Search Results

Search found 25660 results on 1027 pages for 'dotnetnuke development'.

Page 401/1027 | < Previous Page | 397 398 399 400 401 402 403 404 405 406 407 408  | Next Page >

  • Calculating instantaneous speed and acceleration for a simple Car software model

    - by Dylan
    I am trying to model a speedometer and tachometer for a simple software model of a car dashboard. I want this to be relatively simple, so for my purposes I won't likely simulate variables such as drag (or, assume that drag is a constant). But I would like to know the general formulas for: 1) Calculating the RPM, depending on a position of a graphical slider representing the accelerator. 2) Using this information to find the instantaneous speed (or, magnitude of instantaneous velocity?). I am not sure, in the case of 2), what other independent variables I need to consider. Do I need to consider the frequency of rotation of the wheels (assuming a fixed radius), in addition to the RPM? If anyone can give me a rough explanation plus relevant formulas, or alternatively direct me to other trusted resources online (I have had a hard time sifting through info and determining the accuracy), it would be much appreciated.

    Read the article

  • accessing c++ class members with luaplus

    - by cppanda
    i've implemented LuaPlus in my engine eventmanager successfully and really like the flexibility i gained. but i'm still not exactly where i want to by, because i can't link my c++ classes to a lua class. for example i have a Actor class in c++, and i want to be able to create the same class in lua and gain access to members with luaplus, but i can't figure how i can achieve that. Is this actually luaplus built in functionality, or do i have to write my own interface that exchanges data tables between c++ and lua? my current approach would be to fire an event in luascript that creates an new actor class in c++ code, and transfer its id and the data i need to back to lua. when i modify the data i send the modifications back to c++ code again, but i actually thought there's something in luaplus that exposes this functionality already.

    Read the article

  • Low coupling and tight cohesion

    - by hidayat
    Of course it depends on the situation. But when a lower lever object or system communicate with an higher level system, should callbacks or events be preferred to keeping a pointer to higher level object? For example, we have a world class that has a member variable vector<monster> monsters. When the monster class is going to communicate with the world class, should I prefer using a callback function then or should I have a pointer to the world class inside the monster class?

    Read the article

  • OpenGL: Want to keep gun on top of car and be able to control angle. Having difficulties.

    - by Blair
    So I am making a simple game. I want to put a gun on top of a car so basically like a long rod in the middle of a black is how I am modelling it right now. I want to be able to control the angle of the gun. Basically it can go forward all the way so that it is parallel to the ground facing the direction the car is moving or it can point behind the car and any of the angles in between these positions. I have something like the following right now but its not really working. Is there an better way to do this that I am not seeing? #This will place the car glPushMatrix() glTranslatef(self.position.x,1.5,self.position.z) glRotated(self.rotation, 0.0, 1.0, 0.0) glScaled(0.5, 0.5, 0.5) glCallList(self.model.gl_list) glPopMatrix() #This will place the gun on top glPushMatrix() glTranslatef(self.position.x,2.5,self.position.z) glRotated(self.tube_angle, self.direction.z, 0.0, self.direction.x) print self.direction.z glRotated(45, self.position.z, 0.0, self.position.x) glScaled(1.0, 0.5, 1.0) glCallList(self.tube.gl_list) glPopMatrix() This almost works. It moves the gun up and down. But when the car moves around the angle of the gun changes. Not what I want.

    Read the article

  • (Quaternion based) Trouble moving foward based on model rotation

    - by ChocoMan
    Using quaternions, I'm having trouble moving my model in its facing direction. Currently the model moves can move in all cardinal directions with no problems. The problem comes when I rotate the move as it still travelling in the direction of world space. Meaning, if I'm moving forward, backward or any other direction while rotating the model, the model acts like its a figure skater spinning while traveling in the same direction. How do I update the direction of travel proper with the facing direction of the model? Rotates model on Y-axis: Yaw = pController.ThumbSticks.Right.X * MathHelper.ToRadians(speedAngleMAX); AddRotation = Quaternion.CreateFromYawPitchRoll(yaw, 0, 0); ModelLoad.MRotation *= AddRotation; MOrientation = Matrix.CreateFromQuaternion(ModelLoad.MRotation); Moves model forward: // Move Forward if (pController.IsButtonDown(Buttons.LeftThumbstickUp)) { SpeedX = (float)(Math.Sin(ModelLoad.ModelRotation)) * FWDSpeedMax * pController.ThumbSticks.Left.Y * (float)gameTime.ElapsedGameTime.TotalSeconds; SpeedZ = (float)(Math.Cos(ModelLoad.ModelRotation)) * FWDSpeedMax * pController.ThumbSticks.Left.Y * (float)gameTime.ElapsedGameTime.TotalSeconds; // Update model position ModelLoad._modelPos += Vector3.Forward * SpeedZ; ModelLoad._modelPos += Vector3.Left * SpeedX; }

    Read the article

  • Read only array, deep copy or retrieve copies one by one? (Performance and Memory)

    - by Arthur Wulf White
    In a garbage collection based system, what is the most effective way to handle a read only array if such a structure does not exist natively in the language. Is it better to return a copy of an array or allow other classes to retrieve copies of the objects stored in the array one by one? @JustinSkiles: It is not very broad. It is performance related and can actually be answered specifically for two general cases. You only need very few items: in this situation it's more effective to retrieve copies of the objects one by one. You wish to iterate over 30% or more objects. In this cases it is superior to retrieve all the array at once. This saves on functions calls. Function calls are very expansive when compared to reading directly from an array. A good specific answer could include performance, reading from an array and reading indirectly through a function. It is a simple performance related question.

    Read the article

  • How to stop camera from rotating in 2.5d platformer

    - by Artem Suchkov
    I'm stuck with a problem: I can not make my camera stop rotating after character. What I already have tried: using empty game object with rigid body and locked rotation and make it parent of camera, while player being the parent of object. Also, I've tried using few scripts from web, that did not help. Right now I'm bad with using JS in Unity (can handle JS on website, but I dont know how to integrate it for now) and practicing the basics, making easy 2.5d platformer with basic features, so I can not write code for now.

    Read the article

  • Best depth sorting method for a Top Down 2D game using a 3D physics engine

    - by Alic44
    I've spent many days googling this and still have issues with my game engine I'd like to ask about, which I haven't seen addressed before. I think the problem is that my game is an unusual combination of a completely 2D graphical approach using XNA's SpriteBatch, and a completely 3D engine (the amazing BEPU physics engine) with rotation mostly disabled. In essence, my question is similar to this one (the part about "faux 3D"), but the difference is that in my game, the player as well as every other creature is represented by 3D objects, and they can all jump, pick up other objects, and throw them around. What this means is that sorting by one value, such as a Z position (how far north/south a character is on the screen) won't work, because as soon as a smaller creature jumps on top of a larger creature, or a box, and walks backwards, the moment its z value is less than that other creature, it will appear to be behind the object it is actually standing on. I actually originally solved this problem by splitting every object in the game into physics boxes which MUST have a Y height equal to their Z depth. I then based the depth sorting value on the object's y position (how high it is off the ground) PLUS its z position (how far north or south it is on the screen). The problem with this approach is that it requires all moving objects in the game to be split graphically into chunks which match up with a physical box which has its y dimension equal to its z dimension. Which is stupid. So, I got inspired last night to rewrite with a fresh approach. My new method is a little more complex, but I think a little more sane: every object which needs to be sorted by depth in the game exposes the interface IDepthDrawable and is added to a list owned by the DepthDrawer object. IDepthDrawable contains: public interface IDepthDrawable { Rectangle Bounds { get; } //possibly change this to a class if struct copying of the xna Rectangle type becomes an issue DepthDrawShape DepthShape { get; } void Draw(SpriteBatch spriteBatch); } The Bounds Rectangle of each IDepthDrawable object represents the 2D Axis-Aligned Bounding Box it will take up when drawn to the screen. Anything that doesn't intersect the screen will be culled at this stage and the remaining on-screen IDepthDrawables will be Bounds tested for intersections with each other. This is where I get a little less sure of what I'm doing. Each group of collisions will be added to a list or other collection, and each list will sort itself based on its DepthShape property, which will have access to the object-to-be-drawn's physics information. For starting out, lets assume everything in the game is an axis aligned 3D Box shape. Boxes are pretty easy to sort. Something like: if (depthShape1.Back > depthShape2.Front) //if depthShape1 is in front of depthShape2. //depthShape1 goes on top. else if (depthShape1.Bottom > depthShape2.Top) //if depthShape1 is above depthShape2. //depthShape1 goes on top. //if neither of these are true, depthShape2 must be in front or above. So, by sorting draw order by several different factors from the physics engine, I believe I can get a really correct draw order. My question is, is this a good way of going about this, or is there some tried and true, tested way which is completely different and has somehow completely eluded me on the internets? And, if this does seem like a good way to remake my draw order sorting, what's the right sorting algorithm for reordering the Bounds Rectangle collision lists, and how do you deal with a Bounds Rectangle colliding with two different object which don't collide with eachother. I know these are solved problems, but I've only been programming for a year so any specific input here will be greatly appreciated. Thanks for reading this far, ye who made it -- sorry it was so long!

    Read the article

  • Doing powerups in a component-based system

    - by deft_code
    I'm just starting really getting my head around component based design. I don't know what the "right" way to do this is. Here's the scenario. The player can equip a shield. The the shield is drawn as bubble around the player, it has a separate collision shape, and reduces the damage the player receives from area effects. How is such a shield architected in a component based game? Where I get confused is that the shield obviously has three components associated with it. Damage reduction / filtering A sprite A collider. To make it worse different shield variations could have even more behaviors, all of which could be components: boost player maximum health health regen projectile deflection etc Am I overthinking this? Should the shield just be a super component? I really think this is wrong answer. So if you think this is the way to go please explain. Should the shield be its own entity that tracks the location of the player? That might make it hard to implement the damage filtering. It also kinda blurs the lines between attached components and entities. Should the shield be a component that houses other components? I've never seen or heard of anything like this, but maybe it's common and I'm just not deep enough yet. Should the shield just be a set of components that get added to the player? Possibly with an extra component to manage the others, e.g. so they can all be removed as a group. (accidentally leave behind the damage reduction component, now that would be fun). Something else that's obvious to someone with more component experience?

    Read the article

  • How does flash store (represent) movieclips and sprites?

    - by humbleBee
    When we draw any object in flash and convert it into a movieclip or a sprite, how is it stored or represented in flash. I know in vector art it is stored or represented as line segments using formulae. Is there any way to get the vertices of the shape that was drawn? For example, lets say a simple rectangle is drawn and is converted to a movieclip. Is there anyway to obtain the vertices and the line segments from the sprite? So that its shape is obtained. Enough information should be obtained so that the shape can be replicated. That's the key - replication. In simple terms, where does flash store information about a shape that has been drawn so that we can obtain it and attempt to replicate the shape ourselves?

    Read the article

  • Issue with Mapping Textures to Models in Blender

    - by Passage
    I've been trying to texture a model using Blender, but when I draw on the UV Editor it doesn't show up on the model, and I can't draw on the model itself. I've tried saving the image and the 3D View is set to Texture. Everything seems to be in order and I've followed several tutorials, but none of them seem to work with the version I'm using (2.64-- update was necessary for import plugin) and I'm absolutely stumped. How can I draw textures to the model? If not within Blender itself, how do I export/import the textures? EDIT: Vertex Paint works, though it is insufficient for my purposes. In addition, moving to the rendered view produces a solid-color model with none of the applied textures.

    Read the article

  • Pygame set_colorkey transparency issues

    - by Nathan Chowning
    I'm having a strange issue that I cannot seem to remedy. I am doing some prototyping with Pygame on a desktop running windows and a laptop running OS X. Both are running python v2.7.3 (installed via homebrew for the Macbook) and pygame v1.9.1. For transparency, I have been using set_colorkey with a transparency color of (255, 0, 255). Here is the applicable code: transColor = pygame.Color(255, 0, 255) image = pygame.image.load(playerPath + "idle.png").convert() image.set_colorkey(transColor) This works flawlessly on my windows machine. On my laptop, it does not work. It just shows the hideous magenta color. Here's the strange part. If I change the transColor to (0, 0, 0), all black pixels in my images are transparent. Has anyone run into this issue before?

    Read the article

  • Render To Texture Using OpenGL is not working but normal rendering works just fine

    - by Franky Rivera
    things I initialize at the beginning of the program I realize not all of these pertain to my issue I just copy and pasted what I had //overall initialized //things openGL related I initialize earlier on in the project glClearColor( 0.0f, 0.0f, 0.0f, 1.0f ); glClearDepth( 1.0f ); glEnable(GL_ALPHA_TEST); glEnable( GL_STENCIL_TEST ); glEnable(GL_DEPTH_TEST); glDepthFunc( GL_LEQUAL ); glEnable(GL_CULL_FACE); glFrontFace( GL_CCW ); glEnable(GL_COLOR_MATERIAL); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glHint( GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST ); //we also initialize our shader programs //(i added some shader program functions for definitions) //this enum list is else where in code //i figured it would help show you guys more about my //shader compile creation function right under this enum list VVVVVV /*enum eSHADER_ATTRIB_LOCATION { VERTEX_ATTRIB = 0, NORMAL_ATTRIB = 2, COLOR_ATTRIB, COLOR2_ATTRIB, FOG_COORD, TEXTURE_COORD_ATTRIB0 = 8, TEXTURE_COORD_ATTRIB1, TEXTURE_COORD_ATTRIB2, TEXTURE_COORD_ATTRIB3, TEXTURE_COORD_ATTRIB4, TEXTURE_COORD_ATTRIB5, TEXTURE_COORD_ATTRIB6, TEXTURE_COORD_ATTRIB7 }; */ //if we fail making our shader leave if( !testShader.CreateShader( "SimpleShader.vp", "SimpleShader.fp", 3, VERTEX_ATTRIB, "vVertexPos", NORMAL_ATTRIB, "vNormal", TEXTURE_COORD_ATTRIB0, "vTexCoord" ) ) return false; if( !testScreenShader.CreateShader( "ScreenShader.vp", "ScreenShader.fp", 3, VERTEX_ATTRIB, "vVertexPos", NORMAL_ATTRIB, "vNormal", TEXTURE_COORD_ATTRIB0, "vTexCoord" ) ) return false; SHADER PROGRAM FUNCTIONS bool CShaderProgram::CreateShader( const char* szVertexShaderName, const char* szFragmentShaderName, ... ) { //here are our handles for the openGL shaders int iGLVertexShaderHandle = -1, iGLFragmentShaderHandle = -1; //get our shader data char *vData = 0, *fData = 0; int vLength = 0, fLength = 0; LoadShaderFile( szVertexShaderName, &vData, &vLength ); LoadShaderFile( szFragmentShaderName, &fData, &fLength ); //data if( !vData ) return false; //data if( !fData ) { delete[] vData; return false; } //create both our shader objects iGLVertexShaderHandle = glCreateShader( GL_VERTEX_SHADER ); iGLFragmentShaderHandle = glCreateShader( GL_FRAGMENT_SHADER ); //well we got this far so we have dynamic data to clean up //load vertex shader glShaderSource( iGLVertexShaderHandle, 1, (const char**)(&vData), &vLength ); //load fragment shader glShaderSource( iGLFragmentShaderHandle, 1, (const char**)(&fData), &fLength ); //we are done with our data delete it delete[] vData; delete[] fData; //compile them both glCompileShader( iGLVertexShaderHandle ); //get shader status int iShaderOk; glGetShaderiv( iGLVertexShaderHandle, GL_COMPILE_STATUS, &iShaderOk ); if( iShaderOk == GL_FALSE ) { char* buffer; //get what happend with our shader glGetShaderiv( iGLVertexShaderHandle, GL_INFO_LOG_LENGTH, &iShaderOk ); buffer = new char[iShaderOk]; glGetShaderInfoLog( iGLVertexShaderHandle, iShaderOk, NULL, buffer ); //sprintf_s( buffer, "Failure Our Object For %s was not created", szFileName ); MessageBoxA( NULL, buffer, szVertexShaderName, MB_OK ); //delete our dynamic data free( buffer ); glDeleteShader(iGLVertexShaderHandle); return false; } glCompileShader( iGLFragmentShaderHandle ); //get shader status glGetShaderiv( iGLFragmentShaderHandle, GL_COMPILE_STATUS, &iShaderOk ); if( iShaderOk == GL_FALSE ) { char* buffer; //get what happend with our shader glGetShaderiv( iGLFragmentShaderHandle, GL_INFO_LOG_LENGTH, &iShaderOk ); buffer = new char[iShaderOk]; glGetShaderInfoLog( iGLFragmentShaderHandle, iShaderOk, NULL, buffer ); //sprintf_s( buffer, "Failure Our Object For %s was not created", szFileName ); MessageBoxA( NULL, buffer, szFragmentShaderName, MB_OK ); //delete our dynamic data free( buffer ); glDeleteShader(iGLFragmentShaderHandle); return false; } //lets check to see if the fragment shader compiled int iCompiled = 0; glGetShaderiv( iGLVertexShaderHandle, GL_COMPILE_STATUS, &iCompiled ); if( !iCompiled ) { //this shader did not compile leave return false; } //lets check to see if the fragment shader compiled glGetShaderiv( iGLFragmentShaderHandle, GL_COMPILE_STATUS, &iCompiled ); if( !iCompiled ) { char* buffer; //get what happend with our shader glGetShaderiv( iGLFragmentShaderHandle, GL_INFO_LOG_LENGTH, &iShaderOk ); buffer = new char[iShaderOk]; glGetShaderInfoLog( iGLFragmentShaderHandle, iShaderOk, NULL, buffer ); //sprintf_s( buffer, "Failure Our Object For %s was not created", szFileName ); MessageBoxA( NULL, buffer, szFragmentShaderName, MB_OK ); //delete our dynamic data free( buffer ); glDeleteShader(iGLFragmentShaderHandle); return false; } //make our new shader program m_iShaderProgramHandle = glCreateProgram(); glAttachShader( m_iShaderProgramHandle, iGLVertexShaderHandle ); glAttachShader( m_iShaderProgramHandle, iGLFragmentShaderHandle ); glLinkProgram( m_iShaderProgramHandle ); int iLinked = 0; glGetProgramiv( m_iShaderProgramHandle, GL_LINK_STATUS, &iLinked ); if( !iLinked ) { //we didn't link return false; } //NOW LETS CREATE ALL OUR HANDLES TO OUR PROPER LIKING //start from this parameter va_list parseList; va_start( parseList, szFragmentShaderName ); //read in number of variables if any unsigned uiNum = 0; uiNum = va_arg( parseList, unsigned ); //for loop through our attribute pairs int enumType = 0; for( unsigned x = 0; x < uiNum; ++x ) { //specify our attribute locations enumType = va_arg( parseList, int ); char* name = va_arg( parseList, char* ); glBindAttribLocation( m_iShaderProgramHandle, enumType, name ); } //end our list parsing va_end( parseList ); //relink specify //we have custom specified our attribute locations glLinkProgram( m_iShaderProgramHandle ); //fill our handles InitializeHandles( ); //everything went great return true; } void CShaderProgram::InitializeHandles( void ) { m_uihMVP = glGetUniformLocation( m_iShaderProgramHandle, "mMVP" ); m_uihWorld = glGetUniformLocation( m_iShaderProgramHandle, "mWorld" ); m_uihView = glGetUniformLocation( m_iShaderProgramHandle, "mView" ); m_uihProjection = glGetUniformLocation( m_iShaderProgramHandle, "mProjection" ); ///////////////////////////////////////////////////////////////////////////////// //texture handles m_uihDiffuseMap = glGetUniformLocation( m_iShaderProgramHandle, "diffuseMap" ); if( m_uihDiffuseMap != -1 ) { //store what texture index this handle will be in the shader glUniform1i( m_uihDiffuseMap, RM_DIFFUSE+GL_TEXTURE0 ); (0)+ } m_uihNormalMap = glGetUniformLocation( m_iShaderProgramHandle, "normalMap" ); if( m_uihNormalMap != -1 ) { //store what texture index this handle will be in the shader glUniform1i( m_uihNormalMap, RM_NORMAL+GL_TEXTURE0 ); (1)+ } } void CShaderProgram::SetDiffuseMap( const unsigned& uihDiffuseMap ) { (0)+ glActiveTexture( RM_DIFFUSE+GL_TEXTURE0 ); glBindTexture( GL_TEXTURE_2D, uihDiffuseMap ); } void CShaderProgram::SetNormalMap( const unsigned& uihNormalMap ) { (1)+ glActiveTexture( RM_NORMAL+GL_TEXTURE0 ); glBindTexture( GL_TEXTURE_2D, uihNormalMap ); } //MY 2 TEST SHADERS also my math order is correct it pertains to my matrix ordering in my math library once again i've tested the basic rendering. rendering to the screen works fine ----------------------------------------SIMPLE SHADER------------------------------------- //vertex shader looks like this #version 330 in vec3 vVertexPos; in vec3 vNormal; in vec2 vTexCoord; uniform mat4 mWorld; // Model Matrix uniform mat4 mView; // Camera View Matrix uniform mat4 mProjection;// Camera Projection Matrix out vec2 vTexCoordVary; // Texture coord to the fragment program out vec3 vNormalColor; void main( void ) { //pass the texture coordinate vTexCoordVary = vTexCoord; vNormalColor = vNormal; //calculate our model view projection matrix mat4 mMVP = (( mWorld * mView ) * mProjection ); //result our position gl_Position = vec4( vVertexPos, 1 ) * mMVP; } //fragment shader looks like this #version 330 in vec2 vTexCoordVary; in vec3 vNormalColor; uniform sampler2D diffuseMap; uniform sampler2D normalMap; out vec4 fragColor[2]; void main( void ) { //CORRECT fragColor[0] = texture( normalMap, vTexCoordVary ); fragColor[1] = vec4( vNormalColor, 1.0 ); }; ----------------------------------------SCREEN SHADER------------------------------------- //vertext shader looks like this #version 330 in vec3 vVertexPos; // This is the position of the vertex coming in in vec2 vTexCoord; // This is the texture coordinate.... out vec2 vTexCoordVary; // Texture coord to the fragment program void main( void ) { vTexCoordVary = vTexCoord; //set our position gl_Position = vec4( vVertexPos.xyz, 1.0f ); } //fragment shader looks like this #version 330 in vec2 vTexCoordVary; // Incoming "varying" texture coordinate uniform sampler2D diffuseMap;//the tile detail texture uniform sampler2D normalMap; //the normal map from earlier out vec4 vTheColorOfThePixel; void main( void ) { //CORRECT vTheColorOfThePixel = texture( normalMap, vTexCoordVary ); }; .Class RenderTarget Main Functions //here is my render targets create function bool CRenderTarget::Create( const unsigned uiNumTextures, unsigned uiWidth, unsigned uiHeight, int iInternalFormat, bool bDepthWanted ) { if( uiNumTextures <= 0 ) return false; //generate our variables glGenFramebuffers(1, &m_uifboHandle); // Initialize FBO glBindFramebuffer(GL_FRAMEBUFFER, m_uifboHandle); m_uiNumTextures = uiNumTextures; if( bDepthWanted ) m_uiNumTextures += 1; m_uiTextureHandle = new unsigned int[uiNumTextures]; glGenTextures( uiNumTextures, m_uiTextureHandle ); for( unsigned x = 0; x < uiNumTextures-1; ++x ) { glBindTexture( GL_TEXTURE_2D, m_uiTextureHandle[x]); // Reserve space for our 2D render target glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexImage2D(GL_TEXTURE_2D, 0, iInternalFormat, uiWidth, uiHeight, 0, GL_RGB, GL_UNSIGNED_BYTE, NULL); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + x, GL_TEXTURE_2D, m_uiTextureHandle[x], 0); } //if we need one for depth testing if( bDepthWanted ) { glFramebufferTexture2D(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, m_uiTextureHandle[uiNumTextures-1], 0); glFramebufferTexture2D(GL_FRAMEBUFFER_EXT, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D, m_uiTextureHandle[uiNumTextures-1], 0);*/ // Must attach texture to framebuffer. Has Stencil and depth glBindRenderbuffer(GL_RENDERBUFFER, m_uiTextureHandle[uiNumTextures-1]); glRenderbufferStorage(GL_RENDERBUFFER, /*GL_DEPTH_STENCIL*/GL_DEPTH24_STENCIL8, TEXTURE_WIDTH, TEXTURE_HEIGHT ); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, m_uiTextureHandle[uiNumTextures-1]); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_RENDERBUFFER, m_uiTextureHandle[uiNumTextures-1]); } glBindFramebuffer(GL_FRAMEBUFFER, 0); //everything went fine return true; } void CRenderTarget::Bind( const int& iTargetAttachmentLoc, const unsigned& uiWhichTexture, const bool bBindFrameBuffer ) { if( bBindFrameBuffer ) glBindFramebuffer( GL_FRAMEBUFFER, m_uifboHandle ); if( uiWhichTexture < m_uiNumTextures ) glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + iTargetAttachmentLoc, m_uiTextureHandle[uiWhichTexture], 0); } void CRenderTarget::UnBind( void ) { //default our binding glBindFramebuffer( GL_FRAMEBUFFER, 0 ); } //this is all in a test project so here's my straight forward rendering function for testing this render function does basic rendering steps keep in mind i have already tested my textures i have already tested my box thats being rendered all basic rendering works fine its just when i try to render to a texture then display it in a render surface that it does not work. Also I have tested my render surface it is bound exactly to the screen coordinate space void TestRenderSteps( void ) { //Clear the color and the depth glClearColor( 0.0f, 0.0f, 0.0f, 1.0f ); glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT ); //bind the shader program glUseProgram( testShader.m_iShaderProgramHandle ); //1) grab the vertex buffer related to our rendering glBindBuffer( GL_ARRAY_BUFFER, CVertexBufferManager::GetInstance()->GetPositionNormalTexBuffer().GetBufferHandle() ); //2) how our stream will be split here ( 4 bytes position, ..ext ) CVertexBufferManager::GetInstance()->GetPositionNormalTexBuffer().MapVertexStride(); //3) set the index buffer if needed glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, CIndexBuffer::GetInstance()->GetBufferHandle() ); //send the needed information into the shader testShader.SetWorldMatrix( boxPosition ); testShader.SetViewMatrix( Static_Camera.GetView( ) ); testShader.SetProjectionMatrix( Static_Camera.GetProjection( ) ); testShader.SetDiffuseMap( iTextureID ); testShader.SetNormalMap( iTextureID2 ); GLenum buffers[] = { GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1 }; glDrawBuffers(2, buffers); //bind to our render target //RM_DIFFUSE, RM_NORMAL are enums (0 && 1) renderTarget.Bind( RM_DIFFUSE, 1, true ); renderTarget.Bind( RM_NORMAL, 1, false); //false because buffer is already bound //i clear here just to clear the texture to make it a default value of white //by doing this i can see if what im rendering to my screen is just drawing to the screen //or if its my render target defaulted glClearColor( 1.0f, 1.0f, 1.0f, 1.0f ); glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT ); //i have this box object which i draw testBox.Draw(); //the draw call looks like this //my normal rendering works just fine so i know this draw is fine // glDrawElementsBaseVertex( m_sides[x].GetPrimitiveType(), // m_sides[x].GetPrimitiveCount() * 3, // GL_UNSIGNED_INT, // BUFFER_OFFSET(sizeof(unsigned int) * m_sides[x].GetStartIndex()), // m_sides[x].GetStartVertex( ) ); //we unbind the target back to default renderTarget.UnBind(); //i stop mapping my vertex format CVertexBufferManager::GetInstance()->GetPositionNormalTexBuffer().UnMapVertexStride(); //i go back to default in using no shader program glUseProgram( 0 ); //now that everything is drawn to the textures //lets draw our screen surface and pass it our 2 filled out textures //NOW RENDER THE TEXTURES WE COLLECTED TO THE SCREEN QUAD //bind the shader program glUseProgram( testScreenShader.m_iShaderProgramHandle ); //1) grab the vertex buffer related to our rendering glBindBuffer( GL_ARRAY_BUFFER, CVertexBufferManager::GetInstance()->GetPositionTexBuffer().GetBufferHandle() ); //2) how our stream will be split here CVertexBufferManager::GetInstance()->GetPositionTexBuffer().MapVertexStride(); //3) set the index buffer if needed glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, CIndexBuffer::GetInstance()->GetBufferHandle() ); //pass our 2 filled out textures (in the shader im just using the diffuse //i wanted to see if i was rendering anything before i started getting into other techniques testScreenShader.SetDiffuseMap( renderTarget.GetTextureHandle(0) ); //SetDiffuseMap definitions in shader program class testScreenShader.SetNormalMap( renderTarget.GetTextureHandle(1) ); //SetNormalMap definitions in shader program class //DO the draw call drawing our screen rectangle glDrawElementsBaseVertex( m_ScreenRect.GetPrimitiveType(), m_ScreenRect.GetPrimitiveCount() * 3, GL_UNSIGNED_INT, BUFFER_OFFSET(sizeof(unsigned int) * m_ScreenRect.GetStartIndex()), m_ScreenRect.GetStartVertex( ) );*/ //unbind our vertex mapping CVertexBufferManager::GetInstance()->GetPositionTexBuffer().UnMapVertexStride(); //default to no shader program glUseProgram( 0 ); } Last words: 1) I can render my box just fine 2) i can render my screen rect just fine 3) I cannot render my box into a texture then display it into my screen rect 4) This entire project is just a test project I made to test different rendering practices. So excuse any "ugly-ish" unclean code. This was made just on a fly run through when I was trying new test cases.

    Read the article

  • Why do meshes show up as bones in the Model class?

    - by Itamar Marom
    Right now I'm working on a 3D game and I've come across something very weird. When I created the model in Blender, I added an armature named "MyBone" to the stage and attached a cube ("MyCube") to it, so that when I move the armature, the cube moves with it. I exported this as an FBX and loaded it as a Model object. What I expected to see was: But what I got was this: I'm really confused. Why is the mesh I created showing up in the bone list? And what's Root Node? Here are the .blend and .fbx files: here or here. Thanks.

    Read the article

  • XNA 4: GetData from Texture2D and Set it into Texture3D with specific order

    - by cubrman
    I am trying to convert my color grading 2d lookup texture into 3d LUT. When I simply use: ColorAtlas.GetData(data); ColorAtlas3D.SetData(data); I get this: I tried building my 2d atlass horizontally but it did not helped - the data was messed up in a different way. So my question is how can I influence the order of the data I get from the 2d atlas and how can I properly pass it into my 3d atlas? Update: I know that I can GetData from a specific Rectangular area and put it into several arrays, but the result is still the same. This is what I tried: Color[] data2D = new Color[0]; for (int i = 0; i < 32; i++) { Color[] data = new Color[32 * 32]; GraphicsDevice.SetRenderTarget(null); ColorAtlas.GetData(0, new Rectangle(0, i*32, 32, 32), data, 0, data.Length); int oldLength = data2D.Length; Array.Resize<Color>(ref data2D, oldLength + data.Length); Array.Copy(data, 0, data2D, oldLength, data.Length); } ColorAtlas3D.SetData(data2D);

    Read the article

  • Ruby: implementing alpha-beta pruning for tic-tac-toe

    - by DerNalia
    So, alpha-beta pruning seems to be the most efficient algorithm out there aside from hard coding (for tic tac toe). However, I'm having problems converting the algorithm from the C++ example given in the link: http://www.webkinesia.com/games/gametree.php #based off http://www.webkinesia.com/games/gametree.php # (converted from C++ code from the alpha - beta pruning section) # returns 0 if draw LOSS = -1 DRAW = 0 WIN = 1 @next_move = 0 def calculate_ai_next_move score = self.get_best_move(COMPUTER, WIN, LOSS) return @next_move end def get_best_move(player, alpha, beta) best_score = nil score = nil if not self.has_available_moves? return false elsif self.has_this_player_won?(player) return WIN elsif self.has_this_player_won?(1 - player) return LOSS else best_score = alpha NUM_SQUARES.times do |square| if best_score >= beta break end if self.state[square].nil? self.make_move_with_index(square, player) # set to negative of opponent's best move; we only need the returned score; # the returned move is irrelevant. score = -get_best_move(1-player, -beta, -alpha) if (score > bestScore) @next_move = square best_score = score end undo_move(square) end end end return best_score end the problem is that this is returning nil. some support methods that are used above: WAYS_TO_WIN = [[0, 1, 2], [3, 4, 5], [6, 7, 8], [0, 3, 6], [1, 4, 7], [2, 5, 8],[0, 4, 8], [2, 4, 6]] def has_this_player_won?(player) result = false WAYS_TO_WIN.each {|solution| result = self.state[solution[0]] if contains_win?(solution) } return (result == player) end def contains_win?(ttt_win_state) ttt_win_state.each do |pos| return false if self.state[pos] != self.state[ttt_win_state[0]] or self.state[pos].nil? end return true end def make_move(x, y, player) self.set_square(x,y, player) end

    Read the article

  • What light attenuation function does UDK use?

    - by ananamas
    I'm a big fan of the light attenuation in UDK. Traditionally I've always used the constant-linear-quadratic falloff function to control how "soft" the falloff is, which gives three values to play with. In UDK you can get similar results, but you only need to tweak one value: FalloffExponent. I'm interested in what the actual mathematical function here is. The UDK lighting reference describes it as follows: FalloffExponent: This allows you to modify the falloff of a light. The default falloff is 2. The smaller the number, the sharper the falloff and the more the brightness is maintained until the radius is reached. Does anyone know what it's doing behind the scenes?

    Read the article

  • Does use of simple shaders improve performace/battery life?

    - by Miro
    I'm making OpenGL game for Android. Till now i've used only fixed function pipeline, but i'm rendering simple things. Fixed function pipeline includes a lot of stuff i don't need. So i'm thinking about implementing shaders in my game to simplify OpenGL pipeline if it can make better performance. Better performance = better battery life, unless fps is limited by software limit, not hardware power.

    Read the article

  • Tessellation Texture Coordinates

    - by Stuart Martin
    Firstly some info - I'm using DirectX 11 , C++ and I'm a fairly good programmer but new to tessellation and not a master graphics programmer. I'm currently implementing a tessellation system for a terrain model, but i have reached a snag. My current system produces a terrain model from a height map complete with multiple texture coordinates, normals, binormals and tangents for rendering. Now when i was using a simple vertex and pixel shader combination everything worked perfectly but since moving to include a hull and domain shader I'm slightly confused and getting strange results. My terrain is a high detail model but the textured results are very large patches of solid colour. My current setup passes the model data into the vertex shader then through the hull into the domain and then finally into the pixel shader for use in rendering. My only thought is that in my hull shader i pass the information into the domain shader per patch and this is producing the large areas of solid colour because each patch has identical information. Lighting and normal data are also slightly off but not as visibly as texturing. Below is a copy of my hull shader that does not work correctly because i think the way that i am passing the data through is incorrect. If anyone can help me out but suggesting an alternative way to get the required data into the pixel shader? or by showing me the correct way to handle the data in the hull shader id be very thankful! cbuffer TessellationBuffer { float tessellationAmount; float3 padding; }; struct HullInputType { float3 position : POSITION; float2 tex : TEXCOORD0; float3 normal : NORMAL; float3 tangent : TANGENT; float3 binormal : BINORMAL; float2 tex2 : TEXCOORD1; }; struct ConstantOutputType { float edges[3] : SV_TessFactor; float inside : SV_InsideTessFactor; }; struct HullOutputType { float3 position : POSITION; float2 tex : TEXCOORD0; float3 normal : NORMAL; float3 tangent : TANGENT; float3 binormal : BINORMAL; float2 tex2 : TEXCOORD1; float4 depthPosition : TEXCOORD2; }; ConstantOutputType ColorPatchConstantFunction(InputPatch<HullInputType, 3> inputPatch, uint patchId : SV_PrimitiveID) { ConstantOutputType output; output.edges[0] = tessellationAmount; output.edges[1] = tessellationAmount; output.edges[2] = tessellationAmount; output.inside = tessellationAmount; return output; } [domain("tri")] [partitioning("integer")] [outputtopology("triangle_cw")] [outputcontrolpoints(3)] [patchconstantfunc("ColorPatchConstantFunction")] HullOutputType ColorHullShader(InputPatch<HullInputType, 3> patch, uint pointId : SV_OutputControlPointID, uint patchId : SV_PrimitiveID) { HullOutputType output; output.position = patch[pointId].position; output.tex = patch[pointId].tex; output.tex2 = patch[pointId].tex2; output.normal = patch[pointId].normal; output.tangent = patch[pointId].tangent; output.binormal = patch[pointId].binormal; return output; } Edited to include the domain shader:- [domain("tri")] PixelInputType ColorDomainShader(ConstantOutputType input, float3 uvwCoord : SV_DomainLocation, const OutputPatch<HullOutputType, 3> patch) { float3 vertexPosition; PixelInputType output; // Determine the position of the new vertex. vertexPosition = uvwCoord.x * patch[0].position + uvwCoord.y * patch[1].position + uvwCoord.z * patch[2].position; output.position = mul(float4(vertexPosition, 1.0f), worldMatrix); output.position = mul(output.position, viewMatrix); output.position = mul(output.position, projectionMatrix); output.depthPosition = output.position; output.tex = patch[0].tex; output.tex2 = patch[0].tex2; output.normal = patch[0].normal; output.tangent = patch[0].tangent; output.binormal = patch[0].binormal; return output; }

    Read the article

  • Using XNA for a 2D isometric game, but wanna move on

    - by Daniel Ribeiro
    I've been building a 2D isometric game (with learning purposes) in C# using XNA. I found it's really easy to manage sprite sheets loading, collision, basic physics and such with the XNA api. The thing is, I want to move on. My real goal is to learn C++ and develop a game using that language. What engine/library would you guys recommend for me to keep going on that same 2D isometric game direction using pretty much sprite sheets for the graphical part of the game?

    Read the article

  • Camera doesnt move on opengl qt

    - by hugo
    Here is my code, as my subject indicates i have implemented a camera but i couldnt make it move,Thanks in advance. #define PI_OVER_180 0.0174532925f define GL_CLAMP_TO_EDGE 0x812F include "metinalifeyyaz.h" include include include include include include include metinalifeyyaz::metinalifeyyaz(QWidget *parent) : QGLWidget(parent) { this->setFocusPolicy(Qt:: StrongFocus); time = QTime::currentTime(); timer = new QTimer(this); timer->setSingleShot(true); connect(timer, SIGNAL(timeout()), this, SLOT(updateGL())); xpos = yrot = zpos = 0; walkbias = walkbiasangle = lookupdown = 0.0f; keyUp = keyDown = keyLeft = keyRight = keyPageUp = keyPageDown = false; } void metinalifeyyaz::drawBall() { //glTranslatef(6,0,4); glutSolidSphere(0.10005,300,30); } metinalifeyyaz:: ~metinalifeyyaz(){ glDeleteTextures(1,texture); } void metinalifeyyaz::initializeGL(){ glShadeModel(GL_SMOOTH); glClearColor(1.0,1.0,1.0,0.5); glClearDepth(1.0f); glEnable(GL_DEPTH_TEST); glEnable(GL_TEXTURE_2D); glDepthFunc(GL_LEQUAL); glClearColor(1.0,1.0,1.0,1.0); glShadeModel(GL_SMOOTH); GLfloat mat_specular[]={1.0,1.0,1.0,1.0}; GLfloat mat_shininess []={30.0}; GLfloat light_position[]={1.0,1.0,1.0}; glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT,GL_SHININESS,mat_shininess); glLightfv(GL_LIGHT0, GL_POSITION, light_position); glEnable(GL_LIGHT0); glEnable(GL_LIGHTING); QImage img1 = convertToGLFormat(QImage(":/new/prefix1/halisaha2.bmp")); QImage img2 = convertToGLFormat(QImage(":/new/prefix1/white.bmp")); glGenTextures(2,texture); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img1.width(), img1.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img1.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img2.width(), img2.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img2.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really nice perspective calculations } void metinalifeyyaz::resizeGL(int w, int h){ if(h==0) h=1; glViewport(0,0,w,h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0f, static_cast<GLfloat>(w)/h,0.1f,100.0f); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } void metinalifeyyaz::paintGL(){ movePlayer(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); GLfloat xtrans = -xpos; GLfloat ytrans = -walkbias - 0.50f; GLfloat ztrans = -zpos; GLfloat sceneroty = 360.0f - yrot; glLoadIdentity(); glRotatef(lookupdown, 1.0f, 0.0f, 0.0f); glRotatef(sceneroty, 0.0f, 1.0f, 0.0f); glTranslatef(xtrans, ytrans+50, ztrans-130); glLoadIdentity(); glTranslatef(1.0f,0.0f,-18.0f); glRotatef(45,1,0,0); drawScene(); int delay = time.msecsTo(QTime::currentTime()); if (delay == 0) delay = 1; time = QTime::currentTime(); timer->start(qMax(0,10 - delay)); } void metinalifeyyaz::movePlayer() { if (keyUp) { xpos -= sin(yrot * PI_OVER_180) * 0.5f; zpos -= cos(yrot * PI_OVER_180) * 0.5f; if (walkbiasangle >= 360.0f) walkbiasangle = 0.0f; else walkbiasangle += 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } else if (keyDown) { xpos += sin(yrot * PI_OVER_180)*0.5f; zpos += cos(yrot * PI_OVER_180)*0.5f ; if (walkbiasangle <= 7.0f) walkbiasangle = 360.0f; else walkbiasangle -= 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } if (keyLeft) yrot += 0.5f; else if (keyRight) yrot -= 0.5f; if (keyPageUp) lookupdown -= 0.5; else if (keyPageDown) lookupdown += 0.5; } void metinalifeyyaz::keyPressEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_Escape: close(); break; case Qt::Key_F1: setWindowState(windowState() ^ Qt::WindowFullScreen); break; default: QGLWidget::keyPressEvent(event); case Qt::Key_PageUp: keyPageUp = true; break; case Qt::Key_PageDown: keyPageDown = true; break; case Qt::Key_Left: keyLeft = true; break; case Qt::Key_Right: keyRight = true; break; case Qt::Key_Up: keyUp = true; break; case Qt::Key_Down: keyDown = true; break; } } void metinalifeyyaz::changeEvent(QEvent *event) { switch (event->type()) { case QEvent::WindowStateChange: if (windowState() == Qt::WindowFullScreen) setCursor(Qt::BlankCursor); else unsetCursor(); break; default: break; } } void metinalifeyyaz::keyReleaseEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_PageUp: keyPageUp = false; break; case Qt::Key_PageDown: keyPageDown = false; break; case Qt::Key_Left: keyLeft = false; break; case Qt::Key_Right: keyRight = false; break; case Qt::Key_Up: keyUp = false; break; case Qt::Key_Down: keyDown = false; break; default: QGLWidget::keyReleaseEvent(event); } } void metinalifeyyaz::drawScene(){ glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,1.0f); // glColor3f(0,0,1); //back glVertex3f(-6,0,-4); glVertex3f(-6,-0.5,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,-1.0f); //front glVertex3f(6,0,4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,0,4); glEnd(); glBegin(GL_QUADS); glNormal3f(-1.0f,0.0f,0.0f); // glColor3f(0,0,1); //left glVertex3f(-6,0,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); // glColor3f(0,0,1); //right glVertex3f(6,0,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(6,0,4); glEnd(); glBindTexture(GL_TEXTURE_2D, texture[0]); glBegin(GL_QUADS); glNormal3f(0.0f,1.0f,0.0f);//top glTexCoord2f(1.0f,0.0f); glVertex3f(6,0,-4); glTexCoord2f(1.0f,1.0f); glVertex3f(6,0,4); glTexCoord2f(0.0f,1.0f); glVertex3f(-6,0,4); glTexCoord2f(0.0f,0.0f); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,-1.0f,0.0f); //glColor3f(0,0,1); //bottom glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glEnd(); // glPushMatrix(); glBindTexture(GL_TEXTURE_2D, texture[1]); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); glTexCoord2f(1.0f,0.0f); //right far goal post front face glVertex3f(5,0.5,-0.95); glTexCoord2f(1.0f,1.0f); glVertex3f(5,0,-0.95); glTexCoord2f(0.0f,1.0f); glVertex3f(5,0,-1); glTexCoord2f(0.0f,0.0f); glVertex3f(5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(5,0.5,-1); glVertex3f(5,0,-1); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5,0,-0.95); glVertex3f(5, 0.5, -0.95); glColor3f(1,1,1); //right near goal post front face glVertex3f(5,0.5,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0,1); glVertex3f(5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(5,0.5,1); glVertex3f(5,0,1); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0.5, 0.95); glColor3f(1,1,1); //right crossbar front face glVertex3f(5,0.55,-1); glVertex3f(5,0.55,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5.05,0.5,1); glVertex3f(5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(5.05,0.5,-1); glVertex3f(5.05,0.5,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5,0.55,1); glVertex3f(5,0.55,-1); glColor3f(1,1,1); //left far goal post front face glVertex3f(-5,0.5,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5,0,-1); glVertex3f(-5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(-5,0.5,-1); glVertex3f(-5,0,-1); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5, 0.5, -0.95); glColor3f(1,1,1); //left near goal post front face glVertex3f(-5,0.5,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0,1); glVertex3f(-5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(-5,0.5,1); glVertex3f(-5,0,1); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0.5, 0.95); glColor3f(1,1,1); //left crossbar front face glVertex3f(-5,0.55,-1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5.05,0.5,1); glVertex3f(-5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(-5.05,0.5,-1); glVertex3f(-5.05,0.5,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.55,-1); glEnd(); // glPopMatrix(); // glPushMatrix(); // glTranslatef(0,0,0); // glutSolidSphere(0.10005,500,30); // glPopMatrix(); }

    Read the article

  • how to move the camera behind a model with the same angle? in XNA

    - by Mehdi Bugnard
    I meet are having difficulty in moving my camera behind an object in a 3D world. I would create two view mode. 1: for fps (first person). 2nd: external view behind the character (second person). I searched the net some example but it does not work in my project. Here is my code used to change view if F2 is pressed //Camera double X1 = this.camera.PositionX; double X2 = this.player.Position.X; double Z1 = this.camera.PositionZ; double Z2 = this.player.Position.Z; //Verify that the user must not let the press F2 if (!this.camera.IsF2TurnedInBoucle) { // If the view mode is the second person if (this.camera.ViewCamera_type == CameraSimples.ChangeView.SecondPerson) { this.camera.ViewCamera_type = CameraSimples.ChangeView.firstPerson; //Calcul position - ?? Here my problem double direction = Math.Atan2(X2 - X1, Z2 - Z1) * 180.0 / 3.14159265; //Calcul angle - ?? Here my problem this.camera.position = .. this.camera.rotation = .. this.camera.MouseRadian_LeftrightRot = (float)direction; } //IF mode view is first person else { //....

    Read the article

  • Asset missing problem XNA

    - by ChocoMan
    I'm using VS2010 with XNA 4.0 and I'm trying to load an FBX model with texture on the screen. The problem I'm having is this error: Missing Asset: C:\Users\ChocoMan\Documents\Visual Studio 2010\Projects\XNAGame\Documents\Visual Studio\Projects\XNAGame\XNAGameContent\Textures\texture.bmp but the actual path to the texture is C:\Users\ChocoMan\Documents\Visual Studio\Projects\XNAGame\XNAGameContent\Textures\texture.bmp Also, when I linked the texture in Maya, I used the above address. Does anyone know why VS is looking for an incorrect address that doesnt exist?

    Read the article

  • Which are the cons of using only non-member functions and POD?

    - by Miro
    I'm creating my own game engine. I've read these articles and this question about DOD and it was written to not use member functions and classes. I also heard some criticism to this idea. I can write it using member functions or non-member functions it would be similar. So what are the benefits/cons of that approach or when the project grows, does any of these approaches give clearer and better manageable code? With POD & non-member functions I don't have to make struct members public I can still use object id outside of engine like OpenGL does with all it's stuff, so It's not about encapsulation. POD - plain old data DOD - data oriented design

    Read the article

  • Moving Character in C# XNA Not working

    - by Matthew Stenquist
    I'm having trouble trying to get my character to move for a game I'm making in my sparetime for the Xbox. However, I can't seem to figure out what I'm doing wrong , and I'm not even sure if I'm doing it right. I've tried googling tutorials on this but I haven't found any helpful ones. Mainly, ones on 3d rotation on the XNA creators club website. My question is : How can I get the character to walk towards the right in the MoveInput() function? What am I doing wrong? Did I code it wrong? The problem is : The player isn't moving. I think the MoveInput() class isn't working. Here's my code from my character class : using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Graphics; using Microsoft.Xna.Framework.Input; namespace Jumping { class Character { Texture2D texture; Vector2 position; Vector2 velocity; int velocityXspeed = 2; bool jumping; public Character(Texture2D newTexture, Vector2 newPosition) { texture = newTexture; position = newPosition; jumping = true; } public void Update(GameTime gameTime) { JumpInput(); MoveInput(); } private void MoveInput() { //Move Character right GamePadState gamePad1 = GamePad.GetState(PlayerIndex.One); velocity.X = velocity.X + (velocityXspeed * gamePad1.ThumbSticks.Right.X); } private void JumpInput() { position += velocity; if (GamePad.GetState(PlayerIndex.One).Buttons.A == ButtonState.Pressed && jumping == false) { position.Y -= 1f; velocity.Y = -5f; jumping = true; } if (jumping == true) { float i = 1.6f; velocity.Y += 0.15f * i; } if (position.Y + texture.Height >= 1000) jumping = false; if (jumping == false) velocity.Y = 0f; } public void Draw(SpriteBatch spriteBatch) { spriteBatch.Draw(texture, position, Color.White); } } }

    Read the article

< Previous Page | 397 398 399 400 401 402 403 404 405 406 407 408  | Next Page >