Search Results

Search found 26093 results on 1044 pages for 'career development'.

Page 501/1044 | < Previous Page | 497 498 499 500 501 502 503 504 505 506 507 508  | Next Page >

  • Bridge made out of blocks at an angle

    - by Pozzuh
    I'm having a bit of trouble with the math behind my project. I want the player to be able to select 2 points (vectors). With these 2 points a floor should be created. When these points are parallel to the x-axis it's easy, just calculate the amount of blocks needed by a simple division, loop through that amount (in x and y) and keep increasing the coordinate by the size of that block. The trouble starts when the 2 vectors aren't parallel to an axis, for example at an angle of 45 degrees. How do I handle the math behind this? If I wasn't completely clear, I made this awesome drawing in paint to demonstrate what I want to achieve. The 2 red dots would be the player selected locations. (The blocks indeed aren't square.) http://i.imgur.com/pzhFMEs.png.

    Read the article

  • Deferred rendering order?

    - by Nick Wiggill
    There are some effects for which I must do multi-pass rendering. I've got the basics set up (FBO rendering etc.), but I'm trying to get my head around the most suitable setup. Here's what I'm thinking... The framebuffer objects: FBO 1 has a color attachment and a depth attachment. FBO 2 has a color attachment. The render passes: Render g-buffer: normals and depth (used by outline & DoF blur shaders); output to FBO no. 1. Render solid geometry, bold outlines (as in toon shader), and fog; output to FBO no. 2. (can all render via a single fragment shader -- I think.) (optional) DoF blur the scene; output to the default frame buffer OR ELSE render FBO2 directly to default frame buffer. (optional) Mesh wireframes; composite over what's already in the default framebuffer. Does this order seem viable? Any obvious mistakes?

    Read the article

  • Looking for a royalty free sci-fi sounding song thats 1:00+ long, and costs <= $5

    - by CyanPrime
    I'm looking for a royalty free sci-fi sounding song thats 1:00+ long, and costs less then, or is $5 usd. I want to have a nice BGM for my engine demo I'm going to release for a game I'm planing on having go commercial. I don't want to spend too much money on it, so my limit is $5 usd. I want it to be at least a 1:00 in length. Where should I look? Or even better, do you have a link to a song that meets the criteria?

    Read the article

  • What game systems exist which uses camera input?

    - by Marc Pilgaard
    The group and I is in the middle of a semester project where we are currently researching on which game systems are using camera as input or as an interactive medium? We would like some help listing some of the game systems which uses camera input, as it seems hard to find other examples. Currently we know that webcam browser games uses camera input (Newgrounds webcam games), as well as the xbox kinect. I know this questions seems rather vague, though I still hope some people is capable of helping.

    Read the article

  • OpenGL Vertex Attributes - Normalisation

    - by Daniel
    Alas, I have searched, and have found no definitive answer. When would you normalize the vertex data in OpenGL using the following command: glVertexAttribPointer(index, size, type, normalize, stride, pointer); I.e when would normalize == GL_TRUE; what situations, and why would you choose to let the GPU do the calculations instead of preprocessing it? All examples I have ever seen, have this set to GL_FALSE; and I cannot personally see a use for it. But Khronos aren't stupid, so it must be there for something useful (and probably common).

    Read the article

  • Issues implementing arcball viewer

    - by Pris
    My scene has a simple cube, and a camera built with the lookAt function (I'm using OpenGL). The scene renders fine, and I'm sure I have my model/view/projection matrices set up correctly. Now I'm trying to implement arcball rotation for my camera, but I'm having some trouble. I've got it down to calculating the angle/axis rotation for a virtual sphere in normalized screen coordinates. That means when I move my mouse left to right, I get an angle around the Y axis... and moving my mouse up/down will get me an angle about X. I'm not sure where to go from here -- what do I need to do with my axis so I can apply the angle to simulate camera rotation about its viewpoint? If I try directly applying the axis/angle rotation the camera/view transform I get what you'd expect. The view is rotated about the world axes which the mouse moving over the virtual sphere on the screen corresponds to. So if I move the mouse up/down the view rotates about the world's X axis (what I get reminds me of a first-person view)... but this isn't what I want. I think I need the axis I get to be transformed so it passes through the camera viewpoint and is oriented correct in reference to the camera... but I don't know if that's right or how to do that.

    Read the article

  • How to get this wavefront .obj data onto the frustum?

    - by NoobScratcher
    I've finally figured out how to get the data from a .obj file and store the vertex positions x,y,z into a structure called Points with members x y z which are of type float. I want to know how to get this data onto the screen. Here is my attempt at doing so: //make a fileobject and store list and the index of that list in a c string ifstream file (list[index].c_str() ); std::vector<int>faces; std::vector<Point>points; points.push_back(Point()); Point p; int face[4]; while ( !file.eof() ) { char modelbuffer[10000]; //Get lines and store it in line string file.getline(modelbuffer, 10000); switch(modelbuffer[0]) { case 'v' : sscanf(modelbuffer, "v %f %f %f", &p.x, &p.y, &p.z); points.push_back(p); cout << "Getting Vertex Positions" << endl; cout << "v" << p.x << endl; cout << "v" << p.y << endl; cout << "v" << p.z << endl; break; case 'f': sscanf(modelbuffer, "f %d %d %d %d", face, face+1, face+2, face+3 ); cout << face[0] << endl; cout << face[1] << endl; cout << face[2] << endl; cout << face[3] << endl; faces.push_back(face[0]); faces.push_back(face[1]); faces.push_back(face[2]); faces.push_back(face[3]); } GLuint vertexbuffer; glGenBuffers(1, &vertexbuffer); glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer); glBufferData(GL_ARRAY_BUFFER, points.size(), points.data(), GL_STATIC_DRAW); //glBufferData(GL_ARRAY_BUFFER,sizeof(points), &(points[0]), GL_STATIC_DRAW); glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, 0, 0); glVertexPointer(3, GL_FLOAT, sizeof(points),points.data()); glIndexPointer(GL_DOUBLE, 0, faces.data()); glDrawArrays(GL_QUADS, 0, points.size()); glDrawElements(GL_QUADS, faces.size(), GL_UNSIGNED_INT, faces.data()); } As you can see I've clearly failed the end part but I really don't know why its not rendering the data onto the frustum? Does anyone have a solution for this?

    Read the article

  • How do I draw a scrolling background?

    - by droidmachine
    How can I draw background tile in my 2D side-scrolling game? Is that loop logical for OpenGL es? My tile 2400x480. Also I want to use parallax scrolling for my game. batcher.beginBatch(Assets.background); for(int i=0; i<100; i++) batcher.drawSprite(0+2400*i, 240, 2400, 480, Assets.backgroundRegion); batcher.endBatch(); UPDATE And thats my onDrawFrame.I'm sending deltaTime for fps control. public void onDrawFrame(GL10 gl) { GLGameState state = null; synchronized(stateChanged) { state = this.state; } if(state == GLGameState.Running) { float deltaTime = (System.nanoTime()-startTime) / 1000000000.0f; startTime = System.nanoTime(); screen.update(deltaTime); screen.present(deltaTime); } if(state == GLGameState.Paused) { screen.pause(); synchronized(stateChanged) { this.state = GLGameState.Idle; stateChanged.notifyAll(); } } if(state == GLGameState.Finished) { screen.pause(); screen.dispose(); synchronized(stateChanged) { this.state = GLGameState.Idle; stateChanged.notifyAll(); } } }

    Read the article

  • Preventing item duplication?

    - by PuppyKevin
    For my game, there's two types of items - stackable, and nonstackable. Nonstackable items get assigned a unique ID that stays with it forever. A character ID is assosicated with the item, as is a state (CHANGED, UNCHANGED, NEW, REMOVED). The character ID and state is used for item saving purposes. Stackable items have one unique ID, as in the entire stack has one unique ID. For example: 5 Potions (stacked ontop of each other) has one unique ID. When dropping a nonstackable item, the state gets set to REMOVED, and the unique ID and state don't change. If picked up by another player, the state gets set to NEW, and the character ID gets changed to the new character's ID. When dropping all items in a stack of stackable items (for example, 5 potions out of 5) - it behaves just like a nonstackable item. When dropping some of a stack of stackable items (for example, 3 potions out of 5)... I really have no clue what to do. The 3 dropped potions have the state of REMOVED, but the same unique ID and character ID. If another player picks it up, it has no choice but to obtain a new unique ID, and its state gets changed to NEW and its character ID to the new one. If the dropping player picks it back up, they'd just be readded to the stack. There's two issues with that though. 1. If the player who dropped the 3 potions picks it back up, there's no way to tell if they legitimately dropped the items, or if they're duped items. 2. If another player picks up the 3 potions (assuming they're duped), there's no way to know if they're duped or not. My question is: How can I create a system that detects duplicated items for both nonstackable and stackable items?

    Read the article

  • Interaction using Kinect in XNA

    - by Sweta Dwivedi
    So i have written a program to play a sound file when ever my RightHand.Joint touches the 3D model . . It goes like this . . even though the code works somehow but not very accurate . . for example it will play the sound when my hand is slightly under my 3D object not exactly on my 3D object . How do i make it more accurate? here is the code . . (HandX & HandY is the values coming from the Skeleton data RightHand.Joint.X etc) and also this calculation doesnt work with Animated Sprites..which i need to do foreach (_3DModel s in Solar) { float x = (float)Math.Floor(((handX * 0.5f) + 0.5f) * (resolution.X)); float y = (float)Math.Floor(((handY * -0.5f) + 0.5f) * (resolution.Y)); float z = (float)Math.Floor((handZ) / 4 * 20000); if (Math.Sqrt(Math.Pow(x - s.modelPosition.X, 2) + Math.Pow(y - s.modelPosition.Y, 2)) < 15) { //Exit(); PlaySound("hyperspace_activate"); Console.WriteLine("1" + "handx:" + x + "," + " " + "modelPos.X:" + s.modelPosition.X + "," + " " + "handY:" + y + "modelPos.Y:" + s.modelPosition.Y); } else { Console.WriteLine("2" + "handx:" + x + "," + " " + "modelPos.X:" + s.modelPosition.X + "," + " " + "handY:" + y + "modelPos.Y:" + s.modelPosition.Y); } }

    Read the article

  • How to manage Areas/Levels in an RPG?

    - by Hexlan
    I'm working on an RPG and I'm trying to figure out how to manage the different levels/areas in the game. Currently I create a new state (source file) for every area, defining its unique aspects. My concern is that as the game grows the number of class files will become unmanageable with all the towns, houses, shops, dungeons, etc. that I need to keep track of. I would also prefer to separate my levels from the source code because non-programmer members of the team will be creating levels, and I would like the engine to be as free from game specific code as possible. I'm thinking of creating a class that provides all the functions that will be the same between all the levels/areas with a unique member variable that can be used to look up level specifics from data. This way I only need to define level/area once in the code, but can create multiple instances each with its own unique aspects provided by data. Is this a good way to go about solving the issue? Is there a better way to handle a growing number of levels?

    Read the article

  • Why does my player stop when stepping onto a new tile?

    - by user220631
    Me and my friend are creating a game from scratch. He is in charge of art design and I am in charge of coding. I have done well so far with the code, but I have a collision detection problem when the character moves right: Once the player moves right, whenever a new block is encountered, the player stops. I don't know if this is a problem with collision or the player but I can't work around it. Here is the collision code: this.IsColliding = function(obj) { if(this.X > obj.X + obj.Width) return false; else if(this.X + this.Width < obj.X) return false; else if(this.Y > obj.Y + obj.Height) return false; else if(this.Y + this.Height < obj.Y) return false; else return true; } I also wanted to see if there as a way to make the player collide with the bottom of the block and the right side of the block instead of running through it.

    Read the article

  • HLSL Shader not working right?

    - by dvds414
    Okay so I have this shader for ambient occlusion. It loads to world correctly, but it just shows all the models as being white. I do not know why. I am just running the shader while the model is rendering, is that correct? or do I need to make a render target or something? if so then how? I'm using C++. Here is my shader. float sampleRadius; float distanceScale; float4x4 xProjection; float4x4 xView; float4x4 xWorld; float3 cornerFustrum; struct VS_OUTPUT { float4 pos : POSITION; float2 TexCoord : TEXCOORD0; float3 viewDirection : TEXCOORD1; }; VS_OUTPUT VertexShaderFunction( float4 Position : POSITION, float2 TexCoord : TEXCOORD0) { VS_OUTPUT Out = (VS_OUTPUT)0; float4 WorldPosition = mul(Position, xWorld); float4 ViewPosition = mul(WorldPosition, xView); Out.pos = mul(ViewPosition, xProjection); Position.xy = sign(Position.xy); Out.TexCoord = (float2(Position.x, -Position.y) + float2( 1.0f, 1.0f ) ) * 0.5f; float3 corner = float3(-cornerFustrum.x * Position.x, cornerFustrum.y * Position.y, cornerFustrum.z); Out.viewDirection = corner; return Out; } texture depthTexture; texture randomTexture; sampler2D depthSampler = sampler_state { Texture = <depthTexture>; ADDRESSU = CLAMP; ADDRESSV = CLAMP; MAGFILTER = LINEAR; MINFILTER = LINEAR; }; sampler2D RandNormal = sampler_state { Texture = <randomTexture>; ADDRESSU = WRAP; ADDRESSV = WRAP; MAGFILTER = LINEAR; MINFILTER = LINEAR; }; float4 PixelShaderFunction(VS_OUTPUT IN) : COLOR0 { float4 samples[16] = { float4(0.355512, -0.709318, -0.102371, 0.0 ), float4(0.534186, 0.71511, -0.115167, 0.0 ), float4(-0.87866, 0.157139, -0.115167, 0.0 ), float4(0.140679, -0.475516, -0.0639818, 0.0 ), float4(-0.0796121, 0.158842, -0.677075, 0.0 ), float4(-0.0759516, -0.101676, -0.483625, 0.0 ), float4(0.12493, -0.0223423, -0.483625, 0.0 ), float4(-0.0720074, 0.243395, -0.967251, 0.0 ), float4(-0.207641, 0.414286, 0.187755, 0.0 ), float4(-0.277332, -0.371262, 0.187755, 0.0 ), float4(0.63864, -0.114214, 0.262857, 0.0 ), float4(-0.184051, 0.622119, 0.262857, 0.0 ), float4(0.110007, -0.219486, 0.435574, 0.0 ), float4(0.235085, 0.314707, 0.696918, 0.0 ), float4(-0.290012, 0.0518654, 0.522688, 0.0 ), float4(0.0975089, -0.329594, 0.609803, 0.0 ) }; IN.TexCoord.x += 1.0/1600.0; IN.TexCoord.y += 1.0/1200.0; normalize (IN.viewDirection); float depth = tex2D(depthSampler, IN.TexCoord).a; float3 se = depth * IN.viewDirection; float3 randNormal = tex2D( RandNormal, IN.TexCoord * 200.0 ).rgb; float3 normal = tex2D(depthSampler, IN.TexCoord).rgb; float finalColor = 0.0f; for (int i = 0; i < 16; i++) { float3 ray = reflect(samples[i].xyz,randNormal) * sampleRadius; //if (dot(ray, normal) < 0) // ray += normal * sampleRadius; float4 sample = float4(se + ray, 1.0f); float4 ss = mul(sample, xProjection); float2 sampleTexCoord = 0.5f * ss.xy/ss.w + float2(0.5f, 0.5f); sampleTexCoord.x += 1.0/1600.0; sampleTexCoord.y += 1.0/1200.0; float sampleDepth = tex2D(depthSampler, sampleTexCoord).a; if (sampleDepth == 1.0) { finalColor ++; } else { float occlusion = distanceScale* max(sampleDepth - depth, 0.0f); finalColor += 1.0f / (1.0f + occlusion * occlusion * 0.1); } } return float4(finalColor/16, finalColor/16, finalColor/16, 1.0f); } technique SSAO { pass P0 { VertexShader = compile vs_3_0 VertexShaderFunction(); PixelShader = compile ps_3_0 PixelShaderFunction(); } }

    Read the article

  • How to shift a vector based on the rotation of another vector?

    - by bpierre
    I’m learning 2D programming, so excuse my approximations, and please, don’t hesitate to correct me. I am just trying to fire a bullet from a player. I’m using HTML canvas (top left origin). Here is a representation of my problem: The black vector represent the position of the player (the grey square). The green vector represent its direction. The red disc represents the target. The red vector represents the direction of a bullet, which will move in the direction of the target (red and dotted line). The blue cross represents the point from where I really want to fire the bullet (and the blue and dotted line represents its movement). This is how I draw the player (this is the player object. Position, direction and dimensions are 2D vectors): ctx.save(); ctx.translate(this.position.x, this.position.y); ctx.rotate(this.direction.getAngle()); ctx.drawImage(this.image, Math.round(-this.dimensions.x/2), Math.round(-this.dimensions.y/2), this.dimensions.x, this.dimensions.y); ctx.restore(); This is how I instanciate a new bullet: var bulletPosition = playerPosition.clone(); // Copy of the player position var bulletDirection = Vector2D.substract(targetPosition, playerPosition).normalize(); // Difference between the player and the target, normalized new Bullet(bulletPosition, bulletDirection); This is how I move the bullet (this is the bullet object): var speed = 5; this.position.add(Vector2D.multiply(this.direction, speed)); And this is how I draw the bullet (this is the bullet object): ctx.save(); ctx.translate(this.position.x, this.position.y); ctx.rotate(this.direction.getAngle()); ctx.fillRect(0, 0, 3, 3); ctx.restore(); How can I change the direction and position vectors of the bullet to ensure it is on the blue dotted line? I think I should represent the shift with a vector, but I can’t see how to use it.

    Read the article

  • GestureListener's fling method doesn't get called

    - by nosferat
    I'm using SimpleGestureDetector from the libgdx-users Wiki as my InputProcessor. I set it in the created() method: Gdx.input.setInputProcess(new SimpleDirectionGestureDetector(charController)); charController is my class which implements the DirectionListener interface defined in the SimpleDirectionGestureDetector class and it is responsible for moving the player character. However the character doesn't change direction when I'm performing a fling action in any direction. I've checked and the fling() method in the SimpleDirectionGesture class doesn't get called and I have no idea why, since everything seems good. What am I doing wrong?

    Read the article

  • How should I structure moving from overworld to menu system / combat?

    - by persepolis
    I'm making a text-based "Arena" game where the player is the owner of 5 creatures that battle other teams for loot, experience and glory. The game is very simple, using Python and a curses emulator. I have a static ASCII map of an "overworld" of sorts. My character, represented by a glyph, can move about this static map. There are locations all over the map that the character can visit, that break down into two types: 1) Towns, which are a series of menus that will allow the player to buy equipment for his team, hire new recruits or do other things. 2) Arenas, where the player's team will have a "battle" interface with actions he can perform, messages about the fight, etc. Maybe later, an ASCII representation of the fight but for now, just screens of information with action prompts. My main problem is what kind of design or structure I should use to implement this? Right now, the game goes through a master loop which waits for keyboard input and then moves the player about the screen. My current thinking is this: 1) Upon keyboard input, the Player coordinates are checked against a list of Location objects and if the Player coords match the Location coords then... 2) ??? I'm not sure if I should then call a seperate function to initiate a "menu" or "combat" mode. Or should I create some kind of new GameMode object that contains a method itself for drawing the screen, printing the necessary info? How do I pass my player's team data into this object? My main concern is passing around the program flow into all these objects. Should I be calling straight functions for different parts of my game, and objects to represent "things" within my game? I was reading about the MVC pattern and how this kind of problem might benefit - decouple the GUI from the game logic and user input but I have no idea how this applies to my game.

    Read the article

  • Will we see a trend of stereoscopic 3D games coming up in the near future?

    - by Vish
    I've noticed that the trend of movies is diving into the world of movies with 3-dimensional camera.For me it provoked a thought as if it was the same feeling people got when they saw a colour movie for the first time, like in the transition from black and white to colour it is a whole new experience. For the first time we are experiencing the Z(depth) factor and I really mean when I said "experiencing". So my question is or maybe if not a question, but Is there a possibility of a genre of 3d camera games upcoming?

    Read the article

  • I Don't Understand Anything About Randomly Generated Worlds [closed]

    - by Alex Larsen
    What tools do I need to make a Minecraft-like generated world? I heard about Perlin noise and Simplex, but I don't understand anything about them. So far all I found on the internet was a Simplex version for C#, and all it has is functions, and this is what I get: Console.WriteLine(Noise.Generate(SomeNumber, SomeNumber, SumNumber)); Outputs random floats. I'm really lost. I don't understand the whole random generated worlds concept. Can someone help me? And if I use the noise thing I don't understand how to use it.

    Read the article

  • What causes the iOS OpenGLES driver to allocate extra memory?

    - by Martin Linklater
    I'm trying to optimize the memory usage of our iOS game and I'm puzzled about when/why the iOS GLES driver allocates extra memory at runtime... When I run our game through Instruments with the OpenGL ES Driver instrument the gartUsedBytes value can fluctuate quite wildly. We preload all our textures and build the buffer objects up front, so it's not the game engine requesting extra memory from GL. Currently we are manually requesting around 50MB of GL memory, yet the gartUsedBytes value sits at around 90MB most of the time, peaking at 125MB from time to time. It seems to be linked to what you are rendering that frame - our PVS only submits VBO's for visible meshes. Can anyone shed some light on what the driver is doing in the background ? Like I said earlier, all our game engine allocations are done on level load, so in theory there shouldn't be any fluctuation on GL memory usage while the level is running. Thanks.

    Read the article

  • Generating tileable terrain using Perlin Noise [duplicate]

    - by terrorcell
    This question already has an answer here: How do you generate tileable Perlin noise? 9 answers I'm having trouble figuring out the solution to this particular algorithm. I'm using the Perlin Noise implementation from: https://code.google.com/p/mikeralib/source/browse/trunk/Mikera/src/main/java/mikera/math/PerlinNoise.java Here's what I have so far: for (Chunk chunk : chunks) { PerlinNoise noise = new PerlinNoise(); for (int y = 0; y < CHUNK_SIZE_HEIGHT; ++y) { for (int x = 0; x < CHUNK_SIZE_WIDTH; ++x) { int index = get1DIndex(y, CHUNK_SIZE_WIDTH, x); float val = 0; for (int i = 2; i <= 32; i *= i) { double n = noise.tileableNoise2(i * x / (float)CHUNK_SIZE_WIDTH, i * y / (float)CHUNK_SIZE_HEIGHT, CHUNK_SIZE_WIDTH, CHUNK_SIZE_HEIGHT); val += n / i; } // chunk tile at [index] gets set to the colour 'val' } } } Which produces something like this: Each chunk is made up of CHUNK_SIZE number of tiles, and each tile has a TILE_SIZE_WIDTH/HEIGHT. I think it has something to do with the inner-most for loop and the x/y co-ords given to the noise function, but I could be wrong. Solved: PerlinNoise noise = new PerlinNoise(); for (Chunk chunk : chunks) { for (int y = 0; y < CHUNK_SIZE_HEIGHT; ++y) { for (int x = 0; x < CHUNK_SIZE_WIDTH; ++x) { int index = get1DIndex(y, CHUNK_SIZE_WIDTH, x); float val = 0; float xx = x * TILE_SIZE_WIDTH + chunk.x; float yy = y * TILE_SIZE_HEIGHT + chunk.h; int w = CHUNK_SIZE_WIDTH * TILE_SIZE_WIDTH; int h = CHUNK_SIZE_HEIGHT * TILE_SIZE_HEIGHT; for (int i = 2; i <= 32; i *= i) { double n = noise.tileableNoise2(i * xx / (float)w, i * yy / (float)h, w, h); val += n / i; } // chunk tile at [index] gets set to the colour 'val' } } }

    Read the article

  • OpenGL directional light creating black spots

    - by AnonymousDeveloper
    I probably ought to start by saying that I suspect the problem is that one of my vectors is not in the correct "space", but I don't know for sure. I am having a strange problem with a directional light. When I move the camera away from (0.0, 0.0, 0.0) it creates tiny black spots that grow larger as the distance increases. I apologize ahead of time for the length of the code. Vertex shader: #version 410 core in vec3 vf_normal; in vec3 vf_bitangent; in vec3 vf_tangent; in vec2 vf_textureCoordinates; in vec3 vf_vertex; out vec3 tc_normal; out vec3 tc_bitangent; out vec3 tc_tangent; out vec2 tc_textureCoordinates; out vec3 tc_vertex; uniform mat3 vf_m_normal; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform float vf_te_inner; uniform float vf_te_outer; void main() { tc_normal = vf_normal; tc_bitangent = vf_bitangent; tc_tangent = vf_tangent; tc_textureCoordinates = vf_textureCoordinates; tc_vertex = vf_vertex; gl_Position = vf_m_mvp * vec4(vf_vertex, 1.0); } Tessellation Control shader: #version 410 core layout (vertices = 3) out; in vec3 tc_normal[]; in vec3 tc_bitangent[]; in vec3 tc_tangent[]; in vec2 tc_textureCoordinates[]; in vec3 tc_vertex[]; out vec3 te_normal[]; out vec3 te_bitangent[]; out vec3 te_tangent[]; out vec2 te_textureCoordinates[]; out vec3 te_vertex[]; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; #define ID gl_InvocationID float getTessLevelInner(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_inner - avgDistance), 1.0, vf_te_inner); } float getTessLevelOuter(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_outer - avgDistance), 1.0, vf_te_outer); } void main() { te_normal[gl_InvocationID] = tc_normal[gl_InvocationID]; te_bitangent[gl_InvocationID] = tc_bitangent[gl_InvocationID]; te_tangent[gl_InvocationID] = tc_tangent[gl_InvocationID]; te_textureCoordinates[gl_InvocationID] = tc_textureCoordinates[gl_InvocationID]; te_vertex[gl_InvocationID] = tc_vertex[gl_InvocationID]; float eyeToVertexDistance0 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[0], 1.0)).xyz); float eyeToVertexDistance1 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[1], 1.0)).xyz); float eyeToVertexDistance2 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[2], 1.0)).xyz); gl_TessLevelOuter[0] = getTessLevelOuter(eyeToVertexDistance1, eyeToVertexDistance2); gl_TessLevelOuter[1] = getTessLevelOuter(eyeToVertexDistance2, eyeToVertexDistance0); gl_TessLevelOuter[2] = getTessLevelOuter(eyeToVertexDistance0, eyeToVertexDistance1); gl_TessLevelInner[0] = getTessLevelInner(eyeToVertexDistance2, eyeToVertexDistance0); } Tessellation Evaluation shader: #version 410 core layout (triangles, equal_spacing, cw) in; in vec3 te_normal[]; in vec3 te_bitangent[]; in vec3 te_tangent[]; in vec2 te_textureCoordinates[]; in vec3 te_vertex[]; out vec3 g_normal; out vec3 g_bitangent; out vec4 g_patchDistance; out vec3 g_tangent; out vec2 g_textureCoordinates; out vec3 g_vertex; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_displace; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 interpolate2D(vec2 v0, vec2 v1, vec2 v2) { return vec2(gl_TessCoord.x) * v0 + vec2(gl_TessCoord.y) * v1 + vec2(gl_TessCoord.z) * v2; } vec3 interpolate3D(vec3 v0, vec3 v1, vec3 v2) { return vec3(gl_TessCoord.x) * v0 + vec3(gl_TessCoord.y) * v1 + vec3(gl_TessCoord.z) * v2; } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2*d*d); return d; } float getDisplacement(vec2 t0, vec2 t1, vec2 t2) { float displacement = 0.0; vec2 textureCoordinates = interpolate2D(t0, t1, t2); vec2 vector = ((t0 + t1 + t2) / 3.0); float sampleDistance = sqrt((vector.x * vector.x) + (vector.y * vector.y)); sampleDistance /= ((vf_te_inner + vf_te_outer) / 2.0); displacement += texture(vf_t_displace, textureCoordinates).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, -sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, -sampleDistance)).x; return (displacement / 5.0); } void main() { g_normal = normalize(interpolate3D(te_normal[0], te_normal[1], te_normal[2])); g_bitangent = normalize(interpolate3D(te_bitangent[0], te_bitangent[1], te_bitangent[2])); g_patchDistance = vec4(gl_TessCoord, (1.0 - gl_TessCoord.y)); g_tangent = normalize(interpolate3D(te_tangent[0], te_tangent[1], te_tangent[2])); g_textureCoordinates = interpolate2D(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); g_vertex = interpolate3D(te_vertex[0], te_vertex[1], te_vertex[2]); float displacement = getDisplacement(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); float d2 = min(min(min(g_patchDistance.x, g_patchDistance.y), g_patchDistance.z), g_patchDistance.w); d2 = amplify(d2, 50, -0.5); g_vertex += g_normal * displacement * 0.1 * d2; gl_Position = vf_m_mvp * vec4(g_vertex, 1.0); } Geometry shader: #version 410 core layout (triangles) in; layout (triangle_strip, max_vertices = 3) out; in vec3 g_normal[3]; in vec3 g_bitangent[3]; in vec4 g_patchDistance[3]; in vec3 g_tangent[3]; in vec2 g_textureCoordinates[3]; in vec3 g_vertex[3]; out vec3 f_tangent; out vec3 f_bitangent; out vec3 f_eyeDirection; out vec3 f_lightDirection; out vec3 f_normal; out vec4 f_patchDistance; out vec4 f_shadowCoordinates; out vec2 f_textureCoordinates; out vec3 f_vertex; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; void main() { int index = 0; while (index < 3) { vec3 vertexNormal_cameraspace = vf_m_normal * normalize(g_normal[index]); vec3 vertexTangent_cameraspace = vf_m_normal * normalize(f_tangent); vec3 vertexBitangent_cameraspace = vf_m_normal * normalize(f_bitangent); mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); vec3 eyeDirection = -(vf_m_view * vf_m_model * vec4(g_vertex[index], 1.0)).xyz; vec3 lightDirection = normalize(-(vf_m_view * vec4(vf_l_position, 1.0)).xyz); f_eyeDirection = TBN * eyeDirection; f_lightDirection = TBN * lightDirection; f_normal = normalize(g_normal[index]); f_patchDistance = g_patchDistance[index]; f_shadowCoordinates = vf_m_depthBias * vec4(g_vertex[index], 1.0); f_textureCoordinates = g_textureCoordinates[index]; f_vertex = (vf_m_model * vec4(g_vertex[index], 1.0)).xyz; gl_Position = gl_in[index].gl_Position; EmitVertex(); index ++; } EndPrimitive(); } Fragment shader: #version 410 core in vec3 f_bitangent; in vec3 f_eyeDirection; in vec3 f_lightDirection; in vec3 f_normal; in vec4 f_patchDistance; in vec4 f_shadowCoordinates; in vec3 f_tangent; in vec2 f_textureCoordinates; in vec3 f_vertex; out vec4 fragColor; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 poissonDisk[16] = vec2[]( vec2(-0.94201624, -0.39906216), vec2( 0.94558609, -0.76890725), vec2(-0.09418410, -0.92938870), vec2( 0.34495938, 0.29387760), vec2(-0.91588581, 0.45771432), vec2(-0.81544232, -0.87912464), vec2(-0.38277543, 0.27676845), vec2( 0.97484398, 0.75648379), vec2( 0.44323325, -0.97511554), vec2( 0.53742981, -0.47373420), vec2(-0.26496911, -0.41893023), vec2( 0.79197514, 0.19090188), vec2(-0.24188840, 0.99706507), vec2(-0.81409955, 0.91437590), vec2( 0.19984126, 0.78641367), vec2( 0.14383161, -0.14100790) ); float random(vec3 seed, int i) { vec4 seed4 = vec4(seed,i); float dot_product = dot(seed4, vec4(12.9898, 78.233, 45.164, 94.673)); return fract(sin(dot_product) * 43758.5453); } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2.0 * d * d); return d; } void main() { vec3 lightColor = vf_l_color.xyz; float lightPower = vf_l_color.w; vec3 materialDiffuseColor = texture(vf_t_diffuse, f_textureCoordinates).xyz; vec3 materialAmbientColor = vec3(0.1, 0.1, 0.1) * materialDiffuseColor; vec3 materialSpecularColor = texture(vf_t_specular, f_textureCoordinates).xyz; vec3 n = normalize(texture(vf_t_normal, f_textureCoordinates).rgb * 2.0 - 1.0); vec3 l = normalize(f_lightDirection); float cosTheta = clamp(dot(n, l), 0.0, 1.0); vec3 E = normalize(f_eyeDirection); vec3 R = reflect(-l, n); float cosAlpha = clamp(dot(E, R), 0.0, 1.0); float visibility = 1.0; float bias = 0.005 * tan(acos(cosTheta)); bias = clamp(bias, 0.0, 0.01); for (int i = 0; i < 4; i ++) { float shading = (0.5 / 4.0); int index = i; visibility -= shading * (1.0 - texture(vf_t_shadow, vec3(f_shadowCoordinates.xy + poissonDisk[index] / 3000.0, (f_shadowCoordinates.z - bias) / f_shadowCoordinates.w))); }\n" fragColor.xyz = materialAmbientColor + visibility * materialDiffuseColor * lightColor * lightPower * cosTheta + visibility * materialSpecularColor * lightColor * lightPower * pow(cosAlpha, 5); fragColor.w = texture(vf_t_diffuse, f_textureCoordinates).w; } The following images should be enough to give you an idea of the problem. Before moving the camera: Moving the camera just a little. Moving it to the center of the scene.

    Read the article

  • Random Position between ranges.

    - by blakey87
    Does anyone have a good algorithm for generating a random y position for spawning a block, which takes into account a minimum and maximum height, allowing player to to jump on the block. Blocks will continually be spawned, so the player must always be able to jump onto the next block, bearing in mind the minimum position which would be the ground, and the maximum which would the players jump height bearing in mind the ceiling

    Read the article

  • 3D architecture app for Android or iPhone

    - by Manixate
    I want to make an app for 3D modeling on iPhone/Android. I cannot get the basic idea of how to get started. I have various options such as learning OpenGL ES, UDK or Unity3d but I want to create models(e.g architecture etc) in my app and then render them when user is finished modeling. I do not know if I am able to design models and then render them in the same app with various effects on the iPhone/Android using UDK or Unity3d. (Note: If you find this question unclear please ask, I may have skipped some vital information).

    Read the article

  • Could someone explain why my world reconstructed from depth position is incorrect?

    - by yuumei
    I am attempting to reconstruct the world position in the fragment shader from a depth texture. I pass in the 8 frustum points in world space and interpolate them across fragments and then interpolate from near to far by the depth: highp float depth = (2.0 * CameraPlanes.x) / (CameraPlanes.y + CameraPlanes.x - texture( depthTexture, textureCoord ).x * (CameraPlanes.y - CameraPlanes.x)); // Reconstruct the world position from the linear depth highp vec3 world = mix( nearWorldPos, farWorldPos, depth ); CameraPlanes.x is the near plane CameraPlanes.y is the far. Assuming that my frustum positions are correct, and my depth looks correct, why is my world position wrong? (My depth texture is of format GL_DEPTH_COMPONENT32F if that matters) Thanks! :D Update: Screenshot of world position http://imgur.com/sSlHd So you can see it looks nearly correct. However as the camera moves, the colours (positions) change, which they shouldnt. I can get this to work, if I do the following: Write this into the depth attachment in the previous pass: gl_FragDepth = gl_FragCoord.z / gl_FragCoord.w / CameraPlanes.y; and then read the depth texture like so: depth = texture( depthTexture, textureCoord ).x However this will kill the hardware z buffer optimizations.

    Read the article

  • lwjgl custom icon

    - by melchor629
    I have a little problem with the icon in lwjgl, it doesn't work. I google about it, but i haven't found anything that works for me yet. This is my code for now: PNGDecoder imageDecoder = new PNGDecoder(new FileInputStream("res/images/Icon.png")); ByteBuffer imageData = BufferUtils.createByteBuffer(4 * imageDecoder.getWidth() * imageDecoder.getHeight()); imageDecoder.decode(imageData, imageDecoder.getWidth() * 4, PNGDecoder.Format.RGBA); imageData.flip(); System.err.println(Display.setIcon(new ByteBuffer[]{imageData}) == 0 ? "No se ha creado el icono" : "Se ha creado el icono"); The png file is a 128x128px with transparency. PNGDecoder is from the matthiasmann utility (de.matthiasmann.twl.utils). I'm using Mac OS, 10.8.4 with lwjgl 2.9.0. Thanks :)

    Read the article

< Previous Page | 497 498 499 500 501 502 503 504 505 506 507 508  | Next Page >