Search Results

Search found 841 results on 34 pages for 'angle'.

Page 5/34 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Lerping to a center point while in motion

    - by Fibericon
    I have an enemy that initially flies in a circular motion, while facing away from the center point. This is how I achieve that: position.Y = (float)(Math.Cos(timeAlive * MathHelper.PiOver4) * radius + origin.Y); position.X = (float)(Math.Sin(timeAlive * MathHelper.PiOver4) * radius + origin.X); if (timeAlive < 5) { angle = (float)Math.Atan((0 - position.X) / (0 - position.Y)); if (0 < position.Y) RotationMatrix = Matrix.CreateRotationX(MathHelper.PiOver2) * Matrix.CreateRotationZ(-1 * angle); else RotationMatrix = Matrix.CreateRotationX(MathHelper.PiOver2) * Matrix.CreateRotationZ(MathHelper.Pi - angle); } That part works just fine. After five seconds of this, I want the enemy to turn inward, facing the center point. However, I've been trying to lerp to that point, since I don't want it to simply jump to the new rotation. Here's my code for trying to do that: else { float newAngle = -1 * (float)Math.Atan((0 - position.X) / (0 - position.Y)); angle = MathHelper.Lerp(angle, newAngle, (float)gameTime.ElapsedGameTime.Milliseconds / 1000); if (0 < position.Y) RotationMatrix = Matrix.CreateRotationX(MathHelper.PiOver2) * Matrix.CreateRotationZ(MathHelper.Pi - angle); else RotationMatrix = Matrix.CreateRotationX(MathHelper.PiOver2) * Matrix.CreateRotationZ(-1 * angle); } That doesn't work so fine. It seems like it's going to at first, but then it just sort of skips around. How can I achieve what I want here?

    Read the article

  • Most efficient way to implement delta time

    - by Starkers
    Here's one way to implement delta time: /// init /// var duration = 5000, currentTime = Date.now(); // and create cube, scene, camera ect ////// function animate() { /// determine delta /// var now = Date.now(), deltat = now - currentTime, currentTime = now, scalar = deltat / duration, angle = (Math.PI * 2) * scalar; ////// /// animate /// cube.rotation.y += angle; ////// /// update /// requestAnimationFrame(render); ////// } Could someone confirm I know how it works? Here what I think is going on: Firstly, we set duration at 5000, which how long the loop will take to complete in an ideal world. With a computer that is slow/busy, let's say the animation loop takes twice as long as it should, so 10000: When this happens, the scalar is set to 2.0: scalar = deltat / duration scalar = 10000 / 5000 scalar = 2.0 We now times all animation by twice as much: angle = (Math.PI * 2) * scalar; angle = (Math.PI * 2) * 2.0; angle = (Math.PI * 4) // which is 2 rotations When we do this, the cube rotation will appear to 'jump', but this is good because the animation remains real-time. With a computer that is going too quickly, let's say the animation loop takes half as long as it should, so 2500: When this happens, the scalar is set to 0.5: scalar = deltat / duration scalar = 2500 / 5000 scalar = 0.5 We now times all animation by a half: angle = (Math.PI * 2) * scalar; angle = (Math.PI * 2) * 0.5; angle = (Math.PI * 1) // which is half a rotation When we do this, the cube won't jump at all, and the animation remains real time, and doesn't speed up. However, would I be right in thinking this doesn't alter how hard the computer is working? I mean it still goes through the loop as fast as it can, and it still has render the whole scene, just with different smaller angles! So this a bad way to implement delta time, right? Now let's pretend the computer is taking exactly as long as it should, so 5000: When this happens, the scalar is set to 1.0: angle = (Math.PI * 2) * scalar; angle = (Math.PI * 2) * 1; angle = (Math.PI * 2) // which is 1 rotation When we do this, everything is timsed by 1, so nothing is changed. We'd get the same result if we weren't using delta time at all! My questions are as follows Mostly importantly, have I got the right end of the stick here? How do we know to set the duration to 5000 ? Or can it be any number? I'm a bit vague about the "computer going too quickly". Is there a way loop less often rather than reduce the animation steps? Seems like a better idea. Using this method, do all of our animations need to be timesed by the scalar? Do we have to hunt down every last one and times it? Is this the best way to implement delta time? I think not, due to the fact the computer can go nuts and all we do is divide each animation step and because we need to hunt down every step and times it by the scalar. Not a very nice DSL, as it were. So what is the best way to implement delta time? Below is one way that I do not really get but may be a better way to implement delta time. Could someone explain please? // Globals INV_MAX_FPS = 1 / 60; frameDelta = 0; clock = new THREE.Clock(); // In the animation loop (the requestAnimationFrame callback)… frameDelta += clock.getDelta(); // API: "Get the seconds passed since the last call to this method." while (frameDelta >= INV_MAX_FPS) { update(INV_MAX_FPS); // calculate physics frameDelta -= INV_MAX_FPS; } How I think this works: Firstly we set INV_MAX_FPS to 0.01666666666 How we will use this number number does not jump out at me. We then intialize a frameDelta which stores how long the last loop took to run. Come the first loop frameDelta is not greater than INV_MAX_FPS so the loop is not run (0 = 0.01666666666). So nothing happens. Now I really don't know what would cause this to happen, but let's pretend that the loop we just went through took 2 seconds to complete: We set frameDelta to 2: frameDelta += clock.getDelta(); frameDelta += 2.00 Now we run an animation thanks to update(0.01666666666). Again what is relevance of 0.01666666666?? And then we take away 0.01666666666 from the frameDelta: frameDelta -= INV_MAX_FPS; frameDelta = frameDelta - INV_MAX_FPS; frameDelta = 2 - 0.01666666666 frameDelta = 1.98333333334 So let's go into the second loop. Let's say it took 2(? Why not 2? Or 12? I am a bit confused): frameDelta += clock.getDelta(); frameDelta = frameDelta + clock.getDelta(); frameDelta = 1.98333333334 + 2 frameDelta = 3.98333333334 This time we enter the while loop because 3.98333333334 = 0.01666666666 We run update We take away 0.01666666666 from frameDelta again: frameDelta -= INV_MAX_FPS; frameDelta = frameDelta - INV_MAX_FPS; frameDelta = 3.98333333334 - 0.01666666666 frameDelta = 3.96666666668 Now let's pretend the loop is super quick and runs in just 0.1 seconds and continues to do this. (Because the computer isn't busy any more). Basically, the update function will be run, and every loop we take away 0.01666666666 from the frameDelta untill the frameDelta is less than 0.01666666666. And then nothing happens until the computer runs slowly again? Could someone shed some light please? Does the update() update the scalar or something like that and we still have to times everything by the scalar like in the first example?

    Read the article

  • Custom Gesture in cocos2d

    - by Lewis
    I've found a little tutorial that would be useful for my game: http://blog.mellenthin.de/archives/2012/02/13/an-one-finger-rotation-gesture-recognizer/ But I can't work out how to convert that gesture to work with cocos2d, I have found examples of pre made gestures in cocos2d, but no custom ones, is it possible? EDIT STILL HAVING PROBLEMS WITH THIS: I've added the code from Sentinel below (from SO), the Gesture and RotateGesture have both been added to my solution and are compiling. Although In the rotation class now I only see selectors, how do I set those up? As the custom gesture found in that project above looks like: header file for custom gesture: #import <Foundation/Foundation.h> #import <UIKit/UIGestureRecognizerSubclass.h> @protocol OneFingerRotationGestureRecognizerDelegate <NSObject> @optional - (void) rotation: (CGFloat) angle; - (void) finalAngle: (CGFloat) angle; @end @interface OneFingerRotationGestureRecognizer : UIGestureRecognizer { CGPoint midPoint; CGFloat innerRadius; CGFloat outerRadius; CGFloat cumulatedAngle; id <OneFingerRotationGestureRecognizerDelegate> target; } - (id) initWithMidPoint: (CGPoint) midPoint innerRadius: (CGFloat) innerRadius outerRadius: (CGFloat) outerRadius target: (id) target; - (void)reset; - (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event; - (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event; - (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event; - (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event; @end .m for custom gesture file: #include <math.h> #import "OneFingerRotationGestureRecognizer.h" @implementation OneFingerRotationGestureRecognizer // private helper functions CGFloat distanceBetweenPoints(CGPoint point1, CGPoint point2); CGFloat angleBetweenLinesInDegrees(CGPoint beginLineA, CGPoint endLineA, CGPoint beginLineB, CGPoint endLineB); - (id) initWithMidPoint: (CGPoint) _midPoint innerRadius: (CGFloat) _innerRadius outerRadius: (CGFloat) _outerRadius target: (id <OneFingerRotationGestureRecognizerDelegate>) _target { if ((self = [super initWithTarget: _target action: nil])) { midPoint = _midPoint; innerRadius = _innerRadius; outerRadius = _outerRadius; target = _target; } return self; } /** Calculates the distance between point1 and point 2. */ CGFloat distanceBetweenPoints(CGPoint point1, CGPoint point2) { CGFloat dx = point1.x - point2.x; CGFloat dy = point1.y - point2.y; return sqrt(dx*dx + dy*dy); } CGFloat angleBetweenLinesInDegrees(CGPoint beginLineA, CGPoint endLineA, CGPoint beginLineB, CGPoint endLineB) { CGFloat a = endLineA.x - beginLineA.x; CGFloat b = endLineA.y - beginLineA.y; CGFloat c = endLineB.x - beginLineB.x; CGFloat d = endLineB.y - beginLineB.y; CGFloat atanA = atan2(a, b); CGFloat atanB = atan2(c, d); // convert radiants to degrees return (atanA - atanB) * 180 / M_PI; } #pragma mark - UIGestureRecognizer implementation - (void)reset { [super reset]; cumulatedAngle = 0; } - (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event { [super touchesBegan:touches withEvent:event]; if ([touches count] != 1) { self.state = UIGestureRecognizerStateFailed; return; } } - (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event { [super touchesMoved:touches withEvent:event]; if (self.state == UIGestureRecognizerStateFailed) return; CGPoint nowPoint = [[touches anyObject] locationInView: self.view]; CGPoint prevPoint = [[touches anyObject] previousLocationInView: self.view]; // make sure the new point is within the area CGFloat distance = distanceBetweenPoints(midPoint, nowPoint); if ( innerRadius <= distance && distance <= outerRadius) { // calculate rotation angle between two points CGFloat angle = angleBetweenLinesInDegrees(midPoint, prevPoint, midPoint, nowPoint); // fix value, if the 12 o'clock position is between prevPoint and nowPoint if (angle > 180) { angle -= 360; } else if (angle < -180) { angle += 360; } // sum up single steps cumulatedAngle += angle; // call delegate if ([target respondsToSelector: @selector(rotation:)]) { [target rotation:angle]; } } else { // finger moved outside the area self.state = UIGestureRecognizerStateFailed; } } - (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event { [super touchesEnded:touches withEvent:event]; if (self.state == UIGestureRecognizerStatePossible) { self.state = UIGestureRecognizerStateRecognized; if ([target respondsToSelector: @selector(finalAngle:)]) { [target finalAngle:cumulatedAngle]; } } else { self.state = UIGestureRecognizerStateFailed; } cumulatedAngle = 0; } - (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event { [super touchesCancelled:touches withEvent:event]; self.state = UIGestureRecognizerStateFailed; cumulatedAngle = 0; } @end Then its initialised like this: // calculate center and radius of the control CGPoint midPoint = CGPointMake(image.frame.origin.x + image.frame.size.width / 2, image.frame.origin.y + image.frame.size.height / 2); CGFloat outRadius = image.frame.size.width / 2; // outRadius / 3 is arbitrary, just choose something >> 0 to avoid strange // effects when touching the control near of it's center gestureRecognizer = [[OneFingerRotationGestureRecognizer alloc] initWithMidPoint: midPoint innerRadius: outRadius / 3 outerRadius: outRadius target: self]; [self.view addGestureRecognizer: gestureRecognizer]; The selector below is also in the same file where the initialisation of the gestureRecogonizer: - (void) rotation: (CGFloat) angle { // calculate rotation angle imageAngle += angle; if (imageAngle > 360) imageAngle -= 360; else if (imageAngle < -360) imageAngle += 360; // rotate image and update text field image.transform = CGAffineTransformMakeRotation(imageAngle * M_PI / 180); [self updateTextDisplay]; } I can't seem to get this working in the RotateGesture class can anyone help me please I've been stuck on this for days now. SECOND EDIT: Here is the users code from SO that was suggested to me: Here is projec on GitHub: SFGestureRecognizers It uses builded in iOS UIGestureRecognizer, and don't needs to be integrated into cocos2d sources. Using it, You can make any gestures, just like you could, if you whould work with UIGestureRecognizer. For example: I made a base class Gesture, and subclassed it for any new gesture: //Gesture.h @interface Gesture : NSObject <UIGestureRecognizerDelegate> { UIGestureRecognizer *gestureRecognizer; id delegate; SEL preSolveSelector; SEL possibleSelector; SEL beganSelector; SEL changedSelector; SEL endedSelector; SEL cancelledSelector; SEL failedSelector; BOOL preSolveAvailable; CCNode *owner; } - (id)init; - (void)addGestureRecognizerToNode:(CCNode*)node; - (void)removeGestureRecognizerFromNode:(CCNode*)node; -(void)recognizer:(UIGestureRecognizer*)recognizer; @end //Gesture.m #import "Gesture.h" @implementation Gesture - (id)init { if (!(self = [super init])) return self; preSolveAvailable = YES; return self; } - (BOOL)gestureRecognizer:(UIGestureRecognizer *)gestureRecognizer shouldRecognizeSimultaneouslyWithGestureRecognizer:(UIGestureRecognizer *)otherGestureRecognizer { return YES; } - (BOOL)gestureRecognizer:(UIGestureRecognizer *)recognizer shouldReceiveTouch:(UITouch *)touch { //! For swipe gesture recognizer we want it to be executed only if it occurs on the main layer, not any of the subnodes ( main layer is higher in hierarchy than children so it will be receiving touch by default ) if ([recognizer class] == [UISwipeGestureRecognizer class]) { CGPoint pt = [touch locationInView:touch.view]; pt = [[CCDirector sharedDirector] convertToGL:pt]; for (CCNode *child in owner.children) { if ([child isNodeInTreeTouched:pt]) { return NO; } } } return YES; } - (void)addGestureRecognizerToNode:(CCNode*)node { [node addGestureRecognizer:gestureRecognizer]; owner = node; } - (void)removeGestureRecognizerFromNode:(CCNode*)node { [node removeGestureRecognizer:gestureRecognizer]; } #pragma mark - Private methods -(void)recognizer:(UIGestureRecognizer*)recognizer { CCNode *node = recognizer.node; if (preSolveSelector && preSolveAvailable) { preSolveAvailable = NO; [delegate performSelector:preSolveSelector withObject:recognizer withObject:node]; } UIGestureRecognizerState state = [recognizer state]; if (state == UIGestureRecognizerStatePossible && possibleSelector) { [delegate performSelector:possibleSelector withObject:recognizer withObject:node]; } else if (state == UIGestureRecognizerStateBegan && beganSelector) [delegate performSelector:beganSelector withObject:recognizer withObject:node]; else if (state == UIGestureRecognizerStateChanged && changedSelector) [delegate performSelector:changedSelector withObject:recognizer withObject:node]; else if (state == UIGestureRecognizerStateEnded && endedSelector) { preSolveAvailable = YES; [delegate performSelector:endedSelector withObject:recognizer withObject:node]; } else if (state == UIGestureRecognizerStateCancelled && cancelledSelector) { preSolveAvailable = YES; [delegate performSelector:cancelledSelector withObject:recognizer withObject:node]; } else if (state == UIGestureRecognizerStateFailed && failedSelector) { preSolveAvailable = YES; [delegate performSelector:failedSelector withObject:recognizer withObject:node]; } } @end Subclass example: //RotateGesture.h #import "Gesture.h" @interface RotateGesture : Gesture - (id)initWithTarget:(id)target preSolveSelector:(SEL)preSolve possibleSelector:(SEL)possible beganSelector:(SEL)began changedSelector:(SEL)changed endedSelector:(SEL)ended cancelledSelector:(SEL)cancelled failedSelector:(SEL)failed; @end //RotateGesture.m #import "RotateGesture.h" @implementation RotateGesture - (id)initWithTarget:(id)target preSolveSelector:(SEL)preSolve possibleSelector:(SEL)possible beganSelector:(SEL)began changedSelector:(SEL)changed endedSelector:(SEL)ended cancelledSelector:(SEL)cancelled failedSelector:(SEL)failed { if (!(self = [super init])) return self; preSolveSelector = preSolve; delegate = target; possibleSelector = possible; beganSelector = began; changedSelector = changed; endedSelector = ended; cancelledSelector = cancelled; failedSelector = failed; gestureRecognizer = [[UIRotationGestureRecognizer alloc] initWithTarget:self action:@selector(recognizer:)]; gestureRecognizer.delegate = self; return self; } @end Use example: - (void)addRotateGesture { RotateGesture *rotateRecognizer = [[RotateGesture alloc] initWithTarget:self preSolveSelector:@selector(rotateGesturePreSolveWithRecognizer:node:) possibleSelector:nil beganSelector:@selector(rotateGestureStateBeganWithRecognizer:node:) changedSelector:@selector(rotateGestureStateChangedWithRecognizer:node:) endedSelector:@selector(rotateGestureStateEndedWithRecognizer:node:) cancelledSelector:@selector(rotateGestureStateCancelledWithRecognizer:node:) failedSelector:@selector(rotateGestureStateFailedWithRecognizer:node:)]; [rotateRecognizer addGestureRecognizerToNode:movableAreaSprite]; } I dont understand how to implement the custom gesture code at the start of this post into the rotateGesture class which is a subclass of the gesture class written by the SO user. Any ideas please? When I get 6 more rep I'll add a bounty to this.

    Read the article

  • Breakout... Getting the ball reflection X angle when htitting paddle / bricks

    - by Steven Wilson
    Im currently creating a breakout clone for my first ever C# / XNA game. Currently Ive had little trouble creating the paddle object, ball object, and all the bricks. The issue im currently having is getting the ball to bounce off of the paddle and bricks correctly based off of where the ball touches the object. This is my forumala thus far: if (paddleLocation.Intersects(ballLocation)) { position.Y = paddleLocation.Y - texture.Height; motion.Y *= -1; // determine X motion.X = 1 - 2 * (ballLocation.X - paddleLocation.X) / (paddleLocation.Width / 2); } The problem is, the ball goes the opposite direction then its supposed to. When the ball hits the left side of the paddle, instead of bouncing back to the left, it bounces right, and vise versa. Does anyone know what the math equation is to fix this?

    Read the article

  • Determining the angle to fire a shot when target and shooter moves, and bullet moves with shooter velocity added in

    - by Azaral
    I saw this question: Predicting enemy position in order to have an object lead its target and followed the link in the answer to stack overflow. In the stack overflow page I used the 2nd answer, the one that is a large mathematical derivation. My situation is a little different though. My first question though is will the answer provided in the stack overflow page even work to begin with, assuming the original circumstances of moving target and stationary shooter. My situation is a little different than that situation. My target moves, the shooter moves, and the bullets from the shooter start off with the velocities in x and y added to the bullets' x and y velocities. If you are sliding to the right, the bullets will remain in front of you as you move so as long as your velocity remains constant. What I'm trying to do is to get the enemy to be able to determine where they need to shoot in order to hit the player. Unless the player and enemy is stationary, the velocity from the ship adding to the velocity of the bullets will cause a miss. I'd rather like to prevent that. I used the formula in the stack overflow answer and did what I thought were the appropriate adjustments. I've been banging at this for the last four hours and I just can't make it click. It is probably something really simple and boneheaded that I am missing (that seems to be a lot of my problems lately). Here is the solution presented from the stack overflow answer: It boils down to solving a quadratic equation of the form: a * sqr(x) + b * x + c == 0 Note that by sqr I mean square, as opposed to square root. Use the following values: a := sqr(target.velocityX) + sqr(target.velocityY) - sqr(projectile_speed) b := 2 * (target.velocityX * (target.startX - cannon.X) + target.velocityY * (target.startY - cannon.Y)) c := sqr(target.startX - cannon.X) + sqr(target.startY - cannon.Y) Now we can look at the discriminant to determine if we have a possible solution. disc := sqr(b) - 4 * a * c If the discriminant is less than 0, forget about hitting your target -- your projectile can never get there in time. Otherwise, look at two candidate solutions: t1 := (-b + sqrt(disc)) / (2 * a) t2 := (-b - sqrt(disc)) / (2 * a) Note that if disc == 0 then t1 and t2 are equal. If there are no other considerations such as intervening obstacles, simply choose the smaller positive value. (Negative t values would require firing backward in time to use!) Substitute the chosen t value back into the target's position equations to get the coordinates of the leading point you should be aiming at: aim.X := t * target.velocityX + target.startX aim.Y := t * target.velocityY + target.startY Here is my code, after being corrected by Sam Hocevar (thank you again for your help!). It still doesn't work. For some reason it never enters the section of code inside the if(disc = 0) (obviously because it is always less than zero but...). However, if I plug the numbers from my game log on the enemy and player positions and velocities it outputs a valid firing solution. I have looked at the code side by side a couple of times now and I can't find any differences. There has got to be something simple I'm missing here. If someone else could look at this code and determine what is going on here I'd appreciate it. I know it's not going through that section because if it were, shouldShoot would become true and the enemy would be blasting away at the player. This section calls the function in question, CalculateShootHeading() if(shouldMove) { UseEngines(); } x += xVelocity; y += yVelocity; CalculateShootHeading(); if(shouldShoot) { ShootWeapons(); } UpdateWeapons(); This is CalculateShootHeading(). This is inside the enemy class so x and y are the enemy's x and y and the same with velocity. One output from my game log gives Player X = 2108, Player Y = -180.956, Player X velocity = 10.9949, Player Y Velocity = -6.26017, Enemy X = 1988.31, Enemy Y = -339.051, Enemy X velocity = 1.81666, Enemy Y velocity = -9.67762, 0 enemy projectiles. The output from the console tester is Bullet position = 2210.49, -239.313 and Player Position = 2210.49, -239.313. This doesn't make any sense. The only thing that could be different is the code or the input into my function in the game and I've checked that and I don't think that it is wrong as it's updated before this and never changed. float const bulletSpeed = 30.f; float const dx = playerX - x; float const dy = playerY - y; float const vx = playerXVelocity - xVelocity; float const vy = playerYVelocity - yVelocity; float const a = vx * vx + vy * vy - bulletSpeed * bulletSpeed; float const b = 2.f * (vx * dx + vy * dy); float const c = dx * dx + dy * dy; float const disc = b * b - 4.f * a * c; shouldShoot = false; if (disc >= 0.f) { float t0 = (-b - std::sqrt(disc)) / (2.f * a); float t1 = (-b + std::sqrt(disc)) / (2.f * a); if (t0 < 0.f || (t1 < t0 && t1 >= 0.f)) { t0 = t1; } if (t0 >= 0.f) { float shootx = vx + dx / t0; float shooty = vy + dy / t0; heading = std::atan2(shooty, shootx) * RAD2DEGREE; } shouldShoot = true; }

    Read the article

  • How to calculate shot angle and velocity to hit a moving target?

    - by Guen
    I am developing a 2D Android game and I am making an aiming algorithm for AI projectiles to hit enemies either following a path, or free moving. At the moment it just calculates where the target will be after a distance and fires a projectile to meet it at that distance. Of course this means varying the projectile speed to meet the target. Does anyone have any tips for a simple-ish algorithm (optimal-ish) to calculate when the projectile needs to fire and where it needs to aim if it can only travel at a constant velocity? Say the projectile goes twice the speed of the target? The only way I can think of involves searching and seems quite large.

    Read the article

  • OpenGL: Want to keep gun on top of car and be able to control angle. Having difficulties.

    - by Blair
    So I am making a simple game. I want to put a gun on top of a car so basically like a long rod in the middle of a black is how I am modelling it right now. I want to be able to control the angle of the gun. Basically it can go forward all the way so that it is parallel to the ground facing the direction the car is moving or it can point behind the car and any of the angles in between these positions. I have something like the following right now but its not really working. Is there an better way to do this that I am not seeing? #This will place the car glPushMatrix() glTranslatef(self.position.x,1.5,self.position.z) glRotated(self.rotation, 0.0, 1.0, 0.0) glScaled(0.5, 0.5, 0.5) glCallList(self.model.gl_list) glPopMatrix() #This will place the gun on top glPushMatrix() glTranslatef(self.position.x,2.5,self.position.z) glRotated(self.tube_angle, self.direction.z, 0.0, self.direction.x) print self.direction.z glRotated(45, self.position.z, 0.0, self.position.x) glScaled(1.0, 0.5, 1.0) glCallList(self.tube.gl_list) glPopMatrix() This almost works. It moves the gun up and down. But when the car moves around the angle of the gun changes. Not what I want.

    Read the article

  • How to calculate both positive and negative angle between two lines?

    - by Jaanus
    There is a very handy set of 2d geometry utilities here. The angleBetweenLines has a problem, though. The result is always positive. I need to detect both positive and negative angles, so if one line is 15 degrees "above" or "below" the other line, the shape obviously looks different. The configuration I have is that one line remains stationary, while the other line rotates, and I need to understand what direction it is rotating in, by comparing it with the stationary line. EDIT: in response to swestrup's comment below, the situation is actually that I have a single line, and I record its starting position. The line then rotates from its starting position, and I need to calculate the angle from its starting position to current position. E.g if it has rotated clockwise, it is positive rotation; if counterclockwise, then negative. (Or vice versa.) How to improve the algorithm so it returns the angle as both positive or negative depending on how the lines are positioned?

    Read the article

  • Filling an Area in visual studio C#

    - by lajoo
    I'm drawing a circle in C# and i have divided it into some parts,i want to fill different parts with different colors,is there anyway to do this? and how?i tried using fillpie() but i couldn't get the arguments to work. here is the code: int r = 150; g.DrawEllipse(Pens.Black, 300 - r, 250 - r, 2 * r, 2 * r); if (p != 0) g.DrawLine(Pens.Black, 300, 250, 300 + r, 250); double sum; sum = 0.0; for (int j = 0; j < p; j++) sum += data[j].value; double angle; angle = 0.0; for (int i = 0; i < p; i++) { angle += (double)(data[i].value / sum) * 2.0 * Math.PI; textBox1.Text += sum.ToString() + " : " + angle.ToString() + ":" + Math.Cos(angle).ToString() + "\r\n"; g.DrawLine(Pens.Black, 300, 250, 300 + (int)(Math.Cos(angle) * r), 250 - (int)(Math.Sin(angle) * r)); //g.FillPie(Brushes.Black, 300-r , 250 - r, r, r ,(float)(angle),(float)(angle+ (data[i].value / sum) * 2.0 * Math.PI)); } this actually divides the circle into different parts,i don't know how to fill them the commented line is where i

    Read the article

  • What do angle brackets around an eclipse perspective mean?

    - by Karin
    I wrote a new perspective for our Eclipse RCP Project. The perspective worked fine, but because of a malconfiguration I had to revert to an earlier code-version in which this perspective didn't exist yet. The strange thing is it still gets shown in the "open perspective" Dialog. The only difference is, that it is now in angle brackets and appears two times. What do the angle brackets mean? (unresolved title perhaps?) And how can I get rid of these entries? Thanks a lot!

    Read the article

  • signed angle between two 3d vectors with same origin within the same plane? recipe?

    - by Advanced Customer
    Was looking through the web for an answer but it seems like there is no clear recipe for it. What I need is a signed angle of rotation between two vectors Va and Vb lying within the same 3D plane and having the same origin knowing that: the plane contatining both vectors is an arbitrary and is not parallel to XY or any other of cardinal planes Vn - is a plane normal both vectors along with the normal have the same origin O = { 0, 0, 0 } Va - is a reference for measuring the left handed rotation at Vn The angle should be measured in such a way so if the plane would be XY plane the Va would stand for X axis unit vector of it. I guess I should perform a kind of coordinate space transformation by using the Va as the X-axis and the cross product of Vb and Vn as the Y-axis and then just using some 2d method like with atan2() or something. Any ideas? Formulas?

    Read the article

  • Calculate angle of moving ball after collision with angled or sloped wall that is a 2D line segment

    - by Ben Mc
    If you have a "ball" inside a 2D polygon, made up of say, 4 line segments that act as bounding walls, how do you calculate the angle of the ball after the collision with the irregularly sloped wall? I know how to make the ball bounce if the wall is horizontal, vertical, or at a 45 degree angle. I also have my code setup to detect a collision with the wall. I've read about dot products and normals, but I cannot figure out how to implement these in Java / Android. I'm completely stumped and feel like I've looked up everything 10 pages deep in Google 10 times now. I'm burned out trying to figure this out, I hope someone can help.

    Read the article

  • Internal loop only runs once, containing loop runs endlessly

    - by Mark
    noob question I'm afraid. I have a loop that runs and rotates the hand of a clock and an internal loop that checks the angle of the hand if it is 90, 180, 270 and 360. On these 4 angles the corresponding div is displayed and its siblings removed. The hand loops and loops eternally, which is what I want, but the angle check only runs the loop once through the whole 360. As the hand passes through the angles it is correctly displaying and removing divs but is doesn't continue after the first revolution of the clock. I've obviously messed up somewhere and there is bound to be a more efficient way of doing all this. I am using jQueryRotate.js for my rotations. Thanks for your time. jQuery(document).ready(function(){ var angle = 0; setInterval(function(){ jQuery("#hand").rotate(angle); function movehand(){ if (angle == 90) { jQuery("#intervention").fadeIn().css("display","block").siblings().css("display","none"); } else if (angle == 180) { jQuery("#management").fadeIn().css("display","block").siblings().css("display","none"); } else if (angle == 270) { jQuery("#prevention").fadeIn().css("display","block").siblings().css("display","none"); } else if (angle == 360) { jQuery("#reaction").fadeIn().css("display","block").siblings().css("display","none"); } else {movehand;} }; movehand(); angle+=1; },10); });

    Read the article

  • Changing direction of rotation Pygame

    - by czl
    How would you change the direction of a rotating image/rect in Pygame? Applying positive and negative degree values works but it seems to only be able to rotate one direction throughout my window. Is there a way to ensure a change in direction of rotation? Perhaps change up rotation of a spinning image every 5 seconds, or if able to change the direction of the spin when hitting a X or Y axis. I've added some code below. It seems like switching movement directions is easy with rect.move_ip as long as I specify a speed and have location clause, it does what I want. Unfortunately rotation is't like that. Here I'l adding angles to make sure it spins, but no matter what I try, I'm unable to negate the rotation. def rotate_image(self): #rotate image orig_rect = self.image.get_rect() rot_image = pygame.transform.rotate(self.image, self.angle) rot_rect = orig_rect.copy() rot_rect.center = rot_image.get_rect().center rot_image = rot_image.subsurface(rot_rect).copy() return rot_image def render(self): self.screen.fill(self.bg_color) self.rect.move_ip(0,5) #Y axis movement at 5 px per frame self.angle += 5 #add 5 anglewhen the rect has not hit one of the window self.angle %= 360 if self.rect.left < 0 or self.rect.right > self.width: self.speed[0] = -self.speed[0] self.angle = -self.angle #tried to invert the angle self.angle -= 5 #trying to negate the angle rotation self.angle %= 360 self.screen.blit(self.rotate_image(),self.rect) pygame.display.flip() I would really like to know how to invert rotation of a image. You may provide your own examples.

    Read the article

  • obj-c classes and sub classes (Cocos2d) conversion

    - by Lewis
    Hi I'm using this version of cocos2d: https://github.com/krzysztofzablocki/CCNode-SFGestureRecognizers Which supports the UIGestureRecognizer within a CCLayer in a cocos2d scene like so: @interface HelloWorldLayer : CCLayer <UIGestureRecognizerDelegate> { } Now I want to make this custom gesture work within the scene, attaching it to a sprite in cocos2d: #import <Foundation/Foundation.h> #import <UIKit/UIGestureRecognizerSubclass.h> @protocol OneFingerRotationGestureRecognizerDelegate <NSObject> @optional - (void) rotation: (CGFloat) angle; - (void) finalAngle: (CGFloat) angle; @end @interface OneFingerRotationGestureRecognizer : UIGestureRecognizer { CGPoint midPoint; CGFloat innerRadius; CGFloat outerRadius; CGFloat cumulatedAngle; id <OneFingerRotationGestureRecognizerDelegate> target; } - (id) initWithMidPoint: (CGPoint) midPoint innerRadius: (CGFloat) innerRadius outerRadius: (CGFloat) outerRadius target: (id) target; - (void)reset; - (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event; - (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event; - (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event; - (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event; @end #include <math.h> #import "OneFingerRotationGestureRecognizer.h" @implementation OneFingerRotationGestureRecognizer // private helper functions CGFloat distanceBetweenPoints(CGPoint point1, CGPoint point2); CGFloat angleBetweenLinesInDegrees(CGPoint beginLineA, CGPoint endLineA, CGPoint beginLineB, CGPoint endLineB); - (id) initWithMidPoint: (CGPoint) _midPoint innerRadius: (CGFloat) _innerRadius outerRadius: (CGFloat) _outerRadius target: (id <OneFingerRotationGestureRecognizerDelegate>) _target { if ((self = [super initWithTarget: _target action: nil])) { midPoint = _midPoint; innerRadius = _innerRadius; outerRadius = _outerRadius; target = _target; } return self; } /** Calculates the distance between point1 and point 2. */ CGFloat distanceBetweenPoints(CGPoint point1, CGPoint point2) { CGFloat dx = point1.x - point2.x; CGFloat dy = point1.y - point2.y; return sqrt(dx*dx + dy*dy); } CGFloat angleBetweenLinesInDegrees(CGPoint beginLineA, CGPoint endLineA, CGPoint beginLineB, CGPoint endLineB) { CGFloat a = endLineA.x - beginLineA.x; CGFloat b = endLineA.y - beginLineA.y; CGFloat c = endLineB.x - beginLineB.x; CGFloat d = endLineB.y - beginLineB.y; CGFloat atanA = atan2(a, b); CGFloat atanB = atan2(c, d); // convert radiants to degrees return (atanA - atanB) * 180 / M_PI; } #pragma mark - UIGestureRecognizer implementation - (void)reset { [super reset]; cumulatedAngle = 0; } - (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event { [super touchesBegan:touches withEvent:event]; if ([touches count] != 1) { self.state = UIGestureRecognizerStateFailed; return; } } - (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event { [super touchesMoved:touches withEvent:event]; if (self.state == UIGestureRecognizerStateFailed) return; CGPoint nowPoint = [[touches anyObject] locationInView: self.view]; CGPoint prevPoint = [[touches anyObject] previousLocationInView: self.view]; // make sure the new point is within the area CGFloat distance = distanceBetweenPoints(midPoint, nowPoint); if ( innerRadius <= distance && distance <= outerRadius) { // calculate rotation angle between two points CGFloat angle = angleBetweenLinesInDegrees(midPoint, prevPoint, midPoint, nowPoint); // fix value, if the 12 o'clock position is between prevPoint and nowPoint if (angle > 180) { angle -= 360; } else if (angle < -180) { angle += 360; } // sum up single steps cumulatedAngle += angle; // call delegate if ([target respondsToSelector: @selector(rotation:)]) { [target rotation:angle]; } } else { // finger moved outside the area self.state = UIGestureRecognizerStateFailed; } } - (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event { [super touchesEnded:touches withEvent:event]; if (self.state == UIGestureRecognizerStatePossible) { self.state = UIGestureRecognizerStateRecognized; if ([target respondsToSelector: @selector(finalAngle:)]) { [target finalAngle:cumulatedAngle]; } } else { self.state = UIGestureRecognizerStateFailed; } cumulatedAngle = 0; } - (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event { [super touchesCancelled:touches withEvent:event]; self.state = UIGestureRecognizerStateFailed; cumulatedAngle = 0; } @end Header file for view controller: #import "OneFingerRotationGestureRecognizer.h" @interface OneFingerRotationGestureViewController : UIViewController <OneFingerRotationGestureRecognizerDelegate> @property (nonatomic, strong) IBOutlet UIImageView *image; @property (nonatomic, strong) IBOutlet UITextField *textDisplay; @end then this is in the .m file: gestureRecognizer = [[OneFingerRotationGestureRecognizer alloc] initWithMidPoint: midPoint innerRadius: outRadius / 3 outerRadius: outRadius target: self]; [self.view addGestureRecognizer: gestureRecognizer]; Now my question is, is it possible to add this custom gesture into the cocos2d project found on that github, and if so, what do I need to change in the OneFingerRotationGestureRecognizerDelegate to get it to work within cocos2d. Because at the minute it is setup in a standard iOS project and not a cocos2d project and I do not know enough about UIViews and classing/ sub classing in obj-c to get this to work. Also it seems to inherit from a UIView where cocos2d uses CCLayer. Kind regards, Lewis. I also realise I may have not included enough code from the custom gesture project for readers to interpret it fully, so the full project can be found here: https://github.com/melle/OneFingerRotationGestureDemo

    Read the article

  • rotate player based off of joystick

    - by pengume
    Hey everyone I have this game that i am making in android and I have a touch screen joystick that moves the player around based on the joysticks position. I cant figure out how to also get the player to rotate at the same angle of the joystick. so when the joystick is to the left the players bitmap is rotated to the left as well. Maybe someone here has some sample code I could look at here is the joysticks class that I am using. `public class GameControls implements OnTouchListener { public float initx = DroidzActivity.screenWidth - 45; //255; // 320 og 425 public float inity = DroidzActivity.screenHeight - 45;//425; // 480 og 267 public Point _touchingPoint = new Point( DroidzActivity.screenWidth - 45, DroidzActivity.screenHeight - 45); public Point _pointerPosition = new Point(DroidzActivity.screenWidth - 100, DroidzActivity.screenHeight - 100); // ogx 220 ogy 150 private Boolean _dragging = false; private boolean attackMode = false; @Override public boolean onTouch(View v, MotionEvent event) { update(event); return true; } private MotionEvent lastEvent; public boolean ControlDragged; private static double angle; public void update(MotionEvent event) { if (event == null && lastEvent == null) { return; } else if (event == null && lastEvent != null) { event = lastEvent; } else { lastEvent = event; } // drag drop if (event.getAction() == MotionEvent.ACTION_DOWN) { if ((int) event.getX() > 0 && (int) event.getX() < 50 && (int) event.getY() > DroidzActivity.screenHeight - 160 && (int) event.getY() < DroidzActivity.screenHeight - 0) { setAttackMode(true); } else { _dragging = true; } } else if (event.getAction() == MotionEvent.ACTION_UP) { if(isAttackMode()){ setAttackMode(false); } _dragging = false; } if (_dragging) { ControlDragged = true; // get the pos _touchingPoint.x = (int) event.getX(); _touchingPoint.y = (int) event.getY(); // Log.d("GameControls", "x = " + _touchingPoint.x + " y = " //+ _touchingPoint.y); // bound to a box if (_touchingPoint.x < DroidzActivity.screenWidth - 75) { // og 400 _touchingPoint.x = DroidzActivity.screenWidth - 75; } if (_touchingPoint.x > DroidzActivity.screenWidth - 15) {// og 450 _touchingPoint.x = DroidzActivity.screenWidth - 15; } if (_touchingPoint.y < DroidzActivity.screenHeight - 75) {// og 240 _touchingPoint.y = DroidzActivity.screenHeight - 75; } if (_touchingPoint.y > DroidzActivity.screenHeight - 15) {// og 290 _touchingPoint.y = DroidzActivity.screenHeight - 15; } // get the angle setAngle(Math.atan2(_touchingPoint.y - inity, _touchingPoint.x - initx) / (Math.PI / 180)); // Move the ninja in proportion to how far // the joystick is dragged from its center _pointerPosition.y += Math.sin(getAngle() * (Math.PI / 180)) * (_touchingPoint.x / 70); // og 180 70 _pointerPosition.x += Math.cos(getAngle() * (Math.PI / 180)) * (_touchingPoint.x / 70); // make the pointer go thru if (_pointerPosition.x > DroidzActivity.screenWidth) { _pointerPosition.x = 0; } if (_pointerPosition.x < 0) { _pointerPosition.x = DroidzActivity.screenWidth; } if (_pointerPosition.y > DroidzActivity.screenHeight) { _pointerPosition.y = 0; } if (_pointerPosition.y < 0) { _pointerPosition.y = DroidzActivity.screenHeight; } } else if (!_dragging) { ControlDragged = false; // Snap back to center when the joystick is released _touchingPoint.x = (int) initx; _touchingPoint.y = (int) inity; // shaft.alpha = 0; } } public void setAttackMode(boolean attackMode) { this.attackMode = attackMode; } public boolean isAttackMode() { return attackMode; } public void setAngle(double angle) { this.angle = angle; } public static double getAngle() { return angle; } }` I should also note that the player has animations based on when he is moving or attacking. EDIT: I got the angle and am rotating the sprite around in the correct angle however it rotates on the wrong spot. My sprite is one giant bitmap that gets cut into four pieces and only one shown at a time to animate walking. here is the code I am using to rotate him right now. ` public void draw(Canvas canvas,int pointerX, int pointerY) { Matrix m; if (setRotation){ // canvas.save(); m = new Matrix(); m.reset(); // spriteWidth and spriteHeight are for just the current frame showed //m.setTranslate(spriteWidth / 2, spriteHeight / 2); //get and set rotation for ninja based off of joystick m.preRotate((float) GameControls.getRotation()); //create the rotated bitmap flipedSprite = Bitmap.createBitmap(bitmap , 0, 0,bitmap.getWidth(),bitmap.getHeight() , m, true); //set new bitmap to rotated ninja setBitmap(flipedSprite); setRotation = false; // canvas.restore(); Log.d("Ninja View", "angle of rotation= " +(float) GameControls.getRotation()); } ` And then the draw method // create the destination rectangle for the ninjas current animation frame // pointerX and pointerY are from the joystick moving the ninja around destRect = new Rect(pointerX, pointerY, pointerX + spriteWidth, pointerY + spriteHeight); canvas.drawBitmap(bitmap, getSourceRect(), destRect, null);

    Read the article

  • Rotating object along bezier curve: not rotating enough?

    - by Paul
    I tried to follow the instructions from the threads on the forum (Cocos2d rotating sprite while moving with CCBezierBy) with Unity, in order to rotate my object as it moves along a bezier curve. But it does not rotate enough, the angle is too low, it goes up to 6 instead of 90 for example, as you can see on this image (the y eulerAngle is at 6, I would expect it to be around 90 with this curve) : Would you know why it does this? And how to make the rotation toward the next point? Here is the code (in c# with Unity) : (I am comparing x and z to get the angle, and adding the angle to eulerAngles.y so that it rotates around the y axis) void Update () { if ( Input.GetKey("d") ) start = true; if ( start ){ myTime = Time.time; start = false; } float theTime = (Time.time - myTime) *0.5f; if ( theTime < 1 ) { car.position = Spline.Interp( myArray, theTime );//creates the bezier curve counterBezier += Time.deltaTime; //compare 2 positions after 0.1f if ( counterBezier > 0.1f ){ counterBezier = 0; cbDone = false; newpos = car.position; float angle = Mathf.Atan2(newpos.z - oldpos.z, newpos.x - oldpos.x); angle += car.eulerAngles.y; car.eulerAngles = new Vector3(0,angle,0); } else if ( counterBezier > 0 && !cbDone ){ oldpos = car.position; cbDone = true; } Thanks

    Read the article

  • Trouble with speed and vectors

    - by Eegabooga
    I'm working on adding bullets to my game. Right now I can shoot bullets in the direction that I would like from a ship by getting the ship's angle: int speed = 5; int dx = -(cos(degreesToRadians(ship.angle)) * speed); // rate of change in the x direction int dy = -(sin(degreesToRadians(ship.angle)) * speed); // rate of change in the y direction bulletPosition.addX(dx); // addX(dx) is simply bulletPosition.x += dx bulletPosition.addY(dy); The ship is pretty much the exact same thing, except I use the += operator: int dx += -(cos(degreesToRadians(angle)) * 0.15) int dy += -(sin(degreesToRadians(angle)) * 0.15); shipPosition.addX(dx); shipPosition.addY(dy); I would like to be able to add the ship's velocity to the bullet's velocity, but I'm a little confused as to how should get the speed from the ship's vector. I thought that adding the ship's dx to the bullet's dx like int dx = -(cos(degreesToRadians(ship.angle)) * speed * dx) would work because I'm adding the rate of change of the ship to the rate of change of the bullet, but that doesn't work. So here's the final question: How can I get the speed of my ship and apply it to my bullet's speed? Thanks in advance for all help :)

    Read the article

  • Polygon is rotating too fast

    - by Manderin87
    I am going to be using a polygon collision detection method to test when objects collide. I am attempting to rotate a polygon to match the sprites rotation. However, the polygon is rotating too fast, much faster than the sprite is. I feel its a timing issue, but the sprite rotates like it is supposed to. Can anyone look at my code and tell me what could be causing this issue? public void rotate(float x0, float y0, double angle) { for(Point point : mPoints) { float x = (float) (x0 + (point.x - x0) * Math.cos(Utilities.toRadians(angle)) - (point.y - y0) * Math.sin(Utilities.toRadians(angle))); float y = (float) (y0 + (point.x - x0) * Math.sin(Utilities.toRadians(angle)) + (point.y - y0) * Math.cos(Utilities.toRadians(angle))); point.x = x; point.y = y; } } This algorithm works when done singly, but once I plug it into the update method the rotation is too fast. The Points used are: P1 608, 368 P2 640, 464 P3 672, 400 Origin x0 is: 640 400 The angle goes from 0 to 360 as the sprite rotates. When the codes executes the triangle looks like a star because its moving so fast. The rotation is done in the sprites update method. The rotation method just increases the sprites degree by .5 when it executes. public void update() { if(isActive()) { rotate(); mBounding.rotate(mPosition.x, mPosition.y, mDegree); } }

    Read the article

  • What's the meaning of the angle brackets on LINQ methods in Intellisense? (Contains<>, Count<>, Dis

    - by user312758
    They usually involve generics. But some methods with generics don't have them, and not all extension methods have them. They've just "been there" since day one, we've all seen them; but I realized I still don't know what they mean, and I can't find the answer anywhere. Now it's really bugging me. Google just turns up results that are about XML, etc. Is this officially documented anywhere? Thanks. EDIT: Well that's just great. Since I just created an account to make my first Stack Overflow post, to get an answer for this burning question; I'm not allowed to post my pretty Intellisense picture, or create a new tag "angle-brackets". I love Stack Overflow, but... what a welcome! Maybe my problem is that they aren't actually called "angle brackets"... ?? Anyway, I guess if you really want to see my beautiful screenshot you could manually go to: http://www.freeimagehosting.net/uploads/6a6c2f3268.png Bump me up please so I can include it in the post, thanks. ;)

    Read the article

  • how to avoid clutch billiard balls?

    - by Nait87
    I'm working on the simple behaviour of billiard balls in a collision with each other. All works normal, but there was a problem when facing a few easy balls is the effect of coupling balls and they're cool with each other. Tell me how to prevent this. bool MGBilliard::CollisingBall(CCPoint curr_point, CCPoint next_point) { float dx = next_point.x - (curr_point.x + dvdt.x); float dy = next_point.y - (curr_point.y - dvdt.y); float d = dx*dx+dy*dy; return d <= BALL_RADIUS * BALL_RADIUS; } double MGBilliard::angleCollisionBalls(Ball* current, Ball* next) { double na; double dx = fabs(next->location.x - current->location.x); double dy = fabs(next->location.y - current->location.y); na = atan(fabs(dy/dx)); if(atan(fabs(current->location.y/current->location.x)) < atan(fabs(next->location.y/next->location.x))) na = current->angle - na; else if(atan(fabs(current->location.y/current->location.x)) > atan(fabs(next->location.y/next->location.x))) na = current->angle + na; return na; } for(unsigned int i = 0;i<BALL_COUNT;++i) { if(vBalls[i]->speed > 0){ vBalls[i]->speed += vBalls[i]->acceleration; float dsdt = vBalls[i]->speed*dt; dvdt.x = dsdt*cos(vBalls[i]->angle); dvdt.y = dsdt*sin(vBalls[i]->angle); vBalls[i]->location.x += dvdt.x; vBalls[i]->location.y += dvdt.y; for(unsigned int j = 1; j < BALL_COUNT; ++j) { if(i == j) continue; if(CollisingBall(vBalls[i]->spriteBall->getPosition(),vBalls[j]->spriteBall->getPosition())) { vBalls[j]->speed = 600; double angle; angle = angleCollisionBalls(vBalls[i],vBalls[j]); vBalls[i]->angle = (float)-angle; vBalls[j]->angle = (float)angle; } } } }

    Read the article

  • Easy way to keeping angles between -179 and 180 degrees

    - by User1
    Is there an easy way to convert an angle (in degrees) to be between -179 and 180? I'm sure I could use mod (%) and some if statements, but it gets ugly: //Make angle between 0 and 360 angle%=360; //Make angle between -179 and 180 if (angle180) angle-=360; It just seems like there should be a simple math operation that will do both statements at the same time. I may just have to create a static method for the conversion for now.

    Read the article

  • Is there an algorithm for converting quaternion rotations to Euler angle rotations?

    - by Will Baker
    Is there an existing algorithm for converting a quaternion representation of a rotation to an Euler angle representation? The rotation order for the Euler representation is known and can be any of the six permutations (i.e. xyz, xzy, yxz, yzx, zxy, zyx). I've seen algorithms for a fixed rotation order (usually the NASA heading, bank, roll convention) but not for arbitrary rotation order. Furthermore, because there are multiple Euler angle representations of a single orientation, this result is going to be ambiguous. This is acceptable (because the orientation is still valid, it just may not be the one the user is expecting to see), however it would be even better if there was an algorithm which took rotation limits (i.e. the number of degrees of freedom and the limits on each degree of freedom) into account and yielded the 'most sensible' Euler representation given those constraints. I have a feeling this problem (or something similar) may exist in the IK or rigid body dynamics domains. Solved: I just realised that it might not be clear that I solved this problem by following Ken Shoemake's algorithms from Graphics Gems. I did answer my own question at the time, but it occurs to me it may not be clear that I did so. See the answer, below, for more detail. Just to clarify - I know how to convert from a quaternion to the so-called 'Tait-Bryan' representation - what I was calling the 'NASA' convention. This is a rotation order (assuming the convention that the 'Z' axis is up) of zxy. I need an algorithm for all rotation orders. Possibly the solution, then, is to take the zxy order conversion and derive from it five other conversions for the other rotation orders. I guess I was hoping there was a more 'overarching' solution. In any case, I am surprised that I haven't been able to find existing solutions out there. In addition, and this perhaps should be a separate question altogether, any conversion (assuming a known rotation order, of course) is going to select one Euler representation, but there are in fact many. For example, given a rotation order of yxz, the two representations (0,0,180) and (180,180,0) are equivalent (and would yield the same quaternion). Is there a way to constrain the solution using limits on the degrees of freedom? Like you do in IK and rigid body dynamics? i.e. in the example above if there were only one degree of freedom about the Z axis then the second representation can be disregarded. I have tracked down one paper which could be an algorithm in this pdf but I must confess I find the logic and math a little hard to follow. Surely there are other solutions out there? Is arbitrary rotation order really so rare? Surely every major 3D package that allows skeletal animation together with quaternion interpolation (i.e. Maya, Max, Blender, etc) must have solved exactly this problem?

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >