Search Results

Search found 28230 results on 1130 pages for 'embedded development'.

Page 444/1130 | < Previous Page | 440 441 442 443 444 445 446 447 448 449 450 451  | Next Page >

  • Data Structures for Logic Games / Deduction Rules / Sufficient Set of Clues?

    - by taserian
    I've been cogitating about developing a logic game similar to Einstein's Puzzle , which would have different sets of clues for every new game replay. What data structures would you use to handle the different entities (pets, colors of houses, nationalities, etc.), deduction rules, etc. to guarantee that the clues you provide point to a unique solution? I'm having a hard time thinking about how to get the deduction rules to play along with the possible clues; any insight would be appreciated.

    Read the article

  • XNA RTS A* pathfinding issues

    - by Slayter
    I'm starting to develop an RTS game using the XNA framework in C# and am still in the very early prototyping stage. I'm working on the basics. I've got unit selection down and am currently working on moving multiple units. I've implemented an A* pathfinding algorithm which works fine for moving a single unit. However when moving multiple units they stack on top of each other. I tried fixing this with a variation of the boids flocking algorithm but this has caused units to sometimes freeze and get stuck trying to move but going no where. Ill post the related methods for moving the units below but ill only post a link to the pathfinding class because its really long and i don't want to clutter up the page. These parts of the code are in the update method for the main controlling class: if (selectedUnits.Count > 0) { int indexOfLeader = 0; for (int i = 0; i < selectedUnits.Count; i++) { if (i == 0) { indexOfLeader = 0; } else { if (Vector2.Distance(selectedUnits[i].position, destination) < Vector2.Distance(selectedUnits[indexOfLeader].position, destination)) indexOfLeader = i; } selectedUnits[i].leader = false; } selectedUnits[indexOfLeader].leader = true; foreach (Unit unit in selectedUnits) unit.FindPath(destination); } foreach (Unit unit in units) { unit.Update(gameTime, selectedUnits); } These three methods control movement in the Unit class: public void FindPath(Vector2 destination) { if (path != null) path.Clear(); Point startPoint = new Point((int)position.X / 32, (int)position.Y / 32); Point endPoint = new Point((int)destination.X / 32, (int)destination.Y / 32); path = pathfinder.FindPath(startPoint, endPoint); pointCounter = 0; if (path != null) nextPoint = path[pointCounter]; dX = 0.0f; dY = 0.0f; stop = false; } private void Move(List<Unit> units) { if (nextPoint == position && !stop) { pointCounter++; if (pointCounter <= path.Count - 1) { nextPoint = path[pointCounter]; if (nextPoint == position) stop = true; } else if (pointCounter >= path.Count) { path.Clear(); pointCounter = 0; stop = true; } } else { if (!stop) { map.occupiedPoints.Remove(this); Flock(units); // Move in X ********* TOOK OUT SPEED ********** if ((int)nextPoint.X > (int)position.X) { position.X += dX; } else if ((int)nextPoint.X < (int)position.X) { position.X -= dX; } // Move in Y if ((int)nextPoint.Y > (int)position.Y) { position.Y += dY; } else if ((int)nextPoint.Y < (int)position.Y) { position.Y -= dY; } if (position == nextPoint && pointCounter >= path.Count - 1) stop = true; map.occupiedPoints.Add(this, position); } if (stop) { path.Clear(); pointCounter = 0; } } } private void Flock(List<Unit> units) { float distanceToNextPoint = Vector2.Distance(position, nextPoint); foreach (Unit unit in units) { float distance = Vector2.Distance(position, unit.position); if (unit != this) { if (distance < space && !leader && (nextPoint != position)) { // create space dX += (position.X - unit.position.X) * 0.1f; dY += (position.Y - unit.position.Y) * 0.1f; if (dX > .05f) nextPoint.X = nextPoint.X - dX; else if (dX < -.05f) nextPoint.X = nextPoint.X + dX; if (dY > .05f) nextPoint.Y = nextPoint.Y - dY; else if (dY < -.05f) nextPoint.Y = nextPoint.Y + dY; if ((dX < .05f && dX > -.05f) && (dY < .05f && dY > -.05f)) stop = true; path[pointCounter] = nextPoint; Console.WriteLine("Make Space: " + dX + ", " + dY); } else if (nextPoint != position && !stop) { dX = speed; dY = speed; Console.WriteLine(dX + ", " + dY); } } } } And here's the link to the pathfinder: https://docs.google.com/open?id=0B_Cqt6txUDkddU40QXBMeTR1djA I hope this post wasn't too long. Also please excuse the messiness of the code. As I said before this is early prototyping. Any help would be appreciated. Thanks!

    Read the article

  • Bullet Physic: Transform body after adding

    - by Mathias Hölzl
    I would like to transform a rigidbody after adding it to the btDiscreteDynamicsWorld. When I use the CF_KINEMATIC_OBJECT flag I am able to transform it but it's static (no collision response/gravity). When I don't use the CF_KINEMATIC_OBJECT flag the transform doesn't gets applied. So how to I transform non-static objects in bullet? DemoCode: btBoxShape* colShape = new btBoxShape(btVector3(SCALING*1,SCALING*1,SCALING*1)); /// Create Dynamic Objects btTransform startTransform; startTransform.setIdentity(); btScalar mass(1.f); //rigidbody is dynamic if and only if mass is non zero, otherwise static bool isDynamic = (mass != 0.f); btVector3 localInertia(0,0,0); if (isDynamic) colShape->calculateLocalInertia(mass,localInertia); btDefaultMotionState* myMotionState = new btDefaultMotionState(); btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,colShape,localInertia); btRigidBody* body = new btRigidBody(rbInfo); body->setCollisionFlags(body->getCollisionFlags()|btCollisionObject::CF_KINEMATIC_OBJECT); body->setActivationState(DISABLE_DEACTIVATION); m_dynamicsWorld->addRigidBody(body); startTransform.setOrigin(SCALING*btVector3( btScalar(0), btScalar(20), btScalar(0) )); body->getMotionState()->setWorldTransform(startTransform);

    Read the article

  • Using orientation to calculate position on Windows Phone 7

    - by Lavinski
    I'm using the motion API and I'm trying to figure out a control scheme for the game I'm currently developing. What I'm trying to achive is for a orienation of the device to correlate directly to a position. Such that tilting the phone forward and to the left represents the top left position and back to the right would be the bottom right position. Photos to make it clearer (the red dot would be the calculated position). Forward and Left Back and Right Now for the tricky bit. I also have to make sure that the values take into account left landscape and right landscape device orientations (portrait is the default so no calculations would be needed for it). Has anyone done anything like this? Notes: I've tried using the yaw, pitch, roll and Quaternion readings. Sample: // Get device facing vector public static Vector3 GetState() { lock (lockable) { var down = Vector3.Forward; var direction = Vector3.Transform(down, state); switch (Orientation) { case Orientation.LandscapeLeft: return Vector3.TransformNormal(direction, Matrix.CreateRotationZ(-rightAngle)); case Orientation.LandscapeRight: return Vector3.TransformNormal(direction, Matrix.CreateRotationZ(rightAngle)); } return direction; } }

    Read the article

  • Scrolling background stops after awhile?

    - by Lewis
    Can anyone tell me where my maths is wrong please, it stops scrolling after awhile. if (background.position.y < background2.position.y) { background.position = ccp(background.contentSize.width / 2, background.position.y - 50 * delta); background2.position = ccp(background.contentSize.width / 2, background.position.y + background.contentSize.height); } else { background.position = ccp(background2.contentSize.width / 2, background2.position.y - 50 * delta); background.position = ccp(background2.contentSize.width / 2, background2.position.y + background.contentSize.height); } //reset if (background.position.y <-background.contentSize.height / 2) { background.position = ccp(background.contentSize.width / 2 ,background2.position.y + background2.contentSize.height); } else if (background2.position.y < -background2.contentSize.height / 2) { background2.position = ccp(background2.contentSize.width / 2, background.position.y + background.contentSize.height); }

    Read the article

  • Pathfinding in multi goal, multi agent environment

    - by Rohan Agrawal
    I have an environment in which I have multiple agents (a), multiple goals (g) and obstacles (o). . . . a o . . . . . . . o . g . . a . . . . . . . . . . o . . . . o o o o . g . . o . . . . . . . o . . . . o . . . . o o o o a What would an appropriate algorithm for pathfinding in this environment? The only thing I can think of right now, is to Run a separate version of A* for each goal separately, but i don't think that's very efficient.

    Read the article

  • How to move Objects smoothly like swimming arround

    - by philipp
    I have a Box2D project that is about to create a view where the user looks from the Sky onto Water. Or perhaps on a bathtub filled with water or something like this. The Object which holds the fluid actually does not matter, what matters is the movement of the bodies, because they should move like drops of grease on a soup, or wood on water, I can even imagine the the fluid is mercurial, extreme heavy and "lazy". How can I manipulate the bodies (every frame or time by time) to make them move like this? I started with randomly manipulation their linear velocity, but I turned out that this not very smooth and looks quite hard. Is it a better idea to check their velocity and apply impulses? Is there any example? Greetings philipp

    Read the article

  • Combine 3D objects in XNA 4

    - by Christoph
    Currently I am writing on my thesis for university, the theme I am working on is 3D Visualization of hierarchical structures using cone trees. I want to do is to draw a cone and arrange a number of spheres at the bottom of the cone. The spheres should be arranged according to the radius and the number of spheres correctly. As you can imagine I need a lot of these cone/sphere combinations. First Attempt I was able to find some tutorials that helped with drawing cones and spheres. Cone public Cone(GraphicsDevice device, float height, int tessellation, string name, List<Sphere> children) { //prepare children and calculate the children spacing and radius of the cone if (children == null || children.Count == 0) { throw new ArgumentNullException("children"); } this.Height = height; this.Name = name; this.Children = children; //create the cone if (tessellation < 3) { throw new ArgumentOutOfRangeException("tessellation"); } //Create a ring of triangels around the outside of the cones bottom for (int i = 0; i < tessellation; i++) { Vector3 normal = this.GetCircleVector(i, tessellation); // add the vertices for the top of the cone base.AddVertex(Vector3.Up * height, normal); //add the bottom circle base.AddVertex(normal * this.radius + Vector3.Down * height, normal); //Add indices base.AddIndex(i * 2); base.AddIndex(i * 2 + 1); base.AddIndex((i * 2 + 2) % (tessellation * 2)); base.AddIndex(i * 2 + 1); base.AddIndex((i * 2 + 3) % (tessellation * 2)); base.AddIndex((i * 2 + 2) % (tessellation * 2)); } //create flate triangle to seal the bottom this.CreateCap(tessellation, height, this.Radius, Vector3.Down); base.InitializePrimitive(device); } Sphere public void Initialize(GraphicsDevice device, Vector3 qi) { int verticalSegments = this.Tesselation; int horizontalSegments = this.Tesselation * 2; //single vertex on the bottom base.AddVertex((qi * this.Radius) + this.lowering, Vector3.Down); for (int i = 0; i < verticalSegments; i++) { float latitude = ((i + 1) * MathHelper.Pi / verticalSegments) - MathHelper.PiOver2; float dy = (float)Math.Sin(latitude); float dxz = (float)Math.Cos(latitude); //Create a singe ring of latitudes for (int j = 0; j < horizontalSegments; j++) { float longitude = j * MathHelper.TwoPi / horizontalSegments; float dx = (float)Math.Cos(longitude) * dxz; float dz = (float)Math.Sin(longitude) * dxz; Vector3 normal = new Vector3(dx, dy, dz); base.AddVertex(normal * this.Radius, normal); } } // Finish with a single vertex at the top of the sphere. AddVertex((qi * this.Radius) + this.lowering, Vector3.Up); // Create a fan connecting the bottom vertex to the bottom latitude ring. for (int i = 0; i < horizontalSegments; i++) { AddIndex(0); AddIndex(1 + (i + 1) % horizontalSegments); AddIndex(1 + i); } // Fill the sphere body with triangles joining each pair of latitude rings. for (int i = 0; i < verticalSegments - 2; i++) { for (int j = 0; j < horizontalSegments; j++) { int nextI = i + 1; int nextJ = (j + 1) % horizontalSegments; base.AddIndex(1 + i * horizontalSegments + j); base.AddIndex(1 + i * horizontalSegments + nextJ); base.AddIndex(1 + nextI * horizontalSegments + j); base.AddIndex(1 + i * horizontalSegments + nextJ); base.AddIndex(1 + nextI * horizontalSegments + nextJ); base.AddIndex(1 + nextI * horizontalSegments + j); } } // Create a fan connecting the top vertex to the top latitude ring. for (int i = 0; i < horizontalSegments; i++) { base.AddIndex(CurrentVertex - 1); base.AddIndex(CurrentVertex - 2 - (i + 1) % horizontalSegments); base.AddIndex(CurrentVertex - 2 - i); } base.InitializePrimitive(device); } The tricky part now is to arrange the spheres at the bottom of the cone. I tried is to draw just the cone and then draw the spheres. I need a lot of these cones, so it would be pretty hard to calculate all the positions correctly. Second Attempt So the second try was to generate a object that builds all vertices of the cone and all of the spheres at once. So I was hoping to render a cone with all its spheres arranged correctly. After a short debug I found out that the cone is created and the first sphere, when it turn of the second sphere I am running into an OutOfBoundsException of ushort.MaxValue. Cone and Spheres public ConeWithSpheres(GraphicsDevice device, float height, float coneDiameter, float sphereDiameter, int coneTessellation, int sphereTessellation, int numberOfSpheres) { if (coneTessellation < 3) { throw new ArgumentException(string.Format("{0} is to small for the tessellation of the cone. The number must be greater or equal to 3", coneTessellation)); } if (sphereTessellation < 3) { throw new ArgumentException(string.Format("{0} is to small for the tessellation of the sphere. The number must be greater or equal to 3", sphereTessellation)); } //set properties this.Height = height; this.ConeDiameter = coneDiameter; this.SphereDiameter = sphereDiameter; this.NumberOfChildren = numberOfSpheres; //end set properties //generate the cone this.GenerateCone(device, coneTessellation); //generate the spheres //vector that defines the Y position of the sphere on the cones bottom Vector3 lowering = new Vector3(0, 0.888f, 0); this.GenerateSpheres(device, sphereTessellation, numberOfSpheres, lowering); } // ------ GENERATE CONE ------ private void GenerateCone(GraphicsDevice device, int coneTessellation) { int doubleTessellation = coneTessellation * 2; //Create a ring of triangels around the outside of the cones bottom for (int index = 0; index < coneTessellation; index++) { Vector3 normal = this.GetCircleVector(index, coneTessellation); //add the vertices for the top of the cone base.AddVertex(Vector3.Up * this.Height, normal); //add the bottom of the cone base.AddVertex(normal * this.ConeRadius + Vector3.Down * this.Height, normal); //add indices base.AddIndex(index * 2); base.AddIndex(index * 2 + 1); base.AddIndex((index * 2 + 2) % doubleTessellation); base.AddIndex(index * 2 + 1); base.AddIndex((index * 2 + 3) % doubleTessellation); base.AddIndex((index * 2 + 2) % doubleTessellation); } //create flate triangle to seal the bottom this.CreateCap(coneTessellation, this.Height, this.ConeRadius, Vector3.Down); base.InitializePrimitive(device); } // ------ GENERATE SPHERES ------ private void GenerateSpheres(GraphicsDevice device, int sphereTessellation, int numberOfSpheres, Vector3 lowering) { int verticalSegments = sphereTessellation; int horizontalSegments = sphereTessellation * 2; for (int childCount = 1; childCount < numberOfSpheres; childCount++) { //single vertex at the bottom of the sphere base.AddVertex((this.GetCircleVector(childCount, this.NumberOfChildren) * this.SphereRadius) + lowering, Vector3.Down); for (int verticalSegmentsCount = 0; verticalSegmentsCount < verticalSegments; verticalSegmentsCount++) { float latitude = ((verticalSegmentsCount + 1) * MathHelper.Pi / verticalSegments) - MathHelper.PiOver2; float dy = (float)Math.Sin(latitude); float dxz = (float)Math.Cos(latitude); //create a single ring of latitudes for (int horizontalSegmentsCount = 0; horizontalSegmentsCount < horizontalSegments; horizontalSegmentsCount++) { float longitude = horizontalSegmentsCount * MathHelper.TwoPi / horizontalSegments; float dx = (float)Math.Cos(longitude) * dxz; float dz = (float)Math.Sin(longitude) * dxz; Vector3 normal = new Vector3(dx, dy, dz); base.AddVertex((normal * this.SphereRadius) + lowering, normal); } } //finish with a single vertex at the top of the sphere base.AddVertex((this.GetCircleVector(childCount, this.NumberOfChildren) * this.SphereRadius) + lowering, Vector3.Up); //create a fan connecting the bottom vertex to the bottom latitude ring for (int i = 0; i < horizontalSegments; i++) { base.AddIndex(0); base.AddIndex(1 + (i + 1) % horizontalSegments); base.AddIndex(1 + i); } //Fill the sphere body with triangles joining each pair of latitude rings for (int i = 0; i < verticalSegments - 2; i++) { for (int j = 0; j < horizontalSegments; j++) { int nextI = i + 1; int nextJ = (j + 1) % horizontalSegments; base.AddIndex(1 + i * horizontalSegments + j); base.AddIndex(1 + i * horizontalSegments + nextJ); base.AddIndex(1 + nextI * horizontalSegments + j); base.AddIndex(1 + i * horizontalSegments + nextJ); base.AddIndex(1 + nextI * horizontalSegments + nextJ); base.AddIndex(1 + nextI * horizontalSegments + j); } } //create a fan connecting the top vertiex to the top latitude for (int i = 0; i < horizontalSegments; i++) { base.AddIndex(this.CurrentVertex - 1); base.AddIndex(this.CurrentVertex - 2 - (i + 1) % horizontalSegments); base.AddIndex(this.CurrentVertex - 2 - i); } base.InitializePrimitive(device); } } Any ideas how I could fix this?

    Read the article

  • Which data structure you will use to for a witness list?

    - by mateen
    I'm making a game where the plot is a bank robbery. Lots of people witness that robbery. The game will load a list of suspects, while the players (witnesses) will have to identify the suspects of this robbery. The game should load a list of suspects to identify the one as quickly as possible. Admin can add/remove suspects in the lists and two or more lists of suspects can also be merged into one (to show it to the player). The question is which data structure will be suitable to develop the lists?

    Read the article

  • Fast pixelshader 2D raytracing

    - by heishe
    I'd like to do a simple 2D shadow calculation algorithm by rendering my environment into a texture, and then use raytracing to determine what pixels of the texture are not visible to the point light (simply handed to the shader as a vec2 position) . A simple brute force algorithm per pixel would looks like this: line_segment = line segment between current pixel of texture and light source For each pixel in the texture: { if pixel is not just empty space && pixel is on line_segment output = black else output = normal color of the pixel } This is, of course, probably not the fastest way to do it. Question is: What are faster ways to do it or what are some optimizations that can be applied to this technique?

    Read the article

  • Updating physics for animated models

    - by Mathias Hölzl
    For a new game we have do set up a scene with a minimum of 30 bone animated models.(shooter) The problem is that the update process for the animated models takes too long. Thats what I do: Each character has ~30 bones and for every update tick the animation gets calculated and every bone fires a event with the new matrix. The physics receives the event with the new matrix and updates the collision shape for that bone. The time that it takes to build the animation isn't that bad (0.2ms for 30 Bones - 6ms for 30 models). But the main problem is that the physic engine (Bullet) uses a diffrent matrix for transformation and so its necessary to convert it. Code for matrix conversion: (~0.005ms) btTransform CLEAR_PHYSICS_API Mat_to_btTransform( Mat mat ) { btMatrix3x3 bulletRotation; btVector3 bulletPosition; XMFLOAT4X4 matData = mat.GetStorage(); // copy rotation matrix for ( int row=0; row<3; ++row ) for ( int column=0; column<3; ++column ) bulletRotation[row][column] = matData.m[column][row]; for ( int column=0; column<3; ++column ) bulletPosition[column] = matData.m[3][column]; return btTransform( bulletRotation, bulletPosition ); } The function for updating the transform(Physic): void CLEAR_PHYSICS_API BulletPhysics::VKinematicMove(Mat mat, ActorId aid) { if ( btRigidBody * const body = FindActorBody( aid ) ) { btTransform tmp = Mat_to_btTransform( mat ); body->setWorldTransform( tmp ); } } The real problem is the function FindActorBody(id): ActorIDToBulletActorMap::const_iterator found = m_actorBodies.find( id ); if ( found != m_actorBodies.end() ) return found->second; All physic actors are stored in m_actorBodies and thats why the updating process takes to long. But I have no idea how I could avoid this. Friendly greedings, Mathias

    Read the article

  • problem adding bumpmap to textured gluSphere in JOGL

    - by ChocoMan
    I currently have one texture on a gluSphere that represents the Earth being displayed perfectly, but having trouble figuring out how to implement a bumpmap as well. The bumpmap resides in "res/planet/earth/earthbump1k.jpg".Here is the code I have for the regular texture: gl.glTranslatef(xPath, 0, yPath + zPos); gl.glColor3f(1.0f, 1.0f, 1.0f); // base color for earth earthGluSphere = glu.gluNewQuadric(); colorTexture.enable(); // enable texture colorTexture.bind(); // bind texture // draw sphere... glu.gluDeleteQuadric(earthGluSphere); colorTexture.disable(); // texturing public void loadPlanetTexture(GL2 gl) { InputStream colorMap = null; try { colorMap = new FileInputStream("res/planet/earth/earthmap1k.jpg"); TextureData data = TextureIO.newTextureData(colorMap, false, null); colorTexture = TextureIO.newTexture(data); colorTexture.getImageTexCoords(); colorTexture.setTexParameteri(GL2.GL_TEXTURE_MAG_FILTER, GL2.GL_LINEAR); colorTexture.setTexParameteri(GL2.GL_TEXTURE_MIN_FILTER, GL2.GL_NEAREST); colorMap.close(); } catch(IOException e) { e.printStackTrace(); System.exit(1); } // Set material properties gl.glTexParameteri(GL2.GL_TEXTURE_2D, GL2.GL_TEXTURE_MAG_FILTER, GL2.GL_LINEAR); gl.glTexParameteri(GL2.GL_TEXTURE_2D, GL2.GL_TEXTURE_MIN_FILTER, GL2.GL_NEAREST); colorTexture.setTexParameteri(GL2.GL_TEXTURE_2D, GL2.GL_TEXTURE_WRAP_S); colorTexture.setTexParameteri(GL2.GL_TEXTURE_2D, GL2.GL_TEXTURE_WRAP_T); } How would I add the bumpmap as well to the same gluSphere?

    Read the article

  • What's the best way to generate an NPC's face using web technologies?

    - by Vael Victus
    I'm in the process of creating a web app. I have many randomly-generated non-player characters in a database. I can pull a lot of information about them - their height, weight, down to eye color, hair color, and hair style. For this, I am solely interested in generating a graphical representation of the face. Currently the information is displayed with text in the nicest way possible, but I believe it's worth generating these faces for a more... human experience. Problem is, I'm not artist. I wouldn't mind commissioning an artist for this system, but I wouldn't know where to start. Were it 2007, I'd naturally think to myself that using Flash would be the best choice. I'd love to see "breathing" simulated. However, since Flash is on its way out, I'm not sure of a solid solution. With a previous game, I simply used layered .pngs to represent various aspects of the player's body: their armor, the face, the skin color. However, these solutions weren't very dynamic and felt very amateur. I can't go deep into this project feeling like that's an inferior way to present these faces, and I'm certain there's a better way. Can anyone give some suggestion on how to pull this off well?

    Read the article

  • monotouch 2d pixel with correct resolution

    - by acidzombie24
    I am writing up a game that is size sensitive. It needs to be pixel perfect. I believe the resolution is 480x320 pixels with the iphone being twice the width and height. My code is grid based with images exactly 16x16pixels. I found samples of opengl in the past but I never found any good tutorial that had 0,0 the top left and was the correct size in resolution (which made images look terrible) What can I use? I'd like to write the code in C# (or C++ but C# is preferred) and use monotouch. I don't know any libraries for 2d graphics. I'll figure out sound and such afterwards and I seen documentation on monotouch for input.

    Read the article

  • 2D Platformer Collision Handling

    - by defender-zone
    Hello, everyone! I am trying to create a 2D platformer (Mario-type) game and I am some having some issues with handling collisions properly. I am writing this game in C++, using SDL for input, image loading, font loading, etcetera. I am also using OpenGL via the FreeGLUT library in conjunction with SDL to display graphics. My method of collision detection is AABB (Axis-Aligned Bounding Box), which is really all I need to start with. What I need is an easy way to both detect which side the collision occurred on and handle the collisions properly. So, basically, if the player collides with the top of the platform, reposition him to the top; if there is a collision to the sides, reposition the player back to the side of the object; if there is a collision to the bottom, reposition the player under the platform. I have tried many different ways of doing this, such as trying to find the penetration depth and repositioning the player backwards by the penetration depth. Sadly, nothing I've tried seems to work correctly. Player movement ends up being very glitchy and repositions the player when I don't want it to. Part of the reason is probably because I feel like this is something so simple but I'm over-thinking it. If anyone thinks they can help, please take a look at the code below and help me try to improve on this if you can. I would like to refrain from using a library to handle this (as I want to learn on my own) or the something like the SAT (Separating Axis Theorem) if at all possible. Thank you in advance for your help! void world1Level1CollisionDetection() { for(int i; i < blocks; i++) { if (de2dCheckCollision(ball,block[i],0.0f,0.0f)==true) { int up = 0; int left = 0; int right = 0; int down = 0; if(ball.coords[0] < block[i].coords[0] && block[i].coords[0] < ball.coords[2] && ball.coords[2] < block[i].coords[2]) { left = 1; } if(block[i].coords[0] < ball.coords[0] && ball.coords[0] < block[i].coords[2] && block[i].coords[2] < ball.coords[2]) { right = 1; } if(ball.coords[1] < block[i].coords[1] && block[i].coords[1] < ball.coords[3] && ball.coords[3] < block[i].coords[3]) { up = 1; } if(block[i].coords[1] < ball.coords[1] && ball.coords[1] < block[i].coords[3] && block[i].coords[3] < ball.coords[3]) { down = 1; } cout << left << ", " << right << ", " << up << ", " << down << ", " << endl; if (left == 1) { ball.coords[0] = block[i].coords[0] - 16.0f; ball.coords[2] = block[i].coords[0] - 0.0f; } if (right == 1) { ball.coords[0] = block[i].coords[2] + 0.0f; ball.coords[2] = block[i].coords[2] + 16.0f; } if (down == 1) { ball.coords[1] = block[i].coords[3] + 0.0f; ball.coords[3] = block[i].coords[3] + 16.0f; } if (up == 1) { ball.yspeed = 0.0f; ball.gravity = 0.0f; ball.coords[1] = block[i].coords[1] - 16.0f; ball.coords[3] = block[i].coords[1] - 0.0f; } } if (de2dCheckCollision(ball,block[i],0.0f,0.0f)==false) { ball.gravity = -0.5f; } } } To explain what some of this code means: The blocks variable is basically an integer that is storing the amount of blocks, or platforms. I am checking all of the blocks using a for loop, and the number that the loop is currently on is represented by integer i. The coordinate system might seem a little weird, so that's worth explaining. coords[0] represents the x position (left) of the object (where it starts on the x axis). coords[1] represents the y position (top) of the object (where it starts on the y axis). coords[2] represents the width of the object plus coords[0] (right). coords[3] represents the height of the object plus coords[1] (bottom). de2dCheckCollision performs an AABB collision detection. Up is negative y and down is positive y, as it is in most games. Hopefully I have provided enough information for someone to help me successfully. If there is something I left out that might be crucial, let me know and I'll provide the necessary information. Finally, for anyone who can help, providing code would be very helpful and much appreciated. Thank you again for your help!

    Read the article

  • Distributed C++ game server which use database.

    - by Slav
    Hello. My C++ turn-based game server (which uses database) does stand against current average amount of clients (players), so I want to expand it to multiple (more then one) amount of computers and databases where all clients still will remain within single game world (servers will must communicate with each other and use multiple databases). Is there some tutorials/books/common standards which explain how to do it in a best way?

    Read the article

  • Draw multiple objects with textures

    - by Simplex
    I want to draw cubes using textures. void OperateWithMainMatrix(ESContext* esContext, GLfloat offsetX, GLfloat offsetY, GLfloat offsetZ) { UserData *userData = (UserData*) esContext->userData; ESMatrix modelview; ESMatrix perspective; //Manipulation with matrix ... glVertexAttribPointer(userData->positionLoc, 3, GL_FLOAT, GL_FALSE, 0, cubeFaces); //in cubeFaces coordinates verticles cube glVertexAttribPointer(userData->normalLoc, 3, GL_FLOAT, GL_FALSE, 0, cubeFaces); //for normals (use in fragment shaider for textures) glEnableVertexAttribArray(userData->positionLoc); glEnableVertexAttribArray(userData->normalLoc); // Load the MVP matrix glUniformMatrix4fv(userData->mvpLoc, 1, GL_FALSE, (GLfloat*)&userData->mvpMatrix.m[0][0]); //Bind base map glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_CUBE_MAP, userData->baseMapTexId); //Set the base map sampler to texture unit to 0 glUniform1i(userData->baseMapLoc, 0); // Draw the cube glDrawArrays(GL_TRIANGLES, 0, 36); } (coordinates transformation is in OperateWithMainMatrix() ) Then Draw() function is called: void Draw(ESContext *esContext) { UserData *userData = esContext->userData; // Set the viewport glViewport(0, 0, esContext->width, esContext->height); // Clear the color buffer glClear(GL_COLOR_BUFFER_BIT); // Use the program object glUseProgram(userData->programObject); OperateWithMainMatrix(esContext, 0.0f, 0.0f, 0.0f); eglSwapBuffers(esContext->eglDisplay, esContext->eglSurface); } This work fine, but if I try to draw multiple cubes (next code for example): void Draw(ESContext *esContext) { ... // Use the program object glUseProgram(userData->programObject); OperateWithMainMatrix(esContext, 2.0f, 0.0f, 0.0f); OperateWithMainMatrix(esContext, 1.0f, 0.0f, 0.0f); OperateWithMainMatrix(esContext, 0.0f, 0.0f, 0.0f); OperateWithMainMatrix(esContext, -1.0f, 0.0f, 0.0f); OperateWithMainMatrix(esContext, -2.0f, 0.0f, 0.0f); eglSwapBuffers(esContext->eglDisplay, esContext->eglSurface); } A side faces overlapes frontal face. The side face of the right cube overlaps frontal face of the center cube. How can i remove this effect and display miltiple cubes without it?

    Read the article

  • Scaling Down Pixel Art?

    - by Michael Stum
    There's plenty of algorithms to scale up pixel art (I prefer hqx personally), but are there any notable algorithms to scale it down? In my case, the game is designed to run at 1280x720, but if someone plays at a lower resolution I want it to still look good. Most Pixel Art discussions center around 320x200 or 640x480 and upscaling for use in console emulators, but I wonder how modern 2D games like the Monkey Island Remake look good on lower resolutions? (Ignoring the options of having multiple versions of assets (essentially, mipmapping))

    Read the article

  • Pong Collision Help in C# w/ XNA

    - by Ramses Brown
    Edit: My goal is to have it function like this: Ball hits 1st Quarter = rebounds higher (aka Y++) Ball hits 2nd Quarter = rebounds higher (using random value) Ball hits 3rd Quarter = rebounds lower (using random value) Ball hits 4th Quarter = rebounds lower (aka Y--) I'm currently using Rectangle Collision for my collision detection, and it's worked. Now I wish to expand it. Instead of it simply detecting whether or not the paddle/ball intersect, I want to make it so that it can determine what section of the paddle gets hit. I wanted it in 4 parts, with each having a different reaction to impact. My first thought is to base it on the Ball's Y position compared to the Paddle's Y position. But since I want it in 4 parts, I don't know how to do that. So it's essentially be if (ball.Y > Paddle.Y) { PaddleSection1 == true; } Except modified so that instead of being top half/bottom half, it's 1st Quarter, etc.

    Read the article

  • How do I do Collisions in my JavaScript Game Code Below?

    - by Henry
    I'm trying to figure out how would I add collision detection to my code so that when the "Man" character touches the "RedHouse" the RedHouse disappears? Thanks. By the way, I'm new to how things are done on this site, so thus, if there is anything else needed or so, let me know. <title>HMan</title> <body style="background:#808080;"> <br> <canvas id="canvasBg" width="800px" height="500px"style="display:block;background:#ffffff;margin:100px auto 0px;"></canvas> <canvas id="canvasRedHouse" width="800px" height="500px" style="display:block;margin:-500px auto 0px;"></canvas> <canvas id="canvasEnemy" width="800px" height="500px" style="display:block;margin:-500px auto 0px;"></canvas> <canvas id="canvasEnemy2" width="800px" height="500px" style="display:block;margin:-500px auto 0px;"></canvas> <canvas id="canvasMan" width="800px" height="500px" style="display:block;margin:-500px auto 0px;"></canvas> <script> var isPlaying = false; var requestAnimframe = window.requestAnimationFrame || window.webkitRequestAnimationFrame || window.mozRequestAnimationFrame || window.msRequestAnimationFrame || window.oRequestAnimationFrame; var canvasBg = document.getElementById('canvasBg'); var ctxBg = canvasBg.getContext('2d'); var canvasRedHouse = document.getElementById('canvasRedHouse'); var ctxRedHouse = canvasRedHouse.getContext('2d'); var House1; House1 = new RedHouse(); var canvasMan = document.getElementById('canvasMan'); var ctxMan = canvasMan.getContext('2d'); var Man1; Man1 = new Man(); var imgSprite = new Image(); imgSprite.src = 'SpritesI.png'; imgSprite.addEventListener('load',init,false); function init() { drawBg(); startLoop(); document.addEventListener('keydown',checkKeyDown,false); document.addEventListener('keyup',checkKeyUp,false); } function drawBg() { var SpriteSourceX = 0; var SpriteSourceY = 0; var drawManOnScreenX = 0; var drawManOnScreenY = 0; ctxBg.drawImage(imgSprite,SpriteSourceX,SpriteSourceY,800,500,drawManOnScreenX, drawManOnScreenY,800,500); } function clearctxBg() { ctxBg.clearRect(0,0,800,500); } function Man() { this.SpriteSourceX = 10; this.SpriteSourceY = 540; this.width = 40; this.height = 115; this.DrawManOnScreenX = 100; this.DrawManOnScreenY = 260; this.speed = 10; this.actualFrame = 1; this.speed = 2; this.isUpKey = false; this.isRightKey = false; this.isDownKey = false; this.isLeftKey = false; } Man.prototype.draw = function () { clearCtxMan(); this.updateCoors(); this.checkDirection(); ctxMan.drawImage(imgSprite,this.SpriteSourceX,this.SpriteSourceY+this.height* this.actualFrame, this.width,this.height,this.DrawManOnScreenX,this.DrawManOnScreenY, this.width,this.height); } Man.prototype.updateCoors = function(){ this.leftX = this.DrawManOnScreenX; this.rightX = this.DrawManOnScreenX + this.width; this.topY = this.DrawManOnScreenY; this.bottomY = this.DrawManOnScreenY + this.height; } Man.prototype.checkDirection = function () { if (this.isUpKey && this.topY > 240) { this.DrawManOnScreenY -= this.speed; } if (this.isRightKey && this.rightX < 800) { this.DrawManOnScreenX += this.speed; } if (this.isDownKey && this.bottomY < 500) { this.DrawManOnScreenY += this.speed; } if (this.isLeftKey && this.leftX > 0) { this.DrawManOnScreenX -= this.speed; } if (this.isRightKey && this.rightX < 800) { if (this.actualFrame > 0) { this.actualFrame = 0; } else { this.actualFrame++; } } if (this.isLeftKey) { if (this.actualFrame > 2) { this.actualFrame = 2; } function checkKeyDown(var keyID = e.keyCode || e.which; if (keyID === 38) { Man1.isUpKey = true; e.preventDefault(); } if (keyID === 39 ) { Man1.isRightKey = true; e.preventDefault(); } if (keyID === 40 ) { Man1.isDownKey = true; e.preventDefault(); } if (keyID === 37 ) { Man1.isLeftKey = true; e.preventDefault(); } } function checkKeyUp(e) { var keyID = e.keyCode || e.which; if (keyID === 38 || keyID === 87) { Man1.isUpKey = false; e.preventDefault(); } if (keyID === 39 || keyID === 68) { Man1.isRightKey = false; e.preventDefault(); } if (keyID === 40 || keyID === 83) { Man1.isDownKey = false; e.preventDefault(); } if (keyID === 37 || keyID === 65) { Man1.isLeftKey = false; e.preventDefault(); } } function clearCtxMan() { ctxMan.clearRect(0,0,800,500); } function RedHouse() { this.srcX = 135; this.srcY = 525; this.width = 265; this.height = 245; this.drawX = 480; this.drawY = 85; } RedHouse.prototype.draw = function () { clearCtxRedHouse(); ctxRedHouse.drawImage(imgSprite,this.srcX,this.srcY, this.width,this.height,this.drawX,this.drawY,this.width,this.height); }; function clearCtxRedHouse() { ctxRedHouse.clearRect(0,0,800,500); } function loop() { if (isPlaying === true){ Man1.draw(); House1.draw(); requestAnimframe(loop); } } function startLoop(){ isPlaying = true; loop(); } function stopLoop(){ isPlaying = false; } </script> <style> .top{ position: absolute; top: 4px; left: 10px; color:black; } .top2{ position: absolute; top: 60px; left: 10px; color:black; } </style> <div class="top"> <p><font face="arial" color="black" size="4"><b>HGame</b><font/><p/> <p><font face="arial" color="black" size="3"> My Game Here <font/><p/> </div> <div class="top2"> <p><font face="arial" color="black" size="3"> It will start now <font/><p/> </div>

    Read the article

  • GLSL Shader Texture Performance

    - by Austin
    I currently have a project that renders OpenGL video using a vertex and fragment shader. The shaders work fine as-is, but in trying to add in texturing, I am running into performance issues and can't figure out why. Before adding texturing, my program ran just fine and loaded my CPU between 0%-4%. When adding texturing (specifically textures AND color -- noted by comment below), my CPU is 100% loaded. The only code I have added is the relevant texturing code to the shader, and the "glBindTexture()" calls to the rendering code. Here are my shaders and relevant rending code. Vertex Shader: #version 150 uniform mat4 mvMatrix; uniform mat4 mvpMatrix; uniform mat3 normalMatrix; uniform vec4 lightPosition; uniform float diffuseValue; layout(location = 0) in vec3 vertex; layout(location = 1) in vec3 color; layout(location = 2) in vec3 normal; layout(location = 3) in vec2 texCoord; smooth out VertData { vec3 color; vec3 normal; vec3 toLight; float diffuseValue; vec2 texCoord; } VertOut; void main(void) { gl_Position = mvpMatrix * vec4(vertex, 1.0); VertOut.normal = normalize(normalMatrix * normal); VertOut.toLight = normalize(vec3(mvMatrix * lightPosition - gl_Position)); VertOut.color = color; VertOut.diffuseValue = diffuseValue; VertOut.texCoord = texCoord; } Fragment Shader: #version 150 smooth in VertData { vec3 color; vec3 normal; vec3 toLight; float diffuseValue; vec2 texCoord; } VertIn; uniform sampler2D tex; layout(location = 0) out vec3 colorOut; void main(void) { float diffuseComp = max( dot(normalize(VertIn.normal), normalize(VertIn.toLight)) ), 0.0); vec4 color = texture2D(tex, VertIn.texCoord); colorOut = color.rgb * diffuseComp * VertIn.diffuseValue + color.rgb * (1 - VertIn.diffuseValue); // FOLLOWING LINE CAUSES PERFORMANCE ISSUES colorOut *= VertIn.color; } Relevant Rendering Code: // 3 textures have been successfully pre-loaded, and can be used // texture[0] is a 1x1 white texture to effectively turn off texturing glUseProgram(program); // Draw squares glBindTexture(GL_TEXTURE_2D, texture[1]); // Set attributes, uniforms, etc glDrawArrays(GL_QUADS, 0, 6*4); // Draw triangles glBindTexture(GL_TEXTURE_2D, texture[0]); // Set attributes, uniforms, etc glDrawArrays(GL_TRIANGLES, 0, 3*4); // Draw reference planes glBindTexture(GL_TEXTURE_2D, texture[0]); // Set attributes, uniforms, etc glDrawArrays(GL_LINES, 0, 4*81*2); // Draw terrain glBindTexture(GL_TEXTURE_2D, texture[2]); // Set attributes, uniforms, etc glDrawArrays(GL_TRIANGLES, 0, 501*501*6); // Release glBindTexture(GL_TEXTURE_2D, 0); glUseProgram(0); Any help is greatly appreciated!

    Read the article

  • Nothing drawing on screen OpenGL with GLSL

    - by codemonkey
    I hate to be asking this kind of question here, but I am at a complete loss as to what is going wrong, so please bear with me. I am trying to render a single cube (voxel) in the center of the screen, through OpenGL with GLSL on Mac I begin by setting up everything using glut glutInit(&argc, argv); glutInitDisplayMode(GLUT_RGBA|GLUT_ALPHA|GLUT_DOUBLE|GLUT_DEPTH); glutInitWindowSize(DEFAULT_WINDOW_WIDTH, DEFAULT_WINDOW_HEIGHT); glutCreateWindow("Cubez-OSX"); glutReshapeFunc(reshape); glutDisplayFunc(render); glutIdleFunc(idle); _electricSheepEngine=new ElectricSheepEngine(DEFAULT_WINDOW_WIDTH, DEFAULT_WINDOW_HEIGHT); _electricSheepEngine->initWorld(); glutMainLoop(); Then inside the engine init camera & projection matrices: cameraPosition=glm::vec3(2,2,2); cameraTarget=glm::vec3(0,0,0); cameraUp=glm::vec3(0,0,1); glm::vec3 cameraDirection=glm::normalize(cameraPosition-cameraTarget); cameraRight=glm::cross(cameraDirection, cameraUp); cameraRight.z=0; view=glm::lookAt(cameraPosition, cameraTarget, cameraUp); lensAngle=45.0f; aspectRatio=1.0*(windowWidth/windowHeight); nearClippingPlane=0.1f; farClippingPlane=100.0f; projection=glm::perspective(lensAngle, aspectRatio, nearClippingPlane, farClippingPlane); then init shaders and check compilation and bound attributes & uniforms to be correctly bound (my previous question) These are my two shaders, vertex: #version 120 attribute vec3 position; attribute vec3 inColor; uniform mat4 mvp; varying vec3 fragColor; void main(void){ fragColor = inColor; gl_Position = mvp * vec4(position, 1.0); } and fragment: #version 120 varying vec3 fragColor; void main(void) { gl_FragColor = vec4(fragColor,1.0); } init the cube: setPosition(glm::vec3(0,0,0)); struct voxelData data[]={ //front face {{-1.0, -1.0, 1.0}, {0.0, 0.0, 1.0}}, {{ 1.0, -1.0, 1.0}, {0.0, 1.0, 1.0}}, {{ 1.0, 1.0, 1.0}, {0.0, 0.0, 1.0}}, {{-1.0, 1.0, 1.0}, {0.0, 1.0, 1.0}}, //back face {{-1.0, -1.0, -1.0}, {0.0, 0.0, 1.0}}, {{ 1.0, -1.0, -1.0}, {0.0, 1.0, 1.0}}, {{ 1.0, 1.0, -1.0}, {0.0, 0.0, 1.0}}, {{-1.0, 1.0, -1.0}, {0.0, 1.0, 1.0}} }; glGenBuffers(1, &modelVerticesBufferObject); glBindBuffer(GL_ARRAY_BUFFER, modelVerticesBufferObject); glBufferData(GL_ARRAY_BUFFER, sizeof(data), data, GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); const GLubyte indices[] = { // Front 0, 1, 2, 2, 3, 0, // Back 4, 6, 5, 4, 7, 6, // Left 2, 7, 3, 7, 6, 2, // Right 0, 4, 1, 4, 1, 5, // Top 6, 2, 1, 1, 6, 5, // Bottom 0, 3, 7, 0, 7, 4 }; glGenBuffers(1, &modelFacesBufferObject); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, modelFacesBufferObject); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); and then the render call: glClearColor(0.52, 0.8, 0.97, 1.0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glEnable(GL_DEPTH_TEST); //use the shader glUseProgram(shaderProgram); //enable attributes in program glEnableVertexAttribArray(shaderAttribute_position); glEnableVertexAttribArray(shaderAttribute_color); //model matrix using model position vector glm::mat4 mvp=projection*view*voxel->getModelMatrix(); glUniformMatrix4fv(shaderAttribute_mvp, 1, GL_FALSE, glm::value_ptr(mvp)); glBindBuffer(GL_ARRAY_BUFFER, voxel->modelVerticesBufferObject); glVertexAttribPointer(shaderAttribute_position, // attribute 3, // number of elements per vertex, here (x,y) GL_FLOAT, // the type of each element GL_FALSE, // take our values as-is sizeof(struct voxelData), // coord every (sizeof) elements 0 // offset of first element ); glBindBuffer(GL_ARRAY_BUFFER, voxel->modelVerticesBufferObject); glVertexAttribPointer(shaderAttribute_color, // attribute 3, // number of colour elements per vertex, here (x,y) GL_FLOAT, // the type of each element GL_FALSE, // take our values as-is sizeof(struct voxelData), // coord every (sizeof) elements (GLvoid *)(offsetof(struct voxelData, color3D)) // offset of colour data ); //draw the model by going through its elements array glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, voxel->modelFacesBufferObject); int bufferSize; glGetBufferParameteriv(GL_ELEMENT_ARRAY_BUFFER, GL_BUFFER_SIZE, &bufferSize); glDrawElements(GL_TRIANGLES, bufferSize/sizeof(GLushort), GL_UNSIGNED_SHORT, 0); //close up the attribute in program, no more need glDisableVertexAttribArray(shaderAttribute_position); glDisableVertexAttribArray(shaderAttribute_color); but on screen all I get is the clear color :$ I generate my model matrix using: modelMatrix=glm::translate(glm::mat4(1.0), position); which in debug turns out to be for the position of (0,0,0): |1, 0, 0, 0| |0, 1, 0, 0| |0, 0, 1, 0| |0, 0, 0, 1| Sorry for such a question, I know it is annoying to look at someone's code, but I promise I have tried to debug around and figure it out as much as I can, and can't come to a solution Help a noob please? EDIT: Full source here, if anyone wants

    Read the article

  • Robust line of sight test on the inside of a polygon with tolerance

    - by David Gouveia
    Foreword This is a followup to this question and the main problem I'm trying to solve. My current solution is an hack which involves inflating the polygon, and doing most calculations on the inflated polygon instead. My goal is to remove this step completely, and correctly solve the problem with calculations only. Problem Given a concave polygon and treating all of its edges as if they were walls in a level, determine whether two points A and B are in line of sight of each other, while accounting for some degree of floating point errors. I'm currently basing my solution on a series of line-segment interection tests. In other words: If any of the end points are outside the polygon, they are not in line of sight. If both end points are inside the polygon, and the line segment from A to B crosses any of the edges from the polygon, then they are not in line of sight. If both end points are inside the polygon, and the line segment from A to B does not cross any of the edges from the polygon, then they are in line of sight. But the problem is dealing correctly with all the edge cases. In particular, it must be able to deal with all the situations depicted below, where red lines are examples that should be rejected, and green lines are examples that should be accepted. I probably missed a few other situations, such as when the line segment from A to B is colinear with an edge, but one of the end points is outside the polygon. One point of particular interest is the difference between 1 and 9. In both cases, both end points are vertices of the polygon, and there are no edges being intersected, but 1 should be rejected while 9 should be accepted. How to distinguish these two? I could check some middle point within the segment to see if it falls inside or not, but it's easy to come up with situations in which it would fail. Point 7 was also pretty tricky and I had to to treat it as a special case, which checks if two points are adjacent vertices of the polygon directly. But there are also other chances of line segments being col linear with the edges of the polygon, and I'm still not entirely sure how I should handle those cases. Is there any well known solution to this problem?

    Read the article

  • how can I specify interleaved vertex attributes and vertex indices

    - by freefallr
    I'm writing a generic ShaderProgram class that compiles a set of Shader objects, passes args to the shader (like vertex position, vertex normal, tex coords etc), then links the shader components into a shader program, for use with glDrawArrays. My vertex data already exists in a VertexBufferObject that uses the following data structure to create a vertex buffer: class CustomVertex { public: float m_Position[3]; // x, y, z // offset 0, size = 3*sizeof(float) float m_TexCoords[2]; // u, v // offset 3*sizeof(float), size = 2*sizeof(float) float m_Normal[3]; // nx, ny, nz; float colour[4]; // r, g, b, a float padding[20]; // padded for performance }; I've already written a working VertexBufferObject class that creates a vertex buffer object from an array of CustomVertex objects. This array is said to be interleaved. It renders successfully with the following code: void VertexBufferObject::Draw() { if( ! m_bInitialized ) return; glBindBuffer( GL_ARRAY_BUFFER, m_nVboId ); glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, m_nVboIdIndex ); glEnableClientState( GL_VERTEX_ARRAY ); glEnableClientState( GL_TEXTURE_COORD_ARRAY ); glEnableClientState( GL_NORMAL_ARRAY ); glEnableClientState( GL_COLOR_ARRAY ); glVertexPointer( 3, GL_FLOAT, sizeof(CustomVertex), ((char*)NULL + 0) ); glTexCoordPointer(3, GL_FLOAT, sizeof(CustomVertex), ((char*)NULL + 12)); glNormalPointer(GL_FLOAT, sizeof(CustomVertex), ((char*)NULL + 20)); glColorPointer(3, GL_FLOAT, sizeof(CustomVertex), ((char*)NULL + 32)); glDrawElements( GL_TRIANGLES, m_nNumIndices, GL_UNSIGNED_INT, ((char*)NULL + 0) ); glDisableClientState( GL_VERTEX_ARRAY ); glDisableClientState( GL_TEXTURE_COORD_ARRAY ); glDisableClientState( GL_NORMAL_ARRAY ); glDisableClientState( GL_COLOR_ARRAY ); glBindBuffer( GL_ARRAY_BUFFER, 0 ); glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, 0 ); } Back to the Vertex Array Object though. My code for creating the Vertex Array object is as follows. This is performed before the ShaderProgram runtime linking stage, and no glErrors are reported after its steps. // Specify the shader arg locations (e.g. their order in the shader code) for( int n = 0; n < vShaderArgs.size(); n ++) glBindAttribLocation( m_nProgramId, n, vShaderArgs[n].sFieldName.c_str() ); // Create and bind to a vertex array object, which stores the relationship between // the buffer and the input attributes glGenVertexArrays( 1, &m_nVaoHandle ); glBindVertexArray( m_nVaoHandle ); // Enable the vertex attribute array (we're using interleaved array, since its faster) glBindBuffer( GL_ARRAY_BUFFER, vShaderArgs[0].nVboId ); glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, vShaderArgs[0].nVboIndexId ); // vertex data for( int n = 0; n < vShaderArgs.size(); n ++ ) { glEnableVertexAttribArray(n); glVertexAttribPointer( n, vShaderArgs[n].nFieldSize, GL_FLOAT, GL_FALSE, vShaderArgs[n].nStride, (GLubyte *) NULL + vShaderArgs[n].nFieldOffset ); AppLog::Ref().OutputGlErrors(); } This doesn't render correctly at all. I get a pattern of white specks onscreen, in the shape of the terrain rectangle, but there are no regular lines etc. Here's the code I use for rendering: void ShaderProgram::Draw() { using namespace AntiMatter; if( ! m_nShaderProgramId || ! m_nVaoHandle ) { AppLog::Ref().LogMsg("ShaderProgram::Draw() Couldn't draw object, as initialization of ShaderProgram is incomplete"); return; } glUseProgram( m_nShaderProgramId ); glBindVertexArray( m_nVaoHandle ); glDrawArrays( GL_TRIANGLES, 0, m_nNumTris ); glBindVertexArray(0); glUseProgram(0); } Can anyone see errors or omissions in either the VAO creation code or rendering code? thanks!

    Read the article

  • Implementing an automatic navigation mesh generation for 2d top down map?

    - by J2V
    I am currently in the middle of implementing an A* pathfinding for enemies. In order to implement the actual A* logic, I need a navigation mesh for my map. I am working on a 2D top down rpg map. The world is static, meaning there is no requirement for dynamic runtime mesh generation. My world objects are pixel based, not tile based and have associated data with them such as scale, rotation, origin etc. I will obviously need some vertex data being generated from my world objects, maybe create a polygon generation from color data? I could create a colormap with objects for my whole map, but I have no idea how to begin creating nav mesh polygons. How would an actual navigation mesh generation look like with this kind of available information? Can anyone maybe point to some great resources? I have looked into some 3D nav mesh tools, but they seem kind of overly complex for my situation and also have a lot of their req data available from models. Thanks a lot in advance! I have been trying to get my head around it for some time now.

    Read the article

< Previous Page | 440 441 442 443 444 445 446 447 448 449 450 451  | Next Page >