Search Results

Search found 25660 results on 1027 pages for 'dotnetnuke development'.

Page 405/1027 | < Previous Page | 401 402 403 404 405 406 407 408 409 410 411 412  | Next Page >

  • Scrolling background stops after awhile?

    - by Lewis
    Can anyone tell me where my maths is wrong please, it stops scrolling after awhile. if (background.position.y < background2.position.y) { background.position = ccp(background.contentSize.width / 2, background.position.y - 50 * delta); background2.position = ccp(background.contentSize.width / 2, background.position.y + background.contentSize.height); } else { background.position = ccp(background2.contentSize.width / 2, background2.position.y - 50 * delta); background.position = ccp(background2.contentSize.width / 2, background2.position.y + background.contentSize.height); } //reset if (background.position.y <-background.contentSize.height / 2) { background.position = ccp(background.contentSize.width / 2 ,background2.position.y + background2.contentSize.height); } else if (background2.position.y < -background2.contentSize.height / 2) { background2.position = ccp(background2.contentSize.width / 2, background.position.y + background.contentSize.height); }

    Read the article

  • What is the best way to check if there is overlap between player and static, non-collidable items in bullet physic engine

    - by tigrou
    I'd like to add non collidable objects (eg: power ups, items, ...) in a game world using Bullet Physics Engine and to know if there is collision between player and them. Some info : there is a lot of items ( 1000), all are box shapes and they don't overlap. Here is things i have tried : btDbvt* bvtItems = new btDbvt(); //btDbvt is a hierachical AABB tree, used by Bullet foreach(var item ...) { btDbvtVolume volume = ... //compute item AABB; bvtItems->insert(volume, (void*)someExtraData); } Then, to find collisions between items and player : playerRigidBody->getAabb(min, max); btDbvtVolume playervolume = ... //compute player AABB bvtItems->collideTV(bvtItems->m_root, playervolume, *someCollisionHandler); This works fairly well (and its very fast), however, there is a problem : it only check items AABB against player AABB. That loss of precision is acceptable for items but not for player which is not a box. It would actually need another check to make sure player really collide with item but i don't know how to do this in Bullet. It would have been nice to have a function like this : playerRigidBody->checkCollisionWithAABB(); After doing trying that, I discovered that a btGhostObject exist and seems to have been made for that. I changed my code like this : foreach(var item...) { btCollisionObject* ghostObject = new btGhostObject(); ghostObject->setCollisionShape(boxShape); ghostObject->setCollisionFlags(ghostObject->getCollisionFlags() | btCollisionObject::CF_NO_CONTACT_RESPONSE); startTransform.setOrigin(...); //item position ghostObject->setWorldTransform(startTransform); dynamicsWorld->addCollisionObject(ghostObject, btBroadphaseProxy::SensorTrigger, btBroadphaseProxy:: CharacterFilter); } It also works ok, but there is a huge fps drop (almost ten times slower) which is not acceptable. Maybe there is something missing (forget set a flag) and Bullet is doing extra job for nothing or maybe all that ghostObjects are polluting broad phase and ghostObject is not the right thing for that. Any help would be appreciated.

    Read the article

  • How can I calculate a vertex normal for a hard edge?

    - by K.G.
    Here is a picture of a lovely polygon: Circled is a vertex, and numbered are its adjacent faces. I have calculated the normals of those faces as such (not yet normalized, 0-indexed): Vertex 1 normal 0: 0.000000 0.000000 -0.250000 Vertex 1 normal 1: 0.000000 0.000000 -0.250000 Vertex 1 normal 2: -0.250000 0.000000 0.000000 Vertex 1 normal 3: -0.250000 0.000000 0.000000 Vertex 1 normal 4: 0.250000 0.000000 0.000000 What I'm wondering is, how can I determine, taken as given that I want this vertex to represent a hard edge, whether its normal should be the normal of 1/2 or 3/4? My plan after I glanced at the sketch I used to put this together was "Ha! I'll just use whichever two faces have the same normal!" and now I see that there are two sets of two faces for which this is true. Is there a rule I can apply based on the face winding, angle of the adjacent edges, moon phase, coin flip, to consistently choose a normal direction for this box? For the record, all of the other polygons I plan to use will have their normals dictated in Maya, but after encountering this problem, it made me really curious.

    Read the article

  • Determining explosion radius damage - Circle to Rectangle 2D

    - by Paul Renton
    One of the Cocos2D games I am working on has circular explosion effects. These explosion effects need to deal a percentage of their set maximum damage to all game characters (represented by rectangular bounding boxes as the objects in question are tanks) within the explosion radius. So this boils down to circle to rectangle collision and how far away the circle's radius is from the closest rectangle edge. I took a stab at figuring this out last night, but I believe there may be a better way. In particular, I don't know the best way to determine what percentage of damage to apply based on the distance calculated. Note : All tank objects have an anchor point of (0,0) so position is according to bottom left corner of bounding box. Explosion point is the center point of the circular explosion. TankObject * tank = (TankObject*) gameSprite; float distanceFromExplosionCenter; // IMPORTANT :: All GameCharacter have an assumed (0,0) anchor if (explosionPoint.x < tank.position.x) { // Explosion to WEST of tank if (explosionPoint.y <= tank.position.y) { //Explosion SOUTHWEST distanceFromExplosionCenter = ccpDistance(explosionPoint, tank.position); } else if (explosionPoint.y >= (tank.position.y + tank.contentSize.height)) { // Explosion NORTHWEST distanceFromExplosionCenter = ccpDistance(explosionPoint, ccp(tank.position.x, tank.position.y + tank.contentSize.height)); } else { // Exp center's y is between bottom and top corner of rect distanceFromExplosionCenter = tank.position.x - explosionPoint.x; } // end if } else if (explosionPoint.x > (tank.position.x + tank.contentSize.width)) { // Explosion to EAST of tank if (explosionPoint.y <= tank.position.y) { //Explosion SOUTHEAST distanceFromExplosionCenter = ccpDistance(explosionPoint, ccp(tank.position.x + tank.contentSize.width, tank.position.y)); } else if (explosionPoint.y >= (tank.position.y + tank.contentSize.height)) { // Explosion NORTHEAST distanceFromExplosionCenter = ccpDistance(explosionPoint, ccp(tank.position.x + tank.contentSize.width, tank.position.y + tank.contentSize.height)); } else { // Exp center's y is between bottom and top corner of rect distanceFromExplosionCenter = explosionPoint.x - (tank.position.x + tank.contentSize.width); } // end if } else { // Tank is either north or south and is inbetween left and right corner of rect if (explosionPoint.y < tank.position.y) { // Explosion is South distanceFromExplosionCenter = tank.position.y - explosionPoint.y; } else { // Explosion is North distanceFromExplosionCenter = explosionPoint.y - (tank.position.y + tank.contentSize.height); } // end if } // end outer if if (distanceFromExplosionCenter < explosionRadius) { /* Collision :: Smaller distance larger the damage */ int damageToApply; if (self.directHit) { damageToApply = self.explosionMaxDamage + self.directHitBonusDamage; [tank takeDamageAndAdjustHealthBar:damageToApply]; CCLOG(@"Explsoion-> DIRECT HIT with total damage %d", damageToApply); } else { // TODO adjust this... turning out negative for some reason... damageToApply = (1 - (distanceFromExplosionCenter/explosionRadius) * explosionMaxDamage); [tank takeDamageAndAdjustHealthBar:damageToApply]; CCLOG(@"Explosion-> Non direct hit collision with tank"); CCLOG(@"Damage to apply is %d", damageToApply); } // end if } else { CCLOG(@"Explosion-> Explosion distance is larger than explosion radius"); } // end if } // end if Questions: 1) Can this circle to rect collision algorithm be done better? Do I have too many checks? 2) How to calculate the percentage based damage? My current method generates negative numbers occasionally and I don't understand why (Maybe I need more sleep!). But, in my if statement, I ask if distance < explosion radius. When control goes through, distance/radius must be < 1 right? So 1 - that intermediate calculation should not be negative. Appreciate any help/advice!

    Read the article

  • Eculidean space and vector magnitude

    - by Starkers
    Below we have distances from the origin calculated in two different ways, giving the Euclidean distance, the Manhattan distance and the Chebyshev distance. Euclidean distance is what we use to calculate the magnitude of vectors in 2D/3D games, and that makes sense to me: Let's say we have a vector that gives us the range a spaceship with limited fuel can travel. If we calculated this with Manhattan metric, our ship could travel a distance of X if it were travelling horizontally or vertically, however the second it attempted to travel diagonally it could only tavel X/2! So like I say, Euclidean distance does make sense. However, I still don't quite get how we calculate 'real' distances from the vector's magnitude. Here are two points, purple at (2,2) and green at (3,3). We can take two points away from each other to derive a vector. Let's create a vector to describe the magnitude and direction of purple from green: |d| = purple - green |d| = (purple.x, purple.y) - (green.x, green.y) |d| = (2, 2) - (3, 3) |d| = <-1,-1> Let's derive the magnitude of the vector via Pythagoras to get a Euclidean measurement: euc_magnitude = sqrt((x*x)+(y*y)) euc_magnitude = sqrt((-1*-1)+(-1*-1)) euc_magnitude = sqrt((1)+(1)) euc_magnitude = sqrt(2) euc_magnitude = 1.41 Now, if the answer had been 1, that would make sense to me, because 1 unit (in the direction described by the vector) from the green is bang on the purple. But it's not. It's 1.41. 1.41 units is the direction described, to me at least, makes us overshoot the purple by almost half a unit: So what do we do to the magnitude to allow us to calculate real distances on our point graph? Worth noting I'm a beginner just working my way through theory. Haven't programmed a game in my life!

    Read the article

  • How does flash store (represent) movieclips and sprites?

    - by humbleBee
    When we draw any object in flash and convert it into a movieclip or a sprite, how is it stored or represented in flash. I know in vector art it is stored or represented as line segments using formulae. Is there any way to get the vertices of the shape that was drawn? For example, lets say a simple rectangle is drawn and is converted to a movieclip. Is there anyway to obtain the vertices and the line segments from the sprite? So that its shape is obtained. Enough information should be obtained so that the shape can be replicated. That's the key - replication. In simple terms, where does flash store information about a shape that has been drawn so that we can obtain it and attempt to replicate the shape ourselves?

    Read the article

  • Animating DOM elements vs refreshing a single Canvas

    - by mgibsonbr
    A few years ago, when the HTML Canvas element was still kinda fresh, I wrote a small game in a rather "unusual" way: each game element had its own canvas, and frequently animated elements even had multiple canvases, one for each animation sprite. This way, the translation would be done by manipulating the DOM position of the canvases, while the sprite animation would consist of altering the visibility of the already drawn canvases. (z-indexes, of course, were the tricky part) It worked like a charm: even in IE6 with excanvas it showed a decent performance, and everything was rather consistent between browsers, including some smartphones. Now I'm thinking in writing a larger game engine in the same fashion, so I'm wondering whether it would be a good idea to do so in the current context (with all the advances in browsers and so on). I know I'm trading memory for time, so this needs to be customizable (even at runtime) for each machine the game will be running. But I believe using separate canvases would also help to avoid the game "freezing" on CPU spikes, since the translation would still happen even if the redraws lag for a while. Besides, the browsers' rendering engines are already optimized in may ways, so I'm guessing this scheme would also reduce the load on the CPU (in contrast to doing everything in JavaScript - specially the less optimized ones). It looks good in my head, but I'd like to hear the opinion of more experienced people before proceeding further. Is there any known drawback of doing this? I'm particulartly unexperienced in dealing with the GPU, so I wonder whether this "trick" would nullify any benefit of using a single, big canvas. Or maybe on modern devices it's overkill (though I'm skeptic about the claims that canvas+js - especially WebGL - will ever be a good alternative to native code). Any thoughts?

    Read the article

  • OpenGL and gluUnProject, 3d object following mouse

    - by Robert
    i have a 3d object and i want him to "follow" my mouse position, so i use gluUnProject function to convert screen coordinates to 3d world coordinates and i translate this object with the new coordinates. Its working but i have a problem, my object can follow my mouse but he is moving extremely fast, when i move my mouse a little bit(something like 2 pixels), its moving extremly fast in the 3d world. I want something like that : http://www.youtube.com/watch?v=90zS8SVUAIY (red circle following mouse). Thanks for your help.

    Read the article

  • problem adding bumpmap to textured gluSphere in JOGL

    - by ChocoMan
    I currently have one texture on a gluSphere that represents the Earth being displayed perfectly, but having trouble figuring out how to implement a bumpmap as well. The bumpmap resides in "res/planet/earth/earthbump1k.jpg".Here is the code I have for the regular texture: gl.glTranslatef(xPath, 0, yPath + zPos); gl.glColor3f(1.0f, 1.0f, 1.0f); // base color for earth earthGluSphere = glu.gluNewQuadric(); colorTexture.enable(); // enable texture colorTexture.bind(); // bind texture // draw sphere... glu.gluDeleteQuadric(earthGluSphere); colorTexture.disable(); // texturing public void loadPlanetTexture(GL2 gl) { InputStream colorMap = null; try { colorMap = new FileInputStream("res/planet/earth/earthmap1k.jpg"); TextureData data = TextureIO.newTextureData(colorMap, false, null); colorTexture = TextureIO.newTexture(data); colorTexture.getImageTexCoords(); colorTexture.setTexParameteri(GL2.GL_TEXTURE_MAG_FILTER, GL2.GL_LINEAR); colorTexture.setTexParameteri(GL2.GL_TEXTURE_MIN_FILTER, GL2.GL_NEAREST); colorMap.close(); } catch(IOException e) { e.printStackTrace(); System.exit(1); } // Set material properties gl.glTexParameteri(GL2.GL_TEXTURE_2D, GL2.GL_TEXTURE_MAG_FILTER, GL2.GL_LINEAR); gl.glTexParameteri(GL2.GL_TEXTURE_2D, GL2.GL_TEXTURE_MIN_FILTER, GL2.GL_NEAREST); colorTexture.setTexParameteri(GL2.GL_TEXTURE_2D, GL2.GL_TEXTURE_WRAP_S); colorTexture.setTexParameteri(GL2.GL_TEXTURE_2D, GL2.GL_TEXTURE_WRAP_T); } How would I add the bumpmap as well to the same gluSphere?

    Read the article

  • Combine 3D objects in XNA 4

    - by Christoph
    Currently I am writing on my thesis for university, the theme I am working on is 3D Visualization of hierarchical structures using cone trees. I want to do is to draw a cone and arrange a number of spheres at the bottom of the cone. The spheres should be arranged according to the radius and the number of spheres correctly. As you can imagine I need a lot of these cone/sphere combinations. First Attempt I was able to find some tutorials that helped with drawing cones and spheres. Cone public Cone(GraphicsDevice device, float height, int tessellation, string name, List<Sphere> children) { //prepare children and calculate the children spacing and radius of the cone if (children == null || children.Count == 0) { throw new ArgumentNullException("children"); } this.Height = height; this.Name = name; this.Children = children; //create the cone if (tessellation < 3) { throw new ArgumentOutOfRangeException("tessellation"); } //Create a ring of triangels around the outside of the cones bottom for (int i = 0; i < tessellation; i++) { Vector3 normal = this.GetCircleVector(i, tessellation); // add the vertices for the top of the cone base.AddVertex(Vector3.Up * height, normal); //add the bottom circle base.AddVertex(normal * this.radius + Vector3.Down * height, normal); //Add indices base.AddIndex(i * 2); base.AddIndex(i * 2 + 1); base.AddIndex((i * 2 + 2) % (tessellation * 2)); base.AddIndex(i * 2 + 1); base.AddIndex((i * 2 + 3) % (tessellation * 2)); base.AddIndex((i * 2 + 2) % (tessellation * 2)); } //create flate triangle to seal the bottom this.CreateCap(tessellation, height, this.Radius, Vector3.Down); base.InitializePrimitive(device); } Sphere public void Initialize(GraphicsDevice device, Vector3 qi) { int verticalSegments = this.Tesselation; int horizontalSegments = this.Tesselation * 2; //single vertex on the bottom base.AddVertex((qi * this.Radius) + this.lowering, Vector3.Down); for (int i = 0; i < verticalSegments; i++) { float latitude = ((i + 1) * MathHelper.Pi / verticalSegments) - MathHelper.PiOver2; float dy = (float)Math.Sin(latitude); float dxz = (float)Math.Cos(latitude); //Create a singe ring of latitudes for (int j = 0; j < horizontalSegments; j++) { float longitude = j * MathHelper.TwoPi / horizontalSegments; float dx = (float)Math.Cos(longitude) * dxz; float dz = (float)Math.Sin(longitude) * dxz; Vector3 normal = new Vector3(dx, dy, dz); base.AddVertex(normal * this.Radius, normal); } } // Finish with a single vertex at the top of the sphere. AddVertex((qi * this.Radius) + this.lowering, Vector3.Up); // Create a fan connecting the bottom vertex to the bottom latitude ring. for (int i = 0; i < horizontalSegments; i++) { AddIndex(0); AddIndex(1 + (i + 1) % horizontalSegments); AddIndex(1 + i); } // Fill the sphere body with triangles joining each pair of latitude rings. for (int i = 0; i < verticalSegments - 2; i++) { for (int j = 0; j < horizontalSegments; j++) { int nextI = i + 1; int nextJ = (j + 1) % horizontalSegments; base.AddIndex(1 + i * horizontalSegments + j); base.AddIndex(1 + i * horizontalSegments + nextJ); base.AddIndex(1 + nextI * horizontalSegments + j); base.AddIndex(1 + i * horizontalSegments + nextJ); base.AddIndex(1 + nextI * horizontalSegments + nextJ); base.AddIndex(1 + nextI * horizontalSegments + j); } } // Create a fan connecting the top vertex to the top latitude ring. for (int i = 0; i < horizontalSegments; i++) { base.AddIndex(CurrentVertex - 1); base.AddIndex(CurrentVertex - 2 - (i + 1) % horizontalSegments); base.AddIndex(CurrentVertex - 2 - i); } base.InitializePrimitive(device); } The tricky part now is to arrange the spheres at the bottom of the cone. I tried is to draw just the cone and then draw the spheres. I need a lot of these cones, so it would be pretty hard to calculate all the positions correctly. Second Attempt So the second try was to generate a object that builds all vertices of the cone and all of the spheres at once. So I was hoping to render a cone with all its spheres arranged correctly. After a short debug I found out that the cone is created and the first sphere, when it turn of the second sphere I am running into an OutOfBoundsException of ushort.MaxValue. Cone and Spheres public ConeWithSpheres(GraphicsDevice device, float height, float coneDiameter, float sphereDiameter, int coneTessellation, int sphereTessellation, int numberOfSpheres) { if (coneTessellation < 3) { throw new ArgumentException(string.Format("{0} is to small for the tessellation of the cone. The number must be greater or equal to 3", coneTessellation)); } if (sphereTessellation < 3) { throw new ArgumentException(string.Format("{0} is to small for the tessellation of the sphere. The number must be greater or equal to 3", sphereTessellation)); } //set properties this.Height = height; this.ConeDiameter = coneDiameter; this.SphereDiameter = sphereDiameter; this.NumberOfChildren = numberOfSpheres; //end set properties //generate the cone this.GenerateCone(device, coneTessellation); //generate the spheres //vector that defines the Y position of the sphere on the cones bottom Vector3 lowering = new Vector3(0, 0.888f, 0); this.GenerateSpheres(device, sphereTessellation, numberOfSpheres, lowering); } // ------ GENERATE CONE ------ private void GenerateCone(GraphicsDevice device, int coneTessellation) { int doubleTessellation = coneTessellation * 2; //Create a ring of triangels around the outside of the cones bottom for (int index = 0; index < coneTessellation; index++) { Vector3 normal = this.GetCircleVector(index, coneTessellation); //add the vertices for the top of the cone base.AddVertex(Vector3.Up * this.Height, normal); //add the bottom of the cone base.AddVertex(normal * this.ConeRadius + Vector3.Down * this.Height, normal); //add indices base.AddIndex(index * 2); base.AddIndex(index * 2 + 1); base.AddIndex((index * 2 + 2) % doubleTessellation); base.AddIndex(index * 2 + 1); base.AddIndex((index * 2 + 3) % doubleTessellation); base.AddIndex((index * 2 + 2) % doubleTessellation); } //create flate triangle to seal the bottom this.CreateCap(coneTessellation, this.Height, this.ConeRadius, Vector3.Down); base.InitializePrimitive(device); } // ------ GENERATE SPHERES ------ private void GenerateSpheres(GraphicsDevice device, int sphereTessellation, int numberOfSpheres, Vector3 lowering) { int verticalSegments = sphereTessellation; int horizontalSegments = sphereTessellation * 2; for (int childCount = 1; childCount < numberOfSpheres; childCount++) { //single vertex at the bottom of the sphere base.AddVertex((this.GetCircleVector(childCount, this.NumberOfChildren) * this.SphereRadius) + lowering, Vector3.Down); for (int verticalSegmentsCount = 0; verticalSegmentsCount < verticalSegments; verticalSegmentsCount++) { float latitude = ((verticalSegmentsCount + 1) * MathHelper.Pi / verticalSegments) - MathHelper.PiOver2; float dy = (float)Math.Sin(latitude); float dxz = (float)Math.Cos(latitude); //create a single ring of latitudes for (int horizontalSegmentsCount = 0; horizontalSegmentsCount < horizontalSegments; horizontalSegmentsCount++) { float longitude = horizontalSegmentsCount * MathHelper.TwoPi / horizontalSegments; float dx = (float)Math.Cos(longitude) * dxz; float dz = (float)Math.Sin(longitude) * dxz; Vector3 normal = new Vector3(dx, dy, dz); base.AddVertex((normal * this.SphereRadius) + lowering, normal); } } //finish with a single vertex at the top of the sphere base.AddVertex((this.GetCircleVector(childCount, this.NumberOfChildren) * this.SphereRadius) + lowering, Vector3.Up); //create a fan connecting the bottom vertex to the bottom latitude ring for (int i = 0; i < horizontalSegments; i++) { base.AddIndex(0); base.AddIndex(1 + (i + 1) % horizontalSegments); base.AddIndex(1 + i); } //Fill the sphere body with triangles joining each pair of latitude rings for (int i = 0; i < verticalSegments - 2; i++) { for (int j = 0; j < horizontalSegments; j++) { int nextI = i + 1; int nextJ = (j + 1) % horizontalSegments; base.AddIndex(1 + i * horizontalSegments + j); base.AddIndex(1 + i * horizontalSegments + nextJ); base.AddIndex(1 + nextI * horizontalSegments + j); base.AddIndex(1 + i * horizontalSegments + nextJ); base.AddIndex(1 + nextI * horizontalSegments + nextJ); base.AddIndex(1 + nextI * horizontalSegments + j); } } //create a fan connecting the top vertiex to the top latitude for (int i = 0; i < horizontalSegments; i++) { base.AddIndex(this.CurrentVertex - 1); base.AddIndex(this.CurrentVertex - 2 - (i + 1) % horizontalSegments); base.AddIndex(this.CurrentVertex - 2 - i); } base.InitializePrimitive(device); } } Any ideas how I could fix this?

    Read the article

  • Component-wise GLSL vector branching

    - by Gustavo Maciel
    I'm aware that it usually is a BAD idea to operate separately on GLSL vec's components separately. For example: //use instrinsic functions, they do the calculation on 4 components at a time. float dot = v1.x*v2.x + v1.y * v2.y + v1.z * v2.z; //NEVER float dot = dot(v1, v2); //YES //Multiply one by one is not good too, since the ALU can do the 4 components at a time too. vec3 mul = vec3(v1.x * v2.x, v1.y * v2.y, v1.z * v2.z); //NEVER vec3 mul = v1 * v2; I've been struggling thinking, are there equivalent operations for branching? For example: vec4 Overlay(vec4 v1, vec4 v2, vec4 opacity) { bvec4 less = lessThan(v1, vec4(0.5)); vec4 blend; for(int i = 0; i < 4; ++i) { if(less[i]) blend[i] = 2.0 * v1[i]*v2[i]; else blend[i] = 1.0 - 2.0 * (1.0 - v1[i])*(1.0 - v2[i]); } return v1 + (blend-v1)*opacity; } This is a Overlay operator that works component wise. I'm not sure if this is the best way to do it, since I'm afraid these for and if can be a bottleneck later. Tl;dr, Can I branch component wise? If yes, how can I optimize that Overlay function with it?

    Read the article

  • Calculate an AABB for bone animated model

    - by Byte56
    I have a model that has its initial bounding box calculated by finding the maximum and minimum on the x, y and z axes. Producing a correct result like so: The vertices are then stored in a VBO and only altered with matrices for rotation and bone animation. Currently the bounds are not updated when the model is altered. So the animated and rotated model has bounds like so: (Maybe it's hard to tell, but the bounds are the same as before, and don't accurately represent the rotated/animated model) So my question is, how can I calculate the bounding box using the armature matrices and rotation/translation matrices for each model? Keep in mind the modified vertex data is not available because those calculations are performed on the GPU in the shader. The end result I want is to have an accurate AABB the represents the animated model for picking/basic collision checks.

    Read the article

  • A star algorithm implementation problems

    - by bryan226
    I’m having some trouble implementing the A* algorithm in a 2D tile based game. The problem is basically that the algorithm gets stuck when something gets in its direct way (e.g. walls) Note that it only allows Horizontal and Vertical movement. Here's a picture as it works fine across the map without something in its direct way: (Green tile = destination, Blue = In closed list, Green = in open list) This is what happens if I try to walk 'around' a wall: I calculate costs with the F = G + H formula: G = 1 Cost per Step H = 10 Cost per Step //Count how many tiles are between current-tile & destination-tile The functions: short c_astar::GuessH(short Startx,short Starty,short Destinationx,short Destinationy) { hgeVector Start, Destination; Start.x = Startx; Start.y = Starty; Destination.x = Destinationx; Destination.y = Destinationy; short a = 0; short b = 0; if(Start.x > Destination.x) a = Start.x - Destination.x; else a = Destination.x - Start.x; if(Start.y > Destination.y) b = Start.y - Destination.y; else b = Destination.y - Start.y; return (a+b)*10; } short c_astar::GuessG(short Startx,short Starty,short Currentx,short Currenty) { hgeVector Start, Destination; Start.x = Startx; Start.y = Starty; Destination.x = Currentx; Destination.y = Currenty; short a = 0; short b = 0; if(Start.x > Destination.x) a = Start.x - Destination.x; else a = Destination.x - Start.x; if(Start.y > Destination.y) b = Start.y - Destination.y; else b = Destination.y - Start.y; return (a+b); } At the end of the loop I check which tile is the cheapest to go according to its F value: Then some quick checks are done for each tile (UP,DOWN,LEFT,RIGHT): //...CX are holding the F value of the TILE specified // Info: C0 = Center (Current) // C1 = UP // C2 = DOWN // C3 = LEFT // C4 = RIGHT //Quick checks if(((C1 < C2) && (C1 < C3) && (C1 < C4))) { Current.y -= 1; bSimilar = false; if(DEBUG) hge->System_Log("C1 < ALL"); } //.. same for C2,C3 & C4 If there are multiple tiles with the same F value: It’s actually a switch for DOWNLEFT,UPRIGHT.. etc. Here’s one of it: case UPRIGHT: { //UP Temporary = Current; Temporary.y -= 1; bTileStatus[0] = IsTileWalkable(Temporary.x,Temporary.y); if(bTileStatus[0]) { //Proceed normal we are OK & walkable Tilex.Tile = map.at(Temporary.y).at(Temporary.x); //Search in lists if(SearchInClosedList(Tilex.Tile.ID,C0)) bFoundInClosedList[0] = true; if(SearchInOpenList(Tilex.Tile.ID,C0)) bFoundInOpenList[0] = true; //RIGHT Temporary = Current; Temporary.x += 1; bTileStatus[1] = IsTileWalkable(Temporary.x,Temporary.y); if(bTileStatus[1]) { //Proceed normal we are OK & walkable Tilex.Tile = map.at(Temporary.y).at(Temporary.x); //Search in lists if(SearchInClosedList(Tilex.Tile.ID,C0)) bFoundInClosedList[1] = true; if(SearchInOpenList(Tilex.Tile.ID,C0)) bFoundInOpenList[1] = true; //************************************************* // Purpose: ClosedList behavior //************************************************* if(bFoundInClosedList[0] && !bFoundInClosedList[1]) { //UP found in ClosedList. Go RIGHT return RIGHT; } if(!bFoundInClosedList[0] && bFoundInClosedList[1]) { //RIGHT found in ClosedList. Go UP return UP; } if(bFoundInClosedList[0] && bFoundInClosedList[1]) { //Both found in ClosedList. Random value switch(hge->Random_Int(8,9)) { case 8: return UP; break; case 9: return RIGHT; break; } } //************************************************* // Purpose: OpenList behavior //************************************************* if(bFoundInOpenList[0] && !bFoundInOpenList[1]) { //UP found in OpenList. Go RIGHT return RIGHT; } if(!bFoundInOpenList[0] && bFoundInOpenList[1]) { //RIGHT found in OpenList. Go UP return UP; } if(bFoundInOpenList[0] && bFoundInOpenList[1]) { //Both found in OpenList. Random value switch(hge->Random_Int(8,9)) { case 8: return UP; break; case 9: return RIGHT; break; } } } else if(!bTileStatus[1]) { //RIGHT is not walkable OR out of range //Choose UP return UP; } } else if(!bTileStatus[0]) { //UP is not walkable OR out of range //Fast check RIGHT Temporary = Current; Temporary.x += 1; bTileStatus[1] = IsTileWalkable(Temporary.x,Temporary.y); if(bTileStatus[1]) { return RIGHT; } else return FAILED; //Failed, no valid path found! } } break; A log for the second picture: (Cut down to ten passes, because it’s just repeating itself) ----------------------------------------------------- PASS: 1 | C1: 211 | C2: 191 | C3: 211 | C4: 191 DOWN + RIGHT SIMILAR Going DOWN ----------------------------------------------------- PASS: 2 | C1: 200 | C2: 182 | C3: 202 | C4: 182 DOWN + RIGHT SIMILAR Going DOWN ----------------------------------------------------- PASS: 3 | C1: 191 | C2: 193 | C3: 193 | C4: 173 C4 < ALL Tile(12.000000,6.000000) not walkable. MAX_F_VALUE set. ----------------------------------------------------- PASS: 4 | C1: 182 | C2: 184 | C3: 182 | C4: 999 UP + LEFT SIMILAR Going UP Tile(12.000000,5.000000) not walkable. MAX_F_VALUE set. ----------------------------------------------------- PASS: 5 | C1: 191 | C2: 173 | C3: 191 | C4: 999 C2 < ALL Tile(12.000000,6.000000) not walkable. MAX_F_VALUE set. ----------------------------------------------------- PASS: 6 | C1: 182 | C2: 184 | C3: 182 | C4: 999 UP + LEFT SIMILAR Going UP Tile(12.000000,5.000000) not walkable. MAX_F_VALUE set. ----------------------------------------------------- PASS: 7 | C1: 191 | C2: 173 | C3: 191 | C4: 999 C2 < ALL Tile(12.000000,6.000000) not walkable. MAX_F_VALUE set. ----------------------------------------------------- PASS: 8 | C1: 182 | C2: 184 | C3: 182 | C4: 999 UP + LEFT SIMILAR Going LEFT ----------------------------------------------------- PASS: 9 | C1: 191 | C2: 193 | C3: 193 | C4: 173 C4 < ALL Tile(12.000000,6.000000) not walkable. MAX_F_VALUE set. ----------------------------------------------------- PASS: 10 | C1: 182 | C2: 184 | C3: 182 | C4: 999 UP + LEFT SIMILAR Going LEFT ----------------------------------------------------- Its always going after the cheapest F value, which seems to be wrong. If someone could point me to the right direction I'd be thankful. Regards, bryan226

    Read the article

  • Virtual Economy Setup - Virtual currencies advice

    - by Sarah Simpson
    I'm trying to figure out how to build my virtual economy. It seems like some games have one currency and some of them have up to 3 and 4 different ones. The game is an action game which is currently single player but I'm planning on adding a tournament mode that allows users to compete against each other. The virtual goods that a user would be able to purchase would be either customization to the character or powerups and utilities that give the character more abilities in the game. The character is able to gain coins during game play. The advice I'm trying to get is whether or not it makes sense to set up more than one currency and more than two currencies? What are the pros and cons? Reference to some resources that indicate research would be great.

    Read the article

  • Why does glGetString returns a NULL string

    - by snape
    I am trying my hands at GLFW library. I have written a basic program to get OpenGL renderer and vendor string. Here is the code #include <GL/glew.h> #include <GL/glfw.h> #include <cstdio> #include <cstdlib> #include <string> using namespace std; void shutDown(int returnCode) { printf("There was an error in running the code with error %d\n",returnCode); GLenum res = glGetError(); const GLubyte *errString = gluErrorString(res); printf("Error is %s\n", errString); glfwTerminate(); exit(returnCode); } int main() { // start GL context and O/S window using GLFW helper library if (glfwInit() != GL_TRUE) shutDown(1); if (glfwOpenWindow(0, 0, 0, 0, 0, 0, 0, 0, GLFW_WINDOW) != GL_TRUE) shutDown(2); // start GLEW extension handler glewInit(); // get version info const GLubyte* renderer = glGetString (GL_RENDERER); // get renderer string const GLubyte* version = glGetString (GL_VERSION); // version as a string printf("Renderer: %s\n", renderer); printf("OpenGL version supported %s\n", version); // close GL context and any other GLFW resources glfwTerminate(); return 0; } I googled this error and found out that we have to initialize the OpenGL context before calling glGetString(). Although I have initialized OpenGL context using glfwInit() but still the function returns a NULL string. Any ideas? Edit I have updated the code with error checking mechanisms. This code on running outputs the following There was an error in running the code with error 2 Error is no error

    Read the article

  • Bullet Physic: Transform body after adding

    - by Mathias Hölzl
    I would like to transform a rigidbody after adding it to the btDiscreteDynamicsWorld. When I use the CF_KINEMATIC_OBJECT flag I am able to transform it but it's static (no collision response/gravity). When I don't use the CF_KINEMATIC_OBJECT flag the transform doesn't gets applied. So how to I transform non-static objects in bullet? DemoCode: btBoxShape* colShape = new btBoxShape(btVector3(SCALING*1,SCALING*1,SCALING*1)); /// Create Dynamic Objects btTransform startTransform; startTransform.setIdentity(); btScalar mass(1.f); //rigidbody is dynamic if and only if mass is non zero, otherwise static bool isDynamic = (mass != 0.f); btVector3 localInertia(0,0,0); if (isDynamic) colShape->calculateLocalInertia(mass,localInertia); btDefaultMotionState* myMotionState = new btDefaultMotionState(); btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,colShape,localInertia); btRigidBody* body = new btRigidBody(rbInfo); body->setCollisionFlags(body->getCollisionFlags()|btCollisionObject::CF_KINEMATIC_OBJECT); body->setActivationState(DISABLE_DEACTIVATION); m_dynamicsWorld->addRigidBody(body); startTransform.setOrigin(SCALING*btVector3( btScalar(0), btScalar(20), btScalar(0) )); body->getMotionState()->setWorldTransform(startTransform);

    Read the article

  • OpenGL Shading Program Object Memory Requirement

    - by Hans Wurst
    gDEbugger states that OpenGL's program objects only occupy an insignificant amount of memory. How much is this actually? I don't know if the stuff I looked up in mesa is actually that I was looking for but it requires 16KB [Edit: false, confusing struct names, less than 1KB immediate, some further behind pointers] per program object. Not quite insignificant. So is it recommended to create a unique program object for each object of the scene? Or to share a single program object and set the scene's object's custom variables just before its draw call?

    Read the article

  • What collision detection approach for top down car game?

    - by nathan
    I have a quite advanced top down car game and i use masks to detect collisions. I have the actual designed track (what the player see) with fancy graphics etc. and two other pictures i use as mask for my detection collisions. Each mask has only two colors, white and black and i check each frame if a pixel of the car collide with a black pixel of the masks. This approach works of course but it's not really flexible. Whenever i want to change the look of a track, i have to redraw the mask and it's a real pain. What is the general approach for this kind of game? How can i improve the flexibility of such a mask based approach?

    Read the article

  • Light following me around the room. Something is wrong with my shader!

    - by Robinson
    I'm trying to do a spot (Blinn) light, with falloff and attenuation. It seems to be working OK except I have a bit of a space problem. That is, whenever I move the camera the light moves to maintain the same relative position, rather than changing with the camera. This results in the light moving around, i.e. not always falling on the same surfaces. It's as if there's a flashlight attached to the camera. I'm transforming the lights beforehand into view space, so Light_Position and Light_Direction are already in eye space (I hope!). I made a little movie of what it looks like here: My camera rotating around a point inside a box. The light is fixed in the centre up and its "look at" point in a fixed position in front of it. As you can see, as the camera rotates around the origin (always looking at the centre), so don't think the box is rotating (!). The lighting follows it around. To start, some code. This is how I'm transforming the light into view space (it gets passed into the shader already in view space): // Compute eye-space light position. Math::Vector3d eyeSpacePosition = MyCamera->ViewMatrix() * MyLightPosition; MyShaderVariables->Set(MyLightPositionIndex, eyeSpacePosition); // Compute eye-space light direction vector. Math::Vector3d eyeSpaceDirection = Math::Unit(MyLightLookAt - MyLightPosition); MyCamera->ViewMatrixInverseTranspose().TransformNormal(eyeSpaceDirection); MyShaderVariables->Set(MyLightDirectionIndex, eyeSpaceDirection); Can anyone give me a clue as to what I'm doing wrong here? I think the light should remain looking at a fixed point on the box, regardless of the camera orientation. Here are the vertex and pixel shaders: /////////////////////////////////////////////////// // Vertex Shader /////////////////////////////////////////////////// #version 420 /////////////////////////////////////////////////// // Uniform Buffer Structures /////////////////////////////////////////////////// // Camera. layout (std140) uniform Camera { mat4 Camera_View; mat4 Camera_ViewInverseTranspose; mat4 Camera_Projection; }; // Matrices per model. layout (std140) uniform Model { mat4 Model_World; mat4 Model_WorldView; mat4 Model_WorldViewInverseTranspose; mat4 Model_WorldViewProjection; }; // Spotlight. layout (std140) uniform OmniLight { float Light_Intensity; vec3 Light_Position; vec3 Light_Direction; vec4 Light_Ambient_Colour; vec4 Light_Diffuse_Colour; vec4 Light_Specular_Colour; float Light_Attenuation_Min; float Light_Attenuation_Max; float Light_Cone_Min; float Light_Cone_Max; }; /////////////////////////////////////////////////// // Streams (per vertex) /////////////////////////////////////////////////// layout(location = 0) in vec3 attrib_Position; layout(location = 1) in vec3 attrib_Normal; layout(location = 2) in vec3 attrib_Tangent; layout(location = 3) in vec3 attrib_BiNormal; layout(location = 4) in vec2 attrib_Texture; /////////////////////////////////////////////////// // Output streams (per vertex) /////////////////////////////////////////////////// out vec3 attrib_Fragment_Normal; out vec4 attrib_Fragment_Position; out vec2 attrib_Fragment_Texture; out vec3 attrib_Fragment_Light; out vec3 attrib_Fragment_Eye; /////////////////////////////////////////////////// // Main /////////////////////////////////////////////////// void main() { // Transform normal into eye space attrib_Fragment_Normal = (Model_WorldViewInverseTranspose * vec4(attrib_Normal, 0.0)).xyz; // Transform vertex into eye space (world * view * vertex = eye) vec4 position = Model_WorldView * vec4(attrib_Position, 1.0); // Compute vector from eye space vertex to light (light is in eye space already) attrib_Fragment_Light = Light_Position - position.xyz; // Compute vector from the vertex to the eye (which is now at the origin). attrib_Fragment_Eye = -position.xyz; // Output texture coord. attrib_Fragment_Texture = attrib_Texture; // Compute vertex position by applying camera projection. gl_Position = Camera_Projection * position; } and the pixel shader: /////////////////////////////////////////////////// // Pixel Shader /////////////////////////////////////////////////// #version 420 /////////////////////////////////////////////////// // Samplers /////////////////////////////////////////////////// uniform sampler2D Map_Diffuse; /////////////////////////////////////////////////// // Global Uniforms /////////////////////////////////////////////////// // Material. layout (std140) uniform Material { vec4 Material_Ambient_Colour; vec4 Material_Diffuse_Colour; vec4 Material_Specular_Colour; vec4 Material_Emissive_Colour; float Material_Shininess; float Material_Strength; }; // Spotlight. layout (std140) uniform OmniLight { float Light_Intensity; vec3 Light_Position; vec3 Light_Direction; vec4 Light_Ambient_Colour; vec4 Light_Diffuse_Colour; vec4 Light_Specular_Colour; float Light_Attenuation_Min; float Light_Attenuation_Max; float Light_Cone_Min; float Light_Cone_Max; }; /////////////////////////////////////////////////// // Input streams (per vertex) /////////////////////////////////////////////////// in vec3 attrib_Fragment_Normal; in vec3 attrib_Fragment_Position; in vec2 attrib_Fragment_Texture; in vec3 attrib_Fragment_Light; in vec3 attrib_Fragment_Eye; /////////////////////////////////////////////////// // Result /////////////////////////////////////////////////// out vec4 Out_Colour; /////////////////////////////////////////////////// // Main /////////////////////////////////////////////////// void main(void) { // Compute N dot L. vec3 N = normalize(attrib_Fragment_Normal); vec3 L = normalize(attrib_Fragment_Light); vec3 E = normalize(attrib_Fragment_Eye); vec3 H = normalize(L + E); float NdotL = clamp(dot(L,N), 0.0, 1.0); float NdotH = clamp(dot(N,H), 0.0, 1.0); // Compute ambient term. vec4 ambient = Material_Ambient_Colour * Light_Ambient_Colour; // Diffuse. vec4 diffuse = texture2D(Map_Diffuse, attrib_Fragment_Texture) * Light_Diffuse_Colour * Material_Diffuse_Colour * NdotL; // Specular. float specularIntensity = pow(NdotH, Material_Shininess) * Material_Strength; vec4 specular = Light_Specular_Colour * Material_Specular_Colour * specularIntensity; // Light attenuation (so we don't have to use 1 - x, we step between Max and Min). float d = length(-attrib_Fragment_Light); float attenuation = smoothstep(Light_Attenuation_Max, Light_Attenuation_Min, d); // Adjust attenuation based on light cone. float LdotS = dot(-L, Light_Direction), CosI = Light_Cone_Min - Light_Cone_Max; attenuation *= clamp((LdotS - Light_Cone_Max) / CosI, 0.0, 1.0); // Final colour. Out_Colour = (ambient + diffuse + specular) * Light_Intensity * attenuation; }

    Read the article

  • Why do meshes show up as bones in the Model class?

    - by Itamar Marom
    Right now I'm working on a 3D game and I've come across something very weird. When I created the model in Blender, I added an armature named "MyBone" to the stage and attached a cube ("MyCube") to it, so that when I move the armature, the cube moves with it. I exported this as an FBX and loaded it as a Model object. What I expected to see was: But what I got was this: I'm really confused. Why is the mesh I created showing up in the bone list? And what's Root Node? Here are the .blend and .fbx files: here or here. Thanks.

    Read the article

  • Draw multiple objects with textures

    - by Simplex
    I want to draw cubes using textures. void OperateWithMainMatrix(ESContext* esContext, GLfloat offsetX, GLfloat offsetY, GLfloat offsetZ) { UserData *userData = (UserData*) esContext->userData; ESMatrix modelview; ESMatrix perspective; //Manipulation with matrix ... glVertexAttribPointer(userData->positionLoc, 3, GL_FLOAT, GL_FALSE, 0, cubeFaces); //in cubeFaces coordinates verticles cube glVertexAttribPointer(userData->normalLoc, 3, GL_FLOAT, GL_FALSE, 0, cubeFaces); //for normals (use in fragment shaider for textures) glEnableVertexAttribArray(userData->positionLoc); glEnableVertexAttribArray(userData->normalLoc); // Load the MVP matrix glUniformMatrix4fv(userData->mvpLoc, 1, GL_FALSE, (GLfloat*)&userData->mvpMatrix.m[0][0]); //Bind base map glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_CUBE_MAP, userData->baseMapTexId); //Set the base map sampler to texture unit to 0 glUniform1i(userData->baseMapLoc, 0); // Draw the cube glDrawArrays(GL_TRIANGLES, 0, 36); } (coordinates transformation is in OperateWithMainMatrix() ) Then Draw() function is called: void Draw(ESContext *esContext) { UserData *userData = esContext->userData; // Set the viewport glViewport(0, 0, esContext->width, esContext->height); // Clear the color buffer glClear(GL_COLOR_BUFFER_BIT); // Use the program object glUseProgram(userData->programObject); OperateWithMainMatrix(esContext, 0.0f, 0.0f, 0.0f); eglSwapBuffers(esContext->eglDisplay, esContext->eglSurface); } This work fine, but if I try to draw multiple cubes (next code for example): void Draw(ESContext *esContext) { ... // Use the program object glUseProgram(userData->programObject); OperateWithMainMatrix(esContext, 2.0f, 0.0f, 0.0f); OperateWithMainMatrix(esContext, 1.0f, 0.0f, 0.0f); OperateWithMainMatrix(esContext, 0.0f, 0.0f, 0.0f); OperateWithMainMatrix(esContext, -1.0f, 0.0f, 0.0f); OperateWithMainMatrix(esContext, -2.0f, 0.0f, 0.0f); eglSwapBuffers(esContext->eglDisplay, esContext->eglSurface); } A side faces overlapes frontal face. The side face of the right cube overlaps frontal face of the center cube. How can i remove this effect and display miltiple cubes without it?

    Read the article

  • Render an image with separate layers for shadows/reflections in 3D Studio Max?

    - by Bernd Plontsch
    I have a scene with a simple object standing on a ground in the center. Caused by lights and the ground material there is some shadow and reflection on the ground surrounding the object. How can I render an image containing 3 separate layers for the object the ground the reflection / shadow on the ground Which format to use for this (it should include all 3 layers + I should be able to enable/disable them in Photoshop)? How do I define or prepare those layers for being rendering as image layers?

    Read the article

  • 2D pathfinding - finding smooth paths

    - by Kooi Nam Ng
    I was trying to implement a simple pathfinding, but the outcome is less satisfactory than what I intended to achieve. The thing is units in games like Starcraft 2 move in all directions whereas units in my case only move in at most 8 directions (Warcraft 1 style) as these 8 directions direct to next available nodes (they move from a tile to next neighboring tile). What should I do in order to achieve the result as in Starcraft 2? Shrink the tile size? On the picture you can see a horizontal line of rock tiles being obstacles, and the found path marked as green tiles. The red line is the path I want to achieve.

    Read the article

  • HLSL - Creating Shadows in 2D

    - by richard
    The way that I create shadows is by the following technique: http://www.catalinzima.com/2010/07/my-technique-for-the-shader-based-dynamic-2d-shadows/ But I have questions to HLSL. The way that I currently do it is, I have a black and white image, where Black means 'object', and white means 'nothing'. I then distort the image like in the tutorial. I do this with a pixel shader, but instead of rendering to the screen, I render to a texture, back to my application. I then take this, and create the shadows, and then send it back to the graphics card to undo the distortion, after the shadow has been added - this comes back and I have a stencil of shadow. I can put this ontop of the original image and send them back to the graphics card, which then puts them on the screen. To me this is alot of back and forth. Is there a way i can avoid this? The problem that I am having is that I need to basically go through all positions in the texture 3 times, and use the new new texture every time instead of the orginal one. I tried to read up on Passes, but i don't think that i am heading in the right direction there. Help?

    Read the article

  • Open GL Android frame-by-frame animation tutorial/example code

    - by Trick
    My first question was asked wrong, so I need to ask again :) I found out, that I will have to do an OpenGL animation for my Android game. The closest (known) example is Talking Tom (but I don't know how they did the animations). I have large PNGs which I would like to put into a animation. For example - 30 PNGs 427×240px at 8 FPS. I know some things already about Open GL, but I am used to learn from example code. And it is quicker that way (so I don't need to invent hot water all over again :)). Does anybody has any points to direct me?

    Read the article

< Previous Page | 401 402 403 404 405 406 407 408 409 410 411 412  | Next Page >