Search Results

Search found 9288 results on 372 pages for 'farseer physics engine'.

Page 4/372 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • 2D Car Simulation with Throttle Linear Physics

    - by James
    I'm trying to make a simulation game for an automatic cruise control system. The system simulates a car on varying inclinations and throttle speeds. I've coded up to the car physics but these do note make sense. The dynamics of the simulation are specified as follows: a = V' - V T = (k1)V + ?(k2) + ma V' = (1 - (k1 / m) V) + T - ( k2 / m) * ? Where T = throttle position k1 = viscous friction V = speed V' = next speed ? = angle of incline k2 = m g sin ? a = acceleration m = mass Notice that the angle of incline in the equation is not chopped up by sin or cos. Even the equation for acceleration isn't right. Can anyone correct them or am I misinterpreting the physics?

    Read the article

  • Trouble with AABB collision response and physics

    - by WCM
    I have been racking my brain trying to figure out a problem I am having with physics and basic AABB collision response. I am fairly close as the physics are mostly right. Gravity feels good and movement is solid. The issue I am running into is that when I land on the test block in my project, I can jump off of it most of the time. If I repeatedly jump in place, I will eventually get stuck one or two pixels below the surface of the test block. If I try to jump, I can become free of the other block, but it will happen again a few jumps later. I feel like I am missing something really obvious with this. I have two functions that support the detection and function to return a vector for the overlap of the two rectangle bounding boxes. I have a single update method that is processing the physics and collision for the entity. I feel like I am missing something very simple, like an ordering of the physics vs. collision response handling. Any thoughts or help can be appreciated. I apologize for the format of the code, tis prototype code mostly. The collision detection function: public static bool Collides(Rectangle source, Rectangle target) { if (source.Right < target.Left || source.Bottom < target.Top || source.Left > target.Right || source.Top > target.Bottom) { return false; } return true; } The overlap function: public static Vector2 GetMinimumTranslation(Rectangle source, Rectangle target) { Vector2 mtd = new Vector2(); Vector2 amin = source.Min(); Vector2 amax = source.Max(); Vector2 bmin = target.Min(); Vector2 bmax = target.Max(); float left = (bmin.X - amax.X); float right = (bmax.X - amin.X); float top = (bmin.Y - amax.Y); float bottom = (bmax.Y - amin.Y); if (left > 0 || right < 0) return Vector2.Zero; if (top > 0 || bottom < 0) return Vector2.Zero; if (Math.Abs(left) < right) mtd.X = left; else mtd.X = right; if (Math.Abs(top) < bottom) mtd.Y = top; else mtd.Y = bottom; // 0 the axis with the largest mtd value. if (Math.Abs(mtd.X) < Math.Abs(mtd.Y)) mtd.Y = 0; else mtd.X = 0; return mtd; } The update routine (gravity = 0.001f, jumpHeight = 0.35f, moveAmount = 0.15f): public void Update(GameTime gameTime) { Acceleration.Y = gravity; Position += new Vector2((float)(movement * moveAmount * gameTime.ElapsedGameTime.TotalMilliseconds), (float)(Velocity.Y * gameTime.ElapsedGameTime.TotalMilliseconds)); Velocity.Y += Acceleration.Y; Vector2 previousPosition = new Vector2((int)Position.X, (int)Position.Y); KeyboardState keyboard = Keyboard.GetState(); movement = 0; if (keyboard.IsKeyDown(Keys.Left)) { movement -= 1; } if (keyboard.IsKeyDown(Keys.Right)) { movement += 1; } if (Position.Y + 16 > GameClass.Instance.GraphicsDevice.Viewport.Height) { Velocity.Y = 0; Position = new Vector2(Position.X, GameClass.Instance.GraphicsDevice.Viewport.Height - 16); IsOnSurface = true; } if (Collision.Collides(BoundingBox, GameClass.Instance.block.BoundingBox)) { Vector2 mtd = Collision.GetMinimumTranslation(BoundingBox, GameClass.Instance.block.BoundingBox); Position += mtd; Velocity.Y = 0; IsOnSurface = true; } if (keyboard.IsKeyDown(Keys.Space) && !previousKeyboard.IsKeyDown(Keys.Space)) { if (IsOnSurface) { Velocity.Y = -jumpHeight; IsOnSurface = false; } } previousKeyboard = keyboard; } This is also a full download to the project. https://www.box.com/s/3rkdtbso3xgfgc2asawy P.S. I know that I could do this with the XNA Platformer Starter Kit algo, but it has some deep flaws that I am going to try to live without. I'd rather go the route of collision response via an overlay function. Thanks for any and all insight!

    Read the article

  • Simple 2D Flight Physics with Box2D

    - by MarkPowell
    I'm trying to build a simple side scroller with an airplane being the player. As such, I want to build simple flight controls with simple but realistic-feeling physics. I'm making use of cocos2D and Box2D. I have a basic system working, but just can't get the physics feeling correct. I am applying force to the plane (which is a b2CircleShape) based on the user's input. So, basically, if the user pushes up, body_->ApplyForce(b2Vec2(10,30), body_->GetPosition()) is called. Similarly, for down -30 is used. This works and the plane flys along with up/down causing it to dive or climb. But it just doesn't feel right. There is no slowdown on climbs, nor speed up during dives. My simple solution is far to simple. How can I get a better feel for a plane climbing/diving? Thanks!

    Read the article

  • Best choice for 3D Physics Engine for C#/XNA

    - by Nic Foster
    Since 2007 I've been working on the development of an open-source game engine, and have been using JigLibX for 3D Physics. However, the developers on the project have stopped contributing to it for over 2 years now, and it's lacking features I need, or have major bugs in certain features. What are some good choices for 3D physics engines that are written purely in C#? Are there any that are more complete than JigLibX? EDIT: I just stumbled upon an engine called BEPUphysics. It was supported up until May 2012, which is fairly recent. I may check it out, any information that you guys could give on how complete the engine is would be great.

    Read the article

  • Best Platform/Engine for turn based Client/Server Android game

    - by Paradine
    I'm currently designing a turn based game for tablets. Initially for Android with porting to iOS later considered in design. I'm having trouble narrowing down the available technologies to even know where to spend my research time. I am hoping that if I explain what I am trying to achieve someone may be able to suggest a platform and/or engine. I've looked into some of the open source Engines ( http://www.cuteandroid.com/ten-open-source-android-2d-or-3d-game-engine-for-android-developers ) and some appear to handle much of what I might require - although with a higher focus on graphics than i need. Mages looks interesting although development appears to have ceased. If I could somehow leverage GoogleApps that would be excellent. Here is what I am trying to achieve: PvP turn based strategy game over internet - minimal animation and bandwidth required Players match up online using MetaGame system MatchID created on Resolution Server and Game starts Clients have 30 second countdown to select MoveString Clients sends small secure timestamped and MatchIDed MoveString to Resolution server Resolution server looks up Move String for each player, Resolves and Updates Players status in MatchID on Server Resolution server updates Client Views Repeat until victory conditions met - MatchID Closed, Rewards earned in MetaGame There will also need to be a full social and account system and metagame backend - but this could be running on separate system(s) Tablet in Offline mode would be catalog browsing and perhaps single player AI - bum I'm focusing on the Resolution Server at this point I'm not even certain if I would be looking at an Android App or a WebApp at this stage! I want a custom GUI so I guess an app - but maybe as I have little animation a WebApp might also work. Probably some combination of both. There will be very small overhead in data between client server - essentially a small text string every 30 seconds sent to the Resolution server which looks up the Effect and applies it to the Opponents string and determines some results to apply to the match. The client view is updated minimally with the results (only 5 in game Integers tracked) - perhaps triggering small animations/popups on the client to show the end result. e.g Explosion. If you have suggestions for a good technology or platform to best achieving the Resolution Server I'd love to hear. Also if you have experience with open source Engines - and could narrow down which (if any ) might be most suitable that would be a big help. Thanks in advance

    Read the article

  • Best Platform/Engine for turn based Client/Server Android game

    - by Paradine
    I'm currently designing a turn based game for tablets. Initially for Android with porting to iOS later considered in design. I'm having trouble narrowing down the available technologies to even know where to spend my research time. I am hoping that if I explain what I am trying to achieve someone may be able to suggest a platform and/or engine. I've looked into some of the open source Engines ( http://www.cuteandroid.com/ten-open-source-android-2d-or-3d-game-engine-for-android-developers ) and some appear to handle much of what I might require - although with a higher focus on graphics than i need. Mages looks interesting although development appears to have ceased. If I could somehow leverage GoogleApps that would be excellent. Here is what I am trying to achieve: PvP turn based strategy game over internet - minimal animation and bandwidth required Players match up online using MetaGame system MatchID created on Resolution Server and Game starts Clients have 30 second countdown to select MoveString Clients sends small secure timestamped and MatchIDed MoveString to Resolution server Resolution server looks up Move String for each player, Resolves and Updates Players status in MatchID on Server Resolution server updates Client Views Repeat until victory conditions met - MatchID Closed, Rewards earned in MetaGame There will also need to be a full social and account system and metagame backend - but this could be running on separate system(s) Tablet in Offline mode would be catalog browsing and perhaps single player AI - bum I'm focusing on the Resolution Server at this point I'm not even certain if I would be looking at an Android App or a WebApp at this stage! I want a custom GUI so I guess an app - but maybe as I have little animation a WebApp might also work. Probably some combination of both. There will be very small overhead in data between client server - essentially a small text string every 30 seconds sent to the Resolution server which looks up the Effect and applies it to the Opponents string and determines some results to apply to the match. The client view is updated minimally with the results (only 5 in game Integers tracked) - perhaps triggering small animations/popups on the client to show the end result. e.g Explosion. If you have suggestions for a good technology or platform to best achieving the Resolution Server I'd love to hear. Also if you have experience with open source Engines - and could narrow down which (if any ) might be most suitable that would be a big help. Thanks in advance

    Read the article

  • Without using a pre-built physics engine, how can I implement 3-D collision detection from scratch?

    - by Andy Harglesis
    I want to tackle some basic 3-D collision detection and was wondering how engines handle this and give you a pretty interface and make it so easy ... I want to do it all myself, however. 2-D collision detection is extremely simple and can be done multiple ways that even beginner programmers could think up: 1.When the pixels touch; 2.when a rectangle range is exceeded; 3.when a pixel object is detected near another one in a pixel-based rendering engine. But 3-D is different with one dimension, but complex in many more so ... what are the general, basic understanding/examples on how 3-D collision detection can be implemented? Think two shaded, OpenGL cubes that are moved next to each other with a simple OpenGL rendering context and keyboard events.

    Read the article

  • General purpose physics engine

    - by Lucas
    Is there any general purpose physics engine that allows huge simulations of rigid bodies? I'm using PhysX from Nvidia, but the focus of this engine is game development, soft bodies. I want to know if exists physics engine that runs on top of PS3 cell processors or CUDA cores allowing massive scientific physics simulations.

    Read the article

  • From simple physics with a ball, to a more complicated shape

    - by Maximus
    Hello fellow game devs and stack overflowers... I recently made a transition from OpenGL ES 1.1 to 2.0 (on Android via NDK) and things are going well so far. I'm working on doing a dice rolling application (gaming dice up to 20 sided, not just regular 6 sided die) as a way to learn more about how physics is implemented in a gaming environment. I've explored implementing existing engine options (such as Bullet) and I don't think I need to implement something quite so sophisticated. I've found several tutorials that handle a lot of the general physics involved with initial trajectory, velocity, angle of contact and reflection angle, etc. I'm confident that I'd be able to implement ball-like behavior without much trouble. My question lies in when I attempt to make the interaction of the die shape with another surface more "realistic," for example... the die strikes the floor surface at such an angle where only one corner makes contact with the floor. In my mind, the center of gravity of the object would play a part in determining how the die bounces away, possibly even spinning it it faster, etc... but I am not sure what the actual math involved is. Are there any recommended resources for getting into this level of detail? Initial searches haven't turned up much... Thanks to everyone in the community, -Jeremiah

    Read the article

  • jBullet Collision/Physics not working as expected

    - by Kenneth Bray
    Below is the code for one of my objects in the game I am creating (yes although this is a cube, I am not making anything remotely like MineCraft), and my issue is I while the cube will display and is does follow the physics if the cube falls, it does not interact with any other objects in the game. If I was to have multiple cubes in screen at once they all just sit there, or shoot off in all directions never stopping. Anyway, I am new to jBullet, and any help would be appreciated. // Constructor public Cube(float pX, float pY, float pZ, float pSize) { posX = pX; posY = pY; posZ = pZ; size = pSize; rotX = 0; rotY = 0; rotZ = 0; // physics stuff fallMotionState = new DefaultMotionState(new Transform(new Matrix4f(new Quat4f(0, 0, 0, 1), new Vector3f(posX, posY, posZ), 1))); fallRigidBodyCI = new RigidBodyConstructionInfo(mass, fallMotionState, fallShape, fallInertia); fallRigidBody = new RigidBody(fallRigidBodyCI); }

    Read the article

  • Simple (and fast) dices physics

    - by Markus von Broady
    I'm programming a throw of 5 dices in Actionscript 3 + AwayPhysics (BulletPhysics port). I had a lot of fun tweaking frictions, masses etc. and in the end I found best results with more physics ticks per frame. Currently I use 10 ticks per frame (1/60 s) and it's OK, though I see a difference in plus for 20 ticks. Even though it's only 5 cubes (dices) in a box (or a floor with 3 walls really) I can't simulate 20 ticks in a frame and keep FPS at 60 on a medium-aged PC. That's why I decided to precompute frames for animation, finishing it in around 1700 ticks in 2 seconds. The flash player is freezed for these 2 seconds, and I'm afraid that this result will be more of a 5 seconds or even more, if I'll simulate multi-threading and compute frames in background of some other heavy processes and CPU drawing (dices is only a part of this game). Because I want both players to see dices roll in same way, I can't compute physics when having free resources, and build a buffer for at least one throw of each type (where type is number of dices thrown). I'm afraid players will see a "preparing dices........." message too often and for too long. I think the only solution to this problem is replacing PhysicsEngine with something simpler, or creating own physicsEngine. Do You have any formulas for cube-cube and cube-wall collision detection, and for calculating how their angular and linear velocities should change after a collision occurs?

    Read the article

  • Timestep schemes for physics simulations

    - by ktodisco
    The operations used for stepping a physics simulation are most commonly: Integrate velocity and position Collision detection and resolution Contact resolution (in advanced cases) A while ago I came across this paper from Stanford that proposed an alternative scheme, which is as follows: Collision detection and resolution Integrate velocity Contact resolution Integrate position It's intriguing because it allows for robust solutions to the stacking problem. So it got me wondering... What, if any, alternative schemes are available, either simple or complex? What are their benefits, drawbacks, and performance considerations?

    Read the article

  • Solaris X86 AESNI OpenSSL Engine

    - by danx
    Solaris X86 AESNI OpenSSL Engine Cryptography is a major component of secure e-commerce. Since cryptography is compute intensive and adds a significant load to applications, such as SSL web servers (https), crypto performance is an important factor. Providing accelerated crypto hardware greatly helps these applications and will help lead to a wider adoption of cryptography, and lower cost, in e-commerce and other applications. The Intel Westmere microprocessor has six new instructions to acclerate AES encryption. They are called "AESNI" for "AES New Instructions". These are unprivileged instructions, so no "root", other elevated access, or context switch is required to execute these instructions. These instructions are used in a new built-in OpenSSL 1.0 engine available in Solaris 11, the aesni engine. Previous Work Previously, AESNI instructions were introduced into the Solaris x86 kernel and libraries. That is, the "aes" kernel module (used by IPsec and other kernel modules) and the Solaris pkcs11 library (for user applications). These are available in Solaris 10 10/09 (update 8) and above, and Solaris 11. The work here is to add the aesni engine to OpenSSL. X86 AESNI Instructions Intel's Xeon 5600 is one of the processors that support AESNI. This processor is used in the Sun Fire X4170 M2 As mentioned above, six new instructions acclerate AES encryption in processor silicon. The new instructions are: aesenc performs one round of AES encryption. One encryption round is composed of these steps: substitute bytes, shift rows, mix columns, and xor the round key. aesenclast performs the final encryption round, which is the same as above, except omitting the mix columns (which is only needed for the next encryption round). aesdec performs one round of AES decryption aesdeclast performs the final AES decryption round aeskeygenassist Helps expand the user-provided key into a "key schedule" of keys, one per round aesimc performs an "inverse mixed columns" operation to convert the encryption key schedule into a decryption key schedule pclmulqdq Not a AESNI instruction, but performs "carryless multiply" operations to acclerate AES GCM mode. Since the AESNI instructions are implemented in hardware, they take a constant number of cycles and are not vulnerable to side-channel timing attacks that attempt to discern some bits of data from the time taken to encrypt or decrypt the data. Solaris x86 and OpenSSL Software Optimizations Having X86 AESNI hardware crypto instructions is all well and good, but how do we access it? The software is available with Solaris 11 and is used automatically if you are running Solaris x86 on a AESNI-capable processor. AESNI is used internally in the kernel through kernel crypto modules and is available in user space through the PKCS#11 library. For OpenSSL on Solaris 11, AESNI crypto is available directly with a new built-in OpenSSL 1.0 engine, called the "aesni engine." This is in lieu of the extra overhead of going through the Solaris OpenSSL pkcs11 engine, which accesses Solaris crypto and digest operations. Instead, AESNI assembly is included directly in the new aesni engine. Instead of including the aesni engine in a separate library in /lib/openssl/engines/, the aesni engine is "built-in", meaning it is included directly in OpenSSL's libcrypto.so.1.0.0 library. This reduces overhead and the need to manually specify the aesni engine. Since the engine is built-in (that is, in libcrypto.so.1.0.0), the openssl -engine command line flag or API call is not needed to access the engine—the aesni engine is used automatically on AESNI hardware. Ciphers and Digests supported by OpenSSL aesni engine The Openssl aesni engine auto-detects if it's running on AESNI hardware and uses AESNI encryption instructions for these ciphers: AES-128-CBC, AES-192-CBC, AES-256-CBC, AES-128-CFB128, AES-192-CFB128, AES-256-CFB128, AES-128-CTR, AES-192-CTR, AES-256-CTR, AES-128-ECB, AES-192-ECB, AES-256-ECB, AES-128-OFB, AES-192-OFB, and AES-256-OFB. Implementation of the OpenSSL aesni engine The AESNI assembly language routines are not a part of the regular Openssl 1.0.0 release. AESNI is a part of the "HEAD" ("development" or "unstable") branch of OpenSSL, for future release. But AESNI is also available as a separate patch provided by Intel to the OpenSSL project for OpenSSL 1.0.0. A minimal amount of "glue" code in the aesni engine works between the OpenSSL libcrypto.so.1.0.0 library and the assembly functions. The aesni engine code is separate from the base OpenSSL code and requires patching only a few source files to use it. That means OpenSSL can be more easily updated to future versions without losing the performance from the built-in aesni engine. OpenSSL aesni engine Performance Here's some graphs of aesni engine performance I measured by running openssl speed -evp $algorithm where $algorithm is aes-128-cbc, aes-192-cbc, and aes-256-cbc. These are using the 64-bit version of openssl on the same AESNI hardware, a Sun Fire X4170 M2 with a Intel Xeon E5620 @2.40GHz, running Solaris 11 FCS. "Before" is openssl without the aesni engine and "after" is openssl with the aesni engine. The numbers are MBytes/second. OpenSSL aesni engine performance on Sun Fire X4170 M2 (Xeon E5620 @2.40GHz) (Higher is better; "before"=OpenSSL on AESNI without AESNI engine software, "after"=OpenSSL AESNI engine) As you can see the speedup is dramatic for all 3 key lengths and for data sizes from 16 bytes to 8 Kbytes—AESNI is about 7.5-8x faster over hand-coded amd64 assembly (without aesni instructions). Verifying the OpenSSL aesni engine is present The easiest way to determine if you are running the aesni engine is to type "openssl engine" on the command line. No configuration, API, or command line options are needed to use the OpenSSL aesni engine. If you are running on Intel AESNI hardware with Solaris 11 FCS, you'll see this output indicating you are using the aesni engine: intel-westmere $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support If you are running on Intel without AESNI hardware you'll see this output indicating the hardware can't support the aesni engine: intel-nehalem $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support For Solaris on SPARC or older Solaris OpenSSL software, you won't see any aesni engine line at all. Third-party OpenSSL software (built yourself or from outside Oracle) will not have the aesni engine either. Solaris 11 FCS comes with OpenSSL version 1.0.0e. The output of typing "openssl version" should be "OpenSSL 1.0.0e 6 Sep 2011". 64- and 32-bit OpenSSL OpenSSL comes in both 32- and 64-bit binaries. 64-bit executable is now the default, at /usr/bin/openssl, and OpenSSL 64-bit libraries at /lib/amd64/libcrypto.so.1.0.0 and libssl.so.1.0.0 The 32-bit executable is at /usr/bin/i86/openssl and the libraries are at /lib/libcrytpo.so.1.0.0 and libssl.so.1.0.0. Availability The OpenSSL AESNI engine is available in Solaris 11 x86 for both the 64- and 32-bit versions of OpenSSL. It is not available with Solaris 10. You must have a processor that supports AESNI instructions, otherwise OpenSSL will fallback to the older, slower AES implementation without AESNI. Processors that support AESNI include most Westmere and Sandy Bridge class processor architectures. Some low-end processors (such as for mobile/laptop platforms) do not support AESNI. The easiest way to determine if the processor supports AESNI is with the isainfo -v command—look for "amd64" and "aes" in the output: $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu Conclusion The Solaris 11 OpenSSL aesni engine provides easy access to powerful Intel AESNI hardware cryptography, in addition to Solaris userland PKCS#11 libraries and Solaris crypto kernel modules.

    Read the article

  • Solaris X86 AESNI OpenSSL Engine

    - by danx
    Solaris X86 AESNI OpenSSL Engine Cryptography is a major component of secure e-commerce. Since cryptography is compute intensive and adds a significant load to applications, such as SSL web servers (https), crypto performance is an important factor. Providing accelerated crypto hardware greatly helps these applications and will help lead to a wider adoption of cryptography, and lower cost, in e-commerce and other applications. The Intel Westmere microprocessor has six new instructions to acclerate AES encryption. They are called "AESNI" for "AES New Instructions". These are unprivileged instructions, so no "root", other elevated access, or context switch is required to execute these instructions. These instructions are used in a new built-in OpenSSL 1.0 engine available in Solaris 11, the aesni engine. Previous Work Previously, AESNI instructions were introduced into the Solaris x86 kernel and libraries. That is, the "aes" kernel module (used by IPsec and other kernel modules) and the Solaris pkcs11 library (for user applications). These are available in Solaris 10 10/09 (update 8) and above, and Solaris 11. The work here is to add the aesni engine to OpenSSL. X86 AESNI Instructions Intel's Xeon 5600 is one of the processors that support AESNI. This processor is used in the Sun Fire X4170 M2 As mentioned above, six new instructions acclerate AES encryption in processor silicon. The new instructions are: aesenc performs one round of AES encryption. One encryption round is composed of these steps: substitute bytes, shift rows, mix columns, and xor the round key. aesenclast performs the final encryption round, which is the same as above, except omitting the mix columns (which is only needed for the next encryption round). aesdec performs one round of AES decryption aesdeclast performs the final AES decryption round aeskeygenassist Helps expand the user-provided key into a "key schedule" of keys, one per round aesimc performs an "inverse mixed columns" operation to convert the encryption key schedule into a decryption key schedule pclmulqdq Not a AESNI instruction, but performs "carryless multiply" operations to acclerate AES GCM mode. Since the AESNI instructions are implemented in hardware, they take a constant number of cycles and are not vulnerable to side-channel timing attacks that attempt to discern some bits of data from the time taken to encrypt or decrypt the data. Solaris x86 and OpenSSL Software Optimizations Having X86 AESNI hardware crypto instructions is all well and good, but how do we access it? The software is available with Solaris 11 and is used automatically if you are running Solaris x86 on a AESNI-capable processor. AESNI is used internally in the kernel through kernel crypto modules and is available in user space through the PKCS#11 library. For OpenSSL on Solaris 11, AESNI crypto is available directly with a new built-in OpenSSL 1.0 engine, called the "aesni engine." This is in lieu of the extra overhead of going through the Solaris OpenSSL pkcs11 engine, which accesses Solaris crypto and digest operations. Instead, AESNI assembly is included directly in the new aesni engine. Instead of including the aesni engine in a separate library in /lib/openssl/engines/, the aesni engine is "built-in", meaning it is included directly in OpenSSL's libcrypto.so.1.0.0 library. This reduces overhead and the need to manually specify the aesni engine. Since the engine is built-in (that is, in libcrypto.so.1.0.0), the openssl -engine command line flag or API call is not needed to access the engine—the aesni engine is used automatically on AESNI hardware. Ciphers and Digests supported by OpenSSL aesni engine The Openssl aesni engine auto-detects if it's running on AESNI hardware and uses AESNI encryption instructions for these ciphers: AES-128-CBC, AES-192-CBC, AES-256-CBC, AES-128-CFB128, AES-192-CFB128, AES-256-CFB128, AES-128-CTR, AES-192-CTR, AES-256-CTR, AES-128-ECB, AES-192-ECB, AES-256-ECB, AES-128-OFB, AES-192-OFB, and AES-256-OFB. Implementation of the OpenSSL aesni engine The AESNI assembly language routines are not a part of the regular Openssl 1.0.0 release. AESNI is a part of the "HEAD" ("development" or "unstable") branch of OpenSSL, for future release. But AESNI is also available as a separate patch provided by Intel to the OpenSSL project for OpenSSL 1.0.0. A minimal amount of "glue" code in the aesni engine works between the OpenSSL libcrypto.so.1.0.0 library and the assembly functions. The aesni engine code is separate from the base OpenSSL code and requires patching only a few source files to use it. That means OpenSSL can be more easily updated to future versions without losing the performance from the built-in aesni engine. OpenSSL aesni engine Performance Here's some graphs of aesni engine performance I measured by running openssl speed -evp $algorithm where $algorithm is aes-128-cbc, aes-192-cbc, and aes-256-cbc. These are using the 64-bit version of openssl on the same AESNI hardware, a Sun Fire X4170 M2 with a Intel Xeon E5620 @2.40GHz, running Solaris 11 FCS. "Before" is openssl without the aesni engine and "after" is openssl with the aesni engine. The numbers are MBytes/second. OpenSSL aesni engine performance on Sun Fire X4170 M2 (Xeon E5620 @2.40GHz) (Higher is better; "before"=OpenSSL on AESNI without AESNI engine software, "after"=OpenSSL AESNI engine) As you can see the speedup is dramatic for all 3 key lengths and for data sizes from 16 bytes to 8 Kbytes—AESNI is about 7.5-8x faster over hand-coded amd64 assembly (without aesni instructions). Verifying the OpenSSL aesni engine is present The easiest way to determine if you are running the aesni engine is to type "openssl engine" on the command line. No configuration, API, or command line options are needed to use the OpenSSL aesni engine. If you are running on Intel AESNI hardware with Solaris 11 FCS, you'll see this output indicating you are using the aesni engine: intel-westmere $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support If you are running on Intel without AESNI hardware you'll see this output indicating the hardware can't support the aesni engine: intel-nehalem $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support For Solaris on SPARC or older Solaris OpenSSL software, you won't see any aesni engine line at all. Third-party OpenSSL software (built yourself or from outside Oracle) will not have the aesni engine either. Solaris 11 FCS comes with OpenSSL version 1.0.0e. The output of typing "openssl version" should be "OpenSSL 1.0.0e 6 Sep 2011". 64- and 32-bit OpenSSL OpenSSL comes in both 32- and 64-bit binaries. 64-bit executable is now the default, at /usr/bin/openssl, and OpenSSL 64-bit libraries at /lib/amd64/libcrypto.so.1.0.0 and libssl.so.1.0.0 The 32-bit executable is at /usr/bin/i86/openssl and the libraries are at /lib/libcrytpo.so.1.0.0 and libssl.so.1.0.0. Availability The OpenSSL AESNI engine is available in Solaris 11 x86 for both the 64- and 32-bit versions of OpenSSL. It is not available with Solaris 10. You must have a processor that supports AESNI instructions, otherwise OpenSSL will fallback to the older, slower AES implementation without AESNI. Processors that support AESNI include most Westmere and Sandy Bridge class processor architectures. Some low-end processors (such as for mobile/laptop platforms) do not support AESNI. The easiest way to determine if the processor supports AESNI is with the isainfo -v command—look for "amd64" and "aes" in the output: $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu Conclusion The Solaris 11 OpenSSL aesni engine provides easy access to powerful Intel AESNI hardware cryptography, in addition to Solaris userland PKCS#11 libraries and Solaris crypto kernel modules.

    Read the article

  • How can I make my main character move in a parabolic arc when jumping?

    - by user1276078
    I'm entering Android game development, and I already have a computer version of a game I want to publish. The thing is, I want to make this as good as it can be. With that said, I need a physics engine, really to only do one thing: make a parabolic movement of my main character as he's jumping in the air. Currently, my computer version simply makes the guy move up at a 45 degree angle, and as soon as it hits the ceiling, down at a 45 degree angle. I need a physics engine/library that would accomplish that, it has to be in java since that's my best language, it has to be 2D, and it has to be able to work on Android. Which physics engine/library could accomplish all of that?

    Read the article

  • Particle and Physics problem.

    - by Quincy
    This was originally a forum post so I hope you guys don't mind it being 2 questions in one. I am making a game and I got some basic physics implemented. I have 2 problems, 1 with particles being drawn in the wrong place and one with going through walls while jumping in corners. Skip over to about 15 sec video showing the 2 problems : http://youtube.com/watch?v=Tm9nfWsWfiM So the problem with the particles seems to be coming from the removal, as soon as I remove that piece of code it instantly works, but there shouldn't be a problem since they shouldn't even draw when their energy gets to 0 (and then they get removed) So my first question is, how are these particles getting warped all over the screen ? Relevant code : Particle class : class Particle { //Physics public Vector2 position = new Vector2(0,0); public float direction = 180; public float speed = 100; public float energy = 1; protected float startEnergy = 1; //Visual public Sprite sprite; public float rotation = 0; public float scale = 1; public byte alpha = 255; public BlendMode blendMode { get { return sprite.BlendMode; } set { sprite.BlendMode = value; } } public Particle() { } public virtual void Think(float frameTime) { if (energy - frameTime < 0) energy = 0; else energy -= frameTime; position += new Vector2((float)Math.Cos(MathHelper.DegToRad(direction)), (float)Math.Sin(MathHelper.DegToRad(direction))) * speed * frameTime; alpha = (byte)(255 * energy / startEnergy); sprite.Rotation = rotation; sprite.Position = position; sprite.Color = new Color(sprite.Color.R, sprite.Color.G, sprite.Color.B, alpha); } public virtual void Draw(float frameTime) { if (energy > 0) { World.camera.DrawSprite(sprite); } } // Basic particle implementation class BasicSprite : Particle { public BasicSprite(Sprite _sprite) { sprite = _sprite; } } Emitter : class Emitter { protected static Random rand = new Random(); protected List<Particle> particles = new List<Particle>(); public BaseEntity target = null; public Vector2 position = new Vector2(0, 0); public bool Active = true; public float timeAlive = 0; public int particleCount = 0; public int ParticlesPerSeccond { get { return (int)(1 / particleSpawnTime); } set { particleSpawnTime = 1 / (float)value; } } public float dieTime = float.MaxValue; float particleSpawnTime = 0.05f; float spawnTime = 0; public Emitter() { } public virtual void Think(float frametime) { spawnTime += frametime; if (dieTime != float.MaxValue) { timeAlive += frametime; if (timeAlive >= dieTime) Active = false; } if (Active) { if (target != null) position = target.Position; while (spawnTime > particleSpawnTime) { spawnTime -= particleSpawnTime; AddParticle(); particleCount++; } } for (int i = 0; i < particles.Count; i++) { particles[i].Think(frametime); if (particles[i].energy <= 0) { particles.Remove(particles[i]); // As soon as this is removed, it works particleCount--; } } } public virtual void AddParticle() { } public virtual void Draw(float frametime) { foreach (Particle particle in particles) { particle.Draw(frametime); } } } class BloodEmitter : Emitter { Image image; public BloodEmitter() { image = new Image(@"Content/Particles/TinyCircle.png"); image.CreateMaskFromColor(new Color(255, 0, 255, 255)); this.dieTime = 0.5f; this.ParticlesPerSeccond = 100; } public override void AddParticle() { Sprite sprite = new Sprite(image); sprite.Color = new Color((byte)(rand.NextDouble() * 255), (byte)(rand.NextDouble() * 255), (byte)(rand.NextDouble() * 255)); BasicSprite particle = new BasicSprite(sprite); particle.direction = (float)rand.NextDouble() * 360; particle.position = position; particle.blendMode = BlendMode.Alpha; particles.Add(particle); } } The seccond problem is the physics problem, for some reason I can get through the right bottom corner while jumping. I think this is coming from me switching animations but I thought I made it compensate for that. Relevant code : PhysicsEntity : class PhysicsEntity : BaseEntity { // Horizontal movement constants protected const float maxHorizontalSpeed = 1000; protected const float horizontalAcceleration = 15; protected const float horizontalDragAir = 0.95f; protected const float horizontalDragGround = 0.95f; // Vertical movement constants protected const float maxVerticalSpeed = 1000; protected const float verticalAcceleration = 20; // Everything needed for movement and correct animations protected float movement = 0; protected bool onGround = false; protected Vector2 Velocity = new Vector2(0, 0); protected float maxSpeed = 0; float lastThink = 0; float thinkTime = 1f/60f; public PhysicsEntity(Vector2 position, Sprite sprite) : base(position, sprite) { } public override void Draw(float frameTime) { base.Draw(frameTime); } public override void Think(float frameTime) { CalculateMovement(frameTime); base.Think(frameTime); } protected void CalculateMovement(float frameTime) { lastThink += frameTime; while (lastThink > thinkTime) { onGround = false; Velocity.X = MathHelper.Clamp(Velocity.X + horizontalAcceleration * movement, -maxHorizontalSpeed, maxHorizontalSpeed); if (onGround) Velocity.X *= horizontalDragGround; else Velocity.X *= horizontalDragAir; if (maxSpeed < Velocity.X) maxSpeed = Velocity.X; Velocity.Y = MathHelper.Clamp(Velocity.Y + verticalAcceleration, -maxVerticalSpeed, maxVerticalSpeed); lastThink -= thinkTime; DoCollisions(thinkTime); DoAnimations(thinkTime); } } public virtual void DoAnimations(float frameTime) { } public void DoCollisions(float frameTime) { Position.Y += Velocity.Y * frameTime; Vector2 tileCollision = GetTileCollision(); if (tileCollision.X != -1 || tileCollision.Y != -1) { Vector2 collisionDepth = CollisionRectangle.DepthIntersection( new Rectangle( tileCollision.X * World.tileEngine.TileWidth, tileCollision.Y * World.tileEngine.TileHeight, World.tileEngine.TileWidth, World.tileEngine.TileHeight ) ); Position.Y += collisionDepth.Y; if (collisionDepth.Y < 0) onGround = true; Velocity.Y = 0; } Position.X += Velocity.X * frameTime; tileCollision = GetTileCollision(); if (tileCollision.X != -1 || tileCollision.Y != -1) { Vector2 collisionDepth = CollisionRectangle.DepthIntersection( new Rectangle( tileCollision.X * World.tileEngine.TileWidth, tileCollision.Y * World.tileEngine.TileHeight, World.tileEngine.TileWidth, World.tileEngine.TileHeight ) ); Position.X += collisionDepth.X; Velocity.X = 0; } } public void DoCollisions(Vector2 difference) { CollisionRectangle.Y = Position.Y - difference.Y; CollisionRectangle.Height += difference.Y; Vector2 tileCollision = GetTileCollision(); if (tileCollision.X != -1 || tileCollision.Y != -1) { Vector2 collisionDepth = CollisionRectangle.DepthIntersection( new Rectangle( tileCollision.X * World.tileEngine.TileWidth, tileCollision.Y * World.tileEngine.TileHeight, World.tileEngine.TileWidth, World.tileEngine.TileHeight ) ); Position.Y += collisionDepth.Y; if (collisionDepth.Y < 0) onGround = true; Velocity.Y = 0; } CollisionRectangle.X = Position.X - difference.X; CollisionRectangle.Width += difference.X; tileCollision = GetTileCollision(); if (tileCollision.X != -1 || tileCollision.Y != -1) { Vector2 collisionDepth = CollisionRectangle.DepthIntersection( new Rectangle( tileCollision.X * World.tileEngine.TileWidth, tileCollision.Y * World.tileEngine.TileHeight, World.tileEngine.TileWidth, World.tileEngine.TileHeight ) ); Position.X += collisionDepth.X; Velocity.X = 0; } } Vector2 GetTileCollision() { int topLeftTileX = (int)(CollisionRectangle.TopLeft.X / World.tileEngine.TileWidth); int topLeftTileY = (int)(CollisionRectangle.TopLeft.Y / World.tileEngine.TileHeight); int BottomRightTileX = (int)(CollisionRectangle.DownRight.X / World.tileEngine.TileWidth); int BottomRightTileY = (int)(CollisionRectangle.DownRight.Y / World.tileEngine.TileHeight); if (CollisionRectangle.DownRight.Y % World.tileEngine.TileHeight == 0) // If your exactly against the tile don't count that as being inside the tile BottomRightTileY -= 1; if (CollisionRectangle.DownRight.X % World.tileEngine.TileWidth == 0) // If your exactly against the tile don't count that as being inside the tile BottomRightTileX -= 1; for (int i = topLeftTileX; i <= BottomRightTileX; i++) { for (int j = topLeftTileY; j <= BottomRightTileY; j++) { if (World.tileEngine.TileIsSolid(i, j)) { return new Vector2(i, j); } } } return new Vector2(-1, -1); } } Player : enum State { Standing, Running, Jumping, Falling, Sliding, WallSlide } class Player : PhysicsEntity { private State state { get { return currentState; } set { if (currentState != value) { currentState = value; animationChanged = true; } } } private State currentState = State.Standing; private BasicEmitter basicEmitter = new BasicEmitter(); public bool flipped; public bool animationChanged = false; protected const float jumpPower = 600; AnimationManager animationManager; Rectangle DrawRectangle; public override Rectangle CollisionRectangle { get { return new Rectangle( Position.X - DrawRectangle.Width / 2f, Position.Y - DrawRectangle.Height / 2f, DrawRectangle.Width, DrawRectangle.Height ); } } public Player(Vector2 position, Sprite sprite) : base(position, sprite) { // Only posted the relevant bit DrawRectangle = animationManager.currentAnimation.drawingRectangle; } public override void Draw(float frameTime) { World.camera.DrawSprite( Sprite, Position + new Vector2(DrawRectangle.X, DrawRectangle.Y), animationManager.currentAnimation.drawingRectangle ); } public override void Think(float frameTime) { //I only posted the relevant stuff if (animationChanged) { // if the animation has changed make sure we compensate for the change in with and height animationChanged = false; DoCollisions(animationManager.getSizeDifference()); } DoCustomMovement(); base.Think(frameTime); if (!onGround && Velocity.Y > 0) { state = State.Falling; } } void DoCustomMovement() { if (onGround) { if (World.renderWindow.Input.IsKeyDown(KeyCode.W)) { Velocity.Y = -jumpPower; state = State.Jumping; } } } public override void DoAnimations(float frameTime) { string stateName = Enum.GetName(typeof(State), state); if (!animationManager.currentAnimationIs(stateName)) { animationManager.PlayAnimation(stateName); } animationManager.Think(frameTime); DrawRectangle = animationManager.currentAnimation.drawingRectangle; Sprite.Center = new Vector2( DrawRectangle.X + DrawRectangle.Width / 2, DrawRectangle.Y + DrawRectangle.Height / 2 ); Sprite.FlipX(flipped); } So why am I warping through walls ? I have given this some thought but I just can't seem to find out why this is happening. Full source if needed : source : http://www.mediafire.com/?rc7ddo09gnr68zd (download link)

    Read the article

  • How to ‘Bounce’ Drops of Water on Top of a Pool of Water Indefinitely [Physics Video]

    - by Asian Angel
    Normally drops of water are automatically ‘absorbed’ into a larger pool of water when contact is made, but there is one way to stop those water drops from coalescing with the rest: vibration. This awesome video shows the process in action as drops of water remain on top of the pool of water and even form groups of drops! Drops on Drops on Drops Article [Physics Buzz Blog] Drops on Drops on Drops Video [YouTube] [via Neatorama] How Hackers Can Disguise Malicious Programs With Fake File Extensions Can Dust Actually Damage My Computer? What To Do If You Get a Virus on Your Computer

    Read the article

  • Bullet physics debug drawing not working

    - by Krishnabhadra
    Background I am following on from this question, which isn't answered yet. Basically I have a cube and a UVSphere in my scene, with UVSphere on the top of the cube without touching the cube. Both exported from blender. When I run the app The UVSphere does circle around the cube for 3 or 4 times and jump out of the scene. What I actually expect was the sphere to fall on top of the cube. What this question about From the comment to the linked question, I got to know about bullet debug drawing, which helps in debugging by drawing outline of physics bodies which are normally invisible. I did some research on that and came up with the code given below. From whatever I have read, below code should work, but it doesn't. My Code My bullet initialization code. -(void) initializeScene { /*Setup physics world*/ _physicsWorld = [[CC3PhysicsWorld alloc] init]; [_physicsWorld setGravity:0 y:-9.8 z:0]; /*Setting up debug draw*/ MyDebugDraw *draw = new MyDebugDraw; draw->setDebugMode(draw->getDebugMode() | btIDebugDraw::DBG_DrawWireframe ); _physicsWorld._discreteDynamicsWorld->setDebugDrawer(draw); /*Setup camera and lamb*/ ………….. //This simpleCube.pod contains the cube [self addContentFromPODFile: @"simpleCube.pod"]; //This file contains sphere [self addContentFromPODFile: @"SimpleSphere.pod"]; [self createGLBuffers]; CC3MeshNode* cubeNode = (CC3MeshNode*)[self getNodeNamed:@"Cube"]; CC3MeshNode* sphereNode = (CC3MeshNode*)[self getNodeNamed:@"Sphere"]; // both cubeNode and sphereNode are not nil from this point float *cVertexData = (float*)((CC3VertexArrayMesh*)cubeNode.mesh) .vertexLocations.vertices; int cVertexCount = ((CC3VertexArrayMesh*)cubeNode.mesh) .vertexLocations.vertexCount; btTriangleMesh* cTriangleMesh = new btTriangleMesh(); int offset = 0; for (int i = 0; i < (cVertexCount / 3); i++) { unsigned int index1 = offset; unsigned int index2 = offset+6; unsigned int index3 = offset+12; cTriangleMesh->addTriangle( btVector3(cVertexData[index1], cVertexData[index1+1], cVertexData[index1+2]), btVector3(cVertexData[index2], cVertexData[index2+1], cVertexData[index2+2]), btVector3(cVertexData[index3], cVertexData[index3+1], cVertexData[index3+2])); offset += 18; } [self releaseRedundantData]; /*Create a triangle mesh from the vertices*/ btBvhTriangleMeshShape* cTriMeshShape = new btBvhTriangleMeshShape(cTriangleMesh,true); btCollisionShape *sphereShape = new btSphereShape(1); gTriMeshObject = [_physicsWorld createPhysicsObjectTrimesh:cubeNode shape:cTriMeshShape mass:0 restitution:1.0 position:cubeNode.location]; sphereObject = [_physicsWorld createPhysicsObject:sphereNode shape:sphereShape mass:1 restitution:0.1 position:sphereNode.location]; sphereObject.rigidBody->setDamping(0.1,0.8); /*Enable debug drawing*/ _physicsWorld._discreteDynamicsWorld->debugDrawWorld(); } And My btIDebugDraw implementation (MyDebugDraw.h) //MyDebugDraw.h class MyDebugDraw: public btIDebugDraw{ int m_debugMode; public: virtual void drawLine(const btVector3& from,const btVector3& to ,const btVector3& color); virtual void drawContactPoint(const btVector3& PointOnB ,const btVector3& normalOnB,btScalar distance ,int lifeTime,const btVector3& color); virtual void reportErrorWarning(const char* warningString); virtual void draw3dText(const btVector3& location ,const char* textString); virtual void setDebugMode(int debugMode); virtual int getDebugMode() const; }; void MyDebugDraw::drawLine(const btVector3& from,const btVector3& to ,const btVector3& color){ LogInfo(@"Works!!"); glPushMatrix(); glColor4f(color.getX(), color.getY(), color.getZ(), 1.0); const GLfloat line[] = { from.getX()*1, from.getY()*1, from.getZ()*1, //point A to.getX()*1, to.getY()*1,to.getZ()*1 //point B }; glVertexPointer( 3, GL_FLOAT, 0, &line ); glPointSize( 5.0f ); glDrawArrays( GL_POINTS, 0, 2 ); glDrawArrays( GL_LINES, 0, 2 ); glPopMatrix(); } void MyDebugDraw::drawContactPoint(const btVector3 &PointOnB ,const btVector3 &normalOnB, btScalar distance ,int lifeTime, const btVector3 &color){ } void MyDebugDraw::reportErrorWarning(const char *warningString){ } void MyDebugDraw::draw3dText(const btVector3 &location , const char *textString){ } void MyDebugDraw::setDebugMode(int debugMode){ } int MyDebugDraw::getDebugMode() const{ return DBG_DrawWireframe; } My Problem The drawLine method is getting called. I can see the cube and sphere in place. Sphere again does some circling around the cube before jumping off. No debug lines are getting drawn.

    Read the article

  • Physics timestep questions

    - by SSL
    I've got a projectile working perfectly using the code below: //initialised in loading screen 60 is the FPS - projectilEposition and velocity are Vector3 types gravity = new Vector3(0, -(float)9.81 / 60, 0); //called every frame projectilePosition += projectileVelocity; This seems to work fine but I've noticed in various projectile examples I've seen that the elapsedtime per update is taken into account. What's the difference between the two and how can I convert the above to take into account the elapsedtime? (I'm using XNA - do I use ElapsedTime.TotalSeconds or TotalMilliseconds)? Edit: Forgot to add my attempt at using elapsedtime, which seemed to break the physics: projectileVelocity.Y += -(float)((9.81 * gameTime.ElapsedGameTime.TotalSeconds * gameTime.ElapsedGameTime.TotalSeconds) * 0.5f); Thanks for the help

    Read the article

  • Correct order of tasks in each frame for a Physics simulation

    - by Johny
    I'm playing a bit around with 2D physics. I created now some physic blocks which should collide with each other. This works fine "mostly" but sometimes one of the blocks does not react to a collision and i think that's because of my order of tasks done in each frame. At the moment it looks something like this: function GameFrame(){ foreach physicObject do AddVelocityToPosition(); DoCollisionStuff(); // Only for this object not to forget! AddGravitationToVelocity(); end RedrawScene(); } Is this the correct order of tasks in each frame?

    Read the article

  • Numerical stability in continuous physics simulation

    - by Panda Pajama
    Pretty much all of the game development I have been involved with runs afoul of simulating a physical world in discrete time steps. This is of course very simple, but hardly elegant (not to mention mathematically inaccurate). It also has severe disadvantages when large values are involved (either very large speeds, or very large time intervals). I'm trying to make a continuous physics simulation, just for learning, which goes like this: time = get_time() while true do new_time = get_time() update_world(new_time - time) render() time = new_time end And update_world() is a continuous physical simulation. Meaning that for example, for an accelerated object, instead of doing object.x = object.x + object.vx * timestep object.vx = object.vx + object.ax * timestep -- timestep is fixed I'm doing something like object.x = object.x + object.vx * deltatime + object.ax * ((deltatime ^ 2) / 2) object.vx = object.vx + object.ax * deltatime However, I'm having a hard time with the numerical stability of my solutions, especially for very large time intervals (think of simulating a physical world for hundreds of thousands of virtual years). Depending on the framerate, I get wildly different solutions. How can I improve the numerical stability of my continuous physical simulations?

    Read the article

  • Understanding Unity3d physics: where is the force applied?

    - by Heisenbug
    I'm trying to understand which is the right way to apply forces to a RigidBody. I noticed that there are AddForce and AddRelativeForce methods, one applied in world space coordinate system meanwhile the other in the local space. The thing that I do not understand is the following: usually in physics library (es. Bullet) we can specify the force vector and also the force application point. How can I do this in Unity? Is it possible to apply a force vector in a specific point relative to the given RigidBody coordinate system? Where does AddForce apply the force?

    Read the article

  • writing an autopilot for a 2d game with newtonian physics

    - by Jargo
    The subject says it all. I am making a 2d space game with newtonian physics and I need pointers on how to write an autopilot for it. The requirements are best explained by an example. There is a target object which has speed- and position-vectors and there a spaceship that is controlled by the autopilot. This spaceship also have speed, position and maximum acceleration. The autopilot needs to control the ship that it either collides with the target, Or intercepts the target so that the ship has matching speed and position with the target. Could someone give me some pointers how to achieve this behavior or perhaps even an ready implementation? I am sure someone has written something like this before and there is no point in reinventing the wheel.

    Read the article

  • 3D physics engine for accurate collision handling on desktop/laptop computers (non-console)

    - by Georges Oates Larsen
    What are your suggestions for a physics engine that satisfies the following criteria? Capable of calculating collisions between multiple concave mesh-based colliders Handles many collisions going on at once (for instance one mesh being wedged between two others, which themselves may be wedged between two meshes) Does not allow for collider passthrough, even at high speeds. For instance, if I am applying force to a programmatically hinged object that makes it spin, I do not want it to pass through another rigidbody that it collides with while spinning. I have this problem using PhysX As implied before, reacts well to hinged objects, preferably has its own implementation of a hinge, but I am willing to program my own. The important part is that it has some sort of interface that guarantees accurate collision tracking even when dealing with these things Platform independent -- runs on mac as well as PC, also not tied down to specific graphics cards I think that's the best way to explain what I am looking for. Basically, I need SUPER reliable collisions. Something that can't be accomplished with a simple ray casting approach that sends a ray from the last position of the object to the current position (as this object may be potentially large and colliding with small objects via rotation) Bonus points for also including an OPEN SOURCE engine.

    Read the article

  • jBullet Collision/Physics not working correctly

    - by Kenneth Bray
    Below is the code for one of my objects in the game I am creating (yes although this is a cube, I am not making anything remotely like MineCraft), and my issue is I while the cube will display and is does follow the physics if the cube falls, it does not interact with any other objects in the game. If I was to have multiple cubes in screen at once they all just sit there, or shoot off in all directions never stopping. Anyway, I am new to jBullet, and any help would be appreciated. package Object; import static org.lwjgl.opengl.GL11.GL_QUADS; import static org.lwjgl.opengl.GL11.glBegin; import static org.lwjgl.opengl.GL11.glColor3f; import static org.lwjgl.opengl.GL11.glEnd; import static org.lwjgl.opengl.GL11.glPopMatrix; import static org.lwjgl.opengl.GL11.glPushMatrix; import static org.lwjgl.opengl.GL11.glVertex3f; import javax.vecmath.Matrix4f; import javax.vecmath.Quat4f; import javax.vecmath.Vector3f; import com.bulletphysics.collision.shapes.BoxShape; import com.bulletphysics.collision.shapes.CollisionShape; import com.bulletphysics.dynamics.RigidBody; import com.bulletphysics.dynamics.RigidBodyConstructionInfo; import com.bulletphysics.linearmath.DefaultMotionState; import com.bulletphysics.linearmath.Transform; public class Cube { // Cube size/shape variables private float size; boolean cubeCollidable; boolean cubeDestroyable; // Position variables - currently this defines the center of the cube private float posX; private float posY; private float posZ; // Rotation variables - should be between 0 and 359, might consider letting rotation go higher though I can't think of a purpose currently private float rotX; private float rotY; private float rotZ; //collision shape is a box shape CollisionShape fallShape; // setup the motion state for the ball DefaultMotionState fallMotionState; Vector3f fallInertia = new Vector3f(0, 1, 0); RigidBodyConstructionInfo fallRigidBodyCI; public RigidBody fallRigidBody; int mass = 1; // Constructor public Cube(float pX, float pY, float pZ, float pSize) { posX = pX; posY = pY; posZ = pZ; size = pSize; rotX = 0; rotY = 0; rotZ = 0; // define the physics based on the values passed in fallShape = new BoxShape(new Vector3f(size, size, size)); fallMotionState = new DefaultMotionState(new Transform(new Matrix4f(new Quat4f(0, 0, 0, 1), new Vector3f(0, 50, 0), 1f))); fallRigidBodyCI = new RigidBodyConstructionInfo(mass, fallMotionState, fallShape, fallInertia); fallRigidBody = new RigidBody(fallRigidBodyCI); } public void Update() { Transform trans = new Transform(); fallRigidBody.getMotionState().getWorldTransform(trans); posY = trans.origin.x; posX = trans.origin.y; posZ = trans.origin.z; } public void Draw() { fallShape.calculateLocalInertia(mass, fallInertia); // center point posX, posY, posZ float radius = size / 2; //top glPushMatrix(); glBegin(GL_QUADS); { glColor3f(1.0f,0.0f,0.0f); // red glVertex3f(posX + radius, posY + radius, posZ - radius); glVertex3f(posX - radius, posY + radius, posZ - radius); glVertex3f(posX - radius, posY + radius, posZ + radius); glVertex3f(posX + radius, posY + radius, posZ + radius); } glEnd(); glPopMatrix(); //bottom glPushMatrix(); glBegin(GL_QUADS); { glColor3f(1.0f,1.0f,0.0f); // ?? color glVertex3f(posX + radius, posY - radius, posZ + radius); glVertex3f(posX - radius, posY - radius, posZ + radius); glVertex3f(posX - radius, posY - radius, posZ - radius); glVertex3f(posX + radius, posY - radius, posZ - radius); } glEnd(); glPopMatrix(); //right side glPushMatrix(); glBegin(GL_QUADS); { glColor3f(1.0f,0.0f,1.0f); // ?? color glVertex3f(posX + radius, posY + radius, posZ + radius); glVertex3f(posX + radius, posY - radius, posZ + radius); glVertex3f(posX + radius, posY - radius, posZ - radius); glVertex3f(posX + radius, posY + radius, posZ - radius); } glEnd(); glPopMatrix(); //left side glPushMatrix(); glBegin(GL_QUADS); { glColor3f(0.0f,1.0f,1.0f); // ?? color glVertex3f(posX - radius, posY + radius, posZ - radius); glVertex3f(posX - radius, posY - radius, posZ - radius); glVertex3f(posX - radius, posY - radius, posZ + radius); glVertex3f(posX - radius, posY + radius, posZ + radius); } glEnd(); glPopMatrix(); //front side glPushMatrix(); glBegin(GL_QUADS); { glColor3f(0.0f,0.0f,1.0f); //blue glVertex3f(posX + radius, posY + radius, posZ + radius); glVertex3f(posX - radius, posY + radius, posZ + radius); glVertex3f(posX - radius, posY - radius, posZ + radius); glVertex3f(posX + radius, posY - radius, posZ + radius); } glEnd(); glPopMatrix(); //back side glPushMatrix(); glBegin(GL_QUADS); { glColor3f(0.0f,1.0f,0.0f); // green glVertex3f(posX + radius, posY - radius, posZ - radius); glVertex3f(posX - radius, posY - radius, posZ - radius); glVertex3f(posX - radius, posY + radius, posZ - radius); glVertex3f(posX + radius, posY + radius, posZ - radius); } glEnd(); glPopMatrix(); } }

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >