282576465,19 -122.0829435788635,37.42176776969635,19 -122.083217411188,37.42179248552686,19 -122.0835970430103,37.4217480074456,19 -122.0839455556771,37.42169364237603,19 -122.0840077894637,37.42176283815853,19 -122.084113587521,37.42174801104392,19 -122.0840762473784,37.42171341292375,19 -122.0841447047739,37.42167881534569,19 -122.084144704223,37.42181720660197,19 -122.0842503333074,37.4218170700446,19 -122.0844371128284,37.42177253003091,19 </coordinates> </LinearRing> </outerBoundaryIs> </Polygon> </Placemark> </Folder> <Folder> <name>LineString</name> <open>0</open> <Placemark> <LineString> <tessellate>1</tessellate> <coordinates> -112.0814237830345,36.10677870477137,0 -112.0870267752693,36.0905099328766,0 </coordinates> </LineString> </Placemark> </Folder> <Folder> <name>GroundOverlay</name> <open>0</open> <GroundOverlay> <name>Large-scale overlay on terrain</name> <description>Overlay shows Mount Etna erupting on July 13th, 2001.</description> <Icon> <href>http://code.google.com/apis/kml/documentation/etna.jpg</href> </Icon> <LatLonBox> <north>37.91904192681665</north> <south>37.46543388598137</south> <east>15.35832653742206</east> <west>14.60128369746704</west> </LatLonBox> </GroundOverlay> </Folder> <Folder> <name>ScreenOverlays</name> <open>0</open> <ScreenOverlay> <name>screenoverlay_dynamic_top</name> <visibility>0</visibility> <Icon> <href>http://code.google.com/apis/kml/documentation/dynamic_screenoverlay.jpg</href> </Icon> <overlayXY x="0" y="1" xunits="fraction" yunits="fraction"/> <screenXY x="0" y="1" xunits="fraction" yunits="fraction"/> <rotationXY x="0" y="0" xunits="fraction" yunits="fraction"/> <size x="1" y="0.2" xunits="fraction" yunits="fraction"/> </ScreenOverlay> <ScreenOverlay> <name>screenoverlay_dynamic_right</name> <visibility>0</visibility> <Icon> <href>http://code.google.com/apis/kml/documentation/dynamic_right.jpg</href> </Icon> <overlayXY x="1" y="1" xunits="fraction" yunits="fraction"/> <screenXY x="1" y="1" xunits="fraction" yunits="fraction"/> <rotationXY x="0" y="0" xunits="fraction" yunits="fraction"/> <size x="0" y="1" xunits="fraction" yunits="fraction"/> </ScreenOverlay> <ScreenOverlay> <name>Simple crosshairs</name> <visibility>0</visibility> <description>This screen overlay uses fractional positioning to put the image in the exact center of the screen</description> <Icon> <href>http://code.google.com/apis/kml/documentation/crosshairs.png</href> </Icon> <overlayXY x="0.5" y="0.5" xunits="fraction" yunits="fraction"/> <screenXY x="0.5" y="0.5" xunits="fraction" yunits="fraction"/> <rotationXY x="0.5" y="0.5" xunits="fraction" yunits="fraction"/> <size x="0" y="0" xunits="pixels" yunits="pixels"/> </ScreenOverlay> <ScreenOverlay> <name>screenoverlay_absolute_topright</name> <visibility>0</visibility> <Icon> <href>http://code.google.com/apis/kml/documentation/top_right.jpg</href> </Icon> <overlayXY x="1" y="1" xunits="fraction" yunits="fraction"/> <screenXY x="1" y="1" xunits="fraction" yunits="fraction"/> <rotationXY x="0" y="0" xunits="fraction" yunits="fraction"/> <size x="0" y="0" xunits="fraction" yunits="fraction"/> </ScreenOverlay> <ScreenOverlay> <name>screenoverlay_absolute_topleft</name> <visibility>0</visibility> <Icon> <href>http://code.google.com/apis/kml/documentation/top_left.jpg</href> </Icon> <overlayXY x="0" y="1" xunits="fraction" yunits="fraction"/> <screenXY x="0" y="1" xunits="fraction" yunits="fraction"/> <rotationXY x="0" y="0" xunits="fraction" yunits="fraction"/> <size x="0" y="0" xunits="fraction" yunits="fraction"/> </ScreenOverlay> <ScreenOverlay> <name>screenoverlay_absolute_bottomright</name> <visibility>0</visibility> <Icon> <href>http://code.google.com/apis/kml/documentation/bottom_right.jpg</href> </Icon> <overlayXY x="1" y="-1" xunits="fraction" yunits="fraction"/> <screenXY x="1" y="0" xunits="fraction" yunits="fraction"/> <rotationXY x="0" y="0" xunits="fraction" yunits="fraction"/> <size x="0" y="0" xunits="fraction" yunits="fraction"/> </ScreenOverlay> <ScreenOverlay> <name>screenoverlay_absolute_bottomleft</name> <visibility>0</visibility> <Icon> <href>http://code.google.com/apis/kml/documentation/bottom_left.jpg</href> </Icon> <overlayXY x="0" y="-1" xunits="fraction" yunits="fraction"/> <screenXY x="0" y="0" xunits="fraction" yunits="fraction"/> <rotationXY x="0" y="0" xunits="fraction" yunits="fraction"/> <size x="0" y="0" xunits="fraction" yunits="fraction"/> </ScreenOverlay> </Folder> </Document> </kml> and my code is : function initialize() { if (GBrowserIsCompatible()) { var map = new GMap2(document.getElementById("map_canvas")); var center=new GLatLng(39.9493, 116.3975); map.setCenter(center, 13); var geoXml = new GGeoXml("SamplesInMaps.kml"); <!--Place KML on Map --> map.addOverlay(geoXml); } } but ,i don't successful ,, do you know how to do this.. thanks

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • libgdx ActorGestureListener.pan() parameters not moving actor in smooth line

    - by Roar Skullestad
    I override the pan method in ActorGestureListener to implement dragging actors in libgdx (scene2d). When I move individual pieces on a board they move smoothly, but when moving the whole board, the x and y coordinates that is sent to pan is "jumping", and in an increasingly amount the longer it is dragged. These are an example of the deltaY coordinates sent to pan when dragging smoothly downwards: 1.1156368 -0.13125038 -1.0500145 0.98439217 -1.0500202 0.91877174 -0.984396 0.9187679 -0.98439026 0.9187641 -0.13125038 This is how I move the camera: public void pan (InputEvent event, float x, float y, float deltaX, float deltaY) { cam.translate(-deltaX, -deltaY); I have been using both the delta values sent to pan and the real position values, but similar results. And since it is the coordinates that are wrong, it doesn't matter whether I move the board itself or the camera. What could the cause be for this and what is the solution? When I move camera only half the delta-values, it moves smoothly but only at half the speed of the mouse pointer: cam.translate(-deltaX / 2, -deltaY / 2); It seems like the moving of camera or board affects the mouse input coordinates. How can I drag at "mouse speed" and still get smooth movements? (This question was also posted on stackoverflow: http://stackoverflow.com/questions/20693020/libgdx-actorgesturelistener-pan-parameters-not-moving-actor-in-smooth-line)

    Read the article

  • How to implement physical effect, perspective effect on Android

    - by asedra_le
    I'm researching about 2D game for Android to implement an Android Game Project. My project looks nearly like PaperToss. Instance of throwing a page, my game will throw a coin. Suppose that I have a coin put in three-dimensional that have coordinates at A(x,y,z). I throw that point ahead, after 1/100 second, that coin move from A(x,y,z) to A'(x',y',z'). By this way, I have two problems need to solve. Determine the formulas can be used to compute the coordinates of the coin at time t. This problem is under-researching. I have no idea to solve this problem. Mapping three-dimensional points to a two-dimensional and use those new coordinates (a two-dimensional coordinates) to draw our coin on screen. I have found two solutions for this problem: Orthographic projection & Perspective projection However, my old friend said that OpenGL supports to solve problems like my problems. Any body have experiences about my problems? Help me please :) Thank for reading my question.

    Read the article

  • how to make HLSL effect just for lighning without texture mapping?

    - by naprox
    I'm new to XNA, i created an effect and just want to use lightning but in default effect that XNA create we should do texture mapping or the model appears 'RED', because of this lines of code in the effect file: float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0 { float4 output = float4(1,0,0,1); return output; } and if i want to see my model (appear like when i use basiceffect) must do texture mapping by UV coordinates. but my model does not have UV coordinates assigned or its UV coordinates is not exported. and if i do texture mapping i got error. (i do texture mapping by this line of code in vertexshaderfunction and other necessary codes) output.UV= input.UV i have many of this models and want to work with them.(my models are in .FBX format) when i use Bassiceffect i have no problem and model appears correctly. how can i use "just" lightnings in my custom effects? and don't do texture mapping (because i have no UV coordinates in my models) and my model be look like when i use BasicEffect? if you need my complete code Here it is: http://www.mediafire.com/?4jexhd4ulm2icm2 here is inside of my Model Using BasicEffect http://i.imgur.com/ygP2h.jpg?1 and this is my code for drawing with or without BasicEffect inside of my draw() method: Matrix baseWorld = Matrix.CreateScale(Scale) * Matrix.CreateFromYawPitchRoll(Rotation.Y, Rotation.X, Rotation.Z) * Matrix.CreateTranslation(Position); foreach(ModelMesh mesh in Model.Meshes) { Matrix localWorld = ModelTransforms[mesh.ParentBone.Index] * baseWorld; foreach(ModelMeshPart part in mesh.MeshParts) { Effect effect = part.Effect; if (effect is BasicEffect) { ((BasicEffect)effect).World = localWorld; ((BasicEffect)effect).View = View; ((BasicEffect)effect).Projection = Projection; ((BasicEffect)effect).EnableDefaultLighting(); } else { setEffectParameter(effect, "World", localWorld); setEffectParameter(effect, "View", View); setEffectParameter(effect, "Projection", Projection); setEffectParameter(effect, "CameraPosition", CameraPosition); } } mesh.Draw(); } setEffectParameter is another method that sets effect parameter if i use my custom effect.

    Read the article

  • What's a good way to check that a player has clicked on an object in a 3D game?

    - by imja
    I'm programming a 3D game (using C++ and OpenGL), and I have a few 3D objects in the scene, we can say they are boxes for this example. I want to let the player click on those boxes to select them (ie. they might change color) with the typical restriction like if more than one box is located where the user clicked, only the one closest to the camera would get selected. What would be the best way to do this? The fact that these objects go through several transforms before getting to window coordinates is what makes this a bit tricky. One approach I thought about was that if the player clicks on the screen, I could normalize the x,y coordinates of mouse click and then transform the bounding box coordinates of the objects into clip-space so that I could compare then to the normalized mouse coordinates. I guess I could then do some sort of ray-box collision test to see if any objects lie as the path of the mouse click. I'm afraid I might be over complicating it. Any better methods out there?

    Read the article

  • Maze not generating properly. Out of bounds exception. need quick fix

    - by Dan Joseph Porcioncula
    My maze generator seems to have a problem. I am trying to generate something like the maze from http://mazeworks.com/mazegen/mazetut/index.htm . My program displays this http://a1.sphotos.ak.fbcdn.net/hphotos-ak-snc7/s320x320/374060_426350204045347_100000111130260_1880768_1572427285_n.jpg and the error Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: -1 at Grid.genRand(Grid.java:73) at Grid.main(Grid.java:35) How do I fix my generator program? import java.awt.*; import java.awt.Color; import java.awt.Component; import java.awt.Graphics; import javax.swing.*; import java.util.ArrayList; public class Grid extends Canvas { Cell[][] maze; int size; int pathSize; double width, height; ArrayList<int[]> coordinates = new ArrayList<int[]>(); public Grid(int size, int h, int w) { this.size = size; maze = new Cell[size][size]; for(int i = 0; i<size; i++){ for(int a =0; a<size; a++){ maze[i][a] = new Cell(); } } setPreferredSize(new Dimension(h, w)); } public static void main(String[] args) { JFrame y = new JFrame(); y.setLayout(new BorderLayout()); Grid f = new Grid(25, 400, 400); y.add(f, BorderLayout.CENTER); y.setSize(450, 450); y.setVisible(true); y.setDefaultCloseOperation(y.EXIT_ON_CLOSE); f.genRand(); f.repaint(); } public void push(int[] xy) { coordinates.add(xy); int i = coordinates.size(); coordinates.ensureCapacity(i++); } public int[] pop() { int[] x = coordinates.get((coordinates.size())-1); coordinates.remove((coordinates.size())-1); return x; } public int[] top() { return coordinates.get((coordinates.size())-1); } public void genRand(){ // create a CellStack (LIFO) to hold a list of cell locations [x] // set TotalCells = number of cells in grid int TotalCells = size*size; // choose a cell at random and call it CurrentCell int m = randomInt(size); int n = randomInt(size); Cell curCel = maze[m][n]; // set VisitedCells = 1 int visCel = 1,d=0; int[] q; int h,o = 0,p = 0; // while VisitedCells < TotalCells while( visCel < TotalCells){ // find all neighbors of CurrentCell with all walls intact if(maze[m-1][n].countWalls() == 4){d++;} if(maze[m+1][n].countWalls() == 4){d++;} if(maze[m][n-1].countWalls() == 4){d++;} if(maze[m][n+1].countWalls() == 4){d++;} // if one or more found if(d!=0){ Point[] ls = new Point[4]; ls[0] = new Point(m-1,n); ls[1] = new Point(m+1,n); ls[2] = new Point(m,n-1); ls[3] = new Point(m,n+1); // knock down the wall between it and CurrentCell h = randomInt(3); switch(h){ case 0: o = (int)(ls[0].getX()); p = (int)(ls[0].getY()); curCel.destroyWall(2); maze[o][p].destroyWall(1); break; case 1: o = (int)(ls[1].getX()); p = (int)(ls[1].getY()); curCel.destroyWall(1); maze[o][p].destroyWall(2); break; case 2: o = (int)(ls[2].getX()); p = (int)(ls[2].getY()); curCel.destroyWall(3); maze[o][p].destroyWall(0); break; case 3: o = (int)(ls[3].getX()); p = (int)(ls[3].getY()); curCel.destroyWall(0); maze[o][p].destroyWall(3); break; } // push CurrentCell location on the CellStack push(new int[] {m,n}); // make the new cell CurrentCell m = o; n = p; curCel = maze[m][n]; // add 1 to VisitedCells visCel++; } // else else{ // pop the most recent cell entry off the CellStack q = pop(); m = q[0]; n = q[1]; curCel = maze[m][n]; // make it CurrentCell // endIf } // endWhile } } public int randomInt(int s) { return (int)(s* Math.random());} public void paint(Graphics g) { int k, j; width = getSize().width; height = getSize().height; double htOfRow = height / (size); double wdOfRow = width / (size); //checks verticals - destroys east border of cell for (k = 0; k < size; k++) { for (j = 0; j < size; j++) { if(maze[k][j].checkWall(2)){ g.drawLine((int) (k * wdOfRow), (int) (j * htOfRow), (int) (k * wdOfRow), (int) ((j+1) * htOfRow)); }} } //checks horizontal - destroys north border of cell for (k = 0; k < size; k++) { for (j = 0; j < size; j++) { if(maze[k][j].checkWall(3)){ g.drawLine((int) (k * wdOfRow), (int) (j * htOfRow), (int) ((k+1) * wdOfRow), (int) (j * htOfRow)); }} } } } class Cell { private final static int NORTH = 0; private final static int EAST = 1; private final static int WEST = 2; private final static int SOUTH = 3; private final static int NO = 4; private final static int START = 1; private final static int END = 2; boolean[] wall = new boolean[4]; boolean[] border = new boolean[4]; boolean[] backtrack = new boolean[4]; boolean[] solution = new boolean[4]; private boolean isVisited = false; private int Key = 0; public Cell(){ for(int i=0;i<4;i++){wall[i] = true;} } public int countWalls(){ int i, k =0; for(i=0; i<4; i++) { if (wall[i] == true) {k++;} } return k;} public boolean checkWall(int x){ switch(x){ case 0: return wall[0]; case 1: return wall[1]; case 2: return wall[2]; case 3: return wall[3]; } return true; } public void destroyWall(int x){ switch(x){ case 0: wall[0] = false; break; case 1: wall[1] = false; break; case 2: wall[2] = false; break; case 3: wall[3] = false; break; } } public void setStart(int i){Key = i;} public int getKey(){return Key;} public boolean checkVisit(){return isVisited;} public void visitCell(){isVisited = true;} }

    Read the article

  • Vertex data split into separate buffers or one one structure?

    - by kiba2
    Is it better to have all vertex data in one structure like this: class MyVertex { int x,y,z; int u,v; int normalx, normaly, normalz; } Or to have each component (location, normal, texture coordinates) in separate arrays/buffers? To me it always seemed logical to keep the data grouped together in one structure because they'd always be the same for each instance of a shared vertex and that seems to be true for things like character models (ex: the normal should be an average of adjacent normals for smooth lighting). One instance where this doesn't seem to work is other kinds of meshes like say a cube where the texture coordinates for each may be the same but that causes them to be different where the vertices are shared. Does everybody normally keep them separate? Won't this make them less space efficient if there needs to be an instance of texture coordinates and normals for each triangle vertex (They won't be indexed)? Can OpenGL even handle this mixing of indexed (for location) vs non-indexed buffers in the same VBO?

    Read the article

  • How do I calculate the motion of 2 massive bodies in space?

    - by 1224
    I'm writing code simulating the 2-dimensional motion of two massive bodies with gravitational fields. The bodies' masses are known and I have a gravitational force equation. I know from that force I can get a differential equation for coordinates. I know that I once I solve this equation I will get the coordinates. I will need to make up some initial position and some initial velocity. I'd like to end up with a numeric solver for the ordinal differential equation for coordinates to get the formulas that I can write in code. Could someone break down how from laws and initial conditions we get to the formulas that calculate x and y at time t?

    Read the article

  • How do I build a matrix to translate one set of points to another?

    - by dotminic
    I've got 3 points in space that define a triangle. I've also got a vertex buffer made up of three vertices, that also represent a triangle that I will refer to as a "model". How can I can I find the matrix M that will transform vertex in my buffer to those 3 points in space ? For example, let's say my three points A, B, C are at locations: A.x = 10, A.y = 16, A.z = 8 B.x = 12, B.y = 11, B.z = 1 C.x = 19, C.y = 12, C.z = 3 given these coordinates how can I build a matrix that will translate and rotate my model such that both triangles have the exact same world space ? That is, I want the first vertex in my triangle model to have the same coordinates as A, the second to have the same coordinates as B, and same goes for C. nb: I'm using instanced rendering so I can't just give each vertex the same position as my 3 points. I have a set of three points defining a triangle, and only three vertices in my vertex buffer.

    Read the article

< Previous Page | 32 33 34 35 36 37 38 39 40 41 42 43  | Next Page >