Search Results

Search found 32277 results on 1292 pages for 'module development'.

Page 473/1292 | < Previous Page | 469 470 471 472 473 474 475 476 477 478 479 480  | Next Page >

  • Bitmap font rendering, UV generation and vertex placement

    - by jack
    I am generating a bitmap, however, I am not sure on how to render the UV's and placement. I had a thread like this once before, but it was too loosely worded as to what I was looking to do. What I am doing right now is creating a large 1024x1024 image with characters evenly placed every 64 pixels. Here is an example of what I mean. I then save the bitmap X/Y information to a file (which is all multiples of 64). However, I am not sure how to properly use this information and bitmap to render. This falls into two different categories, UV generation and kerning. Now I believe I know how to do both of these, however, when I attempt to couple them together I will get horrendous results. For example, I am trying to render two different text arrays, "123" and "njfb". While ignoring the texture quality (I will be increasing the texture to provide more detail once I fix this issue), here is what it looks like when I try to render them. http://img64.imageshack.us/img64/599/badfontrendering.png Now for the algorithm. I am doing my letter placement with both GetABCWidth and GetKerningPairs. I am using GetABCWidth for the width of the characters, then I am getting the kerning information for adjust the characters. Does anyone have any suggestions on how I can implement my own bitmap font renderer? I am trying to do this without using external libraries such as angel bitmap tool or freetype. I also want to stick to the way the bitmap font sheet is generated so I can do extra effects in the future. Rendering Algorithm for(U32 c = 0, vertexID = 0, i = 0; c < numberOfCharacters; ++c, vertexID += 4, i += 6) { ObtainCharInformation(fontName, m_Text[c]); letterWidth = (charInfo.A + charInfo.B + charInfo.C) * scale; if(c != 0) { DWORD BytesReq = GetGlyphOutlineW(dc, m_Text[c], GGO_GRAY8_BITMAP, &gm, 0, 0, &mat); U8 * glyphImg= new U8[BytesReq]; DWORD r = GetGlyphOutlineW(dc, m_Text[c], GGO_GRAY8_BITMAP, &gm, BytesReq, glyphImg, &mat); for (int k=0; k<nKerningPairs; k++) { if ((kerningpairs[k].wFirst == previousCharIndex) && (kerningpairs[k].wSecond == m_Text[c])) { letterBottomLeftX += (kerningpairs[k].iKernAmount * scale); break; } } letterBottomLeftX -= (gm.gmCellIncX * scale); } SetVertex(letterBottomLeftX, 0.0f, zFight, vertexID); SetVertex(letterBottomLeftX, letterHeight, zFight, vertexID + 1); SetVertex(letterBottomLeftX + letterWidth, letterHeight, zFight, vertexID + 2); SetVertex(letterBottomLeftX + letterWidth, 0.0f, zFight, vertexID + 3); zFight -= 0.001f; float BottomLeftX = (F32)(charInfo.bitmapXOrigin) / (float)m_BitmapWidth; float BottomLeftY = (F32)(charInfo.bitmapYOrigin + charInfo.charBitmapHeight) / (float)m_BitmapWidth; float TopLeftX = BottomLeftX; float TopLeftY = (F32)(charInfo.bitmapYOrigin) / (float)m_BitmapWidth; float TopRightX = (F32)(charInfo.bitmapXOrigin + charInfo.B - charInfo.C) / (float)m_BitmapWidth; float TopRightY = TopLeftY; float BottomRightX = TopRightX; float BottomRightY = BottomLeftY; SetTextureCoordinate(TopLeftX, TopLeftY, vertexID + 1); SetTextureCoordinate(BottomLeftX, BottomLeftY, vertexID + 0); SetTextureCoordinate(BottomRightX, BottomRightY, vertexID + 3); SetTextureCoordinate(TopRightX, TopRightY, vertexID + 2); /// index setting letterBottomLeftX += letterWidth; previousCharIndex = m_Text[c]; }

    Read the article

  • Balancing game difficulty against player progression

    - by Raven Dreamer
    It seems that the current climate of games seems to cater to an obvious progression of player power, whether that means getting a bigger, more explosive gun in Halo, leveling up in an RPG, or unlocking new options in Command and Conquer 4. Yet this concept is not exclusive to video or computer games -- even in Dungeons and Dragons players can strive to acquire a +2 sword to replace the +1 weapon they've been using. Yet as a systems designer, the concept of player progression is giving me headache after headache. Should I balance around the players exact capabilities and give up on a simple linear progression? (I think ESIV:Oblivion is a good example of this) Is it better to throw the players into an "arms race" with their opponents, where if the players don't progress in an orderly manner, it is only a matter of time until gameplay is unbearably difficult? (4th Edition DnD strikes me as a good example of this) Perhaps it would make most sense to untether the core gameplay mechanics from progression at all -- give them flashier, more interesting (but not more powerful!) ways to grow?

    Read the article

  • Triangle Strips and Tangent Space Normal Mapping

    - by Koarl
    Short: Do triangle strips and Tangent Space Normal mapping go together? According to quite a lot of tutorials on bump mapping, it seems common practice to derive tangent space matrices in a vertex program and transform the light direction vector(s) to tangent space and then pass them on to a fragment program. However, if one was using triangle strips or index buffers, it is a given that the vertex buffer contains vertices that sit at border edges and would thus require more than one normal to derive tangent space matrices to interpolate between in fragment programs. Is there any reasonable way to not have duplicate vertices in your buffer and still use tangent space normal mapping? Which one do you think is better: Having normal and tangent encoded in the assets and just optimize the geometry handling to alleviate the cost of duplicate vertices or using triangle strips and computing normals/tangents completely at run time? Thinking about it, the more reasonable answer seems to be the first one, but why might my professor still be fussing about triangle strips when it seems so obvious?

    Read the article

  • GLSL Shader Texture Performance

    - by Austin
    I currently have a project that renders OpenGL video using a vertex and fragment shader. The shaders work fine as-is, but in trying to add in texturing, I am running into performance issues and can't figure out why. Before adding texturing, my program ran just fine and loaded my CPU between 0%-4%. When adding texturing (specifically textures AND color -- noted by comment below), my CPU is 100% loaded. The only code I have added is the relevant texturing code to the shader, and the "glBindTexture()" calls to the rendering code. Here are my shaders and relevant rending code. Vertex Shader: #version 150 uniform mat4 mvMatrix; uniform mat4 mvpMatrix; uniform mat3 normalMatrix; uniform vec4 lightPosition; uniform float diffuseValue; layout(location = 0) in vec3 vertex; layout(location = 1) in vec3 color; layout(location = 2) in vec3 normal; layout(location = 3) in vec2 texCoord; smooth out VertData { vec3 color; vec3 normal; vec3 toLight; float diffuseValue; vec2 texCoord; } VertOut; void main(void) { gl_Position = mvpMatrix * vec4(vertex, 1.0); VertOut.normal = normalize(normalMatrix * normal); VertOut.toLight = normalize(vec3(mvMatrix * lightPosition - gl_Position)); VertOut.color = color; VertOut.diffuseValue = diffuseValue; VertOut.texCoord = texCoord; } Fragment Shader: #version 150 smooth in VertData { vec3 color; vec3 normal; vec3 toLight; float diffuseValue; vec2 texCoord; } VertIn; uniform sampler2D tex; layout(location = 0) out vec3 colorOut; void main(void) { float diffuseComp = max( dot(normalize(VertIn.normal), normalize(VertIn.toLight)) ), 0.0); vec4 color = texture2D(tex, VertIn.texCoord); colorOut = color.rgb * diffuseComp * VertIn.diffuseValue + color.rgb * (1 - VertIn.diffuseValue); // FOLLOWING LINE CAUSES PERFORMANCE ISSUES colorOut *= VertIn.color; } Relevant Rendering Code: // 3 textures have been successfully pre-loaded, and can be used // texture[0] is a 1x1 white texture to effectively turn off texturing glUseProgram(program); // Draw squares glBindTexture(GL_TEXTURE_2D, texture[1]); // Set attributes, uniforms, etc glDrawArrays(GL_QUADS, 0, 6*4); // Draw triangles glBindTexture(GL_TEXTURE_2D, texture[0]); // Set attributes, uniforms, etc glDrawArrays(GL_TRIANGLES, 0, 3*4); // Draw reference planes glBindTexture(GL_TEXTURE_2D, texture[0]); // Set attributes, uniforms, etc glDrawArrays(GL_LINES, 0, 4*81*2); // Draw terrain glBindTexture(GL_TEXTURE_2D, texture[2]); // Set attributes, uniforms, etc glDrawArrays(GL_TRIANGLES, 0, 501*501*6); // Release glBindTexture(GL_TEXTURE_2D, 0); glUseProgram(0); Any help is greatly appreciated!

    Read the article

  • Pathfinding in multi goal, multi agent environment

    - by Rohan Agrawal
    I have an environment in which I have multiple agents (a), multiple goals (g) and obstacles (o). . . . a o . . . . . . . o . g . . a . . . . . . . . . . o . . . . o o o o . g . . o . . . . . . . o . . . . o . . . . o o o o a What would an appropriate algorithm for pathfinding in this environment? The only thing I can think of right now, is to Run a separate version of A* for each goal separately, but i don't think that's very efficient.

    Read the article

  • OpenGL and gluUnProject, 3d object following mouse

    - by Robert
    i have a 3d object and i want him to "follow" my mouse position, so i use gluUnProject function to convert screen coordinates to 3d world coordinates and i translate this object with the new coordinates. Its working but i have a problem, my object can follow my mouse but he is moving extremely fast, when i move my mouse a little bit(something like 2 pixels), its moving extremly fast in the 3d world. I want something like that : http://www.youtube.com/watch?v=90zS8SVUAIY (red circle following mouse). Thanks for your help.

    Read the article

  • Is there a simpler way to create a borderless window with XNA 4.0?

    - by Cypher
    When looking into making my XNA game's window border-less, I found no properties or methods under Game.Window that would provide this, but I did find a window handle to the form. I was able to accomplish what I wanted by doing this: IntPtr hWnd = this.Window.Handle; var control = System.Windows.Forms.Control.FromHandle( hWnd ); var form = control.FindForm(); form.FormBorderStyle = System.Windows.Forms.FormBorderStyle.None; I don't know why but this feels like a dirty hack. Is there a built-in way to do this in XNA that I'm missing?

    Read the article

  • how to define a field of view for the entire map for shadow?

    - by Mehdi Bugnard
    I recently added "Shadow Mapping" in my XNA games to include shadows. I followed the nice and famous tutorial from "Riemers" : http://www.riemers.net/eng/Tutorials/XNA/Csharp/Series3/Shadow_map.php . This code work nice and I can see my source of light and shadow. But the problem is that my light source does not match the field of view that I created. I want the light covers the entire map of my game. I don't know why , but the light only affect 2-3 cubes of my map. ScreenShot: (the emission of light illuminates only 2-3 blocks and not the full map) Here is my code i create the fieldOfView for LightviewProjection Matrix: Vector3 lightDir = new Vector3(10, 52, 10); lightPos = new Vector3(10, 52, 10); Matrix lightsView = Matrix.CreateLookAt(lightPos, new Vector3(105, 50, 105), new Vector3(0, 1, 0)); Matrix lightsProjection = Matrix.CreatePerspectiveFieldOfView(MathHelper.PiOver2, 1f, 20f, 1000f); lightsViewProjectionMatrix = lightsView * lightsProjection; As you can see , my nearPlane and FarPlane are set to 20f and 100f . So i don't know why the light stop after 2 cubes. it's should be bigger Here is set the value to my custom effect HLSL in the shader file /* SHADOW VALUE */ effectWorld.Parameters["LightDirection"].SetValue(lightDir); effectWorld.Parameters["xLightsWorldViewProjection"].SetValue(Matrix.Identity * .lightsViewProjectionMatrix); effectWorld.Parameters["xWorldViewProjection"].SetValue(Matrix.Identity * arcadia.camera.View * arcadia.camera.Projection); effectWorld.Parameters["xLightPower"].SetValue(1f); effectWorld.Parameters["xAmbient"].SetValue(0.3f); Here is my custom HLSL shader effect file "*.fx" // This sample uses a simple Lambert lighting model. float3 LightDirection = normalize(float3(-1, -1, -1)); float3 DiffuseLight = 1.25; float3 AmbientLight = 0.25; uniform const float3 DiffuseColor = 1; uniform const float Alpha = 1; uniform const float3 EmissiveColor = 0; uniform const float3 SpecularColor = 1; uniform const float SpecularPower = 16; uniform const float3 EyePosition; // FOG attribut uniform const float FogEnabled ; uniform const float FogStart ; uniform const float FogEnd ; uniform const float3 FogColor ; float3 cameraPos : CAMERAPOS; texture Texture; sampler Sampler = sampler_state { Texture = (Texture); magfilter = LINEAR; minfilter = LINEAR; mipfilter = LINEAR; AddressU = mirror; AddressV = mirror; }; texture xShadowMap; sampler ShadowMapSampler = sampler_state { Texture = <xShadowMap>; magfilter = LINEAR; minfilter = LINEAR; mipfilter = LINEAR; AddressU = clamp; AddressV = clamp; }; /* *************** */ /* SHADOW MAP CODE */ /* *************** */ struct SMapVertexToPixel { float4 Position : POSITION; float4 Position2D : TEXCOORD0; }; struct SMapPixelToFrame { float4 Color : COLOR0; }; struct SSceneVertexToPixel { float4 Position : POSITION; float4 Pos2DAsSeenByLight : TEXCOORD0; float2 TexCoords : TEXCOORD1; float3 Normal : TEXCOORD2; float4 Position3D : TEXCOORD3; }; struct SScenePixelToFrame { float4 Color : COLOR0; }; float DotProduct(float3 lightPos, float3 pos3D, float3 normal) { float3 lightDir = normalize(pos3D - lightPos); return dot(-lightDir, normal); } SSceneVertexToPixel ShadowedSceneVertexShader(float4 inPos : POSITION, float2 inTexCoords : TEXCOORD0, float3 inNormal : NORMAL) { SSceneVertexToPixel Output = (SSceneVertexToPixel)0; Output.Position = mul(inPos, xWorldViewProjection); Output.Pos2DAsSeenByLight = mul(inPos, xLightsWorldViewProjection); Output.Normal = normalize(mul(inNormal, (float3x3)World)); Output.Position3D = mul(inPos, World); Output.TexCoords = inTexCoords; return Output; } SScenePixelToFrame ShadowedScenePixelShader(SSceneVertexToPixel PSIn) { SScenePixelToFrame Output = (SScenePixelToFrame)0; float2 ProjectedTexCoords; ProjectedTexCoords[0] = PSIn.Pos2DAsSeenByLight.x / PSIn.Pos2DAsSeenByLight.w / 2.0f + 0.5f; ProjectedTexCoords[1] = -PSIn.Pos2DAsSeenByLight.y / PSIn.Pos2DAsSeenByLight.w / 2.0f + 0.5f; float diffuseLightingFactor = 0; if ((saturate(ProjectedTexCoords).x == ProjectedTexCoords.x) && (saturate(ProjectedTexCoords).y == ProjectedTexCoords.y)) { float depthStoredInShadowMap = tex2D(ShadowMapSampler, ProjectedTexCoords).r; float realDistance = PSIn.Pos2DAsSeenByLight.z / PSIn.Pos2DAsSeenByLight.w; if ((realDistance - 1.0f / 100.0f) <= depthStoredInShadowMap) { diffuseLightingFactor = DotProduct(xLightPos, PSIn.Position3D, PSIn.Normal); diffuseLightingFactor = saturate(diffuseLightingFactor); diffuseLightingFactor *= xLightPower; } } float4 baseColor = tex2D(Sampler, PSIn.TexCoords); Output.Color = baseColor*(diffuseLightingFactor + xAmbient); return Output; } SMapVertexToPixel ShadowMapVertexShader(float4 inPos : POSITION) { SMapVertexToPixel Output = (SMapVertexToPixel)0; Output.Position = mul(inPos, xLightsWorldViewProjection); Output.Position2D = Output.Position; return Output; } SMapPixelToFrame ShadowMapPixelShader(SMapVertexToPixel PSIn) { SMapPixelToFrame Output = (SMapPixelToFrame)0; Output.Color = PSIn.Position2D.z / PSIn.Position2D.w; return Output; } /* ******************* */ /* END SHADOW MAP CODE */ /* ******************* */ / For rendering without instancing. technique ShadowMap { pass Pass0 { VertexShader = compile vs_2_0 ShadowMapVertexShader(); PixelShader = compile ps_2_0 ShadowMapPixelShader(); } } technique ShadowedScene { /* pass Pass0 { VertexShader = compile vs_2_0 VSBasicTx(); PixelShader = compile ps_2_0 PSBasicTx(); } */ pass Pass1 { VertexShader = compile vs_2_0 ShadowedSceneVertexShader(); PixelShader = compile ps_2_0 ShadowedScenePixelShader(); } } technique SimpleFog { pass Pass0 { VertexShader = compile vs_2_0 VSBasicTx(); PixelShader = compile ps_2_0 PSBasicTx(); } } I edited my fx file , for show you only information and functions about the shadow ;-)

    Read the article

  • Pong Collision Help in C# w/ XNA

    - by Ramses Brown
    Edit: My goal is to have it function like this: Ball hits 1st Quarter = rebounds higher (aka Y++) Ball hits 2nd Quarter = rebounds higher (using random value) Ball hits 3rd Quarter = rebounds lower (using random value) Ball hits 4th Quarter = rebounds lower (aka Y--) I'm currently using Rectangle Collision for my collision detection, and it's worked. Now I wish to expand it. Instead of it simply detecting whether or not the paddle/ball intersect, I want to make it so that it can determine what section of the paddle gets hit. I wanted it in 4 parts, with each having a different reaction to impact. My first thought is to base it on the Ball's Y position compared to the Paddle's Y position. But since I want it in 4 parts, I don't know how to do that. So it's essentially be if (ball.Y > Paddle.Y) { PaddleSection1 == true; } Except modified so that instead of being top half/bottom half, it's 1st Quarter, etc.

    Read the article

  • Painting with pixel shaders

    - by Gustavo Maciel
    I have an almost full understanding of how 2D Lighting works, saw this post and was tempted to try implementing this in HLSL. I planned to paint each of the layers with shaders, and then, combine them just drawing one on top of another, or just pass the 3 textures to the shader and getting a better way to combine them. Working almost as planned, but I got a little question in the matter. I'm drawing each layer this way: GraphicsDevice.SetRenderTarget(lighting); GraphicsDevice.Clear(Color.Transparent); //... Setup shader SpriteBatch.Begin(SpriteSortMode.Immediate, BlendState.AlphaBlend, SamplerState.LinearClamp, DepthStencilState.None, RasterizerState.CullNone, lightingShader); SpriteBatch.Draw(texture, fullscreen, Color.White); SpriteBatch.End(); GraphicsDevice.SetRenderTarget(darkMask); GraphicsDevice.Clear(Color.Transparent); //... Setup shader SpriteBatch.Begin(SpriteSortMode.Immediate, BlendState.AlphaBlend, SamplerState.LinearClamp, DepthStencilState.None, RasterizerState.CullNone, darkMaskShader); SpriteBatch.Draw(texture, fullscreen, Color.White); SpriteBatch.End(); Where lightingShader and darkMaskShader are shaders that, with parameters (view and proj matrices, light pos, color and range, etc) generate a texture meant to be that layer. It works fine, but I'm not sure if drawing a transparent quad on top of a transparent render target is the best way of doing it. Because I actually just need the position and params. Concluding: Can I paint a texture with shaders without having to clear it and then draw a transparent texture on top of it?

    Read the article

  • Scaling Down Pixel Art?

    - by Michael Stum
    There's plenty of algorithms to scale up pixel art (I prefer hqx personally), but are there any notable algorithms to scale it down? In my case, the game is designed to run at 1280x720, but if someone plays at a lower resolution I want it to still look good. Most Pixel Art discussions center around 320x200 or 640x480 and upscaling for use in console emulators, but I wonder how modern 2D games like the Monkey Island Remake look good on lower resolutions? (Ignoring the options of having multiple versions of assets (essentially, mipmapping))

    Read the article

  • How do I run my XBOX XNA game without a network connection?

    - by Hugh
    I need to demo my XBOX XNA game in college. The college doesn't allow this type of device to connect to the network. I deployed my game to the Xbox and it is sitting in the games list along with my other games. It runs fine with a network connection but when its offline it comes up with an error message saying its needs a connection to run the game. This makes no sense, the game is deployed on the Xbox memory, it must be some security policy or something! Is there any way around this? The demo is on monday!

    Read the article

  • Render To Texture Using OpenGL is not working but normal rendering works just fine

    - by Franky Rivera
    things I initialize at the beginning of the program I realize not all of these pertain to my issue I just copy and pasted what I had //overall initialized //things openGL related I initialize earlier on in the project glClearColor( 0.0f, 0.0f, 0.0f, 1.0f ); glClearDepth( 1.0f ); glEnable(GL_ALPHA_TEST); glEnable( GL_STENCIL_TEST ); glEnable(GL_DEPTH_TEST); glDepthFunc( GL_LEQUAL ); glEnable(GL_CULL_FACE); glFrontFace( GL_CCW ); glEnable(GL_COLOR_MATERIAL); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glHint( GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST ); //we also initialize our shader programs //(i added some shader program functions for definitions) //this enum list is else where in code //i figured it would help show you guys more about my //shader compile creation function right under this enum list VVVVVV /*enum eSHADER_ATTRIB_LOCATION { VERTEX_ATTRIB = 0, NORMAL_ATTRIB = 2, COLOR_ATTRIB, COLOR2_ATTRIB, FOG_COORD, TEXTURE_COORD_ATTRIB0 = 8, TEXTURE_COORD_ATTRIB1, TEXTURE_COORD_ATTRIB2, TEXTURE_COORD_ATTRIB3, TEXTURE_COORD_ATTRIB4, TEXTURE_COORD_ATTRIB5, TEXTURE_COORD_ATTRIB6, TEXTURE_COORD_ATTRIB7 }; */ //if we fail making our shader leave if( !testShader.CreateShader( "SimpleShader.vp", "SimpleShader.fp", 3, VERTEX_ATTRIB, "vVertexPos", NORMAL_ATTRIB, "vNormal", TEXTURE_COORD_ATTRIB0, "vTexCoord" ) ) return false; if( !testScreenShader.CreateShader( "ScreenShader.vp", "ScreenShader.fp", 3, VERTEX_ATTRIB, "vVertexPos", NORMAL_ATTRIB, "vNormal", TEXTURE_COORD_ATTRIB0, "vTexCoord" ) ) return false; SHADER PROGRAM FUNCTIONS bool CShaderProgram::CreateShader( const char* szVertexShaderName, const char* szFragmentShaderName, ... ) { //here are our handles for the openGL shaders int iGLVertexShaderHandle = -1, iGLFragmentShaderHandle = -1; //get our shader data char *vData = 0, *fData = 0; int vLength = 0, fLength = 0; LoadShaderFile( szVertexShaderName, &vData, &vLength ); LoadShaderFile( szFragmentShaderName, &fData, &fLength ); //data if( !vData ) return false; //data if( !fData ) { delete[] vData; return false; } //create both our shader objects iGLVertexShaderHandle = glCreateShader( GL_VERTEX_SHADER ); iGLFragmentShaderHandle = glCreateShader( GL_FRAGMENT_SHADER ); //well we got this far so we have dynamic data to clean up //load vertex shader glShaderSource( iGLVertexShaderHandle, 1, (const char**)(&vData), &vLength ); //load fragment shader glShaderSource( iGLFragmentShaderHandle, 1, (const char**)(&fData), &fLength ); //we are done with our data delete it delete[] vData; delete[] fData; //compile them both glCompileShader( iGLVertexShaderHandle ); //get shader status int iShaderOk; glGetShaderiv( iGLVertexShaderHandle, GL_COMPILE_STATUS, &iShaderOk ); if( iShaderOk == GL_FALSE ) { char* buffer; //get what happend with our shader glGetShaderiv( iGLVertexShaderHandle, GL_INFO_LOG_LENGTH, &iShaderOk ); buffer = new char[iShaderOk]; glGetShaderInfoLog( iGLVertexShaderHandle, iShaderOk, NULL, buffer ); //sprintf_s( buffer, "Failure Our Object For %s was not created", szFileName ); MessageBoxA( NULL, buffer, szVertexShaderName, MB_OK ); //delete our dynamic data free( buffer ); glDeleteShader(iGLVertexShaderHandle); return false; } glCompileShader( iGLFragmentShaderHandle ); //get shader status glGetShaderiv( iGLFragmentShaderHandle, GL_COMPILE_STATUS, &iShaderOk ); if( iShaderOk == GL_FALSE ) { char* buffer; //get what happend with our shader glGetShaderiv( iGLFragmentShaderHandle, GL_INFO_LOG_LENGTH, &iShaderOk ); buffer = new char[iShaderOk]; glGetShaderInfoLog( iGLFragmentShaderHandle, iShaderOk, NULL, buffer ); //sprintf_s( buffer, "Failure Our Object For %s was not created", szFileName ); MessageBoxA( NULL, buffer, szFragmentShaderName, MB_OK ); //delete our dynamic data free( buffer ); glDeleteShader(iGLFragmentShaderHandle); return false; } //lets check to see if the fragment shader compiled int iCompiled = 0; glGetShaderiv( iGLVertexShaderHandle, GL_COMPILE_STATUS, &iCompiled ); if( !iCompiled ) { //this shader did not compile leave return false; } //lets check to see if the fragment shader compiled glGetShaderiv( iGLFragmentShaderHandle, GL_COMPILE_STATUS, &iCompiled ); if( !iCompiled ) { char* buffer; //get what happend with our shader glGetShaderiv( iGLFragmentShaderHandle, GL_INFO_LOG_LENGTH, &iShaderOk ); buffer = new char[iShaderOk]; glGetShaderInfoLog( iGLFragmentShaderHandle, iShaderOk, NULL, buffer ); //sprintf_s( buffer, "Failure Our Object For %s was not created", szFileName ); MessageBoxA( NULL, buffer, szFragmentShaderName, MB_OK ); //delete our dynamic data free( buffer ); glDeleteShader(iGLFragmentShaderHandle); return false; } //make our new shader program m_iShaderProgramHandle = glCreateProgram(); glAttachShader( m_iShaderProgramHandle, iGLVertexShaderHandle ); glAttachShader( m_iShaderProgramHandle, iGLFragmentShaderHandle ); glLinkProgram( m_iShaderProgramHandle ); int iLinked = 0; glGetProgramiv( m_iShaderProgramHandle, GL_LINK_STATUS, &iLinked ); if( !iLinked ) { //we didn't link return false; } //NOW LETS CREATE ALL OUR HANDLES TO OUR PROPER LIKING //start from this parameter va_list parseList; va_start( parseList, szFragmentShaderName ); //read in number of variables if any unsigned uiNum = 0; uiNum = va_arg( parseList, unsigned ); //for loop through our attribute pairs int enumType = 0; for( unsigned x = 0; x < uiNum; ++x ) { //specify our attribute locations enumType = va_arg( parseList, int ); char* name = va_arg( parseList, char* ); glBindAttribLocation( m_iShaderProgramHandle, enumType, name ); } //end our list parsing va_end( parseList ); //relink specify //we have custom specified our attribute locations glLinkProgram( m_iShaderProgramHandle ); //fill our handles InitializeHandles( ); //everything went great return true; } void CShaderProgram::InitializeHandles( void ) { m_uihMVP = glGetUniformLocation( m_iShaderProgramHandle, "mMVP" ); m_uihWorld = glGetUniformLocation( m_iShaderProgramHandle, "mWorld" ); m_uihView = glGetUniformLocation( m_iShaderProgramHandle, "mView" ); m_uihProjection = glGetUniformLocation( m_iShaderProgramHandle, "mProjection" ); ///////////////////////////////////////////////////////////////////////////////// //texture handles m_uihDiffuseMap = glGetUniformLocation( m_iShaderProgramHandle, "diffuseMap" ); if( m_uihDiffuseMap != -1 ) { //store what texture index this handle will be in the shader glUniform1i( m_uihDiffuseMap, RM_DIFFUSE+GL_TEXTURE0 ); (0)+ } m_uihNormalMap = glGetUniformLocation( m_iShaderProgramHandle, "normalMap" ); if( m_uihNormalMap != -1 ) { //store what texture index this handle will be in the shader glUniform1i( m_uihNormalMap, RM_NORMAL+GL_TEXTURE0 ); (1)+ } } void CShaderProgram::SetDiffuseMap( const unsigned& uihDiffuseMap ) { (0)+ glActiveTexture( RM_DIFFUSE+GL_TEXTURE0 ); glBindTexture( GL_TEXTURE_2D, uihDiffuseMap ); } void CShaderProgram::SetNormalMap( const unsigned& uihNormalMap ) { (1)+ glActiveTexture( RM_NORMAL+GL_TEXTURE0 ); glBindTexture( GL_TEXTURE_2D, uihNormalMap ); } //MY 2 TEST SHADERS also my math order is correct it pertains to my matrix ordering in my math library once again i've tested the basic rendering. rendering to the screen works fine ----------------------------------------SIMPLE SHADER------------------------------------- //vertex shader looks like this #version 330 in vec3 vVertexPos; in vec3 vNormal; in vec2 vTexCoord; uniform mat4 mWorld; // Model Matrix uniform mat4 mView; // Camera View Matrix uniform mat4 mProjection;// Camera Projection Matrix out vec2 vTexCoordVary; // Texture coord to the fragment program out vec3 vNormalColor; void main( void ) { //pass the texture coordinate vTexCoordVary = vTexCoord; vNormalColor = vNormal; //calculate our model view projection matrix mat4 mMVP = (( mWorld * mView ) * mProjection ); //result our position gl_Position = vec4( vVertexPos, 1 ) * mMVP; } //fragment shader looks like this #version 330 in vec2 vTexCoordVary; in vec3 vNormalColor; uniform sampler2D diffuseMap; uniform sampler2D normalMap; out vec4 fragColor[2]; void main( void ) { //CORRECT fragColor[0] = texture( normalMap, vTexCoordVary ); fragColor[1] = vec4( vNormalColor, 1.0 ); }; ----------------------------------------SCREEN SHADER------------------------------------- //vertext shader looks like this #version 330 in vec3 vVertexPos; // This is the position of the vertex coming in in vec2 vTexCoord; // This is the texture coordinate.... out vec2 vTexCoordVary; // Texture coord to the fragment program void main( void ) { vTexCoordVary = vTexCoord; //set our position gl_Position = vec4( vVertexPos.xyz, 1.0f ); } //fragment shader looks like this #version 330 in vec2 vTexCoordVary; // Incoming "varying" texture coordinate uniform sampler2D diffuseMap;//the tile detail texture uniform sampler2D normalMap; //the normal map from earlier out vec4 vTheColorOfThePixel; void main( void ) { //CORRECT vTheColorOfThePixel = texture( normalMap, vTexCoordVary ); }; .Class RenderTarget Main Functions //here is my render targets create function bool CRenderTarget::Create( const unsigned uiNumTextures, unsigned uiWidth, unsigned uiHeight, int iInternalFormat, bool bDepthWanted ) { if( uiNumTextures <= 0 ) return false; //generate our variables glGenFramebuffers(1, &m_uifboHandle); // Initialize FBO glBindFramebuffer(GL_FRAMEBUFFER, m_uifboHandle); m_uiNumTextures = uiNumTextures; if( bDepthWanted ) m_uiNumTextures += 1; m_uiTextureHandle = new unsigned int[uiNumTextures]; glGenTextures( uiNumTextures, m_uiTextureHandle ); for( unsigned x = 0; x < uiNumTextures-1; ++x ) { glBindTexture( GL_TEXTURE_2D, m_uiTextureHandle[x]); // Reserve space for our 2D render target glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexImage2D(GL_TEXTURE_2D, 0, iInternalFormat, uiWidth, uiHeight, 0, GL_RGB, GL_UNSIGNED_BYTE, NULL); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + x, GL_TEXTURE_2D, m_uiTextureHandle[x], 0); } //if we need one for depth testing if( bDepthWanted ) { glFramebufferTexture2D(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, m_uiTextureHandle[uiNumTextures-1], 0); glFramebufferTexture2D(GL_FRAMEBUFFER_EXT, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D, m_uiTextureHandle[uiNumTextures-1], 0);*/ // Must attach texture to framebuffer. Has Stencil and depth glBindRenderbuffer(GL_RENDERBUFFER, m_uiTextureHandle[uiNumTextures-1]); glRenderbufferStorage(GL_RENDERBUFFER, /*GL_DEPTH_STENCIL*/GL_DEPTH24_STENCIL8, TEXTURE_WIDTH, TEXTURE_HEIGHT ); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, m_uiTextureHandle[uiNumTextures-1]); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_RENDERBUFFER, m_uiTextureHandle[uiNumTextures-1]); } glBindFramebuffer(GL_FRAMEBUFFER, 0); //everything went fine return true; } void CRenderTarget::Bind( const int& iTargetAttachmentLoc, const unsigned& uiWhichTexture, const bool bBindFrameBuffer ) { if( bBindFrameBuffer ) glBindFramebuffer( GL_FRAMEBUFFER, m_uifboHandle ); if( uiWhichTexture < m_uiNumTextures ) glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + iTargetAttachmentLoc, m_uiTextureHandle[uiWhichTexture], 0); } void CRenderTarget::UnBind( void ) { //default our binding glBindFramebuffer( GL_FRAMEBUFFER, 0 ); } //this is all in a test project so here's my straight forward rendering function for testing this render function does basic rendering steps keep in mind i have already tested my textures i have already tested my box thats being rendered all basic rendering works fine its just when i try to render to a texture then display it in a render surface that it does not work. Also I have tested my render surface it is bound exactly to the screen coordinate space void TestRenderSteps( void ) { //Clear the color and the depth glClearColor( 0.0f, 0.0f, 0.0f, 1.0f ); glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT ); //bind the shader program glUseProgram( testShader.m_iShaderProgramHandle ); //1) grab the vertex buffer related to our rendering glBindBuffer( GL_ARRAY_BUFFER, CVertexBufferManager::GetInstance()->GetPositionNormalTexBuffer().GetBufferHandle() ); //2) how our stream will be split here ( 4 bytes position, ..ext ) CVertexBufferManager::GetInstance()->GetPositionNormalTexBuffer().MapVertexStride(); //3) set the index buffer if needed glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, CIndexBuffer::GetInstance()->GetBufferHandle() ); //send the needed information into the shader testShader.SetWorldMatrix( boxPosition ); testShader.SetViewMatrix( Static_Camera.GetView( ) ); testShader.SetProjectionMatrix( Static_Camera.GetProjection( ) ); testShader.SetDiffuseMap( iTextureID ); testShader.SetNormalMap( iTextureID2 ); GLenum buffers[] = { GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1 }; glDrawBuffers(2, buffers); //bind to our render target //RM_DIFFUSE, RM_NORMAL are enums (0 && 1) renderTarget.Bind( RM_DIFFUSE, 1, true ); renderTarget.Bind( RM_NORMAL, 1, false); //false because buffer is already bound //i clear here just to clear the texture to make it a default value of white //by doing this i can see if what im rendering to my screen is just drawing to the screen //or if its my render target defaulted glClearColor( 1.0f, 1.0f, 1.0f, 1.0f ); glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT ); //i have this box object which i draw testBox.Draw(); //the draw call looks like this //my normal rendering works just fine so i know this draw is fine // glDrawElementsBaseVertex( m_sides[x].GetPrimitiveType(), // m_sides[x].GetPrimitiveCount() * 3, // GL_UNSIGNED_INT, // BUFFER_OFFSET(sizeof(unsigned int) * m_sides[x].GetStartIndex()), // m_sides[x].GetStartVertex( ) ); //we unbind the target back to default renderTarget.UnBind(); //i stop mapping my vertex format CVertexBufferManager::GetInstance()->GetPositionNormalTexBuffer().UnMapVertexStride(); //i go back to default in using no shader program glUseProgram( 0 ); //now that everything is drawn to the textures //lets draw our screen surface and pass it our 2 filled out textures //NOW RENDER THE TEXTURES WE COLLECTED TO THE SCREEN QUAD //bind the shader program glUseProgram( testScreenShader.m_iShaderProgramHandle ); //1) grab the vertex buffer related to our rendering glBindBuffer( GL_ARRAY_BUFFER, CVertexBufferManager::GetInstance()->GetPositionTexBuffer().GetBufferHandle() ); //2) how our stream will be split here CVertexBufferManager::GetInstance()->GetPositionTexBuffer().MapVertexStride(); //3) set the index buffer if needed glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, CIndexBuffer::GetInstance()->GetBufferHandle() ); //pass our 2 filled out textures (in the shader im just using the diffuse //i wanted to see if i was rendering anything before i started getting into other techniques testScreenShader.SetDiffuseMap( renderTarget.GetTextureHandle(0) ); //SetDiffuseMap definitions in shader program class testScreenShader.SetNormalMap( renderTarget.GetTextureHandle(1) ); //SetNormalMap definitions in shader program class //DO the draw call drawing our screen rectangle glDrawElementsBaseVertex( m_ScreenRect.GetPrimitiveType(), m_ScreenRect.GetPrimitiveCount() * 3, GL_UNSIGNED_INT, BUFFER_OFFSET(sizeof(unsigned int) * m_ScreenRect.GetStartIndex()), m_ScreenRect.GetStartVertex( ) );*/ //unbind our vertex mapping CVertexBufferManager::GetInstance()->GetPositionTexBuffer().UnMapVertexStride(); //default to no shader program glUseProgram( 0 ); } Last words: 1) I can render my box just fine 2) i can render my screen rect just fine 3) I cannot render my box into a texture then display it into my screen rect 4) This entire project is just a test project I made to test different rendering practices. So excuse any "ugly-ish" unclean code. This was made just on a fly run through when I was trying new test cases.

    Read the article

  • Simplest way to use Steam Leaderboards from C# [on hold]

    - by Miau
    We are about to integrate steamworks for leaderboards and achievements into our game. I see there are many open and closed source libraries that can be used to use SteamWorks from C#. Rolling our own wrapper can be done, but if the other libraries are reliable then it would be better to use and perhaps contribute back if we see any obvious gaps. Have you used any and if so what was your experience with the different libraries? Specifically for Leaderboards and achievements The ones I found are: SteamWorks.net Steam4Net Ludosity (can be used outside of Unity apparently)

    Read the article

  • Component-wise GLSL vector branching

    - by Gustavo Maciel
    I'm aware that it usually is a BAD idea to operate separately on GLSL vec's components separately. For example: //use instrinsic functions, they do the calculation on 4 components at a time. float dot = v1.x*v2.x + v1.y * v2.y + v1.z * v2.z; //NEVER float dot = dot(v1, v2); //YES //Multiply one by one is not good too, since the ALU can do the 4 components at a time too. vec3 mul = vec3(v1.x * v2.x, v1.y * v2.y, v1.z * v2.z); //NEVER vec3 mul = v1 * v2; I've been struggling thinking, are there equivalent operations for branching? For example: vec4 Overlay(vec4 v1, vec4 v2, vec4 opacity) { bvec4 less = lessThan(v1, vec4(0.5)); vec4 blend; for(int i = 0; i < 4; ++i) { if(less[i]) blend[i] = 2.0 * v1[i]*v2[i]; else blend[i] = 1.0 - 2.0 * (1.0 - v1[i])*(1.0 - v2[i]); } return v1 + (blend-v1)*opacity; } This is a Overlay operator that works component wise. I'm not sure if this is the best way to do it, since I'm afraid these for and if can be a bottleneck later. Tl;dr, Can I branch component wise? If yes, how can I optimize that Overlay function with it?

    Read the article

  • Playing repeated sound in Java

    - by Diogo Schneider
    I'm trying to play sounds in a Java game with the following code: AudioStream audioStream = new AudioStream(stream); AudioPlayer.player.start(audioStream); The stream variable is just an InputStream to the resource. By the first time this code is called, the sound is played as expected, but by the second time the program just hangs, not even an exception is thrown. I don't know what's going on or how to prevent this. If I try closing either stream or audioStream after the above code, the program doesn't hang, but no sound is ever played at all. Any tips are welcome, thanks.

    Read the article

  • Loading files during run time

    - by NDraskovic
    I made a content pipeline extension (using this tutorial) in XNA 4.0 game. I altered some aspects, so it serves my need better, but the basic idea still applies. Now I want to go a step further and enable my game to be changed during run time. The file I am loading trough my content pipeline extension is very simple, it only contains decimal numbers, so I want to enable the user to change that file at will and reload it while the game is running (without recompiling as I had to do so far). This file is a very simplified version of level editor, meaning that it contains rows like: 1 1,5 1,78 -3,6 Here, the first number determines the object that will be drawn to the scene, and the other 3 numbers are coordinates where that object will be placed. So, how can I change the file that contains these numbers so that the game loads it and redraws the scene accordingly? Thanks

    Read the article

  • Keeping the camera from going through walls in a first person game in Unity?

    - by Timothy Williams
    I'm using a modified version of the standard Unity First Person Controller. At the moment when I stand near walls, the camera clips through and lets me see through the wall. I know about camera occlusion and have implemented it in 3rd person games, but I have no clue how I'd accomplish this in a first person game, since the camera doesn't move from the player at all. How do other people accomplish this?

    Read the article

  • Difference between the terms Material & Effect

    - by codey
    I'm making an effect system right now (I think, because it may be a material system... or both!). The effects system follows the common (e.g. COLLADA, DirectX) effect framework abstraction of Effects have Techniques, Techniques have Passes, Passes have States & Shader Programs. An effect, according to COLLADA, defines the equations necessary for the visual appearance of geometry and screen-space image processing. Keeping with the abstraction, effects contain techniques. Each effect can contain one or many techniques (i.e. ways to generate the effect), each of which describes a different method for rendering that effect. The technique could be relate to quality (e.g. high precision, high LOD, etc.), or in-game-situation (e.g. night/day, power-up-mode, etc.). Techniques hold a description of the textures, samplers, shaders, parameters, & passes necessary for rendering this effect using one method. Some algorithms require several passes to render the effect. Pipeline descriptions are broken into an ordered collection of Pass objects. A pass provides a static declaration of all the render states, shaders, & settings for "one rendering pipeline" (i.e. one pass). Meshes usually contain a series of materials that define the model. According to the COLLADA spec (again), a material instantiates an effect, fills its parameters with values, & selects a technique. But I see material defined differently in other places, such as just the Lambert, Blinn, Phong "material types/shaded surfaces", or as Metal, Plastic, Wood, etc. In game dev forums, people often talk about implementing a "material/effect system". Is the material not an instance of an effect? Ergo, if I had effect objects, stored in a collection, & each effect instance object with there own parameter setting, then there is no need for the concept of a material... Or am I interpreting it wrong? Please help by contributing your interpretations as I want to be clear on a distinction (if any), & don't want to miss out on the concept of a material if it should be implemented to follow the abstraction of the DirectX FX framework & COLLADA definitions closely.

    Read the article

  • Algorithm to shift the car

    - by Simran kaur
    I have a track that can be divided into n number of tracks and a car as GamObject. The track has transforms such that some part of the track's width lies in negative x axis and other in positive. Requirement: One move should cross one track. On every move(left or right), I want the car to reach exact centre of the next track on either sides i.e left or right. My code: Problem: : Because of negative values , somewhere I am missing out something that is making car move not in desirable positions and that's because of negative values only. variable tracks is the number of tracks the whole track is divided in. variable dist is the total width of the complete track. On left movement: if (Input.GetKeyDown (KeyCode.LeftArrow)) { if (this.transform.position.x < r.renderer.bounds.min.x + box.size.x) { this.transform.position = new Vector3 (r.renderer.bounds.min.x + Mathf.FloorToInt(box.size.x), this.transform.position.y, this.transform.position.z); } else { int tracknumber = Mathf.RoundToInt(dist - transform.position.x)/tracks; float averagedistance = (tracknumber*(dist/tracks) + (tracknumber-1)*(dist/tracks))/2; if(transform.position.x > averagedistoftracks) { amountofmovement = amountofmovement + (transform.position.x - averagedistance); } else { amountofmovement = amountofmovement - (averagedistance - transform.position.x); } this.transform.position = new Vector3 (this.transform.position.x - amountofmovement, this.transform.position.y, this.transform.position.z); } }

    Read the article

  • Example of DOD design (on a generic Zombie game)

    - by Jeffrey
    I can't seem to find a nice explanation of the Data Oriented Design for a generic zombie game (it's just an example, pretty common example). Could you make an example of the Data Oriented Design on creating a generic zombie class? Is the following good? Zombie list class: class ZombieList { GLuint vbo; // generic zombie vertex model std::vector<color>; // object default color std::vector<texture>; // objects textures std::vector<vector3D>; // objects positions public: unsigned int create(); // return object id void move(unsigned int objId, vector3D offset); void rotate(unsigned int objId, float angle); void setColor(unsigned int objId, color c); void setPosition(unsigned int objId, color c); void setTexture(unsigned int, unsigned int); ... void update(Player*); // move towards player, attack if near } Example: Player p; Zombielist zl; unsigned int first = zl.create(); zl.setPosition(first, vector3D(50, 50)); zl.setTexture(first, texture("zombie1.png")); ... while (running) { // main loop ... zl.update(&p); zl.draw(); // draw every zombie } Or would creating a generic World container that contains every action from bite(zombieId, playerId) to moveTo(playerId, vector) to createPlayer() to shoot(playerId, vector) to face(radians)/face(vector); and contains: std::vector<zombie> std::vector<player> ... std::vector<mapchunk> ... std::vector<vbobufferid> player_run_animation; ... be a good example? Whats the proper way to organize a game with DOD?

    Read the article

  • Mesh with quads to triangle mesh

    - by scape
    I want to use Blender for making models yet realize some of the polygons are not triangles but contain quads or more (example: cylinder top and bottom). I could export the the mesh as a basic mesh file and import it in to an openGL application and workout rendering the quads as tris, but anything with more than 4 vert indices is beyond me. Is it typical to convert the mesh to a triangle-based mesh inside blender before exporting it? I actually tried this through the quads_convert_to_tris method within a blender py script and the top of the cylinder does not look symmetrical. What is typically done to render a loaded mesh as a tri?

    Read the article

  • Combine 3D objects in XNA 4

    - by Christoph
    Currently I am writing on my thesis for university, the theme I am working on is 3D Visualization of hierarchical structures using cone trees. I want to do is to draw a cone and arrange a number of spheres at the bottom of the cone. The spheres should be arranged according to the radius and the number of spheres correctly. As you can imagine I need a lot of these cone/sphere combinations. First Attempt I was able to find some tutorials that helped with drawing cones and spheres. Cone public Cone(GraphicsDevice device, float height, int tessellation, string name, List<Sphere> children) { //prepare children and calculate the children spacing and radius of the cone if (children == null || children.Count == 0) { throw new ArgumentNullException("children"); } this.Height = height; this.Name = name; this.Children = children; //create the cone if (tessellation < 3) { throw new ArgumentOutOfRangeException("tessellation"); } //Create a ring of triangels around the outside of the cones bottom for (int i = 0; i < tessellation; i++) { Vector3 normal = this.GetCircleVector(i, tessellation); // add the vertices for the top of the cone base.AddVertex(Vector3.Up * height, normal); //add the bottom circle base.AddVertex(normal * this.radius + Vector3.Down * height, normal); //Add indices base.AddIndex(i * 2); base.AddIndex(i * 2 + 1); base.AddIndex((i * 2 + 2) % (tessellation * 2)); base.AddIndex(i * 2 + 1); base.AddIndex((i * 2 + 3) % (tessellation * 2)); base.AddIndex((i * 2 + 2) % (tessellation * 2)); } //create flate triangle to seal the bottom this.CreateCap(tessellation, height, this.Radius, Vector3.Down); base.InitializePrimitive(device); } Sphere public void Initialize(GraphicsDevice device, Vector3 qi) { int verticalSegments = this.Tesselation; int horizontalSegments = this.Tesselation * 2; //single vertex on the bottom base.AddVertex((qi * this.Radius) + this.lowering, Vector3.Down); for (int i = 0; i < verticalSegments; i++) { float latitude = ((i + 1) * MathHelper.Pi / verticalSegments) - MathHelper.PiOver2; float dy = (float)Math.Sin(latitude); float dxz = (float)Math.Cos(latitude); //Create a singe ring of latitudes for (int j = 0; j < horizontalSegments; j++) { float longitude = j * MathHelper.TwoPi / horizontalSegments; float dx = (float)Math.Cos(longitude) * dxz; float dz = (float)Math.Sin(longitude) * dxz; Vector3 normal = new Vector3(dx, dy, dz); base.AddVertex(normal * this.Radius, normal); } } // Finish with a single vertex at the top of the sphere. AddVertex((qi * this.Radius) + this.lowering, Vector3.Up); // Create a fan connecting the bottom vertex to the bottom latitude ring. for (int i = 0; i < horizontalSegments; i++) { AddIndex(0); AddIndex(1 + (i + 1) % horizontalSegments); AddIndex(1 + i); } // Fill the sphere body with triangles joining each pair of latitude rings. for (int i = 0; i < verticalSegments - 2; i++) { for (int j = 0; j < horizontalSegments; j++) { int nextI = i + 1; int nextJ = (j + 1) % horizontalSegments; base.AddIndex(1 + i * horizontalSegments + j); base.AddIndex(1 + i * horizontalSegments + nextJ); base.AddIndex(1 + nextI * horizontalSegments + j); base.AddIndex(1 + i * horizontalSegments + nextJ); base.AddIndex(1 + nextI * horizontalSegments + nextJ); base.AddIndex(1 + nextI * horizontalSegments + j); } } // Create a fan connecting the top vertex to the top latitude ring. for (int i = 0; i < horizontalSegments; i++) { base.AddIndex(CurrentVertex - 1); base.AddIndex(CurrentVertex - 2 - (i + 1) % horizontalSegments); base.AddIndex(CurrentVertex - 2 - i); } base.InitializePrimitive(device); } The tricky part now is to arrange the spheres at the bottom of the cone. I tried is to draw just the cone and then draw the spheres. I need a lot of these cones, so it would be pretty hard to calculate all the positions correctly. Second Attempt So the second try was to generate a object that builds all vertices of the cone and all of the spheres at once. So I was hoping to render a cone with all its spheres arranged correctly. After a short debug I found out that the cone is created and the first sphere, when it turn of the second sphere I am running into an OutOfBoundsException of ushort.MaxValue. Cone and Spheres public ConeWithSpheres(GraphicsDevice device, float height, float coneDiameter, float sphereDiameter, int coneTessellation, int sphereTessellation, int numberOfSpheres) { if (coneTessellation < 3) { throw new ArgumentException(string.Format("{0} is to small for the tessellation of the cone. The number must be greater or equal to 3", coneTessellation)); } if (sphereTessellation < 3) { throw new ArgumentException(string.Format("{0} is to small for the tessellation of the sphere. The number must be greater or equal to 3", sphereTessellation)); } //set properties this.Height = height; this.ConeDiameter = coneDiameter; this.SphereDiameter = sphereDiameter; this.NumberOfChildren = numberOfSpheres; //end set properties //generate the cone this.GenerateCone(device, coneTessellation); //generate the spheres //vector that defines the Y position of the sphere on the cones bottom Vector3 lowering = new Vector3(0, 0.888f, 0); this.GenerateSpheres(device, sphereTessellation, numberOfSpheres, lowering); } // ------ GENERATE CONE ------ private void GenerateCone(GraphicsDevice device, int coneTessellation) { int doubleTessellation = coneTessellation * 2; //Create a ring of triangels around the outside of the cones bottom for (int index = 0; index < coneTessellation; index++) { Vector3 normal = this.GetCircleVector(index, coneTessellation); //add the vertices for the top of the cone base.AddVertex(Vector3.Up * this.Height, normal); //add the bottom of the cone base.AddVertex(normal * this.ConeRadius + Vector3.Down * this.Height, normal); //add indices base.AddIndex(index * 2); base.AddIndex(index * 2 + 1); base.AddIndex((index * 2 + 2) % doubleTessellation); base.AddIndex(index * 2 + 1); base.AddIndex((index * 2 + 3) % doubleTessellation); base.AddIndex((index * 2 + 2) % doubleTessellation); } //create flate triangle to seal the bottom this.CreateCap(coneTessellation, this.Height, this.ConeRadius, Vector3.Down); base.InitializePrimitive(device); } // ------ GENERATE SPHERES ------ private void GenerateSpheres(GraphicsDevice device, int sphereTessellation, int numberOfSpheres, Vector3 lowering) { int verticalSegments = sphereTessellation; int horizontalSegments = sphereTessellation * 2; for (int childCount = 1; childCount < numberOfSpheres; childCount++) { //single vertex at the bottom of the sphere base.AddVertex((this.GetCircleVector(childCount, this.NumberOfChildren) * this.SphereRadius) + lowering, Vector3.Down); for (int verticalSegmentsCount = 0; verticalSegmentsCount < verticalSegments; verticalSegmentsCount++) { float latitude = ((verticalSegmentsCount + 1) * MathHelper.Pi / verticalSegments) - MathHelper.PiOver2; float dy = (float)Math.Sin(latitude); float dxz = (float)Math.Cos(latitude); //create a single ring of latitudes for (int horizontalSegmentsCount = 0; horizontalSegmentsCount < horizontalSegments; horizontalSegmentsCount++) { float longitude = horizontalSegmentsCount * MathHelper.TwoPi / horizontalSegments; float dx = (float)Math.Cos(longitude) * dxz; float dz = (float)Math.Sin(longitude) * dxz; Vector3 normal = new Vector3(dx, dy, dz); base.AddVertex((normal * this.SphereRadius) + lowering, normal); } } //finish with a single vertex at the top of the sphere base.AddVertex((this.GetCircleVector(childCount, this.NumberOfChildren) * this.SphereRadius) + lowering, Vector3.Up); //create a fan connecting the bottom vertex to the bottom latitude ring for (int i = 0; i < horizontalSegments; i++) { base.AddIndex(0); base.AddIndex(1 + (i + 1) % horizontalSegments); base.AddIndex(1 + i); } //Fill the sphere body with triangles joining each pair of latitude rings for (int i = 0; i < verticalSegments - 2; i++) { for (int j = 0; j < horizontalSegments; j++) { int nextI = i + 1; int nextJ = (j + 1) % horizontalSegments; base.AddIndex(1 + i * horizontalSegments + j); base.AddIndex(1 + i * horizontalSegments + nextJ); base.AddIndex(1 + nextI * horizontalSegments + j); base.AddIndex(1 + i * horizontalSegments + nextJ); base.AddIndex(1 + nextI * horizontalSegments + nextJ); base.AddIndex(1 + nextI * horizontalSegments + j); } } //create a fan connecting the top vertiex to the top latitude for (int i = 0; i < horizontalSegments; i++) { base.AddIndex(this.CurrentVertex - 1); base.AddIndex(this.CurrentVertex - 2 - (i + 1) % horizontalSegments); base.AddIndex(this.CurrentVertex - 2 - i); } base.InitializePrimitive(device); } } Any ideas how I could fix this?

    Read the article

  • Updating physics for animated models

    - by Mathias Hölzl
    For a new game we have do set up a scene with a minimum of 30 bone animated models.(shooter) The problem is that the update process for the animated models takes too long. Thats what I do: Each character has ~30 bones and for every update tick the animation gets calculated and every bone fires a event with the new matrix. The physics receives the event with the new matrix and updates the collision shape for that bone. The time that it takes to build the animation isn't that bad (0.2ms for 30 Bones - 6ms for 30 models). But the main problem is that the physic engine (Bullet) uses a diffrent matrix for transformation and so its necessary to convert it. Code for matrix conversion: (~0.005ms) btTransform CLEAR_PHYSICS_API Mat_to_btTransform( Mat mat ) { btMatrix3x3 bulletRotation; btVector3 bulletPosition; XMFLOAT4X4 matData = mat.GetStorage(); // copy rotation matrix for ( int row=0; row<3; ++row ) for ( int column=0; column<3; ++column ) bulletRotation[row][column] = matData.m[column][row]; for ( int column=0; column<3; ++column ) bulletPosition[column] = matData.m[3][column]; return btTransform( bulletRotation, bulletPosition ); } The function for updating the transform(Physic): void CLEAR_PHYSICS_API BulletPhysics::VKinematicMove(Mat mat, ActorId aid) { if ( btRigidBody * const body = FindActorBody( aid ) ) { btTransform tmp = Mat_to_btTransform( mat ); body->setWorldTransform( tmp ); } } The real problem is the function FindActorBody(id): ActorIDToBulletActorMap::const_iterator found = m_actorBodies.find( id ); if ( found != m_actorBodies.end() ) return found->second; All physic actors are stored in m_actorBodies and thats why the updating process takes to long. But I have no idea how I could avoid this. Friendly greedings, Mathias

    Read the article

  • Grid pathfinding with a lot of entities

    - by Vee
    I'd like to explain this problem with a screenshot from a released game, DROD: Gunthro's Epic Blunder, by Caravel Games. The game is turn-based and tile-based. I'm trying to create something very similar (a clone of the game), and I've got most of the fundamentals done, but I'm having trouble implementing pathfinding. Look at the screenshot. The guys in yellow are friendly, and want to kill the roaches. Every turn, every guy in yellow pathfinds to the closest roach, and every roach pathfinds to the closest guy in yellow. By closest I mean the target with the shortest path, not a simple distance calculation. All of this without any kind of slowdown when loading the level or when passing turns. And all of the entities change position every turn. Also (not shown in screenshot), there can be doors that open and close and change the level's layout. Impressive. I've tried implementing pathfinding in my clone. First attempt was making every roach find a path to a yellow guy every turn, using a breadth-first search algorithm. Obviously incredibly slow with more than a single roach, and would get exponentially slower with more than a single yellow guy. Second attempt was mas making every yellow guy generate a pathmap (still breadth-first search) every time he moved. Worked perfectly with multiple roaches and a single yellow guy, but adding more yellow guys made the game slow and unplayable. Last attempt was implementing JPS (jump point search). Every entity would individually calculate a path to its target. Fast, but with a limited number of entities. Having less than half the entities in the screenshot would make the game slow. And also, I had to get the "closest" enemy by calculating distance, not shortest path. I've asked on the DROD forums how they did it, and a user replied that it was breadth-first search. The game is open source, and I took a look at the source code, but it's C++ (I'm using C#) and I found it confusing. I don't know how to do it. Every approach I tried isn't good enough. And I believe that DROD generates global pathmaps, somehow, but I can't understand how every entity find the best individual path to other entities that move every turn. What's the trick? This is a reply I just got on the DROD forums: Without having looked at the code I'd wager it's two (or so) pathmaps for the whole room: One to the nearest enemy, and one to the nearest friendly for every tile. There's no need to make a separate pathmap for every entity when the overall goal is "move towards nearest enemy/friendly"... just mark every tile with the number of moves it takes to the nearest target and have the entity chose the move that takes it to the tile with the lowest number. To be honest, I don't understand it that well.

    Read the article

< Previous Page | 469 470 471 472 473 474 475 476 477 478 479 480  | Next Page >