Search Results

Search found 26774 results on 1071 pages for 'distributed development'.

Page 407/1071 | < Previous Page | 403 404 405 406 407 408 409 410 411 412 413 414  | Next Page >

  • How do I do JavaScript Array Animation

    - by Henry
    I'm making a game but don't know how to do Array Animation with the png Array and game Surface that I made below. I'm trying to make it so that when the Right arrow key is pressed, the character animates as if it is walking to the right and when the Left arrow key is pressed it animates as if it is walking to the left (kind of like Mario). I put everything on a surface instead of the canvas. Everything is explained in the code below. I couldn't find help on this anywhere. I hope what I got below makes sense. I'm basically a beginner with JavaScript. I'll be back if more is needed: <!doctype html5> <html> <head></head> <script src="graphics.js"></script> <script src="object.js"></script> <body onkeydown ="keyDown(event)" onkeyup ="keyUp(event)" ></body> <script> //"Surface" is where I want to display my animation. It's like the HTML // canvas but it's not that. It's just the surface to where everything in the //game and the game itself will be displayed. var Surface = new Graphics(600, 400, "skyblue"); //here's the array that I want to use for animation var player = new Array("StandsRight.png", "WalksRight.png", "StandsLeft.png","WalksLeft.png" ); //Here is the X coordinate, Y coordinate, the beginning png for the animation, //and the object's name "player." I also turned the array into an object (but //I don't know if I was supposed to do that or not). var player = new Object(50, 100, 40, 115, "StandsRight.png","player"); //When doing animation I know that it requires a "loop", but I don't // know how to connect it so that it works with the arrays so that //it could animate. var loop = 0; //this actually puts "player" on screen. It makes player visible and //it is where I would like the animation to occur. Surface.drawObject(player); //this would be the key that makes "player" animation in the righward direction function keyDown(e) { if (e.keyCode == 39); } //this would be the key that makes "player" animation in the leftward direction function keyUp(e){ if (e.keyCode == 39); } //this is the Mainloop where the game will function MainLoop(); //the mainloop functionized function MainLoop(){ //this is how fast or slow I could want the entire game to go setTimeout(MainLoop, 10); } </script> </html> From here, are the "graphic.js" and the "object.js" files below. In this section is the graphics.js file. This graphics.js part below is linked to the: script src="graphics.js" html script section that I wrote above. Basically, below is a seperate file that I used for Graphics, and to run the code above, make this graphics.js code that I post below here, a separate filed called: graphics.js function Graphics(w,h,c) { document.body.innerHTML += "<table style='position:absolute;font- size:0;top:0;left:0;border-spacing:0;border- width:0;width:"+w+";height:"+h+";background-color:"+c+";' border=1><tr><td> </table>\n"; this.drawRectangle = function(x,y,w,h,c,n) { document.body.innerHTML += "<div style='position:absolute;font-size:0;left:" + x + ";top:" + y + ";width:" + w + ";height:" + h + ";background-color:" + c + ";' id='" + n + "'></div>\n"; } this.drawTexture = function(x,y,w,h,t,n) { document.body.innerHTML += "<img style='position:absolute;font-size:0;left:" + x + ";top:" + y + ";width:" + w + ";height:" + h + ";' id='" + n + "' src='" + t + "'> </img>\n"; } this.drawObject = function(o) { document.body.innerHTML += "<img style='position:absolute;font-size:0;left:" + o.X + ";top:" + o.Y + ";width:" + o.Width + ";height:" + o.Height + ";' id='" + o.Name + "' src='" + o.Sprite + "'></img>\n"; } this.moveGraphic = function(x,y,n) { document.getElementById(n).style.left = x; document.getElementById(n).style.top = y; } this.removeGraphic = function(n){ document.getElementById(n).parentNode.removeChild(document.getElementById(n)); } } Finally, is the object.js file linked to the script src="object.js"" in the html game file above the graphics.js part I just wrote. Basically, this is a separate file too, so thus, in order to run or test the html game code in the very first section I wrote, a person has to also make this code below a separate file called: object.js I hope this helps: function Object(x,y,w,h,t,n) { this.X = x; this.Y = y; this.Velocity_X = 0; this.Velocity_Y = 0; this.Previous_X = 0; this.Previous_Y = 0; this.Width = w; this.Height = h; this.Sprite = t; this.Name = n; this.Exists = true; } In all, this game is made based on a tutorial on youtube at: http://www.youtube.com/watch?v=t2kUzgFM4lY&feature=relmfu I'm just trying to learn how to add animations with it now. I hope the above helps. If not, let me know. Thanks

    Read the article

  • obj-c classes and sub classes (Cocos2d) conversion

    - by Lewis
    Hi I'm using this version of cocos2d: https://github.com/krzysztofzablocki/CCNode-SFGestureRecognizers Which supports the UIGestureRecognizer within a CCLayer in a cocos2d scene like so: @interface HelloWorldLayer : CCLayer <UIGestureRecognizerDelegate> { } Now I want to make this custom gesture work within the scene, attaching it to a sprite in cocos2d: #import <Foundation/Foundation.h> #import <UIKit/UIGestureRecognizerSubclass.h> @protocol OneFingerRotationGestureRecognizerDelegate <NSObject> @optional - (void) rotation: (CGFloat) angle; - (void) finalAngle: (CGFloat) angle; @end @interface OneFingerRotationGestureRecognizer : UIGestureRecognizer { CGPoint midPoint; CGFloat innerRadius; CGFloat outerRadius; CGFloat cumulatedAngle; id <OneFingerRotationGestureRecognizerDelegate> target; } - (id) initWithMidPoint: (CGPoint) midPoint innerRadius: (CGFloat) innerRadius outerRadius: (CGFloat) outerRadius target: (id) target; - (void)reset; - (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event; - (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event; - (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event; - (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event; @end #include <math.h> #import "OneFingerRotationGestureRecognizer.h" @implementation OneFingerRotationGestureRecognizer // private helper functions CGFloat distanceBetweenPoints(CGPoint point1, CGPoint point2); CGFloat angleBetweenLinesInDegrees(CGPoint beginLineA, CGPoint endLineA, CGPoint beginLineB, CGPoint endLineB); - (id) initWithMidPoint: (CGPoint) _midPoint innerRadius: (CGFloat) _innerRadius outerRadius: (CGFloat) _outerRadius target: (id <OneFingerRotationGestureRecognizerDelegate>) _target { if ((self = [super initWithTarget: _target action: nil])) { midPoint = _midPoint; innerRadius = _innerRadius; outerRadius = _outerRadius; target = _target; } return self; } /** Calculates the distance between point1 and point 2. */ CGFloat distanceBetweenPoints(CGPoint point1, CGPoint point2) { CGFloat dx = point1.x - point2.x; CGFloat dy = point1.y - point2.y; return sqrt(dx*dx + dy*dy); } CGFloat angleBetweenLinesInDegrees(CGPoint beginLineA, CGPoint endLineA, CGPoint beginLineB, CGPoint endLineB) { CGFloat a = endLineA.x - beginLineA.x; CGFloat b = endLineA.y - beginLineA.y; CGFloat c = endLineB.x - beginLineB.x; CGFloat d = endLineB.y - beginLineB.y; CGFloat atanA = atan2(a, b); CGFloat atanB = atan2(c, d); // convert radiants to degrees return (atanA - atanB) * 180 / M_PI; } #pragma mark - UIGestureRecognizer implementation - (void)reset { [super reset]; cumulatedAngle = 0; } - (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event { [super touchesBegan:touches withEvent:event]; if ([touches count] != 1) { self.state = UIGestureRecognizerStateFailed; return; } } - (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event { [super touchesMoved:touches withEvent:event]; if (self.state == UIGestureRecognizerStateFailed) return; CGPoint nowPoint = [[touches anyObject] locationInView: self.view]; CGPoint prevPoint = [[touches anyObject] previousLocationInView: self.view]; // make sure the new point is within the area CGFloat distance = distanceBetweenPoints(midPoint, nowPoint); if ( innerRadius <= distance && distance <= outerRadius) { // calculate rotation angle between two points CGFloat angle = angleBetweenLinesInDegrees(midPoint, prevPoint, midPoint, nowPoint); // fix value, if the 12 o'clock position is between prevPoint and nowPoint if (angle > 180) { angle -= 360; } else if (angle < -180) { angle += 360; } // sum up single steps cumulatedAngle += angle; // call delegate if ([target respondsToSelector: @selector(rotation:)]) { [target rotation:angle]; } } else { // finger moved outside the area self.state = UIGestureRecognizerStateFailed; } } - (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event { [super touchesEnded:touches withEvent:event]; if (self.state == UIGestureRecognizerStatePossible) { self.state = UIGestureRecognizerStateRecognized; if ([target respondsToSelector: @selector(finalAngle:)]) { [target finalAngle:cumulatedAngle]; } } else { self.state = UIGestureRecognizerStateFailed; } cumulatedAngle = 0; } - (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event { [super touchesCancelled:touches withEvent:event]; self.state = UIGestureRecognizerStateFailed; cumulatedAngle = 0; } @end Header file for view controller: #import "OneFingerRotationGestureRecognizer.h" @interface OneFingerRotationGestureViewController : UIViewController <OneFingerRotationGestureRecognizerDelegate> @property (nonatomic, strong) IBOutlet UIImageView *image; @property (nonatomic, strong) IBOutlet UITextField *textDisplay; @end then this is in the .m file: gestureRecognizer = [[OneFingerRotationGestureRecognizer alloc] initWithMidPoint: midPoint innerRadius: outRadius / 3 outerRadius: outRadius target: self]; [self.view addGestureRecognizer: gestureRecognizer]; Now my question is, is it possible to add this custom gesture into the cocos2d project found on that github, and if so, what do I need to change in the OneFingerRotationGestureRecognizerDelegate to get it to work within cocos2d. Because at the minute it is setup in a standard iOS project and not a cocos2d project and I do not know enough about UIViews and classing/ sub classing in obj-c to get this to work. Also it seems to inherit from a UIView where cocos2d uses CCLayer. Kind regards, Lewis. I also realise I may have not included enough code from the custom gesture project for readers to interpret it fully, so the full project can be found here: https://github.com/melle/OneFingerRotationGestureDemo

    Read the article

  • Implementing Light Volume Front Faces

    - by cubrman
    I recently read an article about light indexed deferred rendering from here: http://code.google.com/p/lightindexed-deferredrender/ It explains its ideas in a clear way, but there was one point that I failed to understand. It in fact is one of the most interesting ones, as it explains how to implement transparency with this approach: Typically when rendering light volumes in deferred rendering, only surfaces that intersect the light volume are marked and lit. This is generally accomplished by a “shadow volume like” technique of rendering back faces – incrementing stencil where depth is greater than – then rendering front faces and only accepting when depth is less than and stencil is not zero. By only rendering front faces where depth is less than, all future lookups by fragments in the forward rendering pass will get all possible lights that could hit the fragment. Can anyone explain how exactly you need to render only front faces? Another question is why do you need the front faces at all? Why can't we simply render all the lights and store the ones that overlap at this pixel in a texture? Does this approach serves as a cut-off plane to discard lights blocked by opaque geometry?

    Read the article

  • Open GL stars are not rendering

    - by Darestium
    I doing Nehe's Open GL Lesson 9. I'm using SFML for windowing, the strange thing is no stars are rendering. #include <SFML/System.hpp> #include <SFML/Window.hpp> #include <SFML/Graphics.hpp> #include <iostream> void processEvents(sf::Window *app); void processInput(sf::Window *app); void renderGlScene(sf::Window *app); void init(); int loadResources(); const int NUM_OF_STARS = 50; float triRot = 0.0f; float quadRot = 0.0f; bool twinkle = false; bool tKey = false; float zoom = 15.0f; float tilt = 90.0f; float spin = 0.0f; unsigned int loop; unsigned int texture_handle[1]; typedef struct { int r, g, b; float distance; float angle; } stars; stars star[NUM_OF_STARS]; int main() { sf::Window app(sf::VideoMode(800, 600, 32), "Nehe Lesson 9"); app.UseVerticalSync(false); init(); if (loadResources() == -1) { return EXIT_FAILURE; } while (app.IsOpened()) { processEvents(&app); processInput(&app); renderGlScene(&app); app.Display(); } return EXIT_SUCCESS; } int loadResources() { sf::Image img_data; // Load Texture if (!img_data.LoadFromFile("data/images/star.bmp")) { std::cout << "Could not load data/images/star.bmp"; return -1; } // Generate 1 texture glGenTextures(1, &texture_handle[0]); // Linear filtering glBindTexture(GL_TEXTURE_2D, texture_handle[0]); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, img_data.GetWidth(), img_data.GetHeight(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img_data.GetPixelsPtr()); return 0; } void processInput(sf::Window *app) { const sf::Input& input = app->GetInput(); if (input.IsKeyDown(sf::Key::T) && !tKey) { tKey = true; twinkle = !twinkle; } if (!input.IsKeyDown(sf::Key::T)) { tKey = false; } if (input.IsKeyDown(sf::Key::Up)) { tilt -= 0.05f; } if (input.IsKeyDown(sf::Key::Down)) { tilt += 0.05f; } if (input.IsKeyDown(sf::Key::PageUp)) { zoom -= 0.02f; } if (input.IsKeyDown(sf::Key::Up)) { zoom += 0.02f; } } void init() { glClearDepth(1.f); glClearColor(0.f, 0.f, 0.f, 0.f); // Enable texturing glEnable(GL_TEXTURE_2D); //glDepthMask(GL_TRUE); // Setup a perpective projection glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.f, 1.f, 1.f, 500.f); glShadeModel(GL_SMOOTH); glBlendFunc(GL_SRC_ALPHA, GL_ONE); glEnable(GL_BLEND); for (loop = 0; loop < NUM_OF_STARS; loop++) { star[loop].distance = (float)loop / NUM_OF_STARS * 5.0f; // Calculate distance from the centre // Give stars random rgb value star[loop].r = rand() % 256; star[loop].g = rand() % 256; star[loop].b = rand() % 256; } } void processEvents(sf::Window *app) { sf::Event event; while (app->GetEvent(event)) { if (event.Type == sf::Event::Closed) { app->Close(); } if (event.Type == sf::Event::KeyPressed && event.Key.Code == sf::Key::Escape) { app->Close(); } } } void renderGlScene(sf::Window *app) { app->SetActive(); // Clear color depth buffer glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Apply some transformations glMatrixMode(GL_MODELVIEW); glLoadIdentity(); // Select texture glBindTexture(GL_TEXTURE_2D, texture_handle[0]); for (loop = 0; loop < NUM_OF_STARS; loop++) { glLoadIdentity(); // Reset The View Before We Draw Each Star glTranslatef(0.0f, 0.0f, zoom); // Zoom Into The Screen (Using The Value In 'zoom') glRotatef(tilt, 1.0f, 0.0f, 0.0f); // Tilt The View (Using The Value In 'tilt') glRotatef(star[loop].angle, 0.0f, 1.0f, 0.0f); // Rotate To The Current Stars Angle glTranslatef(star[loop].distance, 0.0f, 0.0f); // Move Forward On The X Plane glRotatef(-star[loop].angle,0.0f,1.0f,0.0f); // Cancel The Current Stars Angle glRotatef(-tilt,1.0f,0.0f,0.0f); // Cancel The Screen Tilt if (twinkle) { glColor4ub(star[(NUM_OF_STARS - loop) - 1].r, star[(NUM_OF_STARS - loop)-1].g, star[(NUM_OF_STARS - loop) - 1].b, 255); glBegin(GL_QUADS); // Begin Drawing The Textured Quad glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 0.0f); glTexCoord2f(1.0f, 0.0f); glVertex3f( 1.0f, -1.0f, 0.0f); glTexCoord2f(1.0f, 1.0f); glVertex3f( 1.0f, 1.0f, 0.0f); glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 0.0f); glEnd(); // Done Drawing The Textured Quad } glRotatef(spin,0.0f,0.0f,1.0f); // Rotate The Star On The Z Axis // Assign A Color Using Bytes glColor4ub(star[loop].r, star[loop].g, star[loop].b, 255); glBegin(GL_QUADS); // Begin Drawing The Textured Quad glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f,-1.0f, 0.0f); glTexCoord2f(1.0f, 0.0f); glVertex3f( 1.0f,-1.0f, 0.0f); glTexCoord2f(1.0f, 1.0f); glVertex3f( 1.0f, 1.0f, 0.0f); glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 0.0f); glEnd(); // Done Drawing The Textured Quad spin += 0.01f; // Used To Spin The Stars star[loop].angle += (float)loop / NUM_OF_STARS; // Changes The Angle Of A Star star[loop].distance -= 0.01f; // Changes The Distance Of A Star if (star[loop].distance < 0.0f) { star[loop].distance += 5.0f; // Move The Star 5 Units From The Center star[loop].r = rand() % 256; // Give It A New Red Value star[loop].g = rand() % 256; // Give It A New Green Value star[loop].b = rand() % 256; // Give It A New Blue Value } } } I've looked over the code atleast 10 times now and I can't figure out the problem. Any help would be much appreciated.

    Read the article

  • Shader optimization - cg/hlsl pseudo and via multiplication

    - by teodron
    Since HLSL/Cg do not allow texture fetching inside conditional blocks, I am first checking a variable and performing some computations, afterwards setting a float flag to 0.0 or 1.0, depending on the computations. I'd like to trigger a texture fetch only if the flag is 1.0 or not null, for that matter of fact. I kind of hoped this would do the trick: float4 TU0_atlas_colour = pseudoBool * tex2Dlod(TU0_texture, float4(tileCoord, 0, mipLevel)); That is, if pseudoBool is 0, will the texture fetch function still be called and produce overhead? I was hoping to prevent it from getting executed via this trick that usually works in plain C/C++.

    Read the article

  • Loading Wavefront Data into VAO and Render It

    - by Jordan LaPrise
    I have successfully loaded a triangulated wavefront(.obj) into 6 vectors, the first 3 vectors contain the locations for vertices, uv coords, and normals. The last three have the indices stored for each of the faces. I have been looking into using VAO's and VBO's to render, and I'm not quite sure how to load and render the data. One of my biggest concerns is the fact that indexed rendering only allows you to have one array of indices, meaning I somehow have to make all of the first three vectors the same size, the only way I thought of doing this, is to make 3 new vertex's of equal size, and load in the data for each face, but that would completely defeat the purpose of indexing. Any help would be appreciated. Thanks in advance, Jordan

    Read the article

  • Maintaining State in Mud Engine

    - by Johnathon Sullinger
    I am currently working on a Mud Engine and have started implementing my state engine. One of the things that has me troubled is maintaining different states at once. For instance, lets say that the user has started a tutorial, which requires specific input. If the user types "help" I want to switch in to a help state, so they can get the help they need, then return them to the original state once exiting the help. my state system uses a State Manager to manage the state per user: public class StateManager { /// <summary> /// Gets the current state. /// </summary> public IState CurrentState { get; private set; } /// <summary> /// Gets the states available for use. /// </summary> /// <value> public List<IState> States { get; private set; } /// <summary> /// Gets the commands available. /// </summary> public List<ICommand> Commands { get; private set; } /// <summary> /// Gets the mob that this manager controls the state of. /// </summary> public IMob Mob { get; private set; } public void Initialize(IMob mob, IState initialState = null) { this.Mob = mob; if (initialState != null) { this.SwitchState(initialState); } } /// <summary> /// Performs the command. /// </summary> /// <param name="message">The message.</param> public void PerformCommand(IMessage message) { if (this.CurrentState != null) { ICommand command = this.CurrentState.GetCommand(message); if (command is NoOpCommand) { // NoOperation commands indicate that the current state is not finished yet. this.CurrentState.Render(this.Mob); } else if (command != null) { command.Execute(this.Mob); } else if (command == null) { new InvalidCommand().Execute(this.Mob); } } } /// <summary> /// Switches the state. /// </summary> /// <param name="state">The state.</param> public void SwitchState(IState state) { if (this.CurrentState != null) { this.CurrentState.Cleanup(); } this.CurrentState = state; if (state != null) { this.CurrentState.Render(this.Mob); } } } Each of the different states that the user can be in, is a Type implementing IState. public interface IState { /// <summary> /// Renders the current state to the players terminal. /// </summary> /// <param name="player">The player to render to</param> void Render(IMob mob); /// <summary> /// Gets the Command that the player entered and preps it for execution. /// </summary> /// <returns></returns> ICommand GetCommand(IMessage command); /// <summary> /// Cleanups this instance during a state change. /// </summary> void Cleanup(); } Example state: public class ConnectState : IState { /// <summary> /// The connected player /// </summary> private IMob connectedPlayer; public void Render(IMob mob) { if (!(mob is IPlayer)) { throw new NullReferenceException("ConnectState can only be used with a player object implementing IPlayer"); } //Store a reference for the GetCommand() method to use. this.connectedPlayer = mob as IPlayer; var server = mob.Game as IServer; var game = mob.Game as IGame; // It is not guaranteed that mob.Game will implement IServer. We are only guaranteed that it will implement IGame. if (server == null) { throw new NullReferenceException("LoginState can only be set to a player object that is part of a server."); } //Output the game information mob.Send(new InformationalMessage(game.Name)); mob.Send(new InformationalMessage(game.Description)); mob.Send(new InformationalMessage(string.Empty)); //blank line //Output the server MOTD information mob.Send(new InformationalMessage(string.Join("\n", server.MessageOfTheDay))); mob.Send(new InformationalMessage(string.Empty)); //blank line mob.StateManager.SwitchState(new LoginState()); } /// <summary> /// Gets the command. /// </summary> /// <param name="message">The message.</param> /// <returns>Returns no operation required.</returns> public Commands.ICommand GetCommand(IMessage message) { return new NoOpCommand(); } /// <summary> /// Cleanups this instance during a state change. /// </summary> public void Cleanup() { // We have nothing to clean up. return; } } With the way that I have my FSM set up at the moment, the user can only ever have one state at a time. I read a few different posts on here about state management but nothing regarding keeping a stack history. I thought about using a Stack collection, and just pushing new states on to the stack then popping them off as the user moves out from one. It seems like it would work, but I'm not sure if it is the best approach to take. I'm looking for recommendations on this. I'm currently swapping state from within the individual states themselves as well which I'm on the fence about if it makes sense to do there or not. The user enters a command, the StateManager passes the command to the current State and lets it determine if it needs it (like passing in a password after entering a user name), if the state doesn't need any further commands, it returns null. If it does need to continue doing work, it returns a No Operation to let the state manager know that the state still requires further input from the user. If null is returned, the state manager will then go find the appropriate state for the command entered by the user. Example state requiring additional input from the user public class LoginState : IState { /// <summary> /// The connected player /// </summary> private IPlayer connectedPlayer; private enum CurrentState { FetchUserName, FetchPassword, InvalidUser, } private CurrentState currentState; /// <summary> /// Renders the current state to the players terminal. /// </summary> /// <param name="mob"></param> /// <exception cref="System.NullReferenceException"> /// ConnectState can only be used with a player object implementing IPlayer /// or /// LoginState can only be set to a player object that is part of a server. /// </exception> public void Render(IMob mob) { if (!(mob is IPlayer)) { throw new NullReferenceException("ConnectState can only be used with a player object implementing IPlayer"); } //Store a reference for the GetCommand() method to use. this.connectedPlayer = mob as IPlayer; var server = mob.Game as IServer; // Register to receive new input from the user. mob.ReceivedMessage += connectedPlayer_ReceivedMessage; if (server == null) { throw new NullReferenceException("LoginState can only be set to a player object that is part of a server."); } this.currentState = CurrentState.FetchUserName; switch (this.currentState) { case CurrentState.FetchUserName: mob.Send(new InputMessage("Please enter your user name")); break; case CurrentState.FetchPassword: mob.Send(new InputMessage("Please enter your password")); break; case CurrentState.InvalidUser: mob.Send(new InformationalMessage("Invalid username/password specified.")); this.currentState = CurrentState.FetchUserName; mob.Send(new InputMessage("Please enter your user name")); break; } } /// <summary> /// Receives the players input. /// </summary> /// <param name="sender">The sender.</param> /// <param name="e">The e.</param> void connectedPlayer_ReceivedMessage(object sender, IMessage e) { // Be good memory citizens and clean ourself up after receiving a message. // Not doing this results in duplicate events being registered and memory leaks. this.connectedPlayer.ReceivedMessage -= connectedPlayer_ReceivedMessage; ICommand command = this.GetCommand(e); } /// <summary> /// Gets the Command that the player entered and preps it for execution. /// </summary> /// <param name="command"></param> /// <returns>Returns the ICommand specified.</returns> public Commands.ICommand GetCommand(IMessage command) { if (this.currentState == CurrentState.FetchUserName) { this.connectedPlayer.Name = command.Message; this.currentState = CurrentState.FetchPassword; } else if (this.currentState == CurrentState.FetchPassword) { // find user } return new NoOpCommand(); } /// <summary> /// Cleanups this instance during a state change. /// </summary> public void Cleanup() { // If we have a player instance, we clean up the registered event. if (this.connectedPlayer != null) { this.connectedPlayer.ReceivedMessage -= this.connectedPlayer_ReceivedMessage; } } Maybe my entire FSM isn't wired up in the best way, but I would appreciate input on what would be the best to maintain a stack of state in a MUD game engine, and if my states should be allowed to receive the input from the user or not to check what command was entered before allowing the state manager to switch states. Thanks in advance.

    Read the article

  • How do I simplify terrain with tunnels or overhangs?

    - by KKlouzal
    I'm attempting to store vertex data in a quadtree with C++, such that far-away vertices can be combined to simplify the object and speed up rendering. This works well with a reasonably flat mesh, but what about terrain with overhangs or tunnels? How should I represent such a mesh in a quadtree? After the initial generation, each mesh is roughly 130,000 polygons and about 300 of these meshes are lined up to create the surface of a planetary body. A fully generated planet is upwards of 10,000,000 polygons before applying any culling to the individual meshes. Therefore, this second optimization is vital for the project. The rest of my confusion focuses around my inexperience with vertex data: How do I properly loop through the vertex data to group them into specific quads? How do I conclude from vertex data what a quad's maximum size should be? How many quads should the quadtree include?

    Read the article

  • How are realistic 3D faces created and animated in video games?

    - by Anton
    I'm interested in being able to create realistic faces and facial expressions for the 3D characters of a game I'm working on. Think something similar to the dialog scenes in games like Mass Effect. Unfortunately I'm not sure where to begin. I'm sure the faces/animations are created through 3D Modeling software, but otherwise I am lost. Do facial animations use the same "bones" that normal body animation uses? Is there any preferred 3D software for realistic faces and animations? Is there a preferred format to export these faces and animations in?

    Read the article

  • How to port animation from one skeleton to another?

    - by shawn
    While I need to do this in a Blender3D modeler script, the math should be similar for other modelers or realtime engines. Blender3D specific terminology: Armature = skeleton EditBone = rest pose bone (stores the rest pose matrix) PoseBone = can store a different pose (animation matrix) for each frame of your animation I need to share animations (Blender Actions) between Armatures which have EditBones with same names and which have the same positions, but can have different (rest pose) angles and scales. Plus the Armatures might have different bone hierarchy (bone parenting/ no bone parenting). Why I need this: I've made an importer/exporter for a 3d format for a game. The format doesn't store enough info to connect/parent the bones, which makes posing/animating character models in a 3d modeller nearly impossible (original model files for the 3d modeler don't exist, this is for modding). As there are only 2 character skeleton types in the game, I decided to optionally allow to generate the bone from a hardcoded data in the model importer and undo that in the exporter. This allows to easily pose the model for checking weights, easily create weights, makes it easier for Blender to generate automatic weights and of course makes animating possible. This worked perfectly: the importer optionally generated the Armature itself and the exporter removed those changes, so the exported model works with existing animations in the game. But now I'm writing an importer and exporter for the game's animation format and here come the problems of: Trying to make original animations work in Blender with my "custom" (modified) Armature Trying to make animations created by using the "custom" (modified) Armature work with the original models in the game (and Blender). Constraints or bone snapping inside Blender won't work as they don't care that the bones have different angles in the rest pose, they will still face the same direction. It seems I just need to get the "difference" between the EditBone matrices of all EditBones for the two Armatures somehow and apply that difference to PoseBone matrices of all PoseBones, for all frames of my animation. I need to know how to get that difference and how to apply it. BTW, PoseBone matrices are relative to rest pose, they are by default [1.000000, 0.000000, 0.000000, 0.000000](matrix [row 0]) [0.000000, 1.000000, 0.000000, 0.000000](matrix [row 1]) [0.000000, 0.000000, 1.000000, 0.000000](matrix [row 2]) [0.000000, 0.000000, 0.000000, 1.000000](matrix [row 3]) So the question is: How to get the difference between two bone (EditBone) matrices to apply that difference to the animation matrices (PoseBone matrices)? Please be easy on the matrix math.

    Read the article

  • How can I use iteration to lead targets?

    - by e100
    In my 2D game, I have stationary AI turrets firing constant speed bullets at moving targets. So far I have used a quadratic solver technique to calculate where the turret should aim in advance of the target, which works well (see Algorithm to shoot at a target in a 3d game, Predicting enemy position in order to have an object lead its target). But it occurs to me that an iterative technique might be more realistic (e.g. it should fire even when there is no exact solution), efficient and tunable - for example one could change the number of iterations to improve accuracy. I thought I could calculate the current range and thus an initial (inaccurate) bullet flight time to target, then work out where the target would actually be by that time, then recalculate a more accurate range, then recalculate flight time, etc etc. I think I am missing something obvious to do with the time term, but my aimpoint calculation does not currently converge after the significant initial correction in the first iteration: import math def aimpoint(iters, target_x, target_y, target_vel_x, target_vel_y, bullet_speed): aimpoint_x = target_x aimpoint_y = target_y range = math.sqrt(aimpoint_x**2 + aimpoint_y**2) time_to_target = range / bullet_speed time_delta = time_to_target n = 0 while n <= iters: print "iteration:", n, "target:", "(", aimpoint_x, aimpoint_y, ")", "time_delta:", time_delta aimpoint_x += target_vel_x * time_delta aimpoint_y += target_vel_y * time_delta range = math.sqrt(aimpoint_x**2 + aimpoint_y**2) new_time_to_target = range / bullet_speed time_delta = new_time_to_target - time_to_target n += 1 aimpoint(iters=5, target_x=0, target_y=100, target_vel_x=1, target_vel_y=0, bullet_speed=100)

    Read the article

  • Largest sphere inside a frustum

    - by Will
    How do you find the largest sphere that you can draw in perspective? Viewed from the top, it'd be this: Added: on the frustum on the right, I've marked four points I think we know something about. We can unproject all eight corners of the frusum, and the centres of the near and far ends. So we know point 1, 3 and 4. We also know that point 2 is the same distance from 3 as 4 is from 3. So then we can compute the nearest point on the line 1 to 4 to point 2 in order to get the centre? But the actual math and code escapes me. I want to draw models (which are approximately spherical and which I have a miniball bounding sphere for) as large as possible. Update: I've tried to implement the incircle-on-two-planes approach as suggested by bobobobo and Nathan Reed : function getFrustumsInsphere(viewport,invMvpMatrix) { var midX = viewport[0]+viewport[2]/2, midY = viewport[1]+viewport[3]/2, centre = unproject(midX,midY,null,null,viewport,invMvpMatrix), incircle = function(a,b) { var c = ray_ray_closest_point_3(a,b); a = a[1]; // far clip plane b = b[1]; // far clip plane c = c[1]; // camera var A = vec3_length(vec3_sub(b,c)), B = vec3_length(vec3_sub(a,c)), C = vec3_length(vec3_sub(a,b)), P = 1/(A+B+C), x = ((A*a[0])+(B*a[1])+(C*a[2]))*P, y = ((A*b[0])+(B*b[1])+(C*b[2]))*P, z = ((A*c[0])+(B*c[1])+(C*c[2]))*P; c = [x,y,z]; // now the centre of the incircle c.push(vec3_length(vec3_sub(centre[1],c))); // add its radius return c; }, left = unproject(viewport[0],midY,null,null,viewport,invMvpMatrix), right = unproject(viewport[2],midY,null,null,viewport,invMvpMatrix), horiz = incircle(left,right), top = unproject(midX,viewport[1],null,null,viewport,invMvpMatrix), bottom = unproject(midX,viewport[3],null,null,viewport,invMvpMatrix), vert = incircle(top,bottom); return horiz[3]<vert[3]? horiz: vert; } I admit I'm winging it; I'm trying to adapt 2D code by extending it into 3 dimensions. It doesn't compute the insphere correctly; the centre-point of the sphere seems to be on the line between the camera and the top-left each time, and its too big (or too close). Is there any obvious mistakes in my code? Does the approach, if fixed, work?

    Read the article

  • Any reliable polygon normal calculation code?

    - by Jenko
    I'm currently calculating the normal vector of a polygon using this code, but for some faces here and there it calculates a wrong normal. I don't really know what's going on or where it fails but its not reliable. Do you have any polygon normal calculation that's tested and found to be reliable? // calculate normal of a polygon using all points var n:int = points.length; var x:Number = 0; var y:Number = 0; var z:Number = 0 // ensure all points above 0 var minx:Number = 0, miny:Number = 0, minz:Number = 0; for (var p:int = 0, pl:int = points.length; p < pl; p++) { var po:_Point3D = points[p] = points[p].clone(); if (po.x < minx) { minx = po.x; } if (po.y < miny) { miny = po.y; } if (po.z < minz) { minz = po.z; } } for (p = 0; p < pl; p++) { po = points[p]; po.x -= minx; po.y -= miny; po.z -= minz; } var cur:int = 1, prev:int = 0, next:int = 2; for (var i:int = 1; i <= n; i++) { // using Newell method x += points[cur].y * (points[next].z - points[prev].z); y += points[cur].z * (points[next].x - points[prev].x); z += points[cur].x * (points[next].y - points[prev].y); cur = (cur+1) % n; next = (next+1) % n; prev = (prev+1) % n; } // length of the normal var length:Number = Math.sqrt(x * x + y * y + z * z); // turn large values into a unit vector if (length != 0){ x = x / length; y = y / length; z = z / length; }else { throw new Error("Cannot calculate normal since triangle has an area of 0"); }

    Read the article

  • Realistic planetary terrain generation with weights

    - by Programmdude
    I need terrain generation for a planet. The planet will be divided up into several hundred hexes, and I need it to be realistic and based on weights. I have dabbled in terrain generation before, but nothing like this. So I figure it would be a good idea to ask the community for answers, recommended articles or the like. By realistic, I mean not just random hexes, but continent shaped things with a few islands. More desert around the equator and more ice around the poles. I also have two weights I need to base it around: ice percentage and water percentage. That means that around XX% of the planet will need to be water. Does anyone have any advice or places to start? Generating arbitrary terrain is easy, but something a bit more "organic" like this seems rather difficult. It also needs to be seamless. Should be obvious since it's a planet, but no harm in pointing it out.

    Read the article

  • Why am I not getting an sRGB default framebuffer?

    - by Aaron Rotenberg
    I'm trying to make my OpenGL Haskell program gamma correct by making appropriate use of sRGB framebuffers and textures, but I'm running into issues making the default framebuffer sRGB. Consider the following Haskell program, compiled for 32-bit Windows using GHC and linked against 32-bit freeglut: import Foreign.Marshal.Alloc(alloca) import Foreign.Ptr(Ptr) import Foreign.Storable(Storable, peek) import Graphics.Rendering.OpenGL.Raw import qualified Graphics.UI.GLUT as GLUT import Graphics.UI.GLUT(($=)) main :: IO () main = do (_progName, _args) <- GLUT.getArgsAndInitialize GLUT.initialDisplayMode $= [GLUT.SRGBMode] _window <- GLUT.createWindow "sRGB Test" -- To prove that I actually have freeglut working correctly. -- This will fail at runtime under classic GLUT. GLUT.closeCallback $= Just (return ()) glEnable gl_FRAMEBUFFER_SRGB colorEncoding <- allocaOut $ glGetFramebufferAttachmentParameteriv gl_FRAMEBUFFER gl_FRONT_LEFT gl_FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING print colorEncoding allocaOut :: Storable a => (Ptr a -> IO b) -> IO a allocaOut f = alloca $ \ptr -> do f ptr peek ptr On my desktop (Windows 8 64-bit with a GeForce GTX 760 graphics card) this program outputs 9729, a.k.a. gl_LINEAR, indicating that the default framebuffer is using linear color space, even though I explicitly requested an sRGB window. This is reflected in the rendering results of the actual program I'm trying to write - everything looks washed out because my linear color values aren't being converted to sRGB before being written to the framebuffer. On the other hand, on my laptop (Windows 7 64-bit with an Intel graphics chip), the program prints 0 (huh?) and I get an sRGB default framebuffer by default whether I request one or not! And on both machines, if I manually create a non-default framebuffer bound to an sRGB texture, the program correctly prints 35904, a.k.a. gl_SRGB. Why am I getting different results on different hardware? Am I doing something wrong? How can I get an sRGB framebuffer consistently on all hardware and target OSes?

    Read the article

  • How does flash store (represent) movieclips and sprites?

    - by humbleBee
    When we draw any object in flash and convert it into a movieclip or a sprite, how is it stored or represented in flash. I know in vector art it is stored or represented as line segments using formulae. Is there any way to get the vertices of the shape that was drawn? For example, lets say a simple rectangle is drawn and is converted to a movieclip. Is there anyway to obtain the vertices and the line segments from the sprite? So that its shape is obtained. Enough information should be obtained so that the shape can be replicated. That's the key - replication. In simple terms, where does flash store information about a shape that has been drawn so that we can obtain it and attempt to replicate the shape ourselves?

    Read the article

  • Making an interactive 2D map

    - by Chad
    So recently I have been working on a Legend of Zelda: A Link to the Past clone, and I am wondering how I could handle certain map interactions (like cutting grass, lifting rocks, etc). The way I am currently doing the tilemap is with 2 PNGs. The first is the "tilemap" where each pixel represents a 16x16 tile and the (red, green) values are the (x, y) coords for the tile in the second PNG (the "tileset"). I am then using the blue channel to store collision data. Each tile is split into 4 8x8 tiles and represented by a 2 bit value (0 = empty, 1 = Jumpdown point, 2 = unused right now, 3 = blocking). 4 of these 2 bit values make up the full blue channel (1 byte). So collisions work great, and I am moving on to putting interactive units on the level; but I am not sure what a good way is to do it. I have experimented with spawning an entity for each grass and rock, but there are just WAY to many; FPS just dies even if I confine it to the current "zone" the user is in (for those who remember LTTP it had zones you moved between). It does make a difference that this is a browser-based JavaScript game. tl;dr: What is a good way to have an interactive map without using full blown entities for each interactive item?

    Read the article

  • How to stop camera from rotating in 2.5d platformer

    - by Artem Suchkov
    I'm stuck with a problem: I can not make my camera stop rotating after character. What I already have tried: using empty game object with rigid body and locked rotation and make it parent of camera, while player being the parent of object. Also, I've tried using few scripts from web, that did not help. Right now I'm bad with using JS in Unity (can handle JS on website, but I dont know how to integrate it for now) and practicing the basics, making easy 2.5d platformer with basic features, so I can not write code for now.

    Read the article

  • Eculidean space and vector magnitude

    - by Starkers
    Below we have distances from the origin calculated in two different ways, giving the Euclidean distance, the Manhattan distance and the Chebyshev distance. Euclidean distance is what we use to calculate the magnitude of vectors in 2D/3D games, and that makes sense to me: Let's say we have a vector that gives us the range a spaceship with limited fuel can travel. If we calculated this with Manhattan metric, our ship could travel a distance of X if it were travelling horizontally or vertically, however the second it attempted to travel diagonally it could only tavel X/2! So like I say, Euclidean distance does make sense. However, I still don't quite get how we calculate 'real' distances from the vector's magnitude. Here are two points, purple at (2,2) and green at (3,3). We can take two points away from each other to derive a vector. Let's create a vector to describe the magnitude and direction of purple from green: |d| = purple - green |d| = (purple.x, purple.y) - (green.x, green.y) |d| = (2, 2) - (3, 3) |d| = <-1,-1> Let's derive the magnitude of the vector via Pythagoras to get a Euclidean measurement: euc_magnitude = sqrt((x*x)+(y*y)) euc_magnitude = sqrt((-1*-1)+(-1*-1)) euc_magnitude = sqrt((1)+(1)) euc_magnitude = sqrt(2) euc_magnitude = 1.41 Now, if the answer had been 1, that would make sense to me, because 1 unit (in the direction described by the vector) from the green is bang on the purple. But it's not. It's 1.41. 1.41 units is the direction described, to me at least, makes us overshoot the purple by almost half a unit: So what do we do to the magnitude to allow us to calculate real distances on our point graph? Worth noting I'm a beginner just working my way through theory. Haven't programmed a game in my life!

    Read the article

  • Examples of 2D side-scrollers that achieve open non-linear feel?

    - by Milosz Falinski
    I'm working on a 2.5D platformer prototype that aims for an open feel while maintaining familiar core mechanics. Now, there's some obvious challenges with creating a non constricted feel in a spatially constricted environment. What I'm interested in, is examples of how game designers deal with the "here's a level, beat the bad guys/puzzles to get to the next level" design that seems so natural to most platformers (eg. Mario/Braid/Pid/Meat Boy to name a few). Some ideas for achieving openness I've come across include: One obvious successful example is Terraria, which achieves openness simply through complexity and flexibility of the game-system Another example that comes to mind is Cave Story. Game is non-linear, offers multiple choices and side-stories Mario, Rayman and some other 'classics' with a top-down level selection. I actually really dislike this as it never did anything for me emotionally and just seems like a bit of a lazy way to do things. Note: I've not actually had much experience with most of the 'classical' console platformers, apart from the obvious Marios/Zeldas/Metroids, since I've grown up on adventure games. By that I mean, it's entirely possible that I simply missed some games that solve the problem really well and are by some considered obvious 'classics'.

    Read the article

  • IrrKlang with Ogre

    - by Vinnie
    I'm trying to set up sound in my Ogre3D project. I have installed irrKlang 1.4.0 and added it's include and lib directories to my projects VC++ Include and Library directories, but I'm still getting a Linker error when I attempt to build. Any suggestions? (Error 4007 error LNK2019: unresolved external symbol "__declspec(dllimport) class irrklang::ISoundEngine * __cdecl irrklang::createIrrKlangDevice(enum irrklang::E_SOUND_OUTPUT_DRIVER,int,char const *,char const *)" (_imp?createIrrKlangDevice@irrklang@@YAPAVISoundEngine@1@W4E_SOUND_OUTPUT_DRIVER@1@HPBD1@Z) referenced in function "public: __thiscall SoundManager::SoundManager(void)" (??0SoundManager@@QAE@XZ)

    Read the article

  • Why do meshes show up as bones in the Model class?

    - by Itamar Marom
    Right now I'm working on a 3D game and I've come across something very weird. When I created the model in Blender, I added an armature named "MyBone" to the stage and attached a cube ("MyCube") to it, so that when I move the armature, the cube moves with it. I exported this as an FBX and loaded it as a Model object. What I expected to see was: But what I got was this: I'm really confused. Why is the mesh I created showing up in the bone list? And what's Root Node? Here are the .blend and .fbx files: here or here. Thanks.

    Read the article

  • How to use the zoom gesture in libgdx?

    - by user3452725
    I found the example code for the GestureListener class, but I don't understand the zoom method: private float initialScale = 1; public boolean zoom (float originalDistance, float currentDistance) { float ratio = originalDistance / currentDistance; //I get this camera.zoom = initialScale * ratio; //This doesn't make sense to me because it seems like every time you pinch to zoom, it resets to the original zoom which is 1. So basically it wouldn't 'save' the zoom right? System.out.println(camera.zoom); //Prints the camera zoom return false; } Am I not interpreting this right?

    Read the article

  • Render To Texture Using OpenGL is not working but normal rendering works just fine

    - by Franky Rivera
    things I initialize at the beginning of the program I realize not all of these pertain to my issue I just copy and pasted what I had //overall initialized //things openGL related I initialize earlier on in the project glClearColor( 0.0f, 0.0f, 0.0f, 1.0f ); glClearDepth( 1.0f ); glEnable(GL_ALPHA_TEST); glEnable( GL_STENCIL_TEST ); glEnable(GL_DEPTH_TEST); glDepthFunc( GL_LEQUAL ); glEnable(GL_CULL_FACE); glFrontFace( GL_CCW ); glEnable(GL_COLOR_MATERIAL); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glHint( GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST ); //we also initialize our shader programs //(i added some shader program functions for definitions) //this enum list is else where in code //i figured it would help show you guys more about my //shader compile creation function right under this enum list VVVVVV /*enum eSHADER_ATTRIB_LOCATION { VERTEX_ATTRIB = 0, NORMAL_ATTRIB = 2, COLOR_ATTRIB, COLOR2_ATTRIB, FOG_COORD, TEXTURE_COORD_ATTRIB0 = 8, TEXTURE_COORD_ATTRIB1, TEXTURE_COORD_ATTRIB2, TEXTURE_COORD_ATTRIB3, TEXTURE_COORD_ATTRIB4, TEXTURE_COORD_ATTRIB5, TEXTURE_COORD_ATTRIB6, TEXTURE_COORD_ATTRIB7 }; */ //if we fail making our shader leave if( !testShader.CreateShader( "SimpleShader.vp", "SimpleShader.fp", 3, VERTEX_ATTRIB, "vVertexPos", NORMAL_ATTRIB, "vNormal", TEXTURE_COORD_ATTRIB0, "vTexCoord" ) ) return false; if( !testScreenShader.CreateShader( "ScreenShader.vp", "ScreenShader.fp", 3, VERTEX_ATTRIB, "vVertexPos", NORMAL_ATTRIB, "vNormal", TEXTURE_COORD_ATTRIB0, "vTexCoord" ) ) return false; SHADER PROGRAM FUNCTIONS bool CShaderProgram::CreateShader( const char* szVertexShaderName, const char* szFragmentShaderName, ... ) { //here are our handles for the openGL shaders int iGLVertexShaderHandle = -1, iGLFragmentShaderHandle = -1; //get our shader data char *vData = 0, *fData = 0; int vLength = 0, fLength = 0; LoadShaderFile( szVertexShaderName, &vData, &vLength ); LoadShaderFile( szFragmentShaderName, &fData, &fLength ); //data if( !vData ) return false; //data if( !fData ) { delete[] vData; return false; } //create both our shader objects iGLVertexShaderHandle = glCreateShader( GL_VERTEX_SHADER ); iGLFragmentShaderHandle = glCreateShader( GL_FRAGMENT_SHADER ); //well we got this far so we have dynamic data to clean up //load vertex shader glShaderSource( iGLVertexShaderHandle, 1, (const char**)(&vData), &vLength ); //load fragment shader glShaderSource( iGLFragmentShaderHandle, 1, (const char**)(&fData), &fLength ); //we are done with our data delete it delete[] vData; delete[] fData; //compile them both glCompileShader( iGLVertexShaderHandle ); //get shader status int iShaderOk; glGetShaderiv( iGLVertexShaderHandle, GL_COMPILE_STATUS, &iShaderOk ); if( iShaderOk == GL_FALSE ) { char* buffer; //get what happend with our shader glGetShaderiv( iGLVertexShaderHandle, GL_INFO_LOG_LENGTH, &iShaderOk ); buffer = new char[iShaderOk]; glGetShaderInfoLog( iGLVertexShaderHandle, iShaderOk, NULL, buffer ); //sprintf_s( buffer, "Failure Our Object For %s was not created", szFileName ); MessageBoxA( NULL, buffer, szVertexShaderName, MB_OK ); //delete our dynamic data free( buffer ); glDeleteShader(iGLVertexShaderHandle); return false; } glCompileShader( iGLFragmentShaderHandle ); //get shader status glGetShaderiv( iGLFragmentShaderHandle, GL_COMPILE_STATUS, &iShaderOk ); if( iShaderOk == GL_FALSE ) { char* buffer; //get what happend with our shader glGetShaderiv( iGLFragmentShaderHandle, GL_INFO_LOG_LENGTH, &iShaderOk ); buffer = new char[iShaderOk]; glGetShaderInfoLog( iGLFragmentShaderHandle, iShaderOk, NULL, buffer ); //sprintf_s( buffer, "Failure Our Object For %s was not created", szFileName ); MessageBoxA( NULL, buffer, szFragmentShaderName, MB_OK ); //delete our dynamic data free( buffer ); glDeleteShader(iGLFragmentShaderHandle); return false; } //lets check to see if the fragment shader compiled int iCompiled = 0; glGetShaderiv( iGLVertexShaderHandle, GL_COMPILE_STATUS, &iCompiled ); if( !iCompiled ) { //this shader did not compile leave return false; } //lets check to see if the fragment shader compiled glGetShaderiv( iGLFragmentShaderHandle, GL_COMPILE_STATUS, &iCompiled ); if( !iCompiled ) { char* buffer; //get what happend with our shader glGetShaderiv( iGLFragmentShaderHandle, GL_INFO_LOG_LENGTH, &iShaderOk ); buffer = new char[iShaderOk]; glGetShaderInfoLog( iGLFragmentShaderHandle, iShaderOk, NULL, buffer ); //sprintf_s( buffer, "Failure Our Object For %s was not created", szFileName ); MessageBoxA( NULL, buffer, szFragmentShaderName, MB_OK ); //delete our dynamic data free( buffer ); glDeleteShader(iGLFragmentShaderHandle); return false; } //make our new shader program m_iShaderProgramHandle = glCreateProgram(); glAttachShader( m_iShaderProgramHandle, iGLVertexShaderHandle ); glAttachShader( m_iShaderProgramHandle, iGLFragmentShaderHandle ); glLinkProgram( m_iShaderProgramHandle ); int iLinked = 0; glGetProgramiv( m_iShaderProgramHandle, GL_LINK_STATUS, &iLinked ); if( !iLinked ) { //we didn't link return false; } //NOW LETS CREATE ALL OUR HANDLES TO OUR PROPER LIKING //start from this parameter va_list parseList; va_start( parseList, szFragmentShaderName ); //read in number of variables if any unsigned uiNum = 0; uiNum = va_arg( parseList, unsigned ); //for loop through our attribute pairs int enumType = 0; for( unsigned x = 0; x < uiNum; ++x ) { //specify our attribute locations enumType = va_arg( parseList, int ); char* name = va_arg( parseList, char* ); glBindAttribLocation( m_iShaderProgramHandle, enumType, name ); } //end our list parsing va_end( parseList ); //relink specify //we have custom specified our attribute locations glLinkProgram( m_iShaderProgramHandle ); //fill our handles InitializeHandles( ); //everything went great return true; } void CShaderProgram::InitializeHandles( void ) { m_uihMVP = glGetUniformLocation( m_iShaderProgramHandle, "mMVP" ); m_uihWorld = glGetUniformLocation( m_iShaderProgramHandle, "mWorld" ); m_uihView = glGetUniformLocation( m_iShaderProgramHandle, "mView" ); m_uihProjection = glGetUniformLocation( m_iShaderProgramHandle, "mProjection" ); ///////////////////////////////////////////////////////////////////////////////// //texture handles m_uihDiffuseMap = glGetUniformLocation( m_iShaderProgramHandle, "diffuseMap" ); if( m_uihDiffuseMap != -1 ) { //store what texture index this handle will be in the shader glUniform1i( m_uihDiffuseMap, RM_DIFFUSE+GL_TEXTURE0 ); (0)+ } m_uihNormalMap = glGetUniformLocation( m_iShaderProgramHandle, "normalMap" ); if( m_uihNormalMap != -1 ) { //store what texture index this handle will be in the shader glUniform1i( m_uihNormalMap, RM_NORMAL+GL_TEXTURE0 ); (1)+ } } void CShaderProgram::SetDiffuseMap( const unsigned& uihDiffuseMap ) { (0)+ glActiveTexture( RM_DIFFUSE+GL_TEXTURE0 ); glBindTexture( GL_TEXTURE_2D, uihDiffuseMap ); } void CShaderProgram::SetNormalMap( const unsigned& uihNormalMap ) { (1)+ glActiveTexture( RM_NORMAL+GL_TEXTURE0 ); glBindTexture( GL_TEXTURE_2D, uihNormalMap ); } //MY 2 TEST SHADERS also my math order is correct it pertains to my matrix ordering in my math library once again i've tested the basic rendering. rendering to the screen works fine ----------------------------------------SIMPLE SHADER------------------------------------- //vertex shader looks like this #version 330 in vec3 vVertexPos; in vec3 vNormal; in vec2 vTexCoord; uniform mat4 mWorld; // Model Matrix uniform mat4 mView; // Camera View Matrix uniform mat4 mProjection;// Camera Projection Matrix out vec2 vTexCoordVary; // Texture coord to the fragment program out vec3 vNormalColor; void main( void ) { //pass the texture coordinate vTexCoordVary = vTexCoord; vNormalColor = vNormal; //calculate our model view projection matrix mat4 mMVP = (( mWorld * mView ) * mProjection ); //result our position gl_Position = vec4( vVertexPos, 1 ) * mMVP; } //fragment shader looks like this #version 330 in vec2 vTexCoordVary; in vec3 vNormalColor; uniform sampler2D diffuseMap; uniform sampler2D normalMap; out vec4 fragColor[2]; void main( void ) { //CORRECT fragColor[0] = texture( normalMap, vTexCoordVary ); fragColor[1] = vec4( vNormalColor, 1.0 ); }; ----------------------------------------SCREEN SHADER------------------------------------- //vertext shader looks like this #version 330 in vec3 vVertexPos; // This is the position of the vertex coming in in vec2 vTexCoord; // This is the texture coordinate.... out vec2 vTexCoordVary; // Texture coord to the fragment program void main( void ) { vTexCoordVary = vTexCoord; //set our position gl_Position = vec4( vVertexPos.xyz, 1.0f ); } //fragment shader looks like this #version 330 in vec2 vTexCoordVary; // Incoming "varying" texture coordinate uniform sampler2D diffuseMap;//the tile detail texture uniform sampler2D normalMap; //the normal map from earlier out vec4 vTheColorOfThePixel; void main( void ) { //CORRECT vTheColorOfThePixel = texture( normalMap, vTexCoordVary ); }; .Class RenderTarget Main Functions //here is my render targets create function bool CRenderTarget::Create( const unsigned uiNumTextures, unsigned uiWidth, unsigned uiHeight, int iInternalFormat, bool bDepthWanted ) { if( uiNumTextures <= 0 ) return false; //generate our variables glGenFramebuffers(1, &m_uifboHandle); // Initialize FBO glBindFramebuffer(GL_FRAMEBUFFER, m_uifboHandle); m_uiNumTextures = uiNumTextures; if( bDepthWanted ) m_uiNumTextures += 1; m_uiTextureHandle = new unsigned int[uiNumTextures]; glGenTextures( uiNumTextures, m_uiTextureHandle ); for( unsigned x = 0; x < uiNumTextures-1; ++x ) { glBindTexture( GL_TEXTURE_2D, m_uiTextureHandle[x]); // Reserve space for our 2D render target glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexImage2D(GL_TEXTURE_2D, 0, iInternalFormat, uiWidth, uiHeight, 0, GL_RGB, GL_UNSIGNED_BYTE, NULL); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + x, GL_TEXTURE_2D, m_uiTextureHandle[x], 0); } //if we need one for depth testing if( bDepthWanted ) { glFramebufferTexture2D(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, m_uiTextureHandle[uiNumTextures-1], 0); glFramebufferTexture2D(GL_FRAMEBUFFER_EXT, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D, m_uiTextureHandle[uiNumTextures-1], 0);*/ // Must attach texture to framebuffer. Has Stencil and depth glBindRenderbuffer(GL_RENDERBUFFER, m_uiTextureHandle[uiNumTextures-1]); glRenderbufferStorage(GL_RENDERBUFFER, /*GL_DEPTH_STENCIL*/GL_DEPTH24_STENCIL8, TEXTURE_WIDTH, TEXTURE_HEIGHT ); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, m_uiTextureHandle[uiNumTextures-1]); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_RENDERBUFFER, m_uiTextureHandle[uiNumTextures-1]); } glBindFramebuffer(GL_FRAMEBUFFER, 0); //everything went fine return true; } void CRenderTarget::Bind( const int& iTargetAttachmentLoc, const unsigned& uiWhichTexture, const bool bBindFrameBuffer ) { if( bBindFrameBuffer ) glBindFramebuffer( GL_FRAMEBUFFER, m_uifboHandle ); if( uiWhichTexture < m_uiNumTextures ) glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + iTargetAttachmentLoc, m_uiTextureHandle[uiWhichTexture], 0); } void CRenderTarget::UnBind( void ) { //default our binding glBindFramebuffer( GL_FRAMEBUFFER, 0 ); } //this is all in a test project so here's my straight forward rendering function for testing this render function does basic rendering steps keep in mind i have already tested my textures i have already tested my box thats being rendered all basic rendering works fine its just when i try to render to a texture then display it in a render surface that it does not work. Also I have tested my render surface it is bound exactly to the screen coordinate space void TestRenderSteps( void ) { //Clear the color and the depth glClearColor( 0.0f, 0.0f, 0.0f, 1.0f ); glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT ); //bind the shader program glUseProgram( testShader.m_iShaderProgramHandle ); //1) grab the vertex buffer related to our rendering glBindBuffer( GL_ARRAY_BUFFER, CVertexBufferManager::GetInstance()->GetPositionNormalTexBuffer().GetBufferHandle() ); //2) how our stream will be split here ( 4 bytes position, ..ext ) CVertexBufferManager::GetInstance()->GetPositionNormalTexBuffer().MapVertexStride(); //3) set the index buffer if needed glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, CIndexBuffer::GetInstance()->GetBufferHandle() ); //send the needed information into the shader testShader.SetWorldMatrix( boxPosition ); testShader.SetViewMatrix( Static_Camera.GetView( ) ); testShader.SetProjectionMatrix( Static_Camera.GetProjection( ) ); testShader.SetDiffuseMap( iTextureID ); testShader.SetNormalMap( iTextureID2 ); GLenum buffers[] = { GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1 }; glDrawBuffers(2, buffers); //bind to our render target //RM_DIFFUSE, RM_NORMAL are enums (0 && 1) renderTarget.Bind( RM_DIFFUSE, 1, true ); renderTarget.Bind( RM_NORMAL, 1, false); //false because buffer is already bound //i clear here just to clear the texture to make it a default value of white //by doing this i can see if what im rendering to my screen is just drawing to the screen //or if its my render target defaulted glClearColor( 1.0f, 1.0f, 1.0f, 1.0f ); glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT ); //i have this box object which i draw testBox.Draw(); //the draw call looks like this //my normal rendering works just fine so i know this draw is fine // glDrawElementsBaseVertex( m_sides[x].GetPrimitiveType(), // m_sides[x].GetPrimitiveCount() * 3, // GL_UNSIGNED_INT, // BUFFER_OFFSET(sizeof(unsigned int) * m_sides[x].GetStartIndex()), // m_sides[x].GetStartVertex( ) ); //we unbind the target back to default renderTarget.UnBind(); //i stop mapping my vertex format CVertexBufferManager::GetInstance()->GetPositionNormalTexBuffer().UnMapVertexStride(); //i go back to default in using no shader program glUseProgram( 0 ); //now that everything is drawn to the textures //lets draw our screen surface and pass it our 2 filled out textures //NOW RENDER THE TEXTURES WE COLLECTED TO THE SCREEN QUAD //bind the shader program glUseProgram( testScreenShader.m_iShaderProgramHandle ); //1) grab the vertex buffer related to our rendering glBindBuffer( GL_ARRAY_BUFFER, CVertexBufferManager::GetInstance()->GetPositionTexBuffer().GetBufferHandle() ); //2) how our stream will be split here CVertexBufferManager::GetInstance()->GetPositionTexBuffer().MapVertexStride(); //3) set the index buffer if needed glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, CIndexBuffer::GetInstance()->GetBufferHandle() ); //pass our 2 filled out textures (in the shader im just using the diffuse //i wanted to see if i was rendering anything before i started getting into other techniques testScreenShader.SetDiffuseMap( renderTarget.GetTextureHandle(0) ); //SetDiffuseMap definitions in shader program class testScreenShader.SetNormalMap( renderTarget.GetTextureHandle(1) ); //SetNormalMap definitions in shader program class //DO the draw call drawing our screen rectangle glDrawElementsBaseVertex( m_ScreenRect.GetPrimitiveType(), m_ScreenRect.GetPrimitiveCount() * 3, GL_UNSIGNED_INT, BUFFER_OFFSET(sizeof(unsigned int) * m_ScreenRect.GetStartIndex()), m_ScreenRect.GetStartVertex( ) );*/ //unbind our vertex mapping CVertexBufferManager::GetInstance()->GetPositionTexBuffer().UnMapVertexStride(); //default to no shader program glUseProgram( 0 ); } Last words: 1) I can render my box just fine 2) i can render my screen rect just fine 3) I cannot render my box into a texture then display it into my screen rect 4) This entire project is just a test project I made to test different rendering practices. So excuse any "ugly-ish" unclean code. This was made just on a fly run through when I was trying new test cases.

    Read the article

  • How to handle wildly varying rendering hardware / getting baseline

    - by edA-qa mort-ora-y
    I've recently started with mobile programming (cross-platform, also with desktop) and am encountering wildly differing hardware performance, in particular with OpenGL and the GPU. I know I'll basically have to adjust my rendering code but I'm uncertain of how to detect performance and what reasonable default settings are. I notice that certain shader functions are basically free in a desktop implemenation but can be unusable in a mobile device. The problem is I have no way of knowing what features will cause what performance issues on all the devices. So my first issue is that even if I allow configuring options I'm uncertain of which options I have to make configurable. I'm wondering also wheher one just writes one very configurable pipeline, or whether I should have 2 distinct options (high/low). I'm also unsure of where to set the default. If I set to the poorest performer the graphics will be so minimal that any user with a modern device would dismiss the game. If I set them even at some moderate point, the low end devices will basically become a slide-show. I was thinking perhaps that I just run some benchmarks when the user first installs and randomly guess what works, but I've not see a game do this before.

    Read the article

< Previous Page | 403 404 405 406 407 408 409 410 411 412 413 414  | Next Page >