Search Results

Search found 320 results on 13 pages for 'lighting'.

Page 4/13 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Blender Object Appearing Gray when all Lights are Off

    - by celestialorb
    I have an issue with Blender where, when I turn my only light off (a sun lamp) and render the image my object appears gray rather than black (and thus, not appear to the camera). I can't figure out why this is happening. Here's what I just did in my scene: Added a new UV Sphere mesh (to make a total of two spheres), made it visible to the camera, turned off the sun lamp (by setting energy to 0), and rendered. The result I obtained is below. I discovered this when attempting to render the first sphere with a material/texture on it and it was too bright. The material on the spheres (which are different) are very basic, there's no emit, diffuse and specular are at default values. Could there be an issue with the way my camera is setup? Thanks in advance!

    Read the article

  • Shadow mapping with deffered shading for directional lights - shadow map projection problem

    - by Harry
    I'm trying to implement shadow mapping to my engine. I started with directional lights because they seemed to be the easiest one, but I was wrong :) I have implemented deferred shading and I retrieve position from depth. I think that there is the biggest problem but code looks ok for me. Now more about problem: Shadow map projected onto meshes looks bad scaled and translated and also some informations from shadow map texture aren't visible. You can see it on this screen: http://img5.imageshack.us/img5/2254/93dn.png Yelow frustum is light frustum and I have mixed shadow map preview and actual scene. As you can see shadows are in wrong place and shadow of cone and sphere aren't visible. Could you look at my codes and tell me where I have a mistake? // create shadow map if(!_shd)glGenTextures(1, &_shd); glBindTexture(GL_TEXTURE_2D, _shd); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, 1024, 1024, 0, GL_DEPTH_COMPONENT, GL_FLOAT,NULL); // shadow map size glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, _shd, 0); glDrawBuffer(GL_NONE); // setting camera Vector dire=Vector(0,0,1); ACamera.setLookAt(dire,Vector(0)); ACamera.setPerspectiveView(60.0f,1,0.1f,10.0f); // currently needed for proper frustum corners calculation Vector min(ACamera._point[0]),max(ACamera._point[0]); for(int i=0;i<8;i++){ max=Max(max,ACamera._point[i]); min=Min(min,ACamera._point[i]); } ACamera.setOrthogonalView(min.x,max.x,min.y,max.y,-max.z,-min.z); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, _s_buffer); // framebuffer for shadow map // rendering to depth buffer glBindFramebuffer(GL_DRAW_FRAMEBUFFER, _g_buffer); Shaders["DirLight"].set(true); Matrix4 bias; bias.x.set(0.5,0.0,0.0,0.0); bias.y.set(0.0,0.5,0.0,0.0); bias.z.set(0.0,0.0,0.5,0.0); bias.w.set(0.5,0.5,0.5,1.0); Shaders["DirLight"].set("textureMatrix",ACamera.matrix*Projection3D*bias); // order of multiplications are 100% correct, everything gives mi the same result as using glm glActiveTexture(GL_TEXTURE5); glBindTexture(GL_TEXTURE_2D,_shd); lightDir(dir); // light calculations Vertex Shader makes nothing related to shadow calculatons Pixel shader function which calculates if pixel is in shadow or not: float readShadowMap(vec3 eyeDir) { // retrieve depth of pixel float z = texture2D(depth, gl_FragCoord.xy/screen).z; vec3 pos = vec3(gl_FragCoord.xy/screen, z); // transform by the projection and view inverse vec4 worldSpace = inverse(View)*inverse(ProjectionMatrix)*vec4(pos*2-1,1); worldSpace /= worldSpace.w; vec4 coord=textureMatrix*worldSpace; float vis=1.0f; if(texture2D(shadow, coord.xy).z < coord.z-0.001)vis=0.2f; return vis; } I also have question about shadows specifically for directional light. Currently I always look at 0,0,0 position and in further implementation I have to move light frustum along to camera frustum. I've found how to do this here: http://www.gamedev.net/topic/505893-orthographic-projection-for-shadow-mapping/ but it doesn't give me what I want. Maybe because of problems mentioned above, but I want know your opinion. EDIT: vec4 worldSpace is position read from depht of the scene (not shadow map). Maybe I wasn't precise so I'll try quick explain what is what: View is camera view matrix, ProjectionMatrix is camera projection,. First I try to get world space position from depth map and then multiply it by textureMatrix which is light view *light projection*bias. Rest of code is the same as in many tutorials. I can't use vertex shader to make something like gl_Position=textureMatrix*gl_Vertex and get it interpolated in fragment shader because of deffered rendering use so I want get it from depht buffer. EDIT2: I also tried make it as in Coding Labs tutorial about Shadow Mapping with Deferred Rendering but unfortunately this either works wrong.

    Read the article

  • Compute directional light frustum from view furstum points and light direction

    - by Fabian
    I'm working on a friends engine project and my task is to construct a new frustum from the light direction that overlaps the view frustum and possible shadow casters. The project already has a function that creates a frustum for this but its way to big and includes way to many casters (shadows) which can't be seen in the view frustum. Now the only parameter of this function are the normalized light direction vector and a view class which lets me extract the 8 view frustum points in world space. I don't have any additional infos about the scene. I have read some of the related Questions here but non seem to fit very well to my problem as they often just point to cascaded shadow maps. Sadly i can't use DX or openGl functions directly because this engine has a dedicated math library. From what i've read so far the steps are: Transform view frustum points into light space and find min/max x and y values (or sometimes minima and maxima of all three axis) and create a AABB using the min/max vectors. But what comes after this step? How do i transform this new AABB back to world space? What i've done so far: CVector3 Points[8], MinLight = CVector3(FLT_MAX), MaxLight = CVector3(FLT_MAX); for(int i = 0; i<8;++i){ Points[i] = Points[i] * WorldToShadowMapMatrix; MinLight = Math::Min(Points[i],MinLight); MaxLight = Math::Max(Points[i],MaxLight); } AABox box(MinLight,MaxLight); I don't think this is the right way to do it. The near plain probably has to extend into the direction of the light source to include potentional shadow casters. I've read the Microsoft article about cascaded shadow maps http://msdn.microsoft.com/en-us/library/windows/desktop/ee416307%28v=vs.85%29.aspx which also includes some sample code. But they seem to use the scenes AABB to determine the near and far plane which I can't since i cant access this information from the funtion I'm working in. Could you guys please link some example code which shows the calculation of such frustum? Thanks in advance! Additional questio: is there a way to construct a WorldToFrustum matrix that represents the above transformation?

    Read the article

  • Implementing Light Volume Front Faces

    - by cubrman
    I recently read an article about light indexed deferred rendering from here: http://code.google.com/p/lightindexed-deferredrender/ It explains its ideas in a clear way, but there was one point that I failed to understand. It in fact is one of the most interesting ones, as it explains how to implement transparency with this approach: Typically when rendering light volumes in deferred rendering, only surfaces that intersect the light volume are marked and lit. This is generally accomplished by a “shadow volume like” technique of rendering back faces – incrementing stencil where depth is greater than – then rendering front faces and only accepting when depth is less than and stencil is not zero. By only rendering front faces where depth is less than, all future lookups by fragments in the forward rendering pass will get all possible lights that could hit the fragment. Can anyone explain how exactly you need to render only front faces? Another question is why do you need the front faces at all? Why can't we simply render all the lights and store the ones that overlap at this pixel in a texture? Does this approach serves as a cut-off plane to discard lights blocked by opaque geometry?

    Read the article

  • Fast pixelshader 2D raytracing

    - by heishe
    I'd like to do a simple 2D shadow calculation algorithm by rendering my environment into a texture, and then use raytracing to determine what pixels of the texture are not visible to the point light (simply handed to the shader as a vec2 position) . A simple brute force algorithm per pixel would looks like this: line_segment = line segment between current pixel of texture and light source For each pixel in the texture: { if pixel is not just empty space && pixel is on line_segment output = black else output = normal color of the pixel } This is, of course, probably not the fastest way to do it. Question is: What are faster ways to do it or what are some optimizations that can be applied to this technique?

    Read the article

  • Multiple volumetric lights

    - by notabene
    I recently read this GPU GEMS 3 article Volumetric Light Scattering as a Post-Process. I like the idea to add volumetric light property to realtime render i'm working on. Question is will it work for multiple lights? Our renderer uses one render pass per light and uses additive blending to sum incoming light. I'm mostly convinced that it have to work nice. Do you agree? Maybe there can be problem where light rays crosses each other.

    Read the article

  • Light shaped like a line

    - by Michael
    I am trying to figure out how line-shaped lights fit into the standard point light/spotlight/directional light scheme. The way I see it, there are two options: Seed the line with regular point lights and just deal with the artifacts. Easy, but seems wasteful. Make the line some kind of emissive material and apply a bloom effect. Sounds like it could work, but I can't test it in my engine yet. Is there a standard way to do this? Or for non-point lights in general?

    Read the article

  • how to make HLSL effect just for lighning without texture mapping?

    - by naprox
    I'm new to XNA, i created an effect and just want to use lightning but in default effect that XNA create we should do texture mapping or the model appears 'RED', because of this lines of code in the effect file: float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0 { float4 output = float4(1,0,0,1); return output; } and if i want to see my model (appear like when i use basiceffect) must do texture mapping by UV coordinates. but my model does not have UV coordinates assigned or its UV coordinates is not exported. and if i do texture mapping i got error. (i do texture mapping by this line of code in vertexshaderfunction and other necessary codes) output.UV= input.UV i have many of this models and want to work with them.(my models are in .FBX format) when i use Bassiceffect i have no problem and model appears correctly. how can i use "just" lightnings in my custom effects? and don't do texture mapping (because i have no UV coordinates in my models) and my model be look like when i use BasicEffect? if you need my complete code Here it is: http://www.mediafire.com/?4jexhd4ulm2icm2 here is inside of my Model Using BasicEffect http://i.imgur.com/ygP2h.jpg?1 and this is my code for drawing with or without BasicEffect inside of my draw() method: Matrix baseWorld = Matrix.CreateScale(Scale) * Matrix.CreateFromYawPitchRoll(Rotation.Y, Rotation.X, Rotation.Z) * Matrix.CreateTranslation(Position); foreach(ModelMesh mesh in Model.Meshes) { Matrix localWorld = ModelTransforms[mesh.ParentBone.Index] * baseWorld; foreach(ModelMeshPart part in mesh.MeshParts) { Effect effect = part.Effect; if (effect is BasicEffect) { ((BasicEffect)effect).World = localWorld; ((BasicEffect)effect).View = View; ((BasicEffect)effect).Projection = Projection; ((BasicEffect)effect).EnableDefaultLighting(); } else { setEffectParameter(effect, "World", localWorld); setEffectParameter(effect, "View", View); setEffectParameter(effect, "Projection", Projection); setEffectParameter(effect, "CameraPosition", CameraPosition); } } mesh.Draw(); } setEffectParameter is another method that sets effect parameter if i use my custom effect.

    Read the article

  • How does Minecraft renders its sunset and sky?

    - by Nick
    In Minecraft, the sunset looks really beautiful and I've always wanted to know how they do it. Do they use several skyboxes rendered over eachother? That is, one for the sky (which can turn dark and light depending on the time of the day), one for the sun and moon, and one for the orange horizon effect? I was hoping someone could enlighten me... I wish I could enter wireframe or something like that but as far as I know that is not possible.

    Read the article

  • OpenGl / C++ and some strange light problem on half board

    - by mlodziaszka
    I have some problem with lights in my opengl "game". I have board with is square (-50,50), (50, 50), (50, -50), (-50,-50) x and z since y doesn't matter at all. I tried to make something like flashlight its moving and rotating with camera (me), but when i try to rotate more then 90 degree to left or right it just give diffrend light: http://imageshack.us/photo/my-images/688/lightij.jpg/ (left is spotlight, right point light) There is also a point light in the middle, but its working strange(not like a pointlight) it shines only on half of the board from (-50,50), (50, 50), (50, 0), (-50,-0) x and y: Link to my repo where u can find game exe in download and full code in source: https://bitbucket.org/mlodziaszka/my_game All more fragments of light: float gl_amb[] = { 0.2f, 0.2f, 0.2f, 1.0f }; glLightModelfv(GL_LIGHT_MODEL_AMBIENT, gl_amb); glEnable(GL_LIGHTING); // Wlaczenie oswietlenia glShadeModel(GL_SMOOTH); // Wybor techniki cieniowania glEnable(GL_LIGHT0); // Wlaczenie 0-go zrodla swiatla glEnable(GL_LIGHT1); Cubes parametri: float m1_amb[] = { 1.0f, 0.0f, 0.0f, 1.0f }; float m1_dif[] = { 1.0f, 0.0f, 0.0f, 1.0f }; float m1_spe[] = { 1.0f, 0.0f, 0.0f, 1.0f }; glMaterialfv(GL_FRONT, GL_AMBIENT, m1_amb); glMaterialfv(GL_FRONT, GL_DIFFUSE, m1_dif); glMaterialfv(GL_FRONT, GL_SPECULAR, m1_spe); glMaterialf(GL_FRONT, GL_SHININESS, 50.0f); Texture parametri: float m1_amb[] = { 1.0f, 1.0f, 1.0f, 1.0f }; float m1_dif[] = { 1.0f, 1.0f, 1.0f, 1.0f }; float m1_spe[] = { 1.0f, 1.0f, 1.0f, 1.0f }; glMaterialfv(GL_FRONT, GL_AMBIENT, m1_amb); glMaterialfv(GL_FRONT, GL_DIFFUSE, m1_dif); glMaterialfv(GL_FRONT, GL_SPECULAR, m1_spe); glMaterialf(GL_FRONT, GL_SHININESS, 0.0f); glTexEnvf( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE ); Light0: //with some magic sn't working anyway float l0_amb[] = { 0.2f, 0.2f, 0.2f, 1.0f }; float l0_dif[] = { 1.0f, 1.0f, 1.0f, 1.0f }; float l0_spe[] = { 1.0f, 1.0f, 1.0f, 1.0f }; float l0_pos[] = { g_Camera.m_vPosition.x, g_Camera.m_vPosition.y, g_Camera.m_vPosition.z, 1.0f }; float temp = 0.0f, temp2 = 0.0f, temp3 = 0.0f; if(g_Camera.m_vView.z < g_Camera.m_vPosition.z) { temp = g_Camera.m_vView.x - g_Camera.m_vPosition.x; temp2 = g_Camera.m_vView.z - g_Camera.m_vPosition.z; } else { temp = g_Camera.m_vView.x - g_Camera.m_vPosition.x; temp2 = g_Camera.m_vView.z - g_Camera.m_vPosition.z; } float l0_pos1[] = {temp, 0.0f, temp2}; //float l0_pos1[] = {-1.0f, 0.0f, -1.0f}; glLightfv(GL_LIGHT0, GL_AMBIENT, l0_amb); glLightfv(GL_LIGHT0, GL_DIFFUSE, l0_dif); glLightfv(GL_LIGHT0, GL_SPECULAR, l0_spe); glLightfv(GL_LIGHT0, GL_POSITION, l0_pos); glLightf (GL_LIGHT0, GL_SPOT_CUTOFF, 15.0f); glLightfv(GL_LIGHT0, GL_SPOT_DIRECTION, l0_pos1); Light1: float l1_amb[] = { 0.2f, 0.2f, 0.2f, 1.0f }; float l1_dif[] = { 1.0f, 1.0f, 1.0f, 1.0f }; float l1_spe[] = { 1.0f, 1.0f, 1.0f, 1.0f }; float l1_pos[] = { 0.0f, 0.0f, 0.0f, 1.0f }; glLightfv(GL_LIGHT1, GL_AMBIENT, l1_amb); glLightfv(GL_LIGHT1, GL_DIFFUSE, l1_dif); glLightfv(GL_LIGHT1, GL_SPECULAR, l1_spe); glLightfv(GL_LIGHT1, GL_POSITION, l1_pos); I know that way I made this very old, but for now i want to keep this like that. I wouldbe realy gratefull if someone can tell me what is wrong with my lights xD full code: link up ^^

    Read the article

  • Can you shade a specific section of a sprite? If so, how?

    - by l5p4ngl312
    I have been working on an isometric minecraft-esque game engine for a strategy game I plan on making. As you can see, it really needs some sort of shading. It is difficult to distinguish between separate elevations when the camera is facing away from the slope because everything is the same shade. So my question is: can I shade just a specific section of a sprite? All of those blocks are just sprites, so if I shaded the entire image, it would shade the whole block. I am using LWJGL. Heres a link to a screenshot from the engine: http://i44.tinypic.com/qxqlix.jpg

    Read the article

  • Help understand GLSL directional light on iOS (left handed coord system)

    - by Robse
    I now have changed from GLKBaseEffect to a own shader implementation. I have a shader management, which compiles and applies a shader to the right time and does some shader setup like lights. Please have a look at my vertex shader code. Now, light direction should be provided in eye space, but I think there is something I don't get right. After I setup my view with camera I save a lightMatrix to transform the light from global space to eye space. My modelview and projection setup: - (void)setupViewWithWidth:(int)width height:(int)height camera:(N3DCamera *)aCamera { aCamera.aspect = (float)width / (float)height; float aspect = aCamera.aspect; float far = aCamera.far; float near = aCamera.near; float vFOV = aCamera.fieldOfView; float top = near * tanf(M_PI * vFOV / 360.0f); float bottom = -top; float right = aspect * top; float left = -right; // projection GLKMatrixStackLoadMatrix4(projectionStack, GLKMatrix4MakeFrustum(left, right, bottom, top, near, far)); // identity modelview GLKMatrixStackLoadMatrix4(modelviewStack, GLKMatrix4Identity); // switch to left handed coord system (forward = z+) GLKMatrixStackMultiplyMatrix4(modelviewStack, GLKMatrix4MakeScale(1, 1, -1)); // transform camera GLKMatrixStackMultiplyMatrix4(modelviewStack, GLKMatrix4MakeWithMatrix3(GLKMatrix3Transpose(aCamera.orientation))); GLKMatrixStackTranslate(modelviewStack, -aCamera.position.x, -aCamera.position.y, -aCamera.position.z); } - (GLKMatrix4)modelviewMatrix { return GLKMatrixStackGetMatrix4(modelviewStack); } - (GLKMatrix4)projectionMatrix { return GLKMatrixStackGetMatrix4(projectionStack); } - (GLKMatrix4)modelviewProjectionMatrix { return GLKMatrix4Multiply([self projectionMatrix], [self modelviewMatrix]); } - (GLKMatrix3)normalMatrix { return GLKMatrix3InvertAndTranspose(GLKMatrix4GetMatrix3([self modelviewProjectionMatrix]), NULL); } After that, I save the lightMatrix like this: [self.renderer setupViewWithWidth:view.drawableWidth height:view.drawableHeight camera:self.camera]; self.lightMatrix = [self.renderer modelviewProjectionMatrix]; And just before I render a 3d entity of the scene graph, I setup the light config for its shader with the lightMatrix like this: - (N3DLight)transformedLight:(N3DLight)light transformation:(GLKMatrix4)matrix { N3DLight transformedLight = N3DLightMakeDisabled(); if (N3DLightIsDirectional(light)) { GLKVector3 direction = GLKVector3MakeWithArray(GLKMatrix4MultiplyVector4(matrix, light.position).v); direction = GLKVector3Negate(direction); // HACK -> TODO: get lightMatrix right! transformedLight = N3DLightMakeDirectional(direction, light.diffuse, light.specular); } else { ... } return transformedLight; } You see the line, where I negate the direction!? I can't explain why I need to do that, but if I do, the lights are correct as far as I can tell. Please help me, to get rid of the hack. I'am scared that this has something to do, with my switch to left handed coord system. My vertex shader looks like this: attribute highp vec4 inPosition; attribute lowp vec4 inNormal; ... uniform highp mat4 MVP; uniform highp mat4 MV; uniform lowp mat3 N; uniform lowp vec4 constantColor; uniform lowp vec4 ambient; uniform lowp vec4 light0Position; uniform lowp vec4 light0Diffuse; uniform lowp vec4 light0Specular; varying lowp vec4 vColor; varying lowp vec3 vTexCoord0; vec4 calcDirectional(vec3 dir, vec4 diffuse, vec4 specular, vec3 normal) { float NdotL = max(dot(normal, dir), 0.0); return NdotL * diffuse; } ... vec4 calcLight(vec4 pos, vec4 diffuse, vec4 specular, vec3 normal) { if (pos.w == 0.0) { // Directional Light return calcDirectional(normalize(pos.xyz), diffuse, specular, normal); } else { ... } } void main(void) { // position highp vec4 position = MVP * inPosition; gl_Position = position; // normal lowp vec3 normal = inNormal.xyz / inNormal.w; normal = N * normal; normal = normalize(normal); // colors vColor = constantColor * ambient; // add lights vColor += calcLight(light0Position, light0Diffuse, light0Specular, normal); ... }

    Read the article

  • How do I get my polygons to be lighted by either side?

    - by Molmasepic
    Okay, I am using Ogre3D and Gorilla(2D library for ogre3D) and I am making Gorilla::Screenrenderables in the open scene. The problem that I am having is that when I make a light and have my SR(screenrenderable) near it, it does not light up unless the face of the SR is facing the light... I am wondering if there is a way to maybe set the material or code(which would be harder) so the SR is lit up whether the vertices of the polygon are facing the light or not. I feel it is possible but the main obstacle is how I would go about doing this.

    Read the article

  • how to modify shadow mapping in "3D Graphics with XNA Game Studio 4.0"?

    - by naprox
    So I've been following the tutorials from the book Sean James's "3D Graphics with XNA Game Studio 4.0", and have been doing fine until i reached the shadow mapping part. in this book it creates point lights with a Sphere model. my first Q is how to draw a directional Light with this frame work? secondly it can do shadow mapping just for one light, how can i do shadow mapping for all or parts of the lights in the game? i just want to know how to modify this codes to do the above tasks. I've followed tutorials on MSDN and some other sites and didn't got the answer. please help me, its so urgent. and if any one wants, the complete code is here: http://www.mediafire.com/?6ct11mc1g8f891h

    Read the article

  • How does Minecraft render its sunset and sky?

    - by Nick
    In Minecraft, the sunset looks really beautiful and I've always wanted to know how they do it. Do they use several skyboxes rendered over eachother? That is, one for the sky (which can turn dark and light depending on the time of the day), one for the sun and moon, and one for the orange horizon effect? I was hoping someone could enlighten me... I wish I could enter wireframe or something like that but as far as I know that is not possible.

    Read the article

  • Where does the light come from, using Maya/Panda3D?

    - by Aerovistae
    Total noob to Maya. Total noob to Panda3D. Planning on becoming really good at both as soon as I have free time to do so, but right now I have an assignment due in a few hours which requires this: (The part which confuses me is bolded.) Model and texture a vehicle and two different obstacles Build a scene graph in Panda with a plane, the vehicle, several copies of each of the obstacles, and (at least) a direction light Program vehicle movement, constrained to a plane (no terrain) Working headlights Vehicle collides with obstacles How do I attach a light source to a model? I'm assuming this is done in Panda3D but I'm sufficiently new to this that I wouldn't be astonished to hear it's part of the model.

    Read the article

  • Can you shade a specific section of a sprite? If so, how? [Java]

    - by l5p4ngl312
    I have been working on an isometric minecraft-esque game engine for a strategy game I plan on making. As you can see, it really needs some sort of shading. It is difficult to distinguish between separate elevations when the camera is facing away from the slope because everything is the same shade. So my question is: can I shade just a specific section of a sprite? All of those blocks are just sprites, so if I shaded the entire image, it would shade the whole block. I am using LWJGL. Heres a link to a screenshot from the engine: http://i44.tinypic.com/qxqlix.jpg

    Read the article

  • OpenGL directional light creating black spots

    - by AnonymousDeveloper
    I probably ought to start by saying that I suspect the problem is that one of my vectors is not in the correct "space", but I don't know for sure. I am having a strange problem with a directional light. When I move the camera away from (0.0, 0.0, 0.0) it creates tiny black spots that grow larger as the distance increases. I apologize ahead of time for the length of the code. Vertex shader: #version 410 core in vec3 vf_normal; in vec3 vf_bitangent; in vec3 vf_tangent; in vec2 vf_textureCoordinates; in vec3 vf_vertex; out vec3 tc_normal; out vec3 tc_bitangent; out vec3 tc_tangent; out vec2 tc_textureCoordinates; out vec3 tc_vertex; uniform mat3 vf_m_normal; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform float vf_te_inner; uniform float vf_te_outer; void main() { tc_normal = vf_normal; tc_bitangent = vf_bitangent; tc_tangent = vf_tangent; tc_textureCoordinates = vf_textureCoordinates; tc_vertex = vf_vertex; gl_Position = vf_m_mvp * vec4(vf_vertex, 1.0); } Tessellation Control shader: #version 410 core layout (vertices = 3) out; in vec3 tc_normal[]; in vec3 tc_bitangent[]; in vec3 tc_tangent[]; in vec2 tc_textureCoordinates[]; in vec3 tc_vertex[]; out vec3 te_normal[]; out vec3 te_bitangent[]; out vec3 te_tangent[]; out vec2 te_textureCoordinates[]; out vec3 te_vertex[]; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; #define ID gl_InvocationID float getTessLevelInner(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_inner - avgDistance), 1.0, vf_te_inner); } float getTessLevelOuter(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_outer - avgDistance), 1.0, vf_te_outer); } void main() { te_normal[gl_InvocationID] = tc_normal[gl_InvocationID]; te_bitangent[gl_InvocationID] = tc_bitangent[gl_InvocationID]; te_tangent[gl_InvocationID] = tc_tangent[gl_InvocationID]; te_textureCoordinates[gl_InvocationID] = tc_textureCoordinates[gl_InvocationID]; te_vertex[gl_InvocationID] = tc_vertex[gl_InvocationID]; float eyeToVertexDistance0 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[0], 1.0)).xyz); float eyeToVertexDistance1 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[1], 1.0)).xyz); float eyeToVertexDistance2 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[2], 1.0)).xyz); gl_TessLevelOuter[0] = getTessLevelOuter(eyeToVertexDistance1, eyeToVertexDistance2); gl_TessLevelOuter[1] = getTessLevelOuter(eyeToVertexDistance2, eyeToVertexDistance0); gl_TessLevelOuter[2] = getTessLevelOuter(eyeToVertexDistance0, eyeToVertexDistance1); gl_TessLevelInner[0] = getTessLevelInner(eyeToVertexDistance2, eyeToVertexDistance0); } Tessellation Evaluation shader: #version 410 core layout (triangles, equal_spacing, cw) in; in vec3 te_normal[]; in vec3 te_bitangent[]; in vec3 te_tangent[]; in vec2 te_textureCoordinates[]; in vec3 te_vertex[]; out vec3 g_normal; out vec3 g_bitangent; out vec4 g_patchDistance; out vec3 g_tangent; out vec2 g_textureCoordinates; out vec3 g_vertex; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_displace; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 interpolate2D(vec2 v0, vec2 v1, vec2 v2) { return vec2(gl_TessCoord.x) * v0 + vec2(gl_TessCoord.y) * v1 + vec2(gl_TessCoord.z) * v2; } vec3 interpolate3D(vec3 v0, vec3 v1, vec3 v2) { return vec3(gl_TessCoord.x) * v0 + vec3(gl_TessCoord.y) * v1 + vec3(gl_TessCoord.z) * v2; } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2*d*d); return d; } float getDisplacement(vec2 t0, vec2 t1, vec2 t2) { float displacement = 0.0; vec2 textureCoordinates = interpolate2D(t0, t1, t2); vec2 vector = ((t0 + t1 + t2) / 3.0); float sampleDistance = sqrt((vector.x * vector.x) + (vector.y * vector.y)); sampleDistance /= ((vf_te_inner + vf_te_outer) / 2.0); displacement += texture(vf_t_displace, textureCoordinates).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, -sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, -sampleDistance)).x; return (displacement / 5.0); } void main() { g_normal = normalize(interpolate3D(te_normal[0], te_normal[1], te_normal[2])); g_bitangent = normalize(interpolate3D(te_bitangent[0], te_bitangent[1], te_bitangent[2])); g_patchDistance = vec4(gl_TessCoord, (1.0 - gl_TessCoord.y)); g_tangent = normalize(interpolate3D(te_tangent[0], te_tangent[1], te_tangent[2])); g_textureCoordinates = interpolate2D(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); g_vertex = interpolate3D(te_vertex[0], te_vertex[1], te_vertex[2]); float displacement = getDisplacement(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); float d2 = min(min(min(g_patchDistance.x, g_patchDistance.y), g_patchDistance.z), g_patchDistance.w); d2 = amplify(d2, 50, -0.5); g_vertex += g_normal * displacement * 0.1 * d2; gl_Position = vf_m_mvp * vec4(g_vertex, 1.0); } Geometry shader: #version 410 core layout (triangles) in; layout (triangle_strip, max_vertices = 3) out; in vec3 g_normal[3]; in vec3 g_bitangent[3]; in vec4 g_patchDistance[3]; in vec3 g_tangent[3]; in vec2 g_textureCoordinates[3]; in vec3 g_vertex[3]; out vec3 f_tangent; out vec3 f_bitangent; out vec3 f_eyeDirection; out vec3 f_lightDirection; out vec3 f_normal; out vec4 f_patchDistance; out vec4 f_shadowCoordinates; out vec2 f_textureCoordinates; out vec3 f_vertex; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; void main() { int index = 0; while (index < 3) { vec3 vertexNormal_cameraspace = vf_m_normal * normalize(g_normal[index]); vec3 vertexTangent_cameraspace = vf_m_normal * normalize(f_tangent); vec3 vertexBitangent_cameraspace = vf_m_normal * normalize(f_bitangent); mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); vec3 eyeDirection = -(vf_m_view * vf_m_model * vec4(g_vertex[index], 1.0)).xyz; vec3 lightDirection = normalize(-(vf_m_view * vec4(vf_l_position, 1.0)).xyz); f_eyeDirection = TBN * eyeDirection; f_lightDirection = TBN * lightDirection; f_normal = normalize(g_normal[index]); f_patchDistance = g_patchDistance[index]; f_shadowCoordinates = vf_m_depthBias * vec4(g_vertex[index], 1.0); f_textureCoordinates = g_textureCoordinates[index]; f_vertex = (vf_m_model * vec4(g_vertex[index], 1.0)).xyz; gl_Position = gl_in[index].gl_Position; EmitVertex(); index ++; } EndPrimitive(); } Fragment shader: #version 410 core in vec3 f_bitangent; in vec3 f_eyeDirection; in vec3 f_lightDirection; in vec3 f_normal; in vec4 f_patchDistance; in vec4 f_shadowCoordinates; in vec3 f_tangent; in vec2 f_textureCoordinates; in vec3 f_vertex; out vec4 fragColor; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 poissonDisk[16] = vec2[]( vec2(-0.94201624, -0.39906216), vec2( 0.94558609, -0.76890725), vec2(-0.09418410, -0.92938870), vec2( 0.34495938, 0.29387760), vec2(-0.91588581, 0.45771432), vec2(-0.81544232, -0.87912464), vec2(-0.38277543, 0.27676845), vec2( 0.97484398, 0.75648379), vec2( 0.44323325, -0.97511554), vec2( 0.53742981, -0.47373420), vec2(-0.26496911, -0.41893023), vec2( 0.79197514, 0.19090188), vec2(-0.24188840, 0.99706507), vec2(-0.81409955, 0.91437590), vec2( 0.19984126, 0.78641367), vec2( 0.14383161, -0.14100790) ); float random(vec3 seed, int i) { vec4 seed4 = vec4(seed,i); float dot_product = dot(seed4, vec4(12.9898, 78.233, 45.164, 94.673)); return fract(sin(dot_product) * 43758.5453); } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2.0 * d * d); return d; } void main() { vec3 lightColor = vf_l_color.xyz; float lightPower = vf_l_color.w; vec3 materialDiffuseColor = texture(vf_t_diffuse, f_textureCoordinates).xyz; vec3 materialAmbientColor = vec3(0.1, 0.1, 0.1) * materialDiffuseColor; vec3 materialSpecularColor = texture(vf_t_specular, f_textureCoordinates).xyz; vec3 n = normalize(texture(vf_t_normal, f_textureCoordinates).rgb * 2.0 - 1.0); vec3 l = normalize(f_lightDirection); float cosTheta = clamp(dot(n, l), 0.0, 1.0); vec3 E = normalize(f_eyeDirection); vec3 R = reflect(-l, n); float cosAlpha = clamp(dot(E, R), 0.0, 1.0); float visibility = 1.0; float bias = 0.005 * tan(acos(cosTheta)); bias = clamp(bias, 0.0, 0.01); for (int i = 0; i < 4; i ++) { float shading = (0.5 / 4.0); int index = i; visibility -= shading * (1.0 - texture(vf_t_shadow, vec3(f_shadowCoordinates.xy + poissonDisk[index] / 3000.0, (f_shadowCoordinates.z - bias) / f_shadowCoordinates.w))); }\n" fragColor.xyz = materialAmbientColor + visibility * materialDiffuseColor * lightColor * lightPower * cosTheta + visibility * materialSpecularColor * lightColor * lightPower * pow(cosAlpha, 5); fragColor.w = texture(vf_t_diffuse, f_textureCoordinates).w; } The following images should be enough to give you an idea of the problem. Before moving the camera: Moving the camera just a little. Moving it to the center of the scene.

    Read the article

  • How can I change this isometric engine to make it so that you could distinguish between blocks that are on different planes?

    - by l5p4ngl312
    I have been working on an isometric minecraft-esque game engine for a strategy game I plan on making. As you can see, it really needs some sort of shading. It is difficult to distinguish between separate elevations when the camera is facing away from the slope because everything is the same shade. So my question is: can I shade just a specific section of a sprite? All of those blocks are just sprites, so if I shaded the entire image, it would shade the whole block. I am using LWJGL. Are there any other approaches to take? Heres a link to a screenshot from the engine: http://i44.tinypic.com/qxqlix.jpg

    Read the article

  • Light on every model and not in the whole scene

    - by alecnash
    I am using a custom shader and try to pass the effect on my Models like that: foreach (ModelMesh mesh in Model.Meshes) { foreach (ModelMeshPart part in mesh.MeshParts) { part.Effect = effect; } mesh.Draw(); } My only issue is that every Model now has its own light source in it. Why is this happening and is this a problem of my shader? Edit: These are the parameters passed to the shader: private void Get_lambertEffect() { if (_lambertEffect == null) _lambertEffect = Engine.LambertEffect; //Lambert technique (LambertWithShadows, LambertWithShadows2x2PCF, LambertWithShadows3x3PCF) _lambertEffect.CurrentTechnique = _lambertEffect.Techniques["LambertWithShadows3x3PCF"]; _lambertEffect.Parameters["texelSize"].SetValue(Engine.ShadowMap.TexelSize); //ShadowMap parameters _lambertEffect.Parameters["lightViewProjection"].SetValue(Engine.ShadowMap.LightViewProjectionMatrix); _lambertEffect.Parameters["textureScaleBias"].SetValue(Engine.ShadowMap.TextureScaleBiasMatrix); _lambertEffect.Parameters["depthBias"].SetValue(Engine.ShadowMap.DepthBias); _lambertEffect.Parameters["shadowMap"].SetValue(Engine.ShadowMap.ShadowMapTexture); //Camera view and projection parameters _lambertEffect.Parameters["view"].SetValue(Engine._camera.ViewMatrix); _lambertEffect.Parameters["projection"].SetValue(Engine._camera.ProjectionMatrix); _lambertEffect.Parameters["world"].SetValue( Matrix.CreateScale(Size) * world ); //Light and color _lambertEffect.Parameters["lightDir"].SetValue(Engine._sourceLight.Direction); _lambertEffect.Parameters["lightColor"].SetValue(Engine._sourceLight.Color); _lambertEffect.Parameters["materialAmbient"].SetValue(Engine.Material.Ambient); _lambertEffect.Parameters["materialDiffuse"].SetValue(Engine.Material.Diffuse); _lambertEffect.Parameters["colorMap"].SetValue(ColorTexture.Create(Engine.GraphicsDevice, Color.Red)); }

    Read the article

  • Common light map practices

    - by M. Utku ALTINKAYA
    My scene consists of individual meshes. At the moment each mesh has its associated light map texture, I was able to implement the light mapping using these many small textures. 1) Of course, I want to create an atlas, but how do you split atlases to pages, I mean do you group the lm's of objects that are close to each other, and load light maps on the fly if scene is expected to be big. 2) the 3d authoring software provides automatic uv coordinates for each mesh in the scene, but there are empty areas in the texel space, so if I scale the texture polygons the texel density of each face wil not match other meshes, if I create atlas like that there will be varying lm resolution, how do you solve this, just leave it as it is, or ignore resolution ? Actually these questions also applies to other non tiled maps.

    Read the article

  • Drawing "Stenciled" Sprites and making them glow

    - by Code Assassin
    Currently, in my game - I'm not using XNA's SpriteBatch to render anything(I am using Farseer Physic's Debug View), and I was wondering how I would render something like this: only using XNA. My second question is once I have drawn these stenciled sprites , how would I give the "stenciled" lines a glow effect like so: I haven't done anything like this before so It is a very confusing experience for me. Any pointers?

    Read the article

  • How to draw a spotlight in 3D

    - by RecursiveCall
    To be clear, I am not talking about the light result (the lit area) but the spotlight itself, like this The two common suggestions that I tried are 2D image and a 3D cone. The problem with the pre-regenerated 2D image is that it always look 2D and flat no matter how it is rotated in world space. The cone on the other hand is next to impossible to control when it comes to fade distance, it doesn't look soft (smooth) and it is expensive to compute.

    Read the article

  • Lighting does not work with gluSphere

    - by badcodenotreat
    This is a simple issue that I'm somewhat ashamed to ask for help on. I'm making a simple call to gluSphere to render a sphere, however, it does not light properly even though I'm pretty sure I added the normals and lighting correctly. If, however, I add a texture, the model lights normally, except it seems to be always SMOOTH, and I cannot change it to flat. This is the lighting code in my init() function: gl.glLightfv( GL.GL_LIGHT0, GL.GL_AMBIENT , AMBIENT_LIGHT, 0 ); gl.glLightfv( GL.GL_LIGHT0, GL.GL_DIFFUSE , DIFFUSE_LIGHT, 0 ); gl.glLightfv( GL.GL_LIGHT0, GL.GL_POSITION, light_pos , 0 ); gl.glEnable ( GL.GL_LIGHT0 ); gl.glEnable ( GL.GL_LIGHTING ); this is my sphere code in my display() function: gl.glColor3d(1.0, 1.0, 1.0); glu.gluQuadricDrawStyle (quad, GLU.GLU_FILL); glu.gluQuadricNormals (quad, GLU.GLU_FLAT); glu.gluQuadricOrientation(quad, GLU.GLU_OUTSIDE); glu.gluSphere(quad, 1.0, lat, lon); Please advise.

    Read the article

  • Issues with HLSL and lighting

    - by numerical25
    I am trying figure out whats going on with my HLSL code but I have no way of debugging it cause C++ gives off no errors. The application just closes when I run it. I am trying to add lighting to a 3d plane I made. below is my HLSL. The problem consist when my Pixel shader method returns the struct "outColor" . If I change the return value back to the struct "psInput" , everything goes back to working again. My light vectors and colors are at the top of the fx file // PS_INPUT - input variables to the pixel shader // This struct is created and fill in by the // vertex shader cbuffer Variables { matrix Projection; matrix World; float TimeStep; }; struct PS_INPUT { float4 Pos : SV_POSITION; float4 Color : COLOR0; float3 Normal : TEXCOORD0; float3 ViewVector : TEXCOORD1; }; float specpower = 80.0f; float3 camPos = float3(0.0f, 9.0, -256.0f); float3 DirectLightColor = float3(1.0f, 1.0f, 1.0f); float3 DirectLightVector = float3(0.0f, 0.602f, 0.70f); float3 AmbientLightColor = float3(1.0f, 1.0f, 1.0f); /*************************************** * Lighting functions ***************************************/ /********************************* * CalculateAmbient - * inputs - * vKa material's reflective color * lightColor - the ambient color of the lightsource * output - ambient color *********************************/ float3 CalculateAmbient(float3 vKa, float3 lightColor) { float3 vAmbient = vKa * lightColor; return vAmbient; } /********************************* * CalculateDiffuse - * inputs - * material color * The color of the direct light * the local normal * the vector of the direct light * output - difuse color *********************************/ float3 CalculateDiffuse(float3 baseColor, float3 lightColor, float3 normal, float3 lightVector) { float3 vDiffuse = baseColor * lightColor * saturate(dot(normal, lightVector)); return vDiffuse; } /********************************* * CalculateSpecular - * inputs - * viewVector * the direct light vector * the normal * output - specular highlight *********************************/ float CalculateSpecular(float3 viewVector, float3 lightVector, float3 normal) { float3 vReflect = reflect(lightVector, normal); float fSpecular = saturate(dot(vReflect, viewVector)); fSpecular = pow(fSpecular, specpower); return fSpecular; } /********************************* * LightingCombine - * inputs - * ambient component * diffuse component * specualr component * output - phong color color *********************************/ float3 LightingCombine(float3 vAmbient, float3 vDiffuse, float fSpecular) { float3 vCombined = vAmbient + vDiffuse + fSpecular.xxx; return vCombined; } //////////////////////////////////////////////// // Vertex Shader - Main Function /////////////////////////////////////////////// PS_INPUT VS(float4 Pos : POSITION, float4 Color : COLOR, float3 Normal : NORMAL) { PS_INPUT psInput; float4 newPosition; newPosition = Pos; newPosition.y = sin((newPosition.x * TimeStep) + (newPosition.z / 3.0f)) * 5.0f; // Pass through both the position and the color psInput.Pos = mul(newPosition , Projection ); psInput.Color = Color; psInput.ViewVector = normalize(camPos - psInput.Pos); return psInput; } /////////////////////////////////////////////// // Pixel Shader /////////////////////////////////////////////// //Anthony!!!!!!!!!!! Find out how color works when multiplying them float4 PS(PS_INPUT psInput) : SV_Target { float3 normal = -normalize(psInput.Normal); float3 vAmbient = CalculateAmbient(psInput.Color, AmbientLightColor); float3 vDiffuse = CalculateDiffuse(psInput.Color, DirectLightColor, normal, DirectLightVector); float fSpecular = CalculateSpecular(psInput.ViewVector, DirectLightVector, normal); float4 outColor; outColor.rgb = LightingCombine(vAmbient, vDiffuse, fSpecular); outColor.a = 1.0f; //Below is where the error begins return outColor; } // Define the technique technique10 Render { pass P0 { SetVertexShader( CompileShader( vs_4_0, VS() ) ); SetGeometryShader( NULL ); SetPixelShader( CompileShader( ps_4_0, PS() ) ); } } Below is some of my c++ code. Reason I am showing this is because it is pretty much what creates the surface normals for my shaders to evaluate. for the lighting for(int z=0; z < NUM_ROWS; ++z) { for(int x = 0; x < NUM_COLS; ++x) { int curVertex = x + (z * NUM_VERTSX); indices[curIndex] = curVertex; indices[curIndex + 1] = curVertex + NUM_VERTSX; indices[curIndex + 2] = curVertex + 1; D3DXVECTOR3 v0 = vertices[indices[curIndex]].pos; D3DXVECTOR3 v1 = vertices[indices[curIndex + 1]].pos; D3DXVECTOR3 v2 = vertices[indices[curIndex + 2]].pos; D3DXVECTOR3 normal; D3DXVECTOR3 cross; D3DXVec3Cross(&cross, &D3DXVECTOR3(v2 - v0),&D3DXVECTOR3(v1 - v0)); D3DXVec3Normalize(&normal, &cross); vertices[indices[curIndex]].normal = normal; vertices[indices[curIndex + 1]].normal = normal; vertices[indices[curIndex + 2]].normal = normal; indices[curIndex + 3] = curVertex + 1; indices[curIndex + 4] = curVertex + NUM_VERTSX; indices[curIndex + 5] = curVertex + NUM_VERTSX + 1; v0 = vertices[indices[curIndex + 3]].pos; v1 = vertices[indices[curIndex + 4]].pos; v2 = vertices[indices[curIndex + 5]].pos; D3DXVec3Cross(&cross, &D3DXVECTOR3(v2 - v0),&D3DXVECTOR3(v1 - v0)); D3DXVec3Normalize(&normal, &cross); vertices[indices[curIndex + 3]].normal = normal; vertices[indices[curIndex + 4]].normal = normal; vertices[indices[curIndex + 5]].normal = normal; curIndex += 6; } } and below is my c++ code, in it's entirety. showing the drawing and also calling on the passes #include "MyGame.h" //#include "CubeVector.h" /* This code sets a projection and shows a turning cube. What has been added is the project, rotation and a rasterizer to change the rasterization of the cube. The issue that was going on was something with the effect file which was causing the vertices not to be rendered correctly.*/ typedef struct { ID3D10Effect* pEffect; ID3D10EffectTechnique* pTechnique; //vertex information ID3D10Buffer* pVertexBuffer; ID3D10Buffer* pIndicesBuffer; ID3D10InputLayout* pVertexLayout; UINT numVertices; UINT numIndices; }ModelObject; ModelObject modelObject; // World Matrix D3DXMATRIX WorldMatrix; // View Matrix D3DXMATRIX ViewMatrix; // Projection Matrix D3DXMATRIX ProjectionMatrix; ID3D10EffectMatrixVariable* pProjectionMatrixVariable = NULL; //grid information #define NUM_COLS 16 #define NUM_ROWS 16 #define CELL_WIDTH 32 #define CELL_HEIGHT 32 #define NUM_VERTSX (NUM_COLS + 1) #define NUM_VERTSY (NUM_ROWS + 1) // timer variables LARGE_INTEGER timeStart; LARGE_INTEGER timeEnd; LARGE_INTEGER timerFreq; double currentTime; float anim_rate; // Variable to hold how long since last frame change float lastElaspedFrame = 0; // How long should the frames last float frameDuration = 0.5; bool MyGame::InitDirect3D() { if(!DX3dApp::InitDirect3D()) { return false; } // Get the timer frequency QueryPerformanceFrequency(&timerFreq); float freqSeconds = 1.0f / timerFreq.QuadPart; lastElaspedFrame = 0; D3D10_RASTERIZER_DESC rastDesc; rastDesc.FillMode = D3D10_FILL_WIREFRAME; rastDesc.CullMode = D3D10_CULL_FRONT; rastDesc.FrontCounterClockwise = true; rastDesc.DepthBias = false; rastDesc.DepthBiasClamp = 0; rastDesc.SlopeScaledDepthBias = 0; rastDesc.DepthClipEnable = false; rastDesc.ScissorEnable = false; rastDesc.MultisampleEnable = false; rastDesc.AntialiasedLineEnable = false; ID3D10RasterizerState *g_pRasterizerState; mpD3DDevice->CreateRasterizerState(&rastDesc, &g_pRasterizerState); mpD3DDevice->RSSetState(g_pRasterizerState); // Set up the World Matrix D3DXMatrixIdentity(&WorldMatrix); D3DXMatrixLookAtLH(&ViewMatrix, new D3DXVECTOR3(200.0f, 60.0f, -20.0f), new D3DXVECTOR3(200.0f, 50.0f, 0.0f), new D3DXVECTOR3(0.0f, 1.0f, 0.0f)); // Set up the projection matrix D3DXMatrixPerspectiveFovLH(&ProjectionMatrix, (float)D3DX_PI * 0.5f, (float)mWidth/(float)mHeight, 0.1f, 100.0f); pTimeVariable = NULL; if(!CreateObject()) { return false; } return true; } //These are actions that take place after the clearing of the buffer and before the present void MyGame::GameDraw() { static float rotationAngle = 0.0f; // create the rotation matrix using the rotation angle D3DXMatrixRotationY(&WorldMatrix, rotationAngle); rotationAngle += (float)D3DX_PI * 0.0f; // Set the input layout mpD3DDevice->IASetInputLayout(modelObject.pVertexLayout); // Set vertex buffer UINT stride = sizeof(VertexPos); UINT offset = 0; mpD3DDevice->IASetVertexBuffers(0, 1, &modelObject.pVertexBuffer, &stride, &offset); mpD3DDevice->IASetIndexBuffer(modelObject.pIndicesBuffer, DXGI_FORMAT_R32_UINT, 0); pTimeVariable->SetFloat((float)currentTime); // Set primitive topology mpD3DDevice->IASetPrimitiveTopology(D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST); // Combine and send the final matrix to the shader D3DXMATRIX finalMatrix = (WorldMatrix * ViewMatrix * ProjectionMatrix); pProjectionMatrixVariable->SetMatrix((float*)&finalMatrix); // make sure modelObject is valid // Render a model object D3D10_TECHNIQUE_DESC techniqueDescription; modelObject.pTechnique->GetDesc(&techniqueDescription); // Loop through the technique passes for(UINT p=0; p < techniqueDescription.Passes; ++p) { modelObject.pTechnique->GetPassByIndex(p)->Apply(0); // draw the cube using all 36 vertices and 12 triangles mpD3DDevice->DrawIndexed(modelObject.numIndices,0,0); } } //Render actually incapsulates Gamedraw, so you can call data before you actually clear the buffer or after you //present data void MyGame::Render() { // Get the start timer count QueryPerformanceCounter(&timeStart); currentTime += anim_rate; DX3dApp::Render(); QueryPerformanceCounter(&timeEnd); anim_rate = ( (float)timeEnd.QuadPart - (float)timeStart.QuadPart ) / timerFreq.QuadPart; } bool MyGame::CreateObject() { VertexPos vertices[NUM_VERTSX * NUM_VERTSY]; for(int z=0; z < NUM_VERTSY; ++z) { for(int x = 0; x < NUM_VERTSX; ++x) { vertices[x + z * NUM_VERTSX].pos.x = (float)x * CELL_WIDTH; vertices[x + z * NUM_VERTSX].pos.z = (float)z * CELL_HEIGHT; vertices[x + z * NUM_VERTSX].pos.y = (float)(rand() % CELL_HEIGHT); vertices[x + z * NUM_VERTSX].color = D3DXVECTOR4(1.0, 0.0f, 0.0f, 0.0f); } } DWORD indices[NUM_VERTSX * NUM_VERTSY * 6]; int curIndex = 0; for(int z=0; z < NUM_ROWS; ++z) { for(int x = 0; x < NUM_COLS; ++x) { int curVertex = x + (z * NUM_VERTSX); indices[curIndex] = curVertex; indices[curIndex + 1] = curVertex + NUM_VERTSX; indices[curIndex + 2] = curVertex + 1; D3DXVECTOR3 v0 = vertices[indices[curIndex]].pos; D3DXVECTOR3 v1 = vertices[indices[curIndex + 1]].pos; D3DXVECTOR3 v2 = vertices[indices[curIndex + 2]].pos; D3DXVECTOR3 normal; D3DXVECTOR3 cross; D3DXVec3Cross(&cross, &D3DXVECTOR3(v2 - v0),&D3DXVECTOR3(v1 - v0)); D3DXVec3Normalize(&normal, &cross); vertices[indices[curIndex]].normal = normal; vertices[indices[curIndex + 1]].normal = normal; vertices[indices[curIndex + 2]].normal = normal; indices[curIndex + 3] = curVertex + 1; indices[curIndex + 4] = curVertex + NUM_VERTSX; indices[curIndex + 5] = curVertex + NUM_VERTSX + 1; v0 = vertices[indices[curIndex + 3]].pos; v1 = vertices[indices[curIndex + 4]].pos; v2 = vertices[indices[curIndex + 5]].pos; D3DXVec3Cross(&cross, &D3DXVECTOR3(v2 - v0),&D3DXVECTOR3(v1 - v0)); D3DXVec3Normalize(&normal, &cross); vertices[indices[curIndex + 3]].normal = normal; vertices[indices[curIndex + 4]].normal = normal; vertices[indices[curIndex + 5]].normal = normal; curIndex += 6; } } //Create Layout D3D10_INPUT_ELEMENT_DESC layout[] = { {"POSITION",0,DXGI_FORMAT_R32G32B32_FLOAT, 0 , 0, D3D10_INPUT_PER_VERTEX_DATA, 0}, {"COLOR",0,DXGI_FORMAT_R32G32B32A32_FLOAT, 0 , 12, D3D10_INPUT_PER_VERTEX_DATA, 0}, {"NORMAL",0,DXGI_FORMAT_R32G32B32A32_FLOAT, 0 , 28, D3D10_INPUT_PER_VERTEX_DATA, 0} }; UINT numElements = (sizeof(layout)/sizeof(layout[0])); modelObject.numVertices = sizeof(vertices)/sizeof(VertexPos); //Create buffer desc D3D10_BUFFER_DESC bufferDesc; bufferDesc.Usage = D3D10_USAGE_DEFAULT; bufferDesc.ByteWidth = sizeof(VertexPos) * modelObject.numVertices; bufferDesc.BindFlags = D3D10_BIND_VERTEX_BUFFER; bufferDesc.CPUAccessFlags = 0; bufferDesc.MiscFlags = 0; D3D10_SUBRESOURCE_DATA initData; initData.pSysMem = vertices; //Create the buffer HRESULT hr = mpD3DDevice->CreateBuffer(&bufferDesc, &initData, &modelObject.pVertexBuffer); if(FAILED(hr)) return false; modelObject.numIndices = sizeof(indices)/sizeof(DWORD); bufferDesc.ByteWidth = sizeof(DWORD) * modelObject.numIndices; bufferDesc.BindFlags = D3D10_BIND_INDEX_BUFFER; initData.pSysMem = indices; hr = mpD3DDevice->CreateBuffer(&bufferDesc, &initData, &modelObject.pIndicesBuffer); if(FAILED(hr)) return false; ///////////////////////////////////////////////////////////////////////////// //Set up fx files LPCWSTR effectFilename = L"effect.fx"; modelObject.pEffect = NULL; hr = D3DX10CreateEffectFromFile(effectFilename, NULL, NULL, "fx_4_0", D3D10_SHADER_ENABLE_STRICTNESS, 0, mpD3DDevice, NULL, NULL, &modelObject.pEffect, NULL, NULL); if(FAILED(hr)) return false; pProjectionMatrixVariable = modelObject.pEffect->GetVariableByName("Projection")->AsMatrix(); pTimeVariable = modelObject.pEffect->GetVariableByName("TimeStep")->AsScalar(); //Dont sweat the technique. Get it! LPCSTR effectTechniqueName = "Render"; modelObject.pTechnique = modelObject.pEffect->GetTechniqueByName(effectTechniqueName); if(modelObject.pTechnique == NULL) return false; //Create Vertex layout D3D10_PASS_DESC passDesc; modelObject.pTechnique->GetPassByIndex(0)->GetDesc(&passDesc); hr = mpD3DDevice->CreateInputLayout(layout, numElements, passDesc.pIAInputSignature, passDesc.IAInputSignatureSize, &modelObject.pVertexLayout); if(FAILED(hr)) return false; return true; }

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >