Search Results

Search found 19855 results on 795 pages for 'game console'.

Page 363/795 | < Previous Page | 359 360 361 362 363 364 365 366 367 368 369 370  | Next Page >

  • Repairing back-facing triangles without user input

    - by LTR
    My 3D application works with user-imported 3D models. Frequently, those models have a few vertices facing into the wrong direction. (For example, there is a 3D roof and a few triangles of that roof are facing inside the building). I want to repair those automatically. We can make several assumptions about these 3D models: they are completely closed without holes, and the camera is always on the outside. My idea: Shoot 500 rays from every triangle outwards into all directions. From the back side of the triangle, all rays will hit another part of the model. From the front side, at least one ray will hit nothing. Is there a better algorithm? Are there any papers about something like this?

    Read the article

  • Numbers not adding up? (What am I not understanding here?) [closed]

    - by Milo
    I have the following output: Short version: The last numbers on the S= lines increase by H and SHOULD theoretically be linearly decreasing, ex: -285,-290,-295...but the fourth one jumps to -252. Yet, every other number is linearly increasing. Why is that and how could I fix that? To explain the numbers, it comes from slider value changed. I have a slider whose value is used to generate the float on the next line. Everything should be growing linearly here. This value is used to determine the size of a flow layout and it is also used in conjunction with a scrollbar. But basically I have a background for the flow layout and that number is the start location for rendering it. The numbers should linearly change to create a smooth transition but when that one jumps, it looks weird on screen and I dont understand why the numbers are jumping every X slider value changes. Mathematically what could be causing this? Here is the code for rendering the background and the function that is called when value changes: void LobbyTableManager::renderBG( GraphicsContext* g, agui::Rectangle& absRect, agui::Rectangle& childRect ) { float scale = 0.35f; int w = m_bgSprite->getWidth() * getTableScale() * scale; int h = m_bgSprite->getHeight() * getTableScale() * scale; int numX = ceil(absRect.getWidth() / (float)w) + 2; int numY = ceil(absRect.getHeight() / (float)h) + 2; int startY = childRect.getY(); int numAttempts = 0; while(startY + h < absRect.getY() && numAttempts < 1000) { startY += h; if(moo) { std::cout << startY << ","; } numAttempts++; } g->holdDrawing(); for(int i = 0; i < numX; ++i) { for(int j = 0; j < numY; ++j) { g->drawScaledSprite(m_bgSprite,0,0,m_bgSprite->getWidth(),m_bgSprite->getHeight(), absRect.getX() + (i * w) + (offsetX),absRect.getY() + (j * h) + startY,w,h,0); } } g->unholdDrawing(); g->setClippingRect(cx,cy,cw,ch); } void LobbyTableManager::setTableScale( float scale ) { scale += 0.3f; scale *= 2.0f; float scrollRel = m_vScroll->getRelativeValue(); setScale(scale); rescaleTables(); resizeFlow(); updateScrollBars(); float newVal = scrollRel * m_vScroll->getMaxValue(); m_vScroll->setValue(newVal); } void LobbyTableManager::valueChanged( agui::VScrollBar* source,int val ) { m_flow->setLocation(0,-val); } Any insight on mathematically why the anomaly might happen every Nth time would be helpful. I just dont understand why if every number linearly increates it jumps from -295 to -252! Thanks

    Read the article

  • Calculating the rotational force of a 2D sprite

    - by Jon
    I am wondering if someone has an elegant way of calculating the following scenario. I have an object of (n) number of squares, random shapes, but we will pretend they are all rectangles. We are dealing with no gravity, so consider the object in space, from a top down perspective. I am applying a force to the object at a specific square (as illustrated below). How do I calculate the rotational angle, based on the force being applied, at the location being applied. If applied in the center square, it would go straight. How should it behave the further I move from the center? How do I calculate the rotational velocity?

    Read the article

  • Coordinate and positioning problem on iOS with cocos2d-x

    - by Vexille
    I'm using cocos2d-x alongside with Marmalade and running some tests and tutorials before starting an actual project with them. So far things are working reasonably well on the windows simulator, Android and even on Blackberry's Playbook, but on iOS devices (iPhone and iPad) the positioning seems to be off. To make things clearer, I put together a scene that just draws an image in the middle of the screen. It worked as expected on everything else, but this is the result I got on an iPhone: To get the coordinates for the center of the screen I'm using the VisibleRect class from the TestCpp sample. It just uses sharedOpenGLView to get the visible size and visible origin, and calculate the center from that. CCSprite* test = CCSprite::create("Ball.png", CCRectMake(0, 0, 80, 80) ); test->setPosition( ccp(VisibleRect::center().x, VisibleRect::center().y) ); this->addChild(test); Also I have a noBorder policy set on AppDelegate: CCEGLView::sharedOpenGLView()->setDesignResolutionSize(designSize.width, designSize.height, kResolutionNoBorder); One funny thing is that I tried to deploy the TestCpp sample project to some iOS devices and it worked reasonably well on the iPhone, but on the iPad the application was only being drawn on a small portion of the screen - just like what happened on the iPhone when I tried using the ShowAll policy.

    Read the article

  • Comparison between a value with static type Array and a possibly unrelated type Class

    - by Kaoru
    I got this error: Comparison between a value with static type Array and a possibly unrelated type Class. After i modify the class to many classes (before that, everything is on 1 class (all of the functions)), but after i move everything to many classes (all the functions is not on 1 class), that error appear. How to solve this? I am using AS3 and as3isolib Library. Here is the code after i modify the function: if (Constant.dude.y < Constant._numY) { if (Constant.dude.sprites != marioBackClass) { Constant.dude.sprites = [marioBackClass]; Constant.dudeDir = "Up"; } } Here is the code before i change the function to many classes: if (dude.y < ._numY) { if (dude.sprites.toString() != marioBackClass.toString()) { dude.sprites = [marioBackClass]; dudeDir = "Up"; } }

    Read the article

  • Box2D relations

    - by Valentino Ru
    As far as I know, the unit in Box2D is meters. When I use Box2D in Processing with JBox2D, I set the "world size" as the window size specified in the setup(). Now I'm wondering if there is any function that scales down the world. For example, how can I simulate the throw of tennis ball within a room, without using a window of only 5 x 5 pixels? Additionally, is there any good documentation like the Java API?

    Read the article

  • Heightmap and Textures

    - by Robert
    Im trying to find the "best way" to apply a texture to a heightmap with opengl 3.x. Its really hard to find something on google because tutorials are olds and they're all using different methods, im really lost and i dont know what to use at all. Here is my code that generates the heightmap (its basic) float[] vertexes = null; float[] textureCoords = null; for(int x = 0; x < this.m_size.width; x++) { for(int y = 0; y < this.m_size.height; y++) { vertexes ~= [x, 1.0f, y]; textureCoords ~= [cast(float)x / 50, cast(float)y / 50]; } } As you can see, i dont know how to apply the texture at all (i was using / 50 for my tests). Result of that code : I would like to have something very basic like : (you can find more pics in his blog) Edit : my texture size is 1024x1024.

    Read the article

  • OpenGL + Allegro. Moving from software drawing X Y to openGL is confusing

    - by Aaron
    Having a fair bit of trouble. I'm used to Allegro and drawing sprites on a bitmap buffer at X Y coords. Now I've started a test project with OpenGL and its weird. Basically, as far as I know, theirs many ways to draw stuff in OpenGL. At the moment, I think I'm creating a Quad? Whatever that is, and I think Ive given it a texture of a bitmap and them im drawing that: GLuint gl_image; bitmap = load_bitmap("cat.bmp", NULL); gl_image = allegro_gl_make_texture_ex(AGL_TEXTURE_MASKED, bitmap, GL_RGBA); glBindTexture(GL_TEXTURE_2D, gl_image); glBegin(GL_QUADS); glColor4ub(255, 255, 255, 255); glTexCoord2f(0, 0); glVertex3f(-0.5, 0.5, 0); glTexCoord2f(1, 0); glVertex3f(0.5, 0.5, 0); glTexCoord2f(1, 1); glVertex3f(0.5, -0.5, 0); glTexCoord2f(0, 1); glVertex3f(-0.5, -0.5, 0); glEnd(); So yeah. So I got a few questions: Is this the best way of drawing a sprite? Is it suitable? The big question: Can anyone help / Does anyone know any tutorials on this weird coordinate thing? If it even is that. It's vastly different from XY, but I want to learn it. I was thinking maybe I could learn how this weird positioning stuff works, and then write a function to try and translate it to X and Y coords. Thats about it. I'm still trying to figure it all out on my own but any contributions you guys can make would be greatly appreciated =D Thanks!

    Read the article

  • AABB - AABB Collision, which face do I hit?

    - by PeeS
    To allow my objects to slide when they collide, I need to : Know which face of the AABB they collide with. Calculate the normal to that face. Return the normal and calculate the impulse that to apply to the player's velocity. Question How can I calculate which face of the AABB I collided with, knowing that I have two AABB's colliding? One is the player and the other is a world object. Here's what that looks like (problem collision circled in white): Thank you for your help.

    Read the article

  • Line Intersection from parametric equation

    - by Sidar
    I'm sure this question has been asked before. However, I'm trying to connect the dots by translating an equation on paper into an actual function. I thought It would be interesting to ask here instead on the Math sites (since it's going to be used for games anyway ). Let's say we have our vector equation : x = s + Lr; where x is the resulting vector, s our starting point/vector. L our parameter and r our direction vector. The ( not sure it's called like this, please correct me ) normal equation is : x.n = c; If we substitute our vector equation we get: (s+Lr).n = c. We now need to isolate L which results in L = (c - s.n) / (r.n); L needs to be 0 < L < 1. Meaning it needs to be between 0 and 1. My question: I want to know what L is so if I were to substitute L for both vector equation (or two lines) they should give me the same intersection coordinates. That is if they intersect. But I can't wrap my head around on how to use this for two lines and find the parameter that fits the intersection point. Could someone with a simple example show how I could translate this to a function/method?

    Read the article

  • Rendering transparent textures in directX

    - by Vibhore Tanwer
    I am working with a directX application with WPF, I am facing a problem with videos and images that contains transparent pixels, I have to draw a color in background an then a video/image over it. What I expect is background color should be visible while playing video only non transparent pixels should be visible but what I get is a black background behind the video. I am using following settings on device to achieve alpha blending : device.RenderState.SourceBlend = Blend.SourceAlpha; device.RenderState.DestinationBlend = Blend.InvSourceAlpha; device.RenderState.AlphaBlendEnable = true; What am I missing here? What is the best approach to handle transparent videos? Any help will be of great value to me.

    Read the article

  • How can I replicate the look and limitations of the Super NES?

    - by Mikalichov
    I am looking to produce graphics with the same limitations / look that in the Super Nes era. I am specifically looking for graphics similar to Chrono Trigger / FF6. It would be a lot easier to do if I had an idea of the resolution / dpi I am supposed to use. I found that the technical specs for the SNES are: Progressive: 256 × 224, 512 × 224, 256 × 239, 512 × 239 Interlaced: 512 × 448, 512 × 478 But even by using these resolutions, it is pointless if I set it at 72dpi, as I will still have possibly very detailed graphics (that is the main thing, I don't want detailed graphics, I want to go pixelated). I figured it might be related to the sprite size limit, i.e.: Sprites can be 8 × 8, 16 × 16, 32 × 32, or 64 × 64 pixels, each using one of eight 16-color palettes and tiles from one of two blocks of 256 in VRAM. Up to 32 sprites and 34 8 × 8 sprite tiles may appear on any one line. This would work for sprites (characters, objects), but what about maps? Are they built entirely from 8x8 tiles? And then, at what resolution is the end result displayed? It might seem like I am giving the question and answers at the same time, but all of these are suppositions I am making, so could someone confirm or correct them?

    Read the article

  • most efficient AABB vs Ray collision algorithms

    - by Asher Einhorn
    Is there a known 'most efficient' algorithm for AABB vs Ray collision detection? I recently stumbled accross Arvo's AABB vs Sphere collision algorithm, and I am wondering if there is a similarly noteworthy algorithm for this. One must have condition for this algorithm is that I need to have the option of querying the result for the distance from the ray's origin to the point of collision. having said this, if there is another, faster algorithm which does not return distance, then in addition to posting one that does, also posting that algorithm would be very helpful indeed. Please also state what the function's return argument is, and how you use it to return distance or a 'no-collision' case. For example, does it have an out parameter for the distance as well as a bool return value? or does it simply return a float with the distance, vs a value of -1 for no collision? (For those that don't know: AABB = Axis Aligned Bounding Box)

    Read the article

  • Working out of a vertex array for destrucible objects

    - by bobobobo
    I have diamond-shaped polygonal bullets. There are lots of them on the screen. I did not want to create a vertex array for each, so I packed them into a single vertex array and they're all drawn at once. | bullet1.xyz | bullet1.rgb | bullet2.xyz | bullet2.rgb This is great for performance.. there is struct Bullet { vector<Vector3f*> verts ; // pointers into the vertex buffer } ; This works fine, the bullets can move and do collision detection, all while having their data in one place. Except when a bullet "dies" Then you have to clear a slot, and pack all the bullets towards the beginning of the array. Is this a good approach to handling lots of low poly objects? How else would you do it?

    Read the article

  • Finding diagonal objects of an object in 3d space

    - by samfisher
    Using Unity3d, I have a array which is having 8 GameObjects in grid and one object (which is already known) is in center like this where K is already known object. All objects are equidistant from their adjacent objects (even with the diagonal objects) which means (distance between 4 & K) == (distance between K & 3) = (distance between 2 & K) 1 2 3 4 K 5 6 7 8 I want to remove 1,3,6,8 from array (the diagonal objects). How can I check that at runtime? my problem is the order of objects {1-8} is not known so I need to check each object's position with K to see if it is a diagonal object or not. so what check should I put with the GameObjects (K and others) to verify if this object is in diagonal position Regards, Sam

    Read the article

  • Locomotion-system with irregular IK

    - by htaunay
    Im having some trouble with locomtions (Unity3D asset) IK feet placement. I wouldn't call it "very bad", but it definitely isn't as smooth as the Locomotion System Examples. The strangest behavior (that is probably linked to the problem) are the rendered foot markers that "guess" where the characters next step will be. In the demo, they are smooth and stable. However, in my project, they keep flickering, as if Locomotion changed its "guess" every frame, and sometimes, the automatic defined step is too close to the previous step, or sometimes, too distant, creating a very irregular pattern. The configuration is (apparently)Identical to the human example in the demo, so I guessing the problem is my model and/or animation. Problem is, I can't figure out was it is =S Has anyone experienced the same problem? I uploaded a video of the bug to help interpreting the issue (excuse the HORRIBLE quality, I was in a hurry).

    Read the article

  • DirectX 11 Constant Buffers vs Effect Framework

    - by Alex
    I'm having some trouble understanding the differences between using constant buffers or using the effect framework of DirectX11 for updating shader constants. From what I understand they both do exactly the same thing, although from reading the documentation it appears as if using effects is meant to be 'easier'. However they seem the same to me, one uses VSSetConstantBuffers and the other GetConstantBufferByName. Is there something I'm missing here?

    Read the article

  • (Where) Can I learn creating art for my 2D games?

    - by Poorly paid coder
    I'm currently bad at drawing. If I want to create something looking acceptable, it usually takes me hours and hours to fiddle around just to get the basic looks right. I think that I'm not completely skill-less, I just lack simple drawing techniques.. Am I a hopeless case? Where is a good place to start out in drawing for 2D games? I'd like to be able to create acceptably good backgrounds, terrains / tilemaps, characters and weapons

    Read the article

  • How are trajectories calculated and transmitted to other players in Multi-Player ?

    - by giulio
    I play alot of COD4. And can see tracers for gunfire, missles, care packages fall from helicopters etc. There is alot of activity. I am curious to know the algorithm (at a high level) that manages all this action when you have 20 people on a map shooting each other to death ? This question touches on the subject but doesn't ask for a more in-depth answer as to how you the developers go about calculating and transmitting movement and collision detection for projectiles, be it missles/bullets or any other object that is flying through the air in real-time.

    Read the article

  • Scan-Line Z-Buffering Dilemma

    - by Belgin
    I have a set of vertices in 3D space, and for each I retain the following information: Its 3D coordinates (x, y, z). A list of pointers to some of the other vertices with which it's connected by edges. Right now, I'm doing perspective projection with the projecting plane being XY and the eye placed somewhere at (0, 0, d), with d < 0. By doing Z-Buffering, I need to find the depth of the point of a polygon (they're all planar) which corresponds to a certain pixel on the screen so I can hide the surfaces that are not visible. My questions are the following: How do I determine to which polygon does a pixel belong to so I could use the formula of the plane which contains the polygon to find the Z-coordinate? Are my data structures correct? Do I need to store something else entirely in order for this to work? I'm just projecting the vertices onto the projection plane and joining them with lines based on the pointer lists.

    Read the article

  • CCSpriteHole in cocos2d 2.0?

    - by rakkarage
    i was using this cocos2d class CCSpriteHole in cocos2d 1.0 fine... http://jpsarda.tumblr.com/post/15779708304/new-cocos2d-iphone-extensions-a-progress-bar-and-a i am trying to convert it to cocos2d 2.0... i got it to compile by changing glVertexPointer to glVertexAttribPointer like in the 2.0 version of CCSpriteScale9 here http://jpsarda.tumblr.com/post/9162433577/scale9grid-for-cocos2d and changing contentSizeInPixels_ to contentSize_... -(id) init { if( (self=[super init]) ) { opacityModifyRGB_ = YES; opacity_ = 255; color_ = colorUnmodified_ = ccWHITE; capSize=capSizeInPixels=CGSizeZero; //Not used blendFunc_.src = CC_BLEND_SRC; blendFunc_.dst = CC_BLEND_DST; // update texture (calls updateBlendFunc) [self setTexture:nil]; // default transform anchor anchorPoint_ = ccp(0.5f, 0.5f); vertexDataCount=24; vertexData = (ccV2F_C4F_T2F*) malloc(vertexDataCount * sizeof(ccV2F_C4F_T2F)); [self setTextureRectInPixels:CGRectZero untrimmedSize:CGSizeZero]; } return self; } -(id) initWithTexture:(CCTexture2D*)texture rect:(CGRect)rect { NSAssert(texture!=nil, @"Invalid texture for sprite"); // IMPORTANT: [self init] and not [super init]; if( (self = [self init]) ) { [self setTexture:texture]; [self setTextureRect:rect]; } return self; } -(id) initWithTexture:(CCTexture2D*)texture { NSAssert(texture!=nil, @"Invalid texture for sprite"); CGRect rect = CGRectZero; rect.size = texture.contentSize; return [self initWithTexture:texture rect:rect]; } -(id) initWithFile:(NSString*)filename { NSAssert(filename!=nil, @"Invalid filename for sprite"); CCTexture2D *texture = [[CCTextureCache sharedTextureCache] addImage: filename]; if( texture ) return [self initWithTexture:texture]; return nil; } +(id)spriteWithFile:(NSString*)f { return [[self alloc] initWithFile:f]; } - (void) dealloc { if (vertexData) free(vertexData); } -(void) updateColor { ccColor4F color4; color4.r=(float)color_.r/255.0f; color4.g=(float)color_.g/255.0f; color4.b=(float)color_.b/255.0f; color4.a=(float)opacity_/255.0f; for (int i=0; i<vertexDataCount; i++) { vertexData[i].colors=color4; } } -(void)updateTextureCoords:(CGRect)rect { CCTexture2D *tex = texture_; if(!tex) return; float atlasWidth = (float)tex.pixelsWide; float atlasHeight = (float)tex.pixelsHigh; float left,right,top,bottom; left = rect.origin.x/atlasWidth; right = left + rect.size.width/atlasWidth; top = rect.origin.y/atlasHeight; bottom = top + rect.size.height/atlasHeight; // // |/|/|/| // CGSize capTexCoordsSize=CGSizeMake(capSizeInPixels.width/atlasWidth, capSizeInPixels.height/atlasHeight); // From left to right //Top band // Left vertexData[0].texCoords=(ccTex2F){left,top}; vertexData[1].texCoords=(ccTex2F){left,top+capTexCoordsSize.height}; vertexData[2].texCoords=(ccTex2F){left+capTexCoordsSize.width,top}; vertexData[3].texCoords=(ccTex2F){left+capTexCoordsSize.width,top+capTexCoordsSize.height}; // Center vertexData[4].texCoords=(ccTex2F){right-capTexCoordsSize.width,top}; vertexData[5].texCoords=(ccTex2F){right-capTexCoordsSize.width,top+capTexCoordsSize.height}; // Right vertexData[6].texCoords=(ccTex2F){right,top}; vertexData[7].texCoords=(ccTex2F){right,top+capTexCoordsSize.height}; //Center band // Left vertexData[8].texCoords=(ccTex2F){left,bottom-capTexCoordsSize.height}; vertexData[9].texCoords=(ccTex2F){left,top+capTexCoordsSize.height}; vertexData[10].texCoords=(ccTex2F){left+capTexCoordsSize.width,bottom-capTexCoordsSize.height}; vertexData[11].texCoords=(ccTex2F){left+capTexCoordsSize.width,top+capTexCoordsSize.height}; // Center vertexData[12].texCoords=(ccTex2F){right-capTexCoordsSize.width,bottom-capTexCoordsSize.height}; vertexData[13].texCoords=(ccTex2F){right-capTexCoordsSize.width,top+capTexCoordsSize.height}; // Right vertexData[14].texCoords=(ccTex2F){right,bottom-capTexCoordsSize.height}; vertexData[15].texCoords=(ccTex2F){right,top+capTexCoordsSize.height}; //Bottom band //Left vertexData[16].texCoords=(ccTex2F){left,bottom}; vertexData[17].texCoords=(ccTex2F){left,bottom-capTexCoordsSize.height}; vertexData[18].texCoords=(ccTex2F){left+capTexCoordsSize.width,bottom}; vertexData[19].texCoords=(ccTex2F){left+capTexCoordsSize.width,bottom-capTexCoordsSize.height}; // Center vertexData[20].texCoords=(ccTex2F){right-capTexCoordsSize.width,bottom}; vertexData[21].texCoords=(ccTex2F){right-capTexCoordsSize.width,bottom-capTexCoordsSize.height}; // Right vertexData[22].texCoords=(ccTex2F){right,bottom}; vertexData[23].texCoords=(ccTex2F){right,bottom-capTexCoordsSize.height}; } -(void) updateVertices { float left=0; //-spriteSizeInPixels.width*0.5f; float right=left+contentSize_.width; float bottom=0; //-spriteSizeInPixels.height*0.5f; float top=bottom+contentSize_.height; float holeLeft=holeRect.origin.x*CC_CONTENT_SCALE_FACTOR(); float holeRight=holeLeft+holeRect.size.width*CC_CONTENT_SCALE_FACTOR(); float holeBottom=holeRect.origin.y*CC_CONTENT_SCALE_FACTOR(); float holeTop=holeBottom+holeRect.size.height*CC_CONTENT_SCALE_FACTOR(); // // |/|/|/| // // From left to right //Top band // Left vertexData[0].vertices=(ccVertex2F){left,top}; vertexData[1].vertices=(ccVertex2F){left,holeTop}; vertexData[2].vertices=(ccVertex2F){holeLeft,top}; vertexData[3].vertices=(ccVertex2F){holeLeft,holeTop}; // Center vertexData[4].vertices=(ccVertex2F){holeRight,top}; vertexData[5].vertices=(ccVertex2F){holeRight,holeTop}; // Right vertexData[6].vertices=(ccVertex2F){right,top}; vertexData[7].vertices=(ccVertex2F){right,holeTop}; //Center band // Left vertexData[8].vertices=(ccVertex2F){left,holeBottom}; vertexData[9].vertices=(ccVertex2F){left,holeTop}; vertexData[10].vertices=(ccVertex2F){holeLeft,holeBottom}; vertexData[11].vertices=(ccVertex2F){holeLeft,holeTop}; // Center vertexData[12].vertices=(ccVertex2F){holeRight,holeBottom}; vertexData[13].vertices=(ccVertex2F){holeRight,holeTop}; // Right vertexData[14].vertices=(ccVertex2F){right,holeBottom}; vertexData[15].vertices=(ccVertex2F){right,holeTop}; //Bottom band //Left vertexData[16].vertices=(ccVertex2F){left,bottom}; vertexData[17].vertices=(ccVertex2F){left,holeBottom}; vertexData[18].vertices=(ccVertex2F){holeLeft,bottom}; vertexData[19].vertices=(ccVertex2F){holeLeft,holeBottom}; // Center vertexData[20].vertices=(ccVertex2F){holeRight,bottom}; vertexData[21].vertices=(ccVertex2F){holeRight,holeBottom}; // Right vertexData[22].vertices=(ccVertex2F){right,bottom}; vertexData[23].vertices=(ccVertex2F){right,holeBottom}; } -(void) setHole:(CGRect)r inRect:(CGRect)totalSurface { holeRect=r; self.contentSize=totalSurface.size; holeRect.origin=ccpSub(holeRect.origin,totalSurface.origin); CGPoint holeCenter=ccp(holeRect.origin.x+holeRect.size.width*0.5f,holeRect.origin.y+holeRect.size.height*0.5f); self.anchorPoint=ccp(holeCenter.x/contentSize_.width,holeCenter.y/contentSize_.height); //[self updateTextureCoords:rectInPixels_]; [self updateVertices]; [self updateColor]; } -(void) draw { BOOL newBlend = NO; if( blendFunc_.src != CC_BLEND_SRC || blendFunc_.dst != CC_BLEND_DST ) { newBlend = YES; glBlendFunc( blendFunc_.src, blendFunc_.dst ); } glBindTexture(GL_TEXTURE_2D, [texture_ name]); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[0].vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[0].texCoords); glVertexAttribPointer(kCCVertexAttrib_Color, 4, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[0].colors); glDrawArrays(GL_TRIANGLE_STRIP, 0, 8); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[8].vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[8].texCoords); glVertexAttribPointer(kCCVertexAttrib_Color, 4, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[8].colors); glDrawArrays(GL_TRIANGLE_STRIP, 0, 8); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[16].vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[16].texCoords); glVertexAttribPointer(kCCVertexAttrib_Color, 4, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[16].colors); glDrawArrays(GL_TRIANGLE_STRIP, 0, 8); if( newBlend ) glBlendFunc(CC_BLEND_SRC, CC_BLEND_DST); } -(void)setTextureRectInPixels:(CGRect)rect untrimmedSize:(CGSize)untrimmedSize { rectInPixels_ = rect; rect_ = CC_RECT_PIXELS_TO_POINTS( rect ); //[self setContentSizeInPixels:untrimmedSize]; [self updateTextureCoords:rectInPixels_]; } -(void)setTextureRect:(CGRect)rect { CGRect rectInPixels = CC_RECT_POINTS_TO_PIXELS( rect ); [self setTextureRectInPixels:rectInPixels untrimmedSize:rectInPixels.size]; } // // RGBA protocol // #pragma mark CCSpriteHole - RGBA protocol -(GLubyte) opacity { return opacity_; } -(void) setOpacity:(GLubyte) anOpacity { opacity_ = anOpacity; // special opacity for premultiplied textures if( opacityModifyRGB_ ) [self setColor: (opacityModifyRGB_ ? colorUnmodified_ : color_ )]; [self updateColor]; } - (ccColor3B) color { if(opacityModifyRGB_){ return colorUnmodified_; } return color_; } -(void) setColor:(ccColor3B)color3 { color_ = colorUnmodified_ = color3; if( opacityModifyRGB_ ){ color_.r = color3.r * opacity_/255; color_.g = color3.g * opacity_/255; color_.b = color3.b * opacity_/255; } [self updateColor]; } -(void) setOpacityModifyRGB:(BOOL)modify { ccColor3B oldColor = self.color; opacityModifyRGB_ = modify; self.color = oldColor; } -(BOOL) doesOpacityModifyRGB { return opacityModifyRGB_; } #pragma mark CCSpriteHole - CocosNodeTexture protocol -(void) updateBlendFunc { if( !texture_ || ! [texture_ hasPremultipliedAlpha] ) { blendFunc_.src = GL_SRC_ALPHA; blendFunc_.dst = GL_ONE_MINUS_SRC_ALPHA; [self setOpacityModifyRGB:NO]; } else { blendFunc_.src = CC_BLEND_SRC; blendFunc_.dst = CC_BLEND_DST; [self setOpacityModifyRGB:YES]; } } -(void) setTexture:(CCTexture2D*)texture { // accept texture==nil as argument NSAssert( !texture || [texture isKindOfClass:[CCTexture2D class]], @"setTexture expects a CCTexture2D. Invalid argument"); texture_ = texture; [self updateBlendFunc]; } -(CCTexture2D*) texture { return texture_; } @end but now positioning and scaling seem to not work? and it starts in the wrong position... but changing the opacity still works. so i was wondering if anyone can see why my 2.0 version is not working? or if maybe there is a better way to do a sprite hole with cocos2d/opengl 2.0? shaders? thanks

    Read the article

  • Particle trajectory smoothing: where to do the simulation?

    - by nkint
    I have a particle system in which I have particles that are moving to a target and the new targets are received via network. The list of new target are some noisy coordinates of a moving target stored in the server that I want to smooth in the client. For doing the smoothing and the particle I wrote a simple particle engine with standard euler integration model. So, my pseudo code is something like that: # pseudo code class Particle: def update(): # do euler motion model integration: # if the distance to the target is more than a limit # add a new force to the accelleration # seeking the target, # and add the accelleration to velocity # and velocity to the position positionHistory.push_back(position); if history.length > historySize : history.pop_front() class ParticleEngine: particleById = dict() # an associative array # where the keys are the id # and particle istances are sotred as values # this method is called each time a new tcp packet is received and parsed def setNetTarget(int id, Vec2D new_target): particleById[id].setNewTarget(new_target) # this method is called each new frame def draw(): for p in particleById.values: p.update() beginVertex(LINE_STRIP) for v in p.positionHistory: vertex(v.x, v.y) endVertex() The new target that are arriving are noisy but setting some accelleration/velocity parameters let the particle to have a smoothed trajectories. But if a particle trajectory is a circle after a while the particle position converge to the center (a normal behaviour of euler integration model). So I decided to change the simulation and use some other interpolation (spline?) or smooth method (kalman filter?) between the targets. Something like: switch( INTERPOLATION_MODEL ): case EULER_MOTION: ... case HERMITE_INTERPOLATION: ... case SPLINE_INTERPOLATION: ... case KALMAN_FILTER_SMOOTHING: ... Now my question: where to write the motion simulation / trajectory interpolation? In the Particle? So I will have some Particle subclass like ParticleEuler, ParticleSpline, ParticleKalman, etc..? Or in the particle engine?

    Read the article

  • Explaining Asteroids Movement code

    - by Moaz ELdeen
    I'm writing an Asteroids Atari clone, and I want to figure out how the AI for the asteroids is done. I have came across that piece of code, but I can't get what it does 100% if ((float)rand()/(float)RAND_MAX < 0.5) { m_Pos.x = -app::getWindowWidth() / 2; if ((float)rand()/(float)RAND_MAX < 0.5) m_Pos.x = app::getWindowWidth() / 2; m_Pos.y = (int) ((float)rand()/(float)RAND_MAX * app::getWindowWidth()); } else { m_Pos.x = (int) ((float)rand()/(float)RAND_MAX * app::getWindowWidth()); m_Pos.y = -app::getWindowHeight() / 2; if (rand() < 0.5) m_Pos.y = app::getWindowHeight() / 2; } m_Vel.x = (float)rand()/(float)RAND_MAX * 2; if ((float)rand()/(float)RAND_MAX < 0.5) { m_Vel.x = -m_Vel.x; } m_Vel.y =(float)rand()/(float)RAND_MAX * 2; if ((float)rand()/(float)RAND_MAX < 0.5) m_Vel.y = -m_Vel.y;

    Read the article

  • Keypress Left is called twice in Update when key is pressed only once

    - by Simran kaur
    I have a piece of code that is changing the position of player when left key is pressed. It is inside of Update() function. I know, Update is called multiple times, but since I have an ifstatement to check if left arrow is pressed, it should update only once. I have tested using print statement that once pressed, it gets called twice. Problem: Position updated twice when key is pressed only once. Below given is the structure of my code: void Update() { if (Input.GetKeyDown (KeyCode.LeftArrow)) { print ("PRESSEEEEEEEEEEEEEEEEEEDDDDDDDDDDDDDD"); } } I looked up on web and what was suggested id this: if (Event.current.type == EventType.KeyDown && Event.current.keyCode == KeyCode.LeftArrow) { print("pressed"); } But, It gives me an error that says: Object reference not set to instance of an object How can I fix this?

    Read the article

  • 3d Picking under reticle

    - by Wolftousen
    i'm currently trying to work out some 3d picking code that I started years ago, but then lost interested the assignment was completed (this part wasn't actually part of the assignment). I am not using the mouse coords for picking, i'm just using the position in 3d space and a ray directly out from there. A small hitch though is that I want to use a cone and not a ray. Here are the variables i'm using: float iReticleSlope = 95/3000; //inverse reticle slope float baseReticle = 1; //radius of the reticle at z = 0 float maxRange = 3000; //max range to target Quaternion orientation; //the cameras orientation Vector3d position; //the cameras position Then I loop through each object in the world: Vector3d transformed; //object position after transformations float d, r; //holder variables for(i = 0; i < objects.length; i++) { transformed = position - objects[i].position; //transform the position relative to camera orientation.multiply(transformed); //orient the object relative to the camera if(transformed.z < 0) { d = sqrt(transformed[0] * transformed[0] + transformed[1] * transformed[1]); r = -transformed[2] * iReticleSlope + objects[i].radius; if(d < r && -transformed[2] - objects[i].radius <= maxRange) { //the object is under the reticle } else { //the object is not under the reticle } } else { //the object is not under the reticle } } Now this all works fine and dandy until the window ratio doesn't match the resolution ratio. Is there any simple way to account for that

    Read the article

< Previous Page | 359 360 361 362 363 364 365 366 367 368 369 370  | Next Page >