Search Results

Search found 1638 results on 66 pages for 'multithreading'.

Page 37/66 | < Previous Page | 33 34 35 36 37 38 39 40 41 42 43 44  | Next Page >

  • How can one manage to fully use the newly enhanced Parallelism features in .NET 4.0?

    - by Will Marcouiller
    I am pretty much interested into using the newly enhanced Parallelism features in .NET 4.0. I have also seen some possibilities of using it in F#, as much as in C#. Despite, I can only see what PLINQ has to offer with, for example, the following: var query = from c in Customers.AsParallel() where (c.Name.Contains("customerNameLike") select c; There must for sure be some other use of this parallelism thing. Have you any other examples of using it? Is this particularly turned toward PLINQ, or are there other usage as easy as PLINQ? Thanks! =)

    Read the article

  • remote function with pthread

    - by user311130
    Hi all, I wrote some code in c, using pthread (I configured the linker and compiler in eclipse IDE first). #include <pthread.h> #include "starter.h" #include "UI.h" Page* MM; Page* Disk; PCB* all_pcb_array; void* display_prompt(void *id){ printf("Hello111\n"); return NULL; } int main(int argc, char** argv) { printf("Hello\n"); pthread_t *thread = (pthread_t*) malloc (sizeof(pthread_t)); pthread_create(thread, NULL, display_prompt, NULL); printf("Hello\n"); return 1; } that works fine. However, when I move display_prompt to UI.h no "Hello111 " output is printed. anyone know how to solve that? Elad

    Read the article

  • Parallel Task In C#.net

    - by Test123
    I have C#.net application. I wanted to run my application In Thread. But because of third party dll it dont allow to use application in multiThread. There is one object in thrid party dll ,which only allow to create instance at one time only. When i manually run application exe instnace multiple time & process my data it process successfully..(might because of each exe run with its application domain) Same thing i require to implement from C# code. for that i have created dll which can accessible by Type.GetTypeFromProgID()..but multiple dll instnace creating same problem. Is there any way i could achive manual parallelism through code to process same exe code in multiple application domain?

    Read the article

  • Testing approach for multi-threaded software

    - by Shane MacLaughlin
    I have a piece of mature geospatial software that has recently had areas rewritten to take better advantage of the multiple processors available in modern PCs. Specifically, display, GUI, spatial searching, and main processing have all been hived off to seperate threads. The software has a pretty sizeable GUI automation suite for functional regression, and another smaller one for performance regression. While all automated tests are passing, I'm not convinced that they provide nearly enough coverage in terms of finding bugs relating race conditions, deadlocks, and other nasties associated with multi-threading. What techniques would you use to see if such bugs exist? What techniques would you advocate for rooting them out, assuming there are some in there to root out? What I'm doing so far is running the GUI functional automation on the app running under a debugger, such that I can break out of deadlocks and catch crashes, and plan to make a bounds checker build and repeat the tests against that version. I've also carried out a static analysis of the source via PC-Lint with the hope of locating potential dead locks, but not had any worthwhile results. The application is C++, MFC, mulitple document/view, with a number of threads per doc. The locking mechanism I'm using is based on an object that includes a pointer to a CMutex, which is locked in the ctor and freed in the dtor. I use local variables of this object to lock various bits of code as required, and my mutex has a time out that fires my a warning if the timeout is reached. I avoid locking where possible, using resource copies where possible instead. What other tests would you carry out?

    Read the article

  • ReaderWriterLockSlim and Pulse/Wait

    - by Jono
    Is there an equivalent of Monitor.Pulse and Monitor.Wait that I can use in conjunction with a ReaderWriterLockSlim? I have a class where I've encapsulated multi-threaded access to an underlying queue. To enqueue something, I acquire a lock that protects the underlying queue (and a couple of other objects) then add the item and Monitor.Pulse the locked object to signal that something was added to the queue. public void Enqueue(ITask task) { lock (mutex) { underlying.Enqueue(task); Monitor.Pulse(mutex); } } On the other end of the queue, I have a single background thread that continuously processes messages as they arrive on the queue. It uses Monitor.Wait when there are no items in the queue, to avoid unnecessary polling. (I consider this to be good design, but any flames (within reason) are welcome if they help me learn otherwise.) private void DequeueForProcessing(object state) { while (true) { ITask task; lock (mutex) { while (underlying.Count == 0) { Monitor.Wait(mutex); } task = underlying.Dequeue(); } Process(task); } } As more operations are added to this class (requiring read-only access to the lock protected underlying), someone suggested using ReaderWriterLockSlim. I've never used the class before, and assuming it can offer some performance benefit, I'm not against it, but only if I can keep the Pulse/Wait design.

    Read the article

  • Returning from method inside a @synchronized block

    - by Michael Waterfall
    I'd just like to know if it's advised to return from a method within a @synchronized block? For example: - (id)test { @synchronized(self) { if (a) return @"A"; else return @"B"; } } As opposed to: - (id)test { NSString *value; @synchronized(self) { if (a) value = @"A"; else value = @"B"; } return value; } This sample is rather simplistic, but sometimes in a complex method it would make things simpler to be able to return from within a @synchronized block.

    Read the article

  • Java: How to test methods that call System.exit()?

    - by Chris Conway
    I've got a few methods that should call System.exit() on certain inputs. Unfortunately, testing these cases causes JUnit to terminate! Putting the method calls in a new Thread doesn't seem to help, since System.exit() terminates the JVM, not just the current thread. Are there any common patterns for dealing with this? For example, can I subsitute a stub for System.exit()? [EDIT] The class in question is actually a command-line tool which I'm attempting to test inside JUnit. Maybe JUnit is simply not the right tool for the job? Suggestions for complementary regression testing tools are welcome (preferably something that integrates well with JUnit and EclEmma).

    Read the article

  • Which async call use for DB connection and still responsive GUI?--

    - by Jade
    Hi, My application connects to MSSQL but sometimes it takes a while and the GUI is getting frozen. I would like to do the connection on the other thread, I guess BeginInvoke would be the best way (I know about background worker but I would like to learn this). I have studied MSDN page but I did not understand what is the best way to use? They also say that you can use only callback when the thread that called the async.method does not need to know the results...I dont understand it as I believe I can set some variable in the other thread to "pass" the result well. I would just need the GUI to be not frozen while the connection is being established. Thank you for your advice.

    Read the article

  • Producer and Consumer Threads Hang

    - by user972425
    So this is my first foray into threads and thus far it is driving me insane. My problem seems to be some kind of synchronization error that causes my consumer thread to hang. I've looked at other code and just about everything I could find and I can't find what my error is. There also seems to be a discrepancy between the code being executed in Eclipse and via javac in the command line. Intention - Using a bounded buffer (with 1000 slots) create and consume 1,000,000 doubles. Use only notify and wait. Problem - In Eclipse the consumer thread will occasionally hang around 940,000 iterations, but other times completes. In the command line the consumer thread always hangs. Output - Eclipse - Successful Producer has produced 100000 doubles. Consumer has consumed 100000 doubles. Producer has produced 200000 doubles. Consumer has consumed 200000 doubles. Producer has produced 300000 doubles. Consumer has consumed 300000 doubles. Producer has produced 400000 doubles. Consumer has consumed 400000 doubles. Producer has produced 500000 doubles. Consumer has consumed 500000 doubles. Producer has produced 600000 doubles. Consumer has consumed 600000 doubles. Producer has produced 700000 doubles. Consumer has consumed 700000 doubles. Producer has produced 800000 doubles. Consumer has consumed 800000 doubles. Producer has produced 900000 doubles. Consumer has consumed 900000 doubles. Producer has produced 1000000 doubles. Producer has produced all items. Consumer has consumed 1000000 doubles. Consumer has consumed all items. Exitting Output - Command Line/Eclipse - Unsuccessful Producer has produced 100000 doubles. Consumer has consumed 100000 doubles. Producer has produced 200000 doubles. Consumer has consumed 200000 doubles. Producer has produced 300000 doubles. Consumer has consumed 300000 doubles. Producer has produced 400000 doubles. Consumer has consumed 400000 doubles. Producer has produced 500000 doubles. Consumer has consumed 500000 doubles. Producer has produced 600000 doubles. Consumer has consumed 600000 doubles. Producer has produced 700000 doubles. Consumer has consumed 700000 doubles. Producer has produced 800000 doubles. Consumer has consumed 800000 doubles. Producer has produced 900000 doubles. Consumer has consumed 900000 doubles. Producer has produced 1000000 doubles. Producer has produced all items. At this point it just sits and hangs. Any help you can provide about where I might have misstepped is greatly appreciated. Code - Producer thread import java.text.DecimalFormat;+ " doubles. Cumulative value of generated items= " + temp) import java.util.*; import java.io.*; public class producer implements Runnable{ private buffer produceBuff; public producer (buffer buff){ produceBuff = buff; } public void run(){ Random random = new Random(); double temp = 0, randomElem; DecimalFormat df = new DecimalFormat("#.###"); for(int i = 1; i<=1000000; i++) { randomElem = (Double.parseDouble( df.format(random.nextDouble() * 100.0))); try { produceBuff.add(randomElem); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } temp+= randomElem; if(i%100000 == 0) {produceBuff.print("Producer has produced "+ i ); } } produceBuff.print("Producer has produced all items."); } } Consumer thread import java.util.*; import java.io.*; public class consumer implements Runnable{ private buffer consumBuff; public consumer (buffer buff){ consumBuff = buff; } public void run(){ double temp = 0; for(int i = 1; i<=1000000; i++) { try { temp += consumBuff.get(); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } if(i%100000 == 0) {consumBuff.print("Consumer has consumed "+ i ); //if(i>999000) //{System.out.println("Consuming item " + i);} } consumBuff.print("Consumer has consumed all items."); } } Buffer/Main import java.util.*; import java.io.*; public class buffer { private double buff[]; private int addPlace; private int getPlace; public buffer(){ buff = new double[1000]; addPlace = 0; getPlace = 0; } public synchronized void add(double add) throws InterruptedException{ if((addPlace+1 == getPlace) ) { try { wait(); } catch (InterruptedException e) {throw e;} } buff[addPlace] = add; addPlace = (addPlace+1)%1000; notify(); } public synchronized double get()throws InterruptedException{ if(getPlace == addPlace) { try { wait(); } catch (InterruptedException e) {throw e;} } double temp = buff[getPlace]; getPlace = (getPlace+1)%1000; notify(); return temp; } public synchronized void print(String view) { System.out.println(view); } public static void main(String args[]){ buffer buf = new buffer(); Thread produce = new Thread(new producer(buf)); Thread consume = new Thread(new consumer(buf)); produce.start(); consume.start(); try { produce.join(); consume.join(); } catch (InterruptedException e) {return;} System.out.println("Exitting"); } }

    Read the article

  • Class initialization and synchronized class method

    - by nybon
    Hi there, In my application, there is a class like below: public class Client { public synchronized static print() { System.out.println("hello"); } static { doSomething(); // which will take some time to complete } } This class will be used in a multi thread environment, many threads may call the Client.print() method simultaneously. I wonder if there is any chance that thread-1 triggers the class initialization, and before the class initialization complete, thread-2 enters into print method and print out the "hello" string? I see this behavior in a production system (64 bit JVM + Windows 2008R2), however, I cannot reproduce this behavior with a simple program in any environments. In Java language spec, section 12.4.1 (http://java.sun.com/docs/books/jls/second_edition/html/execution.doc.html), it says: A class or interface type T will be initialized immediately before the first occurrence of any one of the following: T is a class and an instance of T is created. T is a class and a static method declared by T is invoked. A static field declared by T is assigned. A static field declared by T is used and the reference to the field is not a compile-time constant (§15.28). References to compile-time constants must be resolved at compile time to a copy of the compile-time constant value, so uses of such a field never cause initialization. According to this paragraph, the class initialization will take place before the invocation of the static method, however, it is not clear if the class initialization need to be completed before the invocation of the static method. JVM should mandate the completion of class initialization before entering its static method according to my intuition, and some of my experiment supports my guess. However, I did see the opposite behavior in another environment. Can someone shed me some light on this? Any help is appreciated, thanks.

    Read the article

  • help me reason about F# threads

    - by Kevin Cantu
    In goofing around with some F# (via MonoDevelop), I have written a routine which lists files in a directory with one thread: let rec loop (path:string) = Array.append ( path |> Directory.GetFiles ) ( path |> Directory.GetDirectories |> Array.map loop |> Array.concat ) And then an asynchronous version of it: let rec loopPar (path:string) = Array.append ( path |> Directory.GetFiles ) ( let paths = path |> Directory.GetDirectories if paths <> [||] then [| for p in paths -> async { return (loopPar p) } |] |> Async.Parallel |> Async.RunSynchronously |> Array.concat else [||] ) On small directories, the asynchronous version works fine. On bigger directories (e.g. many thousands of directories and files), the asynchronous version seems to hang. What am I missing? I know that creating thousands of threads is never going to be the most efficient solution -- I only have 8 CPUs -- but I am baffled that for larger directories the asynchronous function just doesn't respond (even after a half hour). It doesn't visibly fail, though, which baffles me. Is there a thread pool which is exhausted? How do these threads actually work?

    Read the article

  • How would you implement this "WorkerChain" functionality in .NET?

    - by Dan Tao
    Sorry for the vague question title -- not sure how to encapsulate what I'm asking below succinctly. (If someone with editing privileges can think of a more descriptive title, feel free to change it.) The behavior I need is this. I am envisioning a worker class that accepts a single delegate task in its constructor (for simplicity, I would make it immutable -- no more tasks can be added after instantiation). I'll call this task T. The class should have a simple method, something like GetToWork, that will exhibit this behavior: If the worker is not currently running T, then it will start doing so right now. If the worker is currently running T, then once it is finished, it will start T again immediately. GetToWork can be called any number of times while the worker is running T; the simple rule is that, during any execution of T, if GetToWork was called at least once, T will run again upon completion (and then if GetToWork is called while T is running that time, it will repeat itself again, etc.). Now, this is pretty straightforward with a boolean switch. But this class needs to be thread-safe, by which I mean, steps 1 and 2 above need to comprise atomic operations (at least I think they do). There is an added layer of complexity. I have need of a "worker chain" class that will consist of many of these workers linked together. As soon as the first worker completes, it essentially calls GetToWork on the worker after it; meanwhile, if its own GetToWork has been called, it restarts itself as well. Logically calling GetToWork on the chain is essentially the same as calling GetToWork on the first worker in the chain (I would fully intend that the chain's workers not be publicly accessible). One way to imagine how this hypothetical "worker chain" would behave is by comparing it to a team in a relay race. Suppose there are four runners, W1 through W4, and let the chain be called C. If I call C.StartWork(), what should happen is this: If W1 is at his starting point (i.e., doing nothing), he will start running towards W2. If W1 is already running towards W2 (i.e., executing his task), then once he reaches W2, he will signal to W2 to get started, immediately return to his starting point and, since StartWork has been called, start running towards W2 again. When W1 reaches W2's starting point, he'll immediately return to his own starting point. If W2 is just sitting around, he'll start running immediately towards W3. If W2 is already off running towards W3, then W2 will simply go again once he's reached W3 and returned to his starting point. The above is probably a little convoluted and written out poorly. But hopefully you get the basic idea. Obviously, these workers will be running on their own threads. Also, I guess it's possible this functionality already exists somewhere? If that's the case, definitely let me know!

    Read the article

  • Boost::Thread or fork()

    - by osmano807
    I'm testing boost::thread on a system. It happens that I needed to act as a fork(), because one thread modifies the other variables, even member variables of class I do the project using fork() or is there some alternative still using boost::thread Basically I run this program in Linux and maybe FreeBSD

    Read the article

  • Limiting the number of threads executing a method at a single time.

    - by Steve_
    We have a situation where we want to limit the number of paralell requests our application can make to its application server. We have potentially 100+ background threads running that will want to at some point make a call to the application server but only want 5 threads to be able to call SendMessage() (or whatever the method will be) at any one time. What is the best way of achieving this? I have considered using some sort of gatekeeper object that blocks threads coming into the method until the number of threads executing in it has dropped below the threshold. Would this be a reasonable solution or am I overlooking the fact that this might be dirty/dangerous? We are developing in C#.NET 3.5. Thanks, Steve

    Read the article

  • Is this BlockingQueue susceptible to deadlock?

    - by unforgiven3
    I've been using this code as a queue that blocks on Dequeue() until an element is enqueued. I've used this code for a few years now in several projects, all with no issues... until now. I'm seeing a deadlock in some code I'm writing now, and in investigating the problem, my 'eye of suspicion' has settled on this BlockingQueue<T>. I can't prove it, so I figured I'd ask some people smarter than me to review it for potential issues. Can you guys see anything that might cause a deadlock in this code? public class BlockingQueue<T> { private readonly Queue<T> _queue; private readonly ManualResetEvent _event; /// <summary> /// Constructor /// </summary> public BlockingQueue() { _queue = new Queue<T>(); _event = new ManualResetEvent(false); } /// <summary> /// Read-only property to get the size of the queue /// </summary> public int Size { get { int count; lock (_queue) { count = _queue.Count; } return count; } } /// <summary> /// Enqueues element on the queue /// </summary> /// <param name="element">Element to enqueue</param> public void Enqueue(T element) { lock (_queue) { _queue.Enqueue(element); _event.Set(); } } /// <summary> /// Dequeues an element from the queue /// </summary> /// <returns>Dequeued element</returns> public T Dequeue() { T element; while (true) { if (Size == 0) { _event.Reset(); _event.WaitOne(); } lock (_queue) { if (_queue.Count == 0) continue; element = _queue.Dequeue(); break; } } return element; } /// <summary> /// Clears the queue /// </summary> public void Clear() { lock (_queue) { _queue.Clear(); } } }

    Read the article

  • Which is more robust and scalable method?

    - by Dhruv Arya
    I am implementing a distributed chat system, in this system we have the following options : Make the client and server running at each node run as separate threads. The server acting as the receiver will be running as the daemon thread and the client taking the user input as a normal thread. Fork two processes one for the client and one for the server. I am not able to reason out with which one to proceed. Any insight would be great !

    Read the article

  • How to synchronize threads in python?

    - by Eric
    I have two threads in python (2.7). I start them at the beginning of my program. While they execute, my program reaches the end and exits, killing both of my threads before waiting for resolution. I'm trying to figure out how to wait for both threads to finish before exiting. def connect_cam(ip, execute_lock): try: conn = TelnetConnection.TelnetClient(ip) execute_lock.acquire() ExecuteUpdate(conn, ip) execute_lock.release() except ValueError: pass execute_lock = thread.allocate_lock() thread.start_new_thread(connect_cam, ( headset_ip, execute_lock ) ) thread.start_new_thread(connect_cam, ( handcam_ip, execute_lock ) ) In .NET I would use something like WaitAll() but I haven't found the equivalent in python. In my scenario, TelnetClient is a long operation which may result in a failure after a timeout.

    Read the article

  • Java threads, wait time always 00:00:00-Producer/Consumer

    - by user3742254
    I am currently doing a producer consumer problem with a number of threads and have had to set priorities and waits to them to ensure that one thread, the security thread, runs last. I have managed to do this and I have managed to get the buffer working. The last thing that I am required to do is to show the wait time of threads that are too large for the buffer and to calculate the average wait time. I have included code to do so, but everything I run the program, the wait time is always returned as 00:00:00, and by extension, the average is returned as the same. I was speaking to one of my colleagues who said that it is not a matter of the code but rather a matter of the computer needing to work off of one processor, which can be adjusted in the task manager settings. He has an HP like myself but his program prints the wait time 180 times, whereas mine prints usually about 3-7 times and is only 00:00:01 on one instance before finishing when I have made the processor adjustments. My other colleague has an iMac and hers puts out an average of 42:00:34(42 minutes??) I am very confused about this because I can see no difference between our codes and like my colleague said, I was wondering is it a computer issue. I am obviously concerned as I wanted to make sure that my code correctly calculated an average wait time, but that is impossible to tell when the wait times always show as 00:00:00. To calculate the thread duration, including the time it entered and exited the buffer was done by using a timestamp import, and then subtracting start time from end time. Is my code correct for this issue or is there something which is missing? I would be very grateful for any solutions. Below is my code: My buffer class package com.Com813cw; import java.text.DateFormat; import java.text.SimpleDateFormat; /** * Created by Rory on 10/08/2014. */ class Buffer { private int contents, count = 0, process = 200; private int totalRam = 1000; private boolean available = false; private long start, end, wait, request = 0; private DateFormat time = new SimpleDateFormat("ss:SSS"); public int avWaitTime =0; public void average(){ System.out.println("Average Application Request wait time: "+ time.format(request/count)); } public synchronized int get() { while (process <= 500) { try { wait(); } catch (InterruptedException e) { } } process -= 200; System.out.println("CPU After Process " + process); notifyAll(); return contents; } public synchronized void put(int value) { if (process <= 500) { process += value; } else { start = System.currentTimeMillis(); try { wait(); } catch (InterruptedException e) { } end = System.currentTimeMillis(); wait = end - start; count++; request += wait; System.out.println("Application Request Wait Time: " + time.format(wait)); process += value; contents = value; calcWait(wait, count); } notifyAll(); } public void calcWait(long wait, int count){ this.avWaitTime = (int) (wait/count); } public void printWait(){ System.out.println("Wait time is " + time.format(this.avWaitTime)); } } My spotify class package com.Com813cw; import java.sql.Timestamp; /** * Created by Rory on 11/08/2014. */ class Spotify extends Thread { private Buffer buffer; private int number; private int bytes = 250; public Spotify(Buffer c, int number) { buffer = c; this.number = number; } long startTime = System.currentTimeMillis(); public void run() { for (int i = 0; i < 20; i++) { buffer.put(bytes); System.out.println(getName() + this.number + " put: " + bytes + " bytes "); try { sleep(1000); } catch (InterruptedException e) { } } long endTime = System.currentTimeMillis(); long timeTaken = endTime - startTime; java.util.Date date = new java.util.Date(); System.out.println("-----------------------------"); System.out.println("Spotify has finished executing."); System.out.println("Time taken to execute was " + timeTaken + " milliseconds"); System.out.println("Time that Spotify thread exited Buffer was " + new Timestamp(date.getTime())); System.out.println("-----------------------------"); } } My BubbleWitch class package com.Com813cw; import java.lang.*; import java.lang.System; import java.sql.Timestamp; /** * Created by Rory on 10/08/2014. */ class BubbleWitch2 extends Thread { private Buffer buffer; private int number; private int bytes = 100; public BubbleWitch2(Buffer c, int number) { buffer = c; this.number=number ; } long startTime = System.currentTimeMillis(); public void run() { for (int i = 0; i < 10; i++) { buffer.put(bytes); System.out.println(getName() + this.number + " put: " + bytes + " bytes "); try { sleep(1000); } catch (InterruptedException e) { } } long endTime = System.currentTimeMillis(); long timeTaken = endTime - startTime; java.util.Date date = new java.util.Date(); System.out.println("-----------------------------"); System.out.println("BubbleWitch2 has finished executing."); System.out.println("Time taken to execute was " +timeTaken+ " milliseconds"); System.out.println("Time Bubblewitch2 thread exited Buffer was " + new Timestamp(date.getTime())); System.out.println("-----------------------------"); } } My Test class package com.Com813cw; /** * Created by Rory on 10/08/2014. */ public class ProducerConsumerTest { public static void main(String[] args) throws InterruptedException { Buffer c = new Buffer(); BubbleWitch2 p1 = new BubbleWitch2(c,1); Processor c1 = new Processor(c, 1); Spotify p2 = new Spotify(c, 2); SystemManagement p3 = new SystemManagement(c, 3); SecurityUpdate p4 = new SecurityUpdate(c, 4, p1, p2, p3); p1.setName("BubbleWitch2 "); p2.setName("Spotify "); p3.setName("System Management "); p4.setName("Security Update "); p1.setPriority(10); p2.setPriority(10); p3.setPriority(10); p4.setPriority(5); c1.start(); p1.start(); p2.start(); p3.start(); p4.start(); p2.join(); p3.join(); p4.join(); c.average(); System.exit(0); } } My security update package com.Com813cw; import java.lang.*; import java.lang.System; import java.sql.Timestamp; /** * Created by Rory on 11/08/2014. */ class SecurityUpdate extends Thread { private Buffer buffer; private int number; private int bytes = 150; private int process = 0; public SecurityUpdate(Buffer c, int number, BubbleWitch2 bubbleWitch2, Spotify spotify, SystemManagement systemManagement) throws InterruptedException { buffer = c; this.number = number; bubbleWitch2.join(); spotify.join(); systemManagement.join(); } long startTime = System.currentTimeMillis(); public void run() { for (int i = 0; i < 15; i++) { buffer.put(bytes); System.out.println(getName() + this.number + " put: " + bytes + " bytes"); try { sleep(1500); } catch (InterruptedException e) { } } long endTime = System.currentTimeMillis(); long timeTaken = endTime - startTime; java.util.Date date = new java.util.Date(); System.out.println("-----------------------------"); System.out.println("Security Update has finished executing."); System.out.println("Time taken to execute was " + timeTaken + " milliseconds"); System.out.println("Time that SecurityUpdate thread exited Buffer was " + new Timestamp(date.getTime())); System.out.println("------------------------------"); } } I'd be grateful as I said for any help as this is the last and most frustrating obstacle.

    Read the article

  • Dynamically refresh JTextArea as processing occurs?

    - by digiarnie
    I am trying to create a very simple Swing UI that logs information onto the screen via a JTextArea as processing occurs in the background. When the user clicks a button, I want each call to: textArea.append(someString + "\n"); to immediately show up in the UI. At the moment, the JTextArea does not show all log information until the processing has completed after clicking the button. How can I get it to refresh dynamically?

    Read the article

  • How does one implement a truly asynchronous java thread

    - by Ritesh M Nayak
    I have a function that needs to perfom two operations, one which finishes fast and one which takes a long time to run. I want to be able to delegate the long running operation to a thread and I dont care when the thread finishes, but the threads needs to complete. I implemented this as shown below , but, my secondoperation never gets done as the function exits after the start() call. How I can ensure that the function returns but the second operation thread finishes its execution as well and is not dependent on the parent thread ? public void someFunction(String data) { smallOperation() Blah a = new Blah(); Thread th = new Thread(a); th.Start(); } class SecondOperation implements Runnable { public void run(){ // doSomething long running } }

    Read the article

< Previous Page | 33 34 35 36 37 38 39 40 41 42 43 44  | Next Page >