Search Results

Search found 31839 results on 1274 pages for 'plugin development'.

Page 458/1274 | < Previous Page | 454 455 456 457 458 459 460 461 462 463 464 465  | Next Page >

  • Create bullet physics rigid body along the vertices of a blender model

    - by Krishnabhadra
    I am working on my first 3D game, for iphone, and I am using Blender to create models, Cocos3D game engine and Bullet for physics simulation. I am trying to learn the use of physics engine. What I have done I have created a small model in blender which contains a Cube (default blender cube) at the origin and a UVSphere hovering exactly on top of this cube (without touching the cube) I saved the file to get MyModel.blend. Then I used File -> Export -> PVRGeoPOD (.pod/.h/.cpp) in Blender to export the model to .pod format to use along with Cocos3D. In the coding side, I added necessary bullet files to my Cocos3D template project in XCode. I am also using a bullet objective C wrapper. -(void) initializeScene { _physicsWorld = [[CC3PhysicsWorld alloc] init]; [_physicsWorld setGravity:0 y:-9.8 z:0]; /*Setup camera, lamp etc.*/ .......... ........... /*Add models created in blender to scene*/ [self addContentFromPODFile: @"MyModel.pod"]; /*Create OpenGL ES buffers*/ [self createGLBuffers]; /*get models*/ CC3MeshNode* cubeNode = (CC3MeshNode*)[self getNodeNamed:@"Cube"]; CC3MeshNode* sphereNode = (CC3MeshNode*)[self getNodeNamed:@"Sphere"]; /*Those boring grey colors..*/ [cubeNode setColor:ccc3(255, 255, 0)]; [sphereNode setColor:ccc3(255, 0, 0)]; float *cVertexData = (float*)((CC3VertexArrayMesh*)cubeNode.mesh).vertexLocations.vertices; int cVertexCount = (CC3VertexArrayMesh*)cubeNode.mesh).vertexLocations.vertexCount; btTriangleMesh* cTriangleMesh = new btTriangleMesh(); // for (int i = 0; i < cVertexCount * 3; i+=3) { // printf("\n%f", cVertexData[i]); // printf("\n%f", cVertexData[i+1]); // printf("\n%f", cVertexData[i+2]); // } /*Trying to create a triangle mesh that curresponds the cube in 3D space.*/ int offset = 0; for (int i = 0; i < (cVertexCount / 3); i++){ unsigned int index1 = offset; unsigned int index2 = offset+6; unsigned int index3 = offset+12; cTriangleMesh->addTriangle( btVector3(cVertexData[index1], cVertexData[index1+1], cVertexData[index1+2] ), btVector3(cVertexData[index2], cVertexData[index2+1], cVertexData[index2+2] ), btVector3(cVertexData[index3], cVertexData[index3+1], cVertexData[index3+2] )); offset += 18; } [self releaseRedundantData]; /*Create a collision shape from triangle mesh*/ btBvhTriangleMeshShape* cTriMeshShape = new btBvhTriangleMeshShape(cTriangleMesh,true); btCollisionShape *sphereShape = new btSphereShape(1); /*Create physics objects*/ gTriMeshObject = [_physicsWorld createPhysicsObjectTrimesh:cubeNode shape:cTriMeshShape mass:0 restitution:1.0 position:cubeNode.location]; sphereObject = [_physicsWorld createPhysicsObject:sphereNode shape:sphereShape mass:1 restitution:0.1 position:sphereNode.location]; sphereObject.rigidBody->setDamping(0.1,0.8); } When I run the sphere and cube shows up fine. I expect the sphere object to fall directly on top of the cube, since I have given it a mass of 1 and the physics world gravity is given as -9.8 in y direction. But What is happening the spere rotates around cube three or times and then just jumps out of the scene. Then I know I have some basic misunderstanding about the whole process. So my question is, how can I create a physics collision shape which corresponds to the shape of a particular mesh model. I may need complex shapes than cube and sphere, but before going into them I want to understand the concepts.

    Read the article

  • how to create 2D collision detection

    - by Aidan Mueller
    I would like to know the best or most effective way to test for 2D collision. I also can do AABBs but when you have a line, for example, that is rotated 45º, and it is really long. it will be hitting things when it shouldn't. I might be able to go through the pixels to see if they are touching others, but that might be slow if I had a big picture. and it might add some complications if I had a movie clip made of several images. How do I check collision between two Images? How would I do circle to box? Please help : ) PS: I do know java so you can write with java syntax and then use a made up GL

    Read the article

  • XNA 2D line-of-sight check

    - by bionicOnion
    I'm working on a top-down shooter in XNA, and I need to implement line-of-sight checking. I've come up with a solution that seems to work, but I get the nagging feeling that it won't be efficient enough to do every frame for multiple calls (the game already hiccups slightly at about 10 calls per frame). The code is below, but my general plan was to create a series of rectangles with a width and height of zero to act as points along the sight line, and then check to see if any of these rectangles intersects a ClutterObject (an interface I defined for things like walls or other obstacles) after first screening for any that can't possibly be in the line of sight (i.e. behind the viewer) or are too far away (a concession I made for efficiency). public static bool LOSCheck(Vector2 pos1, Vector2 pos2) { Vector2 currentPos = pos1; Vector2 perMove = (pos2 - pos1); perMove.Normalize(); HashSet<ClutterObject> clutter = new HashSet<ClutterObject>(); foreach (Room r in map.GetRooms()) { if (r != null) { foreach (ClutterObject c in r.GetClutter()) { if (c != null &&!(c.GetRectangle().X * perMove.X < 0) && !(c.GetRectangle().Y * perMove.Y < 0)) { Vector2 cVector = new Vector2(c.GetRectangle().X, c.GetRectangle().Y); if ((cVector - pos1).Length() < 1500) clutter.Add(c); } } } } while (currentPos != pos2 && ((currentPos - pos1).Length() < 1500)) { Rectangle position = new Rectangle((int)currentPos.X, (int)currentPos.Y, 0, 0); foreach (ClutterObject c in clutter) { if (position.Intersects(c.GetRectangle())) return false; } currentPos += perMove; } return true; } I'm sure that there's a better way to do this (or at least a way to make this method more efficient), but I'm not too used to XNA yet, so I figured it couldn't hurt to bring it here. At the very least, is there an efficient to determine which objects may be in front of the viewer with greater precision than the rather broad 90 degree window I've given myself?

    Read the article

  • Collision detection - Smooth wall sliding, no bounce effect

    - by Joey
    I'm working on a basic collision detection system that provides point - OBB collision detection. I have around 200 cubes in my environment and I check (for now) each of them in turn and see if it collides. If it does I return the colliding face's normal, save the old player position and do some trigonometry to return a new player position for my wall sliding. edit I'll define my meaning of wall sliding: If a player walks in a vertical slope and has a slight horizontal rotation to the left or the right and keeps walking forward in the wall the player should slide a little to the right/left while continually walking towards the wall till he left the wall. Thus, sliding along the wall. Everything works fine and with multiple objects as well but I still have one problem I can't seem to figure out: smooth wall sliding. In my current implementation sliding along the walls make my player bounce like a mad man (especially noticable with gravity on and moving forward). I have a velocity/direction vector, a normal vector from the collided plane and an old and new player position. First I negate the normal vector and get my new velocity vector by substracting the inverted normal from my direction vector (which is the vector to slide along the wall) and I add this vector to my new Player position and recalculate the direction vector (in case I have multiple collisions). I know I am missing some step but I can't seem to figure it out. Here is my code for the collision detection (run every frame): Vector direction; Vector newPos(camera.GetOriginX(), camera.GetOriginY(), camera.GetOriginZ()); direction = newPos - oldPos; // Direction vector // Check for collision with new position for(int i = 0; i < NUM_OBJECTS; i++) { Vector normal = objects[i].CheckCollision(newPos.x, newPos.y, newPos.z, direction.x, direction.y, direction.z); if(normal != Vector::NullVector()) { // Get inverse normal (direction STRAIGHT INTO wall) Vector invNormal = normal.Negative(); Vector wallDir = direction - invNormal; // We know INTO wall, and DIRECTION to wall. Substract these and you got slide WALL direction newPos = oldPos + wallDir; direction = newPos - oldPos; } } Any help would be greatly appreciated! FIX I eventually got things up and running how they should thanks to Krazy, I'll post the updated code listing in case someone else comes upon this problem! for(int i = 0; i < NUM_OBJECTS; i++) { Vector normal = objects[i].CheckCollision(newPos.x, newPos.y, newPos.z, direction.x, direction.y, direction.z); if(normal != Vector::NullVector()) { Vector invNormal = normal.Negative(); invNormal = invNormal * (direction * normal).Length(); // Change normal to direction's length and normal's axis Vector wallDir = direction - invNormal; newPos = oldPos + wallDir; direction = newPos - oldPos; } }

    Read the article

  • Physics engine that can handle multiple attractors?

    - by brice
    I'm putting together a game that will be played mostly with three dimensional gravity. By that I mean multiple planets/stars/moons behaving realistically, and path plotting and path prediction in the gravity field. I have looked at a variety of physics engines, such as Bullet, tokamak or Newton, but none of them seem to be suitable, as I'd essentially have to re-write the gravity engine in their framework. Do you know of a physics engine that is capable of dealing with multiple bodies all attracted to one another? I don't need scenegraph management, or rendering, just core physics. (collision detection would be a bonus, as would rigid body dynamics). My background is in physics, so I would be able to write an engine that uses Verlet integration or RK4 (or even Euler integration, if I had to) but I'd much rather adapt an off the shelf solution. [edit]: There are some great resources for physics simulation of n-body problems online, and on stackoverflow

    Read the article

  • Weird y offset when using custom frag shader (Cocos2d-x)

    - by Mister Guacamole
    I'm trying to mask a sprite so I wrote a simple fragment shader that renders only the pixels that are not hidden under another texture (the mask). The problem is that it seems my texture has its y-coordinate offset after passing through the shader. This is the init method of the sprite (GroundZone) I want to mask: bool GroundZone::initWithSize(Size size) { // [...] // Setup the mask of the sprite m_mask = RenderTexture::create(textureWidth, textureHeight); m_mask->retain(); m_mask->setKeepMatrix(true); Texture2D *maskTexture = m_mask->getSprite()->getTexture(); maskTexture->setAliasTexParameters(); // Disable linear interpolation on the mask // Load the custom frag shader with a default vert shader as the sprite’s program FileUtils *fileUtils = FileUtils::getInstance(); string vertexSource = ccPositionTextureA8Color_vert; string fragmentSource = fileUtils->getStringFromFile( fileUtils->fullPathForFilename("CustomShader_AlphaMask_frag.fsh")); GLProgram *shader = new GLProgram; shader->initWithByteArrays(vertexSource.c_str(), fragmentSource.c_str()); shader->bindAttribLocation(GLProgram::ATTRIBUTE_NAME_POSITION, GLProgram::VERTEX_ATTRIB_POSITION); shader->bindAttribLocation(GLProgram::ATTRIBUTE_NAME_TEX_COORD, GLProgram::VERTEX_ATTRIB_TEX_COORDS); shader->link(); CHECK_GL_ERROR_DEBUG(); shader->updateUniforms(); CHECK_GL_ERROR_DEBUG(); int maskTexUniformLoc = shader->getUniformLocationForName("u_alphaMaskTexture"); shader->setUniformLocationWith1i(maskTexUniformLoc, 1); this->setShaderProgram(shader); shader->release(); // [...] } These are the custom drawing methods for actually drawing the mask over the sprite: You need to know that m_mask is modified externally by another class, the onDraw() method only render it. void GroundZone::draw(Renderer *renderer, const kmMat4 &transform, bool transformUpdated) { m_renderCommand.init(_globalZOrder); m_renderCommand.func = CC_CALLBACK_0(GroundZone::onDraw, this, transform, transformUpdated); renderer->addCommand(&m_renderCommand); Sprite::draw(renderer, transform, transformUpdated); } void GroundZone::onDraw(const kmMat4 &transform, bool transformUpdated) { GLProgram *shader = this->getShaderProgram(); shader->use(); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, m_mask->getSprite()->getTexture()->getName()); glActiveTexture(GL_TEXTURE0); } Below is the method (located in another class, GroundLayer) that modify the mask by drawing a line from point start to point end. Both points are in Cocos2d coordinates (Point (0,0) is down-left). void GroundLayer::drawTunnel(Point start, Point end) { // To dig a line, we need first to get the texture of the zone we will be digging into. Then we get the // relative position of the start and end point in the zone's node space. Finally we use the custom shader to // draw a mask over the existing texture. for (auto it = _children.begin(); it != _children.end(); it++) { GroundZone *zone = static_cast<GroundZone *>(*it); Point nodeStart = zone->convertToNodeSpace(start); Point nodeEnd = zone->convertToNodeSpace(end); // Now that we have our two points converted to node space, it's easy to draw a mask that contains a line // going from the start point to the end point and that is then applied over the current texture. Size groundZoneSize = zone->getContentSize(); RenderTexture *rt = zone->getMask(); rt->begin(); { // Draw a line going from start and going to end in the texture, the line will act as a mask over the // existing texture DrawNode *line = DrawNode::create(); line->retain(); line->drawSegment(nodeStart, nodeEnd, 20, Color4F::RED); line->visit(); } rt->end(); } } Finally, here's the custom shader I wrote. #ifdef GL_ES precision mediump float; #endif varying vec2 v_texCoord; uniform sampler2D u_texture; uniform sampler2D u_alphaMaskTexture; void main() { float maskAlpha = texture2D(u_alphaMaskTexture, v_texCoord).a; float texAlpha = texture2D(u_texture, v_texCoord).a; float blendAlpha = (1.0 - maskAlpha) * texAlpha; // Show only where mask is invisible vec3 texColor = texture2D(u_texture, v_texCoord).rgb; gl_FragColor = vec4(texColor, blendAlpha); return; } I got a problem with the y coordinates. Indeed, it seems that once it has passed through my custom shader, the sprite's texture is not at the right place: Without custom shader (the sprite is the brown thing): With custom shader: What's going on here? Thanks :) EDIT It looks like after passing through the shader when I set the position of the sprite I set it in points, with (0,0) being in the top-right. Indeed, when I do sprite->setPosition(320, 480), the sprite is perfectly placed at the top of the screen.

    Read the article

  • Decal implementation

    - by dreta
    I had issues finding information about decals, so maybe this question will help others. The implementation is for a forward renderer. Could somebody confirm if i got decal implementation right? You define a cube of any dimension that'll define the projection volume in common space. You check for triangle intersection with the defined cube to recieve triangles that the projection will affect. You clip these triangles and save them. You then use matrix tricks to calculate UV coordinates for the saved triangles that'll reference the texture you're projecting. To do this you take the vectors representing height, width and depth of the cube in common space, so that f.e. the bottom left corner is the origin. You put that in a matrix as the i, j, k unit vectors, set the translation for the cube, then you inverse this matrix. You multiply the vertices of the saved triangles by this matrix, that way you get their coordinates inside of a 0 to 1 size cube that you use as the UV coordinates. This way you have the original triangles you're projecting onto and you have UV coordinates for them (the UV coordinates are referencing the texture you're projecting). Then you rerender the saved triangles onto the scene and they overwrite the area of projection with the projected image. Now the questions that i couldn't find answers for. Is the last point right? I've never done software clipping, but it seems error prone enough, due to limited precision, that the'll be some z fighting occuring for the projected texture. Also is the way of getting UV coordinates correct?

    Read the article

  • HTML5 game engine for a 2D or 2.5D RPG style "map walk"

    - by stargazer
    please help me to choose a HTML5 game engine or Javascript libraries I want to do the following in the game: when the game starts a part the huge map (full size of the map: about 7 screens) is shown. The map itself is completely designed in the editor mapeditor.org (or in some comparable editor - if you know a good alternative to mapeditor.org - let me know) and loaded at runtime or at design time. The game engine should support loading of isometric maps (well, in worst case only orthogonal maps will be sufficient) both "tile layer" and "object layer" from mapeditor.org should be supported. Scrolling/performance of this map should be fast enough. The map and the game should be either in 2D (orthogonal map) or in 2.5D (isometric map) The game engine should support movement of sprites with animation. Let say I have a sprite for "human" with animation sequences showing "walking" in 8 directions - it should be imported into game engine and should "walk" on the map without writing a lot of Javascript code. Automatic scrolling of the map the "human" nears the screen border. Collision detection, "solid" objects. The mapeditor.org supports properies on tiles. Let say I assign a "solid" property to some tiles in editor. It should be easy to check this "solid" property in the game engine and implement kind of "solid" behavior, so the animanted sprites do not walk through the walls. Collision detection - it should be easy to implement some custom functionality like "when sprite A is close to sprite B - call this function" Showing "dialogs" or popup windows on top of the map - should be easy to implement. Cross-browser audio support - (it is implemented quite well in construct 2 from scirra, so I'm looking for the comparable audio quality) The game itself is a king of RPG but without fighting scenes and without huge "inventory". The main character just walking on the map, discovers some things, there are dialogs and sounds. The functionality of this example from sprite.js http://batiste.dosimple.ch/sprite.js/tests/mapeditor/map_reader.html is very close to what I'm developing. But I'm not a Javascript guru (and a very lazy guy) and would like to write even less Javascript code as in the example...

    Read the article

  • C++ problem with assimp 3D model loader

    - by Brendan Webster
    In my game I have model loading functions for Assimp model loading library. I can load the model and render it, but the model displays incorrectly. The models load in as if they were using a seperate projection matrix. I have looked over my code over and over again, but I probably keep on missing the obvious reason why this is happening. Here is an image of my game: It's simply a 6 sided cube, but it's off big time! Here are my code snippets for rendering the cube to the screen: void C_MediaLoader::display(void) { float tmp; glTranslatef(0,0,0); // rotate it around the y axis glRotatef(angle,0.f,0.f,1.f); glColor4f(1,1,1,1); // scale the whole asset to fit into our view frustum tmp = scene_max.x-scene_min.x; tmp = aisgl_max(scene_max.y - scene_min.y,tmp); tmp = aisgl_max(scene_max.z - scene_min.z,tmp); tmp = (1.f / tmp); glScalef(tmp/5, tmp/5, tmp/5); // center the model //glTranslatef( -scene_center.x, -scene_center.y, -scene_center.z ); // if the display list has not been made yet, create a new one and // fill it with scene contents if(scene_list == 0) { scene_list = glGenLists(1); glNewList(scene_list, GL_COMPILE); // now begin at the root node of the imported data and traverse // the scenegraph by multiplying subsequent local transforms // together on GL's matrix stack. recursive_render(scene, scene->mRootNode); glEndList(); } glCallList(scene_list); } void C_MediaLoader::recursive_render (const struct aiScene *sc, const struct aiNode* nd) { unsigned int i; unsigned int n = 0, t; struct aiMatrix4x4 m = nd->mTransformation; // update transform aiTransposeMatrix4(&m); glPushMatrix(); glMultMatrixf((float*)&m); // draw all meshes assigned to this node for (; n < nd->mNumMeshes; ++n) { const struct aiMesh* mesh = scene->mMeshes[nd->mMeshes[n]]; apply_material(sc->mMaterials[mesh->mMaterialIndex]); if(mesh->mNormals == NULL) { glDisable(GL_LIGHTING); } else { glEnable(GL_LIGHTING); } for (t = 0; t < mesh->mNumFaces; ++t) { const struct aiFace* face = &mesh->mFaces[t]; GLenum face_mode; switch(face->mNumIndices) { case 1: face_mode = GL_POINTS; break; case 2: face_mode = GL_LINES; break; case 3: face_mode = GL_TRIANGLES; break; default: face_mode = GL_POLYGON; break; } glBegin(face_mode); for(i = 0; i < face->mNumIndices; i++) { int index = face->mIndices[i]; if(mesh->mColors[0] != NULL) glColor4fv((GLfloat*)&mesh->mColors[0][index]); if(mesh->mNormals != NULL) glNormal3fv(&mesh->mNormals[index].x); glVertex3fv(&mesh->mVertices[index].x); } glEnd(); } } // draw all children for (n = 0; n < nd->mNumChildren; ++n) { recursive_render(sc, nd->mChildren[n]); } glPopMatrix(); } Sorry there is so much code to look through, but I really cannot find the problem, and I would love to have help.

    Read the article

  • ContentManager in XNA cant find any XML

    - by user36385
    Im making a game in XNA 4 and this is the first time I'm using the Content loader to initialize a simple class with a XML file, but no matter how many guide I follow, or how simple or complicated is my XML File the ContentManager cant find the file; the Debug keep telling me: "A first chance exception of type 'Microsoft.Xna.Framework.Content.ContentLoadException' occurred in Microsoft.Xna.Framework.dll". I'm really confuse because I can load SpriteFonts and Texture2D without a problem ... I create the following XML (the most basic Xna XML): <?xml version="1.0" encoding="utf-8" ?> <XnaContent> <Asset Type="System.String">Hello</Asset> </XnaContent> and I try to load it in the LoadContent method in my main class like this: System.String hello = Content.Load<System.String>("NewXmlFile"); There is something I'm doing wrong? I really appreciate your help

    Read the article

  • How to store a shmup level?

    - by pek
    I am developing a 2D shmup (i.e. Aero Fighters) and I was wondering what are the various ways to store a level. Assuming that enemies are defined in their own xml file, how would you define when an enemy spawns in the level? Would it be based on time? Updates? Distance? Currently I do this based on "level time" (the amount of time the level is running - pausing doesn't update the time). Here is an example (the serialization was done by XNA): <?xml version="1.0" encoding="utf-8"?> <XnaContent xmlns:level="pekalicious.xanor.XanorContentShared.content.level"> <Asset Type="level:Level"> <Enemies> <Enemy> <EnemyType>data/enemies/smallenemy</EnemyType> <SpawnTime>PT0S</SpawnTime> <NumberOfSpawns>60</NumberOfSpawns> <SpawnOffset>PT0.2S</SpawnOffset> </Enemy> <Enemy> <EnemyType>data/enemies/secondenemy</EnemyType> <SpawnTime>PT0S</SpawnTime> <NumberOfSpawns>10</NumberOfSpawns> <SpawnOffset>PT0.5S</SpawnOffset> </Enemy> <Enemy> <EnemyType>data/enemies/secondenemy</EnemyType> <SpawnTime>PT20S</SpawnTime> <NumberOfSpawns>10</NumberOfSpawns> <SpawnOffset>PT0.5S</SpawnOffset> </Enemy> <Enemy> <EnemyType>data/enemies/boss1</EnemyType> <SpawnTime>PT30S</SpawnTime> <NumberOfSpawns>1</NumberOfSpawns> <SpawnOffset>PT0S</SpawnOffset> </Enemy> </Enemies> </Asset> </XnaContent> Each Enemy element is basically a wave of specific enemy types. The type is defined in EnemyType while SpawnTime is the "level time" this wave should appear. NumberOfSpawns and SpawnOffset is the number of enemies that will show up and the time it takes between each spawn respectively. This could be a good idea or there could be better ones out there. I'm not sure. I would like to see some opinions and ideas. I have two problems with this: spawning an enemy correctly and creating a level editor. The level editor thing is an entirely different problem (which I will probably post in the future :P). As for spawning correctly, the problem lies in the fact that I have a variable update time and so I need to make sure I don't miss an enemy spawn because the spawn offset is too small, or because the update took a little more time. I kinda fixed it for the most part, but it seems to me that the problem is with how I store the level. So, any ideas? Comments? Thank you in advance.

    Read the article

  • How much it will cost to create tile-set similar to HoM&M 2?

    - by Alexey Petrushin
    How much it will cost to create tile-set similar to HoM&M 2? I'm mostly interested in the tile-set graphics only, no animation needed, the big images of town and creatures can be done as quick and dirty pensil sketches. The quality of tiles and its amount should be roughly the same as in HoM&M 2. Can You please give a rough estimate how much it will take man-hours and how much will it cost?

    Read the article

  • Best way to go about sorting 2D sprites in a "RPG Maker" styled RPG

    - by Aaron Stewart
    I am trying to come up with the best way to create overlapping sprites without having any issues. I was thinking of having a SortedDictionary and setting the Entity's key to it's Y position relative to the max bound of the simulation, aka the Z value. I'd update the "Z" value in the update method each frame, if the entity's position has changed at all. For those who don't know what I mean, I want characters who are standing closer in front of another character to be drawn on top, and if they are behind the character, they are drawn behind. I'm leery of using SpriteBatch back to front or front to back, I've been doing some searching and have been under the impression they are a bad idea. and want to know exactly how other people are dealing with their depth sorting. Just ultimately trying to come up with the best method of sorting for good practice before I get too far in to refactor the system effectively.

    Read the article

  • Why would GLCapabilities.setHardwareAccelerated(true/false) have no effect on performance?

    - by Luke
    I've got a JOGL application in which I am rendering 1 million textures (all the same texture) and 1 million lines between those textures. Basically it's a ball-and-stick graph. I am storing the vertices in a vertex array on the card and referencing them via index arrays, which are also stored on the card. Each pass through the draw loop I am basically doing this: gl.glBindBuffer(GL.GL_ARRAY_BUFFER, <buffer id>); gl.glBindBuffer(GL.GL_ELEMENT_ARRAY_BUFFER, <buffer id>); gl.glDrawElements(GL.GL_POINTS, <size>, GL.GL_UNSIGNED_INT, 0); gl.glBindBuffer(GL.GL_ARRAY_BUFFER, <buffer id>); gl.glBindBuffer(GL.GL_ELEMENT_ARRAY_BUFFER, <buffer id>); gl.glDrawElements(GL.GL_LINES, <size>, GL.GL_UNSIGNED_INT, 0); I noticed that the JOGL library is pegging one of my CPU cores. Every frame, the run method internal to the library is taking quite long. I'm not sure why this is happening since I have called setHardwareAccelerated(true) on the GLCapabilities used to create my canvas. What's more interesting is that I changed it to setHardwareAccelerated(false) and there was no impact on the performance at all. Is it possible that my code is not using hardware rendering even when it is set to true? Is there any way to check? EDIT: As suggested, I have tested breaking my calls up into smaller chunks. I have tried using glDrawRangeElements and respecting the limits that it requests. All of these simply resulted in the same pegged CPU usage and worse framerates. I have also narrowed the problem down to a simpler example where I just render 4 million textures (no lines). The draw loop then just doing this: gl.glEnableClientState(GL.GL_VERTEX_ARRAY); gl.glEnableClientState(GL.GL_INDEX_ARRAY); gl.glClear(GL.GL_COLOR_BUFFER_BIT | GL.GL_DEPTH_BUFFER_BIT); gl.glMatrixMode(GL.GL_MODELVIEW); gl.glLoadIdentity(); <... Camera and transform related code ...> gl.glEnableVertexAttribArray(0); gl.glEnable(GL.GL_TEXTURE_2D); gl.glAlphaFunc(GL.GL_GREATER, ALPHA_TEST_LIMIT); gl.glEnable(GL.GL_ALPHA_TEST); <... Bind texture ...> gl.glBindBuffer(GL.GL_ARRAY_BUFFER, <buffer id>); gl.glBindBuffer(GL.GL_ELEMENT_ARRAY_BUFFER, <buffer id>); gl.glDrawElements(GL.GL_POINTS, <size>, GL.GL_UNSIGNED_INT, 0); gl.glDisable(GL.GL_TEXTURE_2D); gl.glDisable(GL.GL_ALPHA_TEST); gl.glDisableVertexAttribArray(0); gl.glFlush(); Where the first buffer contains 12 million floats (the x,y,z coords of the 4 million textures) and the second (element) buffer contains 4 million integers. In this simple example it is simply the integers 0 through 3999999. I really want to know what is being done in software that is pegging my CPU, and how I can make it stop (if I can). My buffers are generated by the following code: gl.glBindBuffer(GL.GL_ARRAY_BUFFER, <buffer id>); gl.glBufferData(GL.GL_ARRAY_BUFFER, <size> * BufferUtil.SIZEOF_FLOAT, <buffer>, GL.GL_STATIC_DRAW); gl.glVertexAttribPointer(0, 3, GL.GL_FLOAT, false, 0, 0); and: gl.glBindBuffer(GL.GL_ELEMENT_ARRAY_BUFFER, <buffer id>); gl.glBufferData(GL.GL_ELEMENT_ARRAY_BUFFER, <size> * BufferUtil.SIZEOF_INT, <buffer>, GL.GL_STATIC_DRAW); ADDITIONAL INFO: Here is my initialization code: gl.setSwapInterval(1); //Also tried 0 gl.glShadeModel(GL.GL_SMOOTH); gl.glClearDepth(1.0f); gl.glEnable(GL.GL_DEPTH_TEST); gl.glDepthFunc(GL.GL_LESS); gl.glHint(GL.GL_PERSPECTIVE_CORRECTION_HINT, GL.GL_FASTEST); gl.glPointParameterfv(GL.GL_POINT_DISTANCE_ATTENUATION, POINT_DISTANCE_ATTENUATION, 0); gl.glPointParameterfv(GL.GL_POINT_SIZE_MIN, MIN_POINT_SIZE, 0); gl.glPointParameterfv(GL.GL_POINT_SIZE_MAX, MAX_POINT_SIZE, 0); gl.glPointSize(POINT_SIZE); gl.glTexEnvf(GL.GL_POINT_SPRITE, GL.GL_COORD_REPLACE, GL.GL_TRUE); gl.glEnable(GL.GL_POINT_SPRITE); gl.glClearColor(clearColor.getX(), clearColor.getY(), clearColor.getZ(), 0.0f); Also, I'm not sure if this helps or not, but when I drag the entire graph off the screen, the FPS shoots back up and the CPU usage falls to 0%. This seems obvious and intuitive to me, but I thought that might give a hint to someone else.

    Read the article

  • Calculate the Intersection of Two Volumes

    - by igrad
    If you've ever played The Swapper, you'll have a good idea of what I'm asking about. I need to check for, and isolate, areas of a rectangle that may intersect with either a circle or another rectangle. These selected areas will receive special properties, and the areas will be non-static, since the intersecting shapes themselves will also be dynamic. My first thought was to use raycasting detection, though I've only seen that in use with circles, or even ellipses. I'm curious if there's a method of using raycasting with a more rectangular approach, or if there's a totally different method already in use to accomplish this task. I would like something more exact than checking in large chunks, and since I'm using SDL2 with a logical renderer size of 1920x1080, checking if each pixel is intersecting is out of the question, as it would slow things down past a playable speed. I already have a multi-shape collision function-template in place, and I could use that, though it only checks if sides or corners are intersecting; it does not compute the overlapping area, or even find the circle's secant line, though I can't imagine it would be overly complex to implement. TL;DR: I need to find and isolate areas of a rectangle that may intersect with a circle or another rectangle without checking every single pixel on-screen.

    Read the article

  • Normal maps red in OpenGL?

    - by KaiserJohaan
    I am using Assimp to import 3d models, and FreeImage to parse textures. The problem I am having is that the normal maps are actually red rather than blue when I try to render them as normal diffuse textures. http://i42.tinypic.com/289ing3.png When I open the images in a image-viewing program they do indeed show up as blue. Heres when I create the texture; OpenGLTexture::OpenGLTexture(const std::vector<uint8_t>& textureData, uint32_t textureWidth, uint32_t textureHeight, TextureType textureType, Logger& logger) : mLogger(logger), mTextureID(gNextTextureID++), mTextureType(textureType) { glGenTextures(1, &mTexture); CHECK_GL_ERROR(mLogger); glBindTexture(GL_TEXTURE_2D, mTexture); CHECK_GL_ERROR(mLogger); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, textureWidth, textureHeight, 0, glTextureFormat, GL_UNSIGNED_BYTE, &textureData[0]); CHECK_GL_ERROR(mLogger); glGenerateMipmap(GL_TEXTURE_2D); CHECK_GL_ERROR(mLogger); glBindTexture(GL_TEXTURE_2D, 0); CHECK_GL_ERROR(mLogger); } Here is my fragment shader. You can see I just commented out the normal-map parsing and treated the normal map texture as the diffuse texture to display it and illustrate the problem. As for the rest of the code it interacts as expected with the diffuse textures so I dont see a obvious problem there. "#version 330 \n \ \n \ layout(std140) uniform; \n \ \n \ const int MAX_LIGHTS = 8; \n \ \n \ struct Light \n \ { \n \ vec4 mLightColor; \n \ vec4 mLightPosition; \n \ vec4 mLightDirection; \n \ \n \ int mLightType; \n \ float mLightIntensity; \n \ float mLightRadius; \n \ float mMaxDistance; \n \ }; \n \ \n \ uniform UnifLighting \n \ { \n \ vec4 mGamma; \n \ vec3 mViewDirection; \n \ int mNumLights; \n \ \n \ Light mLights[MAX_LIGHTS]; \n \ } Lighting; \n \ \n \ uniform UnifMaterial \n \ { \n \ vec4 mDiffuseColor; \n \ vec4 mAmbientColor; \n \ vec4 mSpecularColor; \n \ vec4 mEmissiveColor; \n \ \n \ bool mHasDiffuseTexture; \n \ bool mHasNormalTexture; \n \ bool mLightingEnabled; \n \ float mSpecularShininess; \n \ } Material; \n \ \n \ uniform sampler2D unifDiffuseTexture; \n \ uniform sampler2D unifNormalTexture; \n \ \n \ in vec3 frag_position; \n \ in vec3 frag_normal; \n \ in vec2 frag_texcoord; \n \ in vec3 frag_tangent; \n \ in vec3 frag_bitangent; \n \ \n \ out vec4 finalColor; " " \n \ \n \ void CalcGaussianSpecular(in vec3 dirToLight, in vec3 normal, out float gaussianTerm) \n \ { \n \ vec3 viewDirection = normalize(Lighting.mViewDirection); \n \ vec3 halfAngle = normalize(dirToLight + viewDirection); \n \ \n \ float angleNormalHalf = acos(dot(halfAngle, normalize(normal))); \n \ float exponent = angleNormalHalf / Material.mSpecularShininess; \n \ exponent = -(exponent * exponent); \n \ \n \ gaussianTerm = exp(exponent); \n \ } \n \ \n \ vec4 CalculateLighting(in Light light, in vec4 diffuseTexture, in vec3 normal) \n \ { \n \ if (light.mLightType == 1) // point light \n \ { \n \ vec3 positionDiff = light.mLightPosition.xyz - frag_position; \n \ float dist = max(length(positionDiff) - light.mLightRadius, 0); \n \ \n \ float attenuation = 1 / ((dist/light.mLightRadius + 1) * (dist/light.mLightRadius + 1)); \n \ attenuation = max((attenuation - light.mMaxDistance) / (1 - light.mMaxDistance), 0); \n \ \n \ vec3 dirToLight = normalize(positionDiff); \n \ float angleNormal = clamp(dot(normalize(normal), dirToLight), 0, 1); \n \ \n \ float gaussianTerm = 0.0; \n \ if (angleNormal > 0.0) \n \ CalcGaussianSpecular(dirToLight, normal, gaussianTerm); \n \ \n \ return diffuseTexture * (attenuation * angleNormal * Material.mDiffuseColor * light.mLightIntensity * light.mLightColor) + \n \ (attenuation * gaussianTerm * Material.mSpecularColor * light.mLightIntensity * light.mLightColor); \n \ } \n \ else if (light.mLightType == 2) // directional light \n \ { \n \ vec3 dirToLight = normalize(light.mLightDirection.xyz); \n \ float angleNormal = clamp(dot(normalize(normal), dirToLight), 0, 1); \n \ \n \ float gaussianTerm = 0.0; \n \ if (angleNormal > 0.0) \n \ CalcGaussianSpecular(dirToLight, normal, gaussianTerm); \n \ \n \ return diffuseTexture * (angleNormal * Material.mDiffuseColor * light.mLightIntensity * light.mLightColor) + \n \ (gaussianTerm * Material.mSpecularColor * light.mLightIntensity * light.mLightColor); \n \ } \n \ else if (light.mLightType == 4) // ambient light \n \ return diffuseTexture * Material.mAmbientColor * light.mLightIntensity * light.mLightColor; \n \ else \n \ return vec4(0.0); \n \ } \n \ \n \ void main() \n \ { \n \ vec4 diffuseTexture = vec4(1.0); \n \ if (Material.mHasDiffuseTexture) \n \ diffuseTexture = texture(unifDiffuseTexture, frag_texcoord); \n \ \n \ vec3 normal = frag_normal; \n \ if (Material.mHasNormalTexture) \n \ { \n \ diffuseTexture = vec4(normalize(texture(unifNormalTexture, frag_texcoord).xyz * 2.0 - 1.0), 1.0); \n \ // vec3 normalTangentSpace = normalize(texture(unifNormalTexture, frag_texcoord).xyz * 2.0 - 1.0); \n \ //mat3 tangentToWorldSpace = mat3(normalize(frag_tangent), normalize(frag_bitangent), normalize(frag_normal)); \n \ \n \ // normal = tangentToWorldSpace * normalTangentSpace; \n \ } \n \ \n \ if (Material.mLightingEnabled) \n \ { \n \ vec4 accumLighting = vec4(0.0); \n \ \n \ for (int lightIndex = 0; lightIndex < Lighting.mNumLights; lightIndex++) \n \ accumLighting += Material.mEmissiveColor * diffuseTexture + \n \ CalculateLighting(Lighting.mLights[lightIndex], diffuseTexture, normal); \n \ \n \ finalColor = pow(accumLighting, Lighting.mGamma); \n \ } \n \ else { \n \ finalColor = pow(diffuseTexture, Lighting.mGamma); \n \ } \n \ } \n"; Why is this? does normal-map textures need some sort of special treatment in opengl?

    Read the article

  • RenderTarget2D behavior in XNA

    - by Utkarsh Sinha
    I've been dabbling with XNA for a couple of days now. This chunk of code doesn't work as I expect. The goal is to render sprites individually and composite them on another rendertarget. P = RenderTarget2D(with RenderTargetUsage.PreserveContents) D = RenderTarget2D(with RenderTargetUsage.DiscardContents) for all sprites: graphicsDevice.SetRenderTarget(D); <draw sprite i> graphicsDevice.SetRenderTarget(P); <Draw D> graphicsDevice.SetRenderTarget(null); <Draw P> The result I get is - only the last sprite is visible. I'm sure I'm missing some piece of information about RenderTarget2D. Any hints on what that might be? Cross posted from - http://stackoverflow.com/questions/9970349/weird-rendertarget2d-behaviour

    Read the article

  • 3D rotation tool. How can I add simple extrusion?

    - by Gerve
    The 3D rotation tool is excellent but it only lets you rotate 2D objects, this means my object is wafer thin. Is there any way to add simple extrusion or depth to a symbol? I don't really want to use any 3rd party libraries like Away3D or Papervision, this is overkill for my simple 2D game. I only want to do this creating a couple motion tweens if possible. More Details: Below is what my symbol looks like (just with a bit more color). The symbol does a little 3D rotation and then flies away, it's just for something like a scoreboard within the app.

    Read the article

  • Geometry Shader: distortions

    - by Christophe Lionet
    This is a cross-question from Stack Overflow, I thought it would be more appropriate here. There is a lot of code I could be posting. To avoid overloading the page with code, I will post any part of the code if requested. I am working from the ParticleGS DirectX10 sample, to build a geometry shader based particle system in DirectX 11. Using the sample code, and changing it to my liking, I am able to draw a single quad (which is essentially one particle constantly recreating itself). However, I noticed a problem which was similar to one I once had: the rendered shape is distorted. Here is a video showcasing what is happening. http://youtu.be/6NY_hxjMfwY Now, I used to have this issue when using several effects together, when I realised that I needed to explicitely set the geometry shader to null for the other effects. I solved this problem, as you can see in the video, as the rest of the scene is drawing properly. Note that some sides are being culled somehow, although I turned off culling in my main render state. The texturing is fine too, the texture draws with appropriate proportions relative to the quad. I really don't see what I could be doing wrong here... what would cause the geometry shader to behave in such a way? Again, I will post any piece code you will request.

    Read the article

  • State of the art Culling and Batching techniques in rendering

    - by Kristian Skarseth
    I'm currently working with upgrading and restructuring an OpenGL render engine. The engine is used for visualising large scenes of architectural data (buildings with interior), and the amount of objects can become rather large. As is the case with any building, there is a lot of occluded objects within walls, and you naturally only see the objects that are in the same room as you, or the exterior if you are on the outside. This leaves a large number of objects that should be occluded through occlusion culling and frustum culling. At the same time there is a lot of repetative geometry that can be batched in renderbatches, and also a lot of objects that can be rendered with instanced rendering. The way I see it, it can be difficult to combine renderbatching and culling in an optimal fashion. If you batch too many objects in the same VBO it's difficult to cull the objects on the CPU in order to skip rendering that batch. At the same time if you skip the culling on the cpu, a lot of objects will be processed by the GPU while they are not visible. If you skip batching copletely in order to more easily cull on the CPU, there will be an unwanted high amount of render calls. I have done some research into existing techniques and theories as to how these problems are solved in modern graphics, but I have not been able to find any concrete solution. An idea a colleague and me came up with was restricting batches to objects relatively close to eachother e.g all chairs in a room or within a radius of n meeters. This could be simplified and optimized through use of oct-trees. Does anyone have any pointers to techniques used for scene managment, culling, batching etc in state of the art modern graphics engines?

    Read the article

  • Skyrim Nexus Mods on Xbox 360 by use of dawnguard?

    - by user17895
    i think it's possible i opened up the dawnguard marketplace content and it consists 3 files: dawnguard.bsa < mod dawnguard.esp <- mod installing file. and spa.bin <-dont know where this is for. and it has been confirmed you can use the top 2 files on pc for a not fully functional dawnguard (barely functional to be exact) and if we could just replace or add a few other bsa and esp files to this marketplace content we could get mods up and running on xbox altough i need confirmation on this. I also have no clue where the spa.bin file for is, i need to examine it some further. Further this is adding a few non-distributed Files to marketplace content and wont get you booted from XBL. Also if anyone wants to examine these files for further information i will gladly share them with you. if you have any information or answers please email me at [email protected] thx

    Read the article

  • SlimDX and Parsing .X Files

    - by P. Avery
    I'm trying to parse a .x file using SlimDX. I can create the XFile object and register templates but I'm having problems with the enumeration object. The enumeration object has a child count of 0 for a file I know to have valid data. Here is code to create file, enumeration, and data objects: public void Parse(string filename, string templates, ref Frame aParam) { XFile xfile = null; XFileEnumerationObject enumObj = null; XFileData dataObj = null; // create file object xfile = new XFile(); // register templates if (xfile.RegisterTemplates(XFile.DefaultTemplates).IsFailure) { Console.WriteLine(Result.Last); xfile.Dispose(); return; } // create enumeration object enumObj = xfile.CreateEnumerationObject(filename, System.Runtime.InteropServices.CharSet.Auto); if (enumObj == null) { xfile.Dispose(); return; } // get child count( returns 0 here ) long ncElements = enumObj.ChildCount; for (int i = 0; i < ncElements; ++i) { // never reached... dataObj = enumObj.GetChild(i); if (dataObj.IsReference) continue; try { Parse(dataObj, ref aParam); } catch (Exception e) { e.Write(); } finally { dataObj.Dispose(); } } enumObj.Dispose(); xfile.Dispose(); } ...There are no exceptions thrown by this function...the child count is 0 so the conditional loop breaks right away, the file objects are disposed of and the function returns... Here is .x file...a simple cube: xof 0303txt 0032 Frame Root { FrameTransformMatrix { 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000;; } Frame Cube { FrameTransformMatrix { 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000;; } Mesh Cube{ //Cube Mesh 36; -1.000000; 1.000000; 1.000000;, -1.000000;-1.000000; 1.000000;, 0.999999;-1.000001; 1.000000;, -1.000000;-1.000000;-1.000000;, 1.000000;-1.000000;-1.000000;, 0.999999;-1.000001; 1.000000;, 1.000000; 0.999999; 1.000000;, -1.000000; 1.000000; 1.000000;, 0.999999;-1.000001; 1.000000;, -1.000000; 1.000000;-1.000000;, -1.000000;-1.000000;-1.000000;, -1.000000; 1.000000; 1.000000;, -1.000000; 1.000000; 1.000000;, 1.000000; 0.999999; 1.000000;, 1.000000; 1.000000;-1.000000;, 1.000000; 0.999999; 1.000000;, 0.999999;-1.000001; 1.000000;, 1.000000;-1.000000;-1.000000;, -1.000000;-1.000000;-1.000000;, -1.000000;-1.000000; 1.000000;, -1.000000; 1.000000; 1.000000;, 1.000000; 1.000000;-1.000000;, 1.000000;-1.000000;-1.000000;, -1.000000; 1.000000;-1.000000;, 1.000000; 1.000000;-1.000000;, 1.000000; 0.999999; 1.000000;, 1.000000;-1.000000;-1.000000;, -1.000000; 1.000000;-1.000000;, -1.000000; 1.000000; 1.000000;, 1.000000; 1.000000;-1.000000;, -1.000000;-1.000000; 1.000000;, -1.000000;-1.000000;-1.000000;, 0.999999;-1.000001; 1.000000;, 1.000000;-1.000000;-1.000000;, -1.000000;-1.000000;-1.000000;, -1.000000; 1.000000;-1.000000;; 12; 3;0;1;2;, 3;3;4;5;, 3;6;7;8;, 3;9;10;11;, 3;12;13;14;, 3;15;16;17;, 3;18;19;20;, 3;21;22;23;, 3;24;25;26;, 3;27;28;29;, 3;30;31;32;, 3;33;34;35;; MeshNormals { //Mesh Normals 36; 0.000000;-0.000000; 1.000000;, 0.000000;-0.000000; 1.000000;, 0.000000;-0.000000; 1.000000;, -0.000000;-1.000000;-0.000000;, -0.000000;-1.000000;-0.000000;, -0.000000;-1.000000;-0.000000;, -0.000000;-0.000000; 1.000000;, -0.000000;-0.000000; 1.000000;, -0.000000;-0.000000; 1.000000;, -1.000000; 0.000000;-0.000000;, -1.000000; 0.000000;-0.000000;, -1.000000; 0.000000;-0.000000;, 0.000000; 1.000000; 0.000000;, 0.000000; 1.000000; 0.000000;, 0.000000; 1.000000; 0.000000;, 1.000000;-0.000001; 0.000000;, 1.000000;-0.000001; 0.000000;, 1.000000;-0.000001; 0.000000;, -1.000000; 0.000000;-0.000000;, -1.000000; 0.000000;-0.000000;, -1.000000; 0.000000;-0.000000;, 0.000000; 0.000000;-1.000000;, 0.000000; 0.000000;-1.000000;, 0.000000; 0.000000;-1.000000;, 1.000000; 0.000000;-0.000000;, 1.000000; 0.000000;-0.000000;, 1.000000; 0.000000;-0.000000;, 0.000000; 1.000000; 0.000000;, 0.000000; 1.000000; 0.000000;, 0.000000; 1.000000; 0.000000;, -0.000000;-1.000000; 0.000000;, -0.000000;-1.000000; 0.000000;, -0.000000;-1.000000; 0.000000;, 0.000000;-0.000000;-1.000000;, 0.000000;-0.000000;-1.000000;, 0.000000;-0.000000;-1.000000;; 12; 3;0;1;2;, 3;3;4;5;, 3;6;7;8;, 3;9;10;11;, 3;12;13;14;, 3;15;16;17;, 3;18;19;20;, 3;21;22;23;, 3;24;25;26;, 3;27;28;29;, 3;30;31;32;, 3;33;34;35;; } //End of Mesh Normals MeshMaterialList { //Mesh Material List 1; 12; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;; Material Material { 0.640000; 0.640000; 0.640000; 1.000000;; 96.078431; 0.500000; 0.500000; 0.500000;; 0.000000; 0.000000; 0.000000;; TextureFilename {"Yellow.jpg";} } } //End of Mesh Material List MeshTextureCoords UVMap{ //Mesh UV Coordinates 36; 0.000000; 1.000000;, 1.000000; 1.000000;, 1.000000; 0.000000;, 0.000000; 1.000000;, 1.000000; 1.000000;, 1.000000; 0.000000;, 0.000000; 0.000000;, 0.000000; 1.000000;, 1.000000; 0.000000;, 0.000000; 1.000000;, 1.000000; 1.000000;, 0.000000; 0.000000;, 0.000000; 1.000000;, 1.000000; 1.000000;, 1.000000; 0.000000;, 0.000000; 1.000000;, 1.000000; 1.000000;, 1.000000; 0.000000;, 1.000000; 1.000000;, 1.000000; 0.000000;, 0.000000; 0.000000;, 0.000000; 0.000000;, 0.000000; 1.000000;, 1.000000; 0.000000;, 0.000000; 0.000000;, 0.000000; 1.000000;, 1.000000; 0.000000;, 0.000000; 0.000000;, 0.000000; 1.000000;, 1.000000; 0.000000;, 0.000000; 0.000000;, 0.000000; 1.000000;, 1.000000; 0.000000;, 0.000000; 1.000000;, 1.000000; 1.000000;, 1.000000; 0.000000;; } //End of Mesh UV Coordinates } //End of Mesh Mesh } //End of Cube } //End of Root Frame

    Read the article

  • Visualization tools for physical simulations

    - by Nick
    I'm interested in starting some physics simulations and I'm getting hung up on the visualization side of things. I have lots of resources for reading how to implement the simulation itself but I'd rather not learn two things at once - the simulation part and a new complex visualization API. Are there any high-level visualization tools that are language independent? I understand that I'll have to learn some new code for visualization but I'd like to start at a high level, OpenGL is my long-term goal and not my prototype goal.

    Read the article

  • 2D Selective Gaussian Blur

    - by Joshua Thomas
    I am attempting to use Gaussian blur on a 2D platform game, selectively blurring specific types of platforms with different amounts. I am currently just messing around with simple test code, trying to get it to work correctly. What I need to eventually do is create three separate render targets, leave one normal, blur one slightly, and blur the last heavily, then recombine on the screen. Where I am now is I have successfully drawn into a new render target and performed the gaussian blur on it, but when I draw it back to the screen everything is purple aside from the platforms I drew to the target. This is my .fx file: #define RADIUS 7 #define KERNEL_SIZE (RADIUS * 2 + 1) //----------------------------------------------------------------------------- // Globals. //----------------------------------------------------------------------------- float weights[KERNEL_SIZE]; float2 offsets[KERNEL_SIZE]; //----------------------------------------------------------------------------- // Textures. //----------------------------------------------------------------------------- texture colorMapTexture; sampler2D colorMap = sampler_state { Texture = <colorMapTexture>; MipFilter = Linear; MinFilter = Linear; MagFilter = Linear; }; //----------------------------------------------------------------------------- // Pixel Shaders. //----------------------------------------------------------------------------- float4 PS_GaussianBlur(float2 texCoord : TEXCOORD) : COLOR0 { float4 color = float4(0.0f, 0.0f, 0.0f, 0.0f); for (int i = 0; i < KERNEL_SIZE; ++i) color += tex2D(colorMap, texCoord + offsets[i]) * weights[i]; return color; } //----------------------------------------------------------------------------- // Techniques. //----------------------------------------------------------------------------- technique GaussianBlur { pass { PixelShader = compile ps_2_0 PS_GaussianBlur(); } } This is the code I'm using for the gaussian blur: public Texture2D PerformGaussianBlur(Texture2D srcTexture, RenderTarget2D renderTarget1, RenderTarget2D renderTarget2, SpriteBatch spriteBatch) { if (effect == null) throw new InvalidOperationException("GaussianBlur.fx effect not loaded."); Texture2D outputTexture = null; Rectangle srcRect = new Rectangle(0, 0, srcTexture.Width, srcTexture.Height); Rectangle destRect1 = new Rectangle(0, 0, renderTarget1.Width, renderTarget1.Height); Rectangle destRect2 = new Rectangle(0, 0, renderTarget2.Width, renderTarget2.Height); // Perform horizontal Gaussian blur. game.GraphicsDevice.SetRenderTarget(renderTarget1); effect.CurrentTechnique = effect.Techniques["GaussianBlur"]; effect.Parameters["weights"].SetValue(kernel); effect.Parameters["colorMapTexture"].SetValue(srcTexture); effect.Parameters["offsets"].SetValue(offsetsHoriz); spriteBatch.Begin(0, BlendState.Opaque, null, null, null, effect); spriteBatch.Draw(srcTexture, destRect1, Color.White); spriteBatch.End(); // Perform vertical Gaussian blur. game.GraphicsDevice.SetRenderTarget(renderTarget2); outputTexture = (Texture2D)renderTarget1; effect.Parameters["colorMapTexture"].SetValue(outputTexture); effect.Parameters["offsets"].SetValue(offsetsVert); spriteBatch.Begin(0, BlendState.Opaque, null, null, null, effect); spriteBatch.Draw(outputTexture, destRect2, Color.White); spriteBatch.End(); // Return the Gaussian blurred texture. game.GraphicsDevice.SetRenderTarget(null); outputTexture = (Texture2D)renderTarget2; return outputTexture; } And this is the draw method affected: public void Draw(SpriteBatch spriteBatch) { device.SetRenderTarget(maxBlur); spriteBatch.Begin(); foreach (Brick brick in blueBricks) brick.Draw(spriteBatch); spriteBatch.End(); blue = gBlur.PerformGaussianBlur((Texture2D) maxBlur, helperTarget, maxBlur, spriteBatch); spriteBatch.Begin(); device.SetRenderTarget(null); foreach (Brick brick in redBricks) brick.Draw(spriteBatch); foreach (Brick brick in greenBricks) brick.Draw(spriteBatch); spriteBatch.Draw(blue, new Rectangle(0, 0, blue.Width, blue.Height), Color.White); foreach (Brick brick in purpleBricks) brick.Draw(spriteBatch); spriteBatch.End(); } I'm sorry about the massive brick of text and images(or not....new user, I tried, it said no), but I wanted to get my problem across clearly as I have been searching for an answer to this for quite a while now. As a side note, I have seen the bloom sample. Very well commented, but overly complicated since it deals in 3D; I was unable to take what I needed to learn form it. Thanks for any and all help.

    Read the article

  • Encode two integers into colour values and compare them in a HLSL shader

    - by Ben Slinger
    I am writing a 2D point and click adventure game in Monogame, and I'd like to be able to create an image mask for every room which defines which parts of the background a character can walk behind, and at which Y value a character needs to be at for the background to be drawn above the character. I haven't done any shader work before but after doing some reading I thought the following solution should work: Create a mask for the room with different walk behind areas painted in a colour that defines the baseline Y value (Walk Behind Mask) Render all objects to a RenderTarget2D (Base Texture) Render all objects to a different RenderTarget2D, but changing every pixel of each object to a colour that defines its Y value (Position Mask) Pass these two textures plus the image mask into the shader, and for each pixel compare the colour of the image mask to the colour of the Position Mask to the Walk Behind Mask - if the Position Mask pixel is larger (thus lower on the screen and closer to the camera) than the Walk Behind Mask, draw the pixel from the Base Texture, otherwise draw a transparent pixel (allowing the background to show through). I've got it mostly working, but I'm having trouble packing and unpacking the Y values into colours and retrieving them correctly in the shader. Here are some code examples of how I'm doing it so far: (When drawing to the Position Mask RenderTarget2D) Color posColor = new Color(((int)Position.Y >> 16) & 255, ((int)Position.Y >> 8) & 255, (int)Position.Y & 255); So as far as I can tell, this should be taking the first 3 bytes of the position integer and encoding them into a 4 byte colour (ignoring the alpha as the 4th byte). This seems to work fine, as when my character is at Y = 600, the resulting Color from this is: {[Color: R=0, G=2, B=88, A=255, PackedValue=4283957760]}. I then have an area in my Walk Behind Mask that I only want the character to be displayed behind if his Y value is lower than 655, so I've painted it with R=0, G=2, B=143, A=255. Now, I think I have the shader OK as well, here's what I have: sampler BaseTexture : register(s0); sampler MaskTexture : register(s1); sampler PositionTexture : register(s2); float4 mask( float2 coords : TEXCOORD0 ) : COLOR0 { float4 color = tex2D(BaseTexture, coords); float4 maskColor = tex2D(MaskTexture, coords); float4 positionColor = tex2D(PositionTexture, coords); float maskCompare = (maskColor.r * pow(2,24)) + (maskColor.g * pow(2,16)) + (maskColor.b * pow(2,8)); float positionCompare = (positionColor.r * pow(2,24)) + (positionColor.g * pow(2,16)) + (positionColor.b * pow(2,8)); return positionCompare < maskCompare ? float4(0,0,0,0) : color; } technique Technique1 { pass NoEffect { PixelShader = compile ps_3_0 mask(); } } This isn't working, however - currently all characters are displayed behind the walk behind area, regardless of their Y value. I tried printing out some debug info by grabbing the pixel from both the Position Mask and the Walk Under Mask under the current mouse position, and it seems like maybe the colours aren't being rendered to the Position Mask correctly? When calculating the colour in that code above I'm getting R=0, G=2, B=88, A=255, but when I mouseover my character I get R=0, G=0, B=30, A=255. Any ideas what I'm doing wrong? It seems like maybe I'm losing some information when rendering to the RenderTarget2D, but I'm now knowledgeable enough to figure out what's happening. Also, I should probably ask, is this an efficient way to do this? Will there be a performance impact? Edit: Whoops, turns out there was a bug that I'd introduced myself, I was drawing out the Position Mask with the position Color, left over from some early testing I was doing. So this solution is working perfectly, though I'm still interested in whether this is an efficient solution performance wise.

    Read the article

< Previous Page | 454 455 456 457 458 459 460 461 462 463 464 465  | Next Page >