Search Results

Search found 28031 results on 1122 pages for 'personal development'.

Page 504/1122 | < Previous Page | 500 501 502 503 504 505 506 507 508 509 510 511  | Next Page >

  • What's the recommended way of doing a HUD for an android game?

    - by joxnas
    Basically the question is in the title. I'm creating a RTS game and I will need buttons like attack move / attack ground, etc. I am not using any engine. When people do games in OpenGL for android (my case), do they ever use android components to control the game or do they create their components in the game? What are the general recommended approach, if there's any? How about more complex components like scrolling lists of items , etc? I would also appreciate you to pair your answer with a brief comment about how was your experience using the approach(es) you describe. Thanks :)

    Read the article

  • OpenGL directional light creating black spots

    - by AnonymousDeveloper
    I probably ought to start by saying that I suspect the problem is that one of my vectors is not in the correct "space", but I don't know for sure. I am having a strange problem with a directional light. When I move the camera away from (0.0, 0.0, 0.0) it creates tiny black spots that grow larger as the distance increases. I apologize ahead of time for the length of the code. Vertex shader: #version 410 core in vec3 vf_normal; in vec3 vf_bitangent; in vec3 vf_tangent; in vec2 vf_textureCoordinates; in vec3 vf_vertex; out vec3 tc_normal; out vec3 tc_bitangent; out vec3 tc_tangent; out vec2 tc_textureCoordinates; out vec3 tc_vertex; uniform mat3 vf_m_normal; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform float vf_te_inner; uniform float vf_te_outer; void main() { tc_normal = vf_normal; tc_bitangent = vf_bitangent; tc_tangent = vf_tangent; tc_textureCoordinates = vf_textureCoordinates; tc_vertex = vf_vertex; gl_Position = vf_m_mvp * vec4(vf_vertex, 1.0); } Tessellation Control shader: #version 410 core layout (vertices = 3) out; in vec3 tc_normal[]; in vec3 tc_bitangent[]; in vec3 tc_tangent[]; in vec2 tc_textureCoordinates[]; in vec3 tc_vertex[]; out vec3 te_normal[]; out vec3 te_bitangent[]; out vec3 te_tangent[]; out vec2 te_textureCoordinates[]; out vec3 te_vertex[]; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; #define ID gl_InvocationID float getTessLevelInner(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_inner - avgDistance), 1.0, vf_te_inner); } float getTessLevelOuter(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_outer - avgDistance), 1.0, vf_te_outer); } void main() { te_normal[gl_InvocationID] = tc_normal[gl_InvocationID]; te_bitangent[gl_InvocationID] = tc_bitangent[gl_InvocationID]; te_tangent[gl_InvocationID] = tc_tangent[gl_InvocationID]; te_textureCoordinates[gl_InvocationID] = tc_textureCoordinates[gl_InvocationID]; te_vertex[gl_InvocationID] = tc_vertex[gl_InvocationID]; float eyeToVertexDistance0 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[0], 1.0)).xyz); float eyeToVertexDistance1 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[1], 1.0)).xyz); float eyeToVertexDistance2 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[2], 1.0)).xyz); gl_TessLevelOuter[0] = getTessLevelOuter(eyeToVertexDistance1, eyeToVertexDistance2); gl_TessLevelOuter[1] = getTessLevelOuter(eyeToVertexDistance2, eyeToVertexDistance0); gl_TessLevelOuter[2] = getTessLevelOuter(eyeToVertexDistance0, eyeToVertexDistance1); gl_TessLevelInner[0] = getTessLevelInner(eyeToVertexDistance2, eyeToVertexDistance0); } Tessellation Evaluation shader: #version 410 core layout (triangles, equal_spacing, cw) in; in vec3 te_normal[]; in vec3 te_bitangent[]; in vec3 te_tangent[]; in vec2 te_textureCoordinates[]; in vec3 te_vertex[]; out vec3 g_normal; out vec3 g_bitangent; out vec4 g_patchDistance; out vec3 g_tangent; out vec2 g_textureCoordinates; out vec3 g_vertex; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_displace; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 interpolate2D(vec2 v0, vec2 v1, vec2 v2) { return vec2(gl_TessCoord.x) * v0 + vec2(gl_TessCoord.y) * v1 + vec2(gl_TessCoord.z) * v2; } vec3 interpolate3D(vec3 v0, vec3 v1, vec3 v2) { return vec3(gl_TessCoord.x) * v0 + vec3(gl_TessCoord.y) * v1 + vec3(gl_TessCoord.z) * v2; } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2*d*d); return d; } float getDisplacement(vec2 t0, vec2 t1, vec2 t2) { float displacement = 0.0; vec2 textureCoordinates = interpolate2D(t0, t1, t2); vec2 vector = ((t0 + t1 + t2) / 3.0); float sampleDistance = sqrt((vector.x * vector.x) + (vector.y * vector.y)); sampleDistance /= ((vf_te_inner + vf_te_outer) / 2.0); displacement += texture(vf_t_displace, textureCoordinates).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, -sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, -sampleDistance)).x; return (displacement / 5.0); } void main() { g_normal = normalize(interpolate3D(te_normal[0], te_normal[1], te_normal[2])); g_bitangent = normalize(interpolate3D(te_bitangent[0], te_bitangent[1], te_bitangent[2])); g_patchDistance = vec4(gl_TessCoord, (1.0 - gl_TessCoord.y)); g_tangent = normalize(interpolate3D(te_tangent[0], te_tangent[1], te_tangent[2])); g_textureCoordinates = interpolate2D(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); g_vertex = interpolate3D(te_vertex[0], te_vertex[1], te_vertex[2]); float displacement = getDisplacement(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); float d2 = min(min(min(g_patchDistance.x, g_patchDistance.y), g_patchDistance.z), g_patchDistance.w); d2 = amplify(d2, 50, -0.5); g_vertex += g_normal * displacement * 0.1 * d2; gl_Position = vf_m_mvp * vec4(g_vertex, 1.0); } Geometry shader: #version 410 core layout (triangles) in; layout (triangle_strip, max_vertices = 3) out; in vec3 g_normal[3]; in vec3 g_bitangent[3]; in vec4 g_patchDistance[3]; in vec3 g_tangent[3]; in vec2 g_textureCoordinates[3]; in vec3 g_vertex[3]; out vec3 f_tangent; out vec3 f_bitangent; out vec3 f_eyeDirection; out vec3 f_lightDirection; out vec3 f_normal; out vec4 f_patchDistance; out vec4 f_shadowCoordinates; out vec2 f_textureCoordinates; out vec3 f_vertex; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; void main() { int index = 0; while (index < 3) { vec3 vertexNormal_cameraspace = vf_m_normal * normalize(g_normal[index]); vec3 vertexTangent_cameraspace = vf_m_normal * normalize(f_tangent); vec3 vertexBitangent_cameraspace = vf_m_normal * normalize(f_bitangent); mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); vec3 eyeDirection = -(vf_m_view * vf_m_model * vec4(g_vertex[index], 1.0)).xyz; vec3 lightDirection = normalize(-(vf_m_view * vec4(vf_l_position, 1.0)).xyz); f_eyeDirection = TBN * eyeDirection; f_lightDirection = TBN * lightDirection; f_normal = normalize(g_normal[index]); f_patchDistance = g_patchDistance[index]; f_shadowCoordinates = vf_m_depthBias * vec4(g_vertex[index], 1.0); f_textureCoordinates = g_textureCoordinates[index]; f_vertex = (vf_m_model * vec4(g_vertex[index], 1.0)).xyz; gl_Position = gl_in[index].gl_Position; EmitVertex(); index ++; } EndPrimitive(); } Fragment shader: #version 410 core in vec3 f_bitangent; in vec3 f_eyeDirection; in vec3 f_lightDirection; in vec3 f_normal; in vec4 f_patchDistance; in vec4 f_shadowCoordinates; in vec3 f_tangent; in vec2 f_textureCoordinates; in vec3 f_vertex; out vec4 fragColor; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 poissonDisk[16] = vec2[]( vec2(-0.94201624, -0.39906216), vec2( 0.94558609, -0.76890725), vec2(-0.09418410, -0.92938870), vec2( 0.34495938, 0.29387760), vec2(-0.91588581, 0.45771432), vec2(-0.81544232, -0.87912464), vec2(-0.38277543, 0.27676845), vec2( 0.97484398, 0.75648379), vec2( 0.44323325, -0.97511554), vec2( 0.53742981, -0.47373420), vec2(-0.26496911, -0.41893023), vec2( 0.79197514, 0.19090188), vec2(-0.24188840, 0.99706507), vec2(-0.81409955, 0.91437590), vec2( 0.19984126, 0.78641367), vec2( 0.14383161, -0.14100790) ); float random(vec3 seed, int i) { vec4 seed4 = vec4(seed,i); float dot_product = dot(seed4, vec4(12.9898, 78.233, 45.164, 94.673)); return fract(sin(dot_product) * 43758.5453); } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2.0 * d * d); return d; } void main() { vec3 lightColor = vf_l_color.xyz; float lightPower = vf_l_color.w; vec3 materialDiffuseColor = texture(vf_t_diffuse, f_textureCoordinates).xyz; vec3 materialAmbientColor = vec3(0.1, 0.1, 0.1) * materialDiffuseColor; vec3 materialSpecularColor = texture(vf_t_specular, f_textureCoordinates).xyz; vec3 n = normalize(texture(vf_t_normal, f_textureCoordinates).rgb * 2.0 - 1.0); vec3 l = normalize(f_lightDirection); float cosTheta = clamp(dot(n, l), 0.0, 1.0); vec3 E = normalize(f_eyeDirection); vec3 R = reflect(-l, n); float cosAlpha = clamp(dot(E, R), 0.0, 1.0); float visibility = 1.0; float bias = 0.005 * tan(acos(cosTheta)); bias = clamp(bias, 0.0, 0.01); for (int i = 0; i < 4; i ++) { float shading = (0.5 / 4.0); int index = i; visibility -= shading * (1.0 - texture(vf_t_shadow, vec3(f_shadowCoordinates.xy + poissonDisk[index] / 3000.0, (f_shadowCoordinates.z - bias) / f_shadowCoordinates.w))); }\n" fragColor.xyz = materialAmbientColor + visibility * materialDiffuseColor * lightColor * lightPower * cosTheta + visibility * materialSpecularColor * lightColor * lightPower * pow(cosAlpha, 5); fragColor.w = texture(vf_t_diffuse, f_textureCoordinates).w; } The following images should be enough to give you an idea of the problem. Before moving the camera: Moving the camera just a little. Moving it to the center of the scene.

    Read the article

  • Box2D blocky map. Body, Fixtures a huge map and performance

    - by Solom
    Right now I'm still in the planning phase of a my very first game. I'm creating a "Minecraft"-like game in 2D that features blocks that can be destroyed as well as players moving around the map. For creating the map I chose a 2D-Array of Integers that represent the Block ID. For testing purposes I created a huge map (16348 * 256) and in my prototype that didn't use Box2D everything worked like a charm. I only rendered those blocks that where within the bounds of my camera and got 60 fps straight. The problem started when I decided to use an existing physics-solution rather than implementing my own one. What I had was basically simple hitboxes around the blocks and then I had to manually check if the player collided with any of those in his neighborhood. For more advanced physics as well as the collision detection I want to switch over to Box2D. The problem I have right now is ... how to go about the bodies? I mean, the blocks are of a static bodytype. They don't move on their own, they just are there to be collided with. But as far as I can see it, every block needs his own body with a rectangular fixture attached to it, so as to be destroyable. But for a huge map such as mine, this turns out to be a real performance bottle-neck. (In fact even a rather small map [compared to the other] of 1024*256 is unplayable.) I mean I create thousands of thousands of blocks. Even if I just render those that are in my immediate neighborhood there are hundreds of them and (at least with the debugRenderer) I drop to 1 fps really quickly (on my own "monster machine"). I thought about strategies like creating just one body, attaching multiple fixtures and only if a fixture got hit, separate it from the body, create a new one and destroy it, but this didn't turn out quite as successful as hoped. (In fact the core just dumps. Ah hello C! I really missed you :X) Here is the code: public class Box2DGameScreen implements Screen { private World world; private Box2DDebugRenderer debugRenderer; private OrthographicCamera camera; private final float TIMESTEP = 1 / 60f; // 1/60 of a second -> 1 frame per second private final int VELOCITYITERATIONS = 8; private final int POSITIONITERATIONS = 3; private Map map; private BodyDef blockBodyDef; private FixtureDef blockFixtureDef; private BodyDef groundDef; private Body ground; private PolygonShape rectangleShape; @Override public void show() { world = new World(new Vector2(0, -9.81f), true); debugRenderer = new Box2DDebugRenderer(); camera = new OrthographicCamera(); // Pixel:Meter = 16:1 // Body definition BodyDef ballDef = new BodyDef(); ballDef.type = BodyDef.BodyType.DynamicBody; ballDef.position.set(0, 1); // Fixture definition FixtureDef ballFixtureDef = new FixtureDef(); ballFixtureDef.shape = new CircleShape(); ballFixtureDef.shape.setRadius(.5f); // 0,5 meter ballFixtureDef.restitution = 0.75f; // between 0 (not jumping up at all) and 1 (jumping up the same amount as it fell down) ballFixtureDef.density = 2.5f; // kg / m² ballFixtureDef.friction = 0.25f; // between 0 (sliding like ice) and 1 (not sliding) // world.createBody(ballDef).createFixture(ballFixtureDef); groundDef = new BodyDef(); groundDef.type = BodyDef.BodyType.StaticBody; groundDef.position.set(0, 0); ground = world.createBody(groundDef); this.map = new Map(20, 20); rectangleShape = new PolygonShape(); // rectangleShape.setAsBox(1, 1); blockFixtureDef = new FixtureDef(); // blockFixtureDef.shape = rectangleShape; blockFixtureDef.restitution = 0.1f; blockFixtureDef.density = 10f; blockFixtureDef.friction = 0.9f; } @Override public void render(float delta) { Gdx.gl.glClearColor(1, 1, 1, 1); Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT); debugRenderer.render(world, camera.combined); drawMap(); world.step(TIMESTEP, VELOCITYITERATIONS, POSITIONITERATIONS); } private void drawMap() { for(int a = 0; a < map.getHeight(); a++) { /* if(camera.position.y - (camera.viewportHeight/2) > a) continue; if(camera.position.y - (camera.viewportHeight/2) < a) break; */ for(int b = 0; b < map.getWidth(); b++) { /* if(camera.position.x - (camera.viewportWidth/2) > b) continue; if(camera.position.x - (camera.viewportWidth/2) < b) break; */ /* blockBodyDef = new BodyDef(); blockBodyDef.type = BodyDef.BodyType.StaticBody; blockBodyDef.position.set(b, a); world.createBody(blockBodyDef).createFixture(blockFixtureDef); */ PolygonShape rectangleShape = new PolygonShape(); rectangleShape.setAsBox(1, 1, new Vector2(b, a), 0); blockFixtureDef.shape = rectangleShape; ground.createFixture(blockFixtureDef); rectangleShape.dispose(); } } } @Override public void resize(int width, int height) { camera.viewportWidth = width / 16; camera.viewportHeight = height / 16; camera.update(); } @Override public void hide() { dispose(); } @Override public void pause() { } @Override public void resume() { } @Override public void dispose() { world.dispose(); debugRenderer.dispose(); } } As you can see I'm facing multiple problems here. I'm not quite sure how to check for the bounds but also if the map is bigger than 24*24 like 1024*256 Java just crashes -.-. And with 24*24 I get like 9 fps. So I'm doing something really terrible here, it seems and I assume that there most be a (much more performant) way, even with Box2D's awesome physics. Any other ideas? Thanks in advance!

    Read the article

  • How can I clear explosions in my function?

    - by hustlerinc
    Hi I have a function to place bombs, and a for loop that places explosions on the tiles where possible. My problem is that I can't remove the explosions after a while. I've tried everything I can come up with so now I turn here as a last resort. The function looks like this: function Bomb(){ var placebomb = false; if(placeBomb && player.bombs != 0){ map[player.Y][player.X].object = 2; var bombX = player.X; var bombY = player.Y; placeBomb = false; player.bombs--; setTimeout(explode, 3000); } function explode(){ var explodeNorth = true; var explodeEast = true; var explodeSouth = true; var explodeWest = true; map[bombY][bombX].explosion = 1; delete map[bombY][bombX].object; for(i=0;i<=player.bombRadius;i++){ if(explodeNorth && map[bombY-i][bombX]){ if(!map[bombY-i][bombX].wall){ if(!map[bombY-i][bombX].object){ map[bombY-i][bombX].explosion = 1; } else var explodeNorth = false; delete map[bombY-i][bombX].object; map[bombY-i][bombX].explosion = 1; } else var explodeNorth = false; } if(explodeEast && map[bombY][bombX+i]){ if(!map[bombY][bombX+i].wall){ if(!map[bombY][bombX+i].object){ map[bombY][bombX+i].explosion = 1; } else var explodeEast = false; delete map[bombY][bombX+i].object; map[bombY][bombX+i].explosion = 1; } else var explodeEast = false; } if(explodeSouth && map[bombY+i][bombX]){ if(!map[bombY+i][bombX].wall){ if(!map[bombY+i][bombX].object){ map[bombY+i][bombX].explosion = 1; } else var explodeSouth = false; delete map[bombY+i][bombX].object; map[bombY+i][bombX].explosion = 1; } else var explodeSouth = false; } if(explodeWest && map[bombY][bombX-i]){ if(!map[bombY][bombX-i].wall){ if(!map[bombY][bombX-i].object){ map[bombY][bombX-i].explosion = 1; } else var explodeWest = false; delete map[bombY][bombX-i].object; map[bombY][bombX-i].explosion = 1; } else var explodeWest = false; } } player.bombs++; } } If anyone can think of a good way to remove the explosion after a delay please help.

    Read the article

  • How should I structure moving from overworld to menu system / combat?

    - by persepolis
    I'm making a text-based "Arena" game where the player is the owner of 5 creatures that battle other teams for loot, experience and glory. The game is very simple, using Python and a curses emulator. I have a static ASCII map of an "overworld" of sorts. My character, represented by a glyph, can move about this static map. There are locations all over the map that the character can visit, that break down into two types: 1) Towns, which are a series of menus that will allow the player to buy equipment for his team, hire new recruits or do other things. 2) Arenas, where the player's team will have a "battle" interface with actions he can perform, messages about the fight, etc. Maybe later, an ASCII representation of the fight but for now, just screens of information with action prompts. My main problem is what kind of design or structure I should use to implement this? Right now, the game goes through a master loop which waits for keyboard input and then moves the player about the screen. My current thinking is this: 1) Upon keyboard input, the Player coordinates are checked against a list of Location objects and if the Player coords match the Location coords then... 2) ??? I'm not sure if I should then call a seperate function to initiate a "menu" or "combat" mode. Or should I create some kind of new GameMode object that contains a method itself for drawing the screen, printing the necessary info? How do I pass my player's team data into this object? My main concern is passing around the program flow into all these objects. Should I be calling straight functions for different parts of my game, and objects to represent "things" within my game? I was reading about the MVC pattern and how this kind of problem might benefit - decouple the GUI from the game logic and user input but I have no idea how this applies to my game.

    Read the article

  • Passing an objects rotation down through its children

    - by MintyAnt
    In my topdown 2d game you have a player with a sword, like an old Zelda game. The sword is a seperate entity, and its collision box "rotates" around the player like an orbit, but always follows the player wherever he goes. The player and sword both have a vector2 heading. The sword is a weapon object that is attached to the character. In order to allow swinging in a direction, I have the following property inside sword (RotateCopy returns a copy of the mHeading after rotation) public Vector2 Heading { get { return mHeading.RotateCopy(mOwner.Rotation); } } This seems a bit messy to me, and slower than it could be. Is there a better way to "translate" the base/owner component rotations through to whatever component I am using, like this sword? Would using a rotation MATRIX be better? (Curretnly rotates by sin/cos) If so, how can I "add" up the matrices? Thank you.

    Read the article

  • Set vertex position

    - by user1806687
    Can anyone tell me how to set the positions of model vertices? I want to be able to change the position of some of the vertices of a Model. Is there any way to make that happen? And make the changed visible at that moment. EDIT: Well, the thing is,I have a model, a cube, that is made up of four "thin" cubes(top,bottom,left side, right side), so I get this cube with "hole" in the middle. And I want to scale it on Y axis. If I do Scale(0,2,0) it will scale the whole object meaning, it will double the Y size of left and right side, but also double the size of the top and bottom cube, which I do not want. Same for X axis I want to double the size of top and bottom cubes but not the left and right one. Hope you can help

    Read the article

  • Line Intersection from parametric equation

    - by Sidar
    I'm sure this question has been asked before. However, I'm trying to connect the dots by translating an equation on paper into an actual function. I thought It would be interesting to ask here instead on the Math sites (since it's going to be used for games anyway ). Let's say we have our vector equation : x = s + Lr; where x is the resulting vector, s our starting point/vector. L our parameter and r our direction vector. The ( not sure it's called like this, please correct me ) normal equation is : x.n = c; If we substitute our vector equation we get: (s+Lr).n = c. We now need to isolate L which results in L = (c - s.n) / (r.n); L needs to be 0 < L < 1. Meaning it needs to be between 0 and 1. My question: I want to know what L is so if I were to substitute L for both vector equation (or two lines) they should give me the same intersection coordinates. That is if they intersect. But I can't wrap my head around on how to use this for two lines and find the parameter that fits the intersection point. Could someone with a simple example show how I could translate this to a function/method?

    Read the article

  • How to implement the light trails for a tron game?

    - by Link
    Well I was creating a TRON style game, but had an issue with creating the actual light trails for the game. What I'm doing currently is I have an array the same size as my window in pixel size, implemented like this: int* collision[800][600]; Then when the bike goes on a certain pixel, it is marked with a 1 for traveled on. However what is the most efficient way to create a working light trail display? I tried to do something like this: int i, j; for(i=0; i<800; i++) for(j=0; j<600; j++) if(*collision[i][j] == 1) Image::applySurface(i, j, trailSurface, gameScreen); But it isn't working properly? It just fills the whole screen with a sprite instead. Whats a better/faster/working way to do this?

    Read the article

  • How to solve problems with movement in simple tile based multiplayer game?

    - by Murlo
    I'm making a simple tile based 2D multiplayer game in JavaScript using socket.io where you can move one tile every 200 ms. The two solutions I've tried are as follows: The client sends "walk one tile north" every 200 ms. Problem: People can easily hack the client to send the action more often. The client sends "walking north" and "stopped walking". Problem: Sometimes the player moves extra steps when "stopped walking" doesn't arrive in time. Do you know a way around these problems or is there a better way to do it? EDIT: Regarding the first solution I've tried adding validation on the server to check if it has been 200 ms since last movement. The problem is that latency still encourages people just to spam the action as much as possible, giving them an unfair advantage.

    Read the article

  • C++ and SDL Trouble Creating a STL Vector of a Game Object

    - by Jackson Blades
    I am trying to create a Space Invaders clone using C++ and SDL. The problem I am having is in trying to create Waves of Enemies. I am trying to model this by making my Waves a vector of 8 Enemy objects. My Enemy constructor takes two arguments, an x and y offset. My Wave constructor also takes two arguments, an x and y offset. What I am trying to do is have my Wave constructor initialize a vector of Enemies, and have each enemy given a different x offset so that they are spaced out appropriately. Enemy::Enemy(int x, int y) { box.x = x; box.y = y; box.w = ENEMY_WIDTH; box.h = ENEMY_HEIGHT; xVel = ENEMY_WIDTH / 2; } Wave::Wave(int x, int y) { box.x = x; box.y = y; box.w = WAVE_WIDTH; box.y = WAVE_HEIGHT; xVel = (-1)*ENEMY_WIDTH; yVel = 0; std::vector<Enemy> enemyWave; for (int i = 0; i < enemyWave.size(); i++) { Enemy temp(box.x + ((ENEMY_WIDTH + 16) * i), box.y); enemyWave.push_back(temp); } } I guess what I am asking is if there is a cleaner, more elegant way to do this sort of initialization with vectors, or if this is right at all. Any help is greatly appreciated.

    Read the article

  • Random Position between ranges.

    - by blakey87
    Does anyone have a good algorithm for generating a random y position for spawning a block, which takes into account a minimum and maximum height, allowing player to to jump on the block. Blocks will continually be spawned, so the player must always be able to jump onto the next block, bearing in mind the minimum position which would be the ground, and the maximum which would the players jump height bearing in mind the ceiling

    Read the article

  • Previewing a Demo Level in Mobile for UDK?

    - by Reno Yeo
    I've already clicked on "Emulate Mobile Features" and everything has been compiled. I've also set the mobile previewer settings to iPhone 4's dimensions and features. However, when i click on the mobile previewer, a new window pops up but it goes into a "Not Responding" mode after a while. Is there anything I'm doing wrong? To be honest, I'm afraid of the difficulty curve required in learning UDK, but I am interested in developing a game for it.

    Read the article

  • Coordinate and positioning problem on iOS with cocos2d-x

    - by Vexille
    I'm using cocos2d-x alongside with Marmalade and running some tests and tutorials before starting an actual project with them. So far things are working reasonably well on the windows simulator, Android and even on Blackberry's Playbook, but on iOS devices (iPhone and iPad) the positioning seems to be off. To make things clearer, I put together a scene that just draws an image in the middle of the screen. It worked as expected on everything else, but this is the result I got on an iPhone: To get the coordinates for the center of the screen I'm using the VisibleRect class from the TestCpp sample. It just uses sharedOpenGLView to get the visible size and visible origin, and calculate the center from that. CCSprite* test = CCSprite::create("Ball.png", CCRectMake(0, 0, 80, 80) ); test->setPosition( ccp(VisibleRect::center().x, VisibleRect::center().y) ); this->addChild(test); Also I have a noBorder policy set on AppDelegate: CCEGLView::sharedOpenGLView()->setDesignResolutionSize(designSize.width, designSize.height, kResolutionNoBorder); One funny thing is that I tried to deploy the TestCpp sample project to some iOS devices and it worked reasonably well on the iPhone, but on the iPad the application was only being drawn on a small portion of the screen - just like what happened on the iPhone when I tried using the ShowAll policy.

    Read the article

  • CCSpriteHole in cocos2d 2.0?

    - by rakkarage
    i was using this cocos2d class CCSpriteHole in cocos2d 1.0 fine... http://jpsarda.tumblr.com/post/15779708304/new-cocos2d-iphone-extensions-a-progress-bar-and-a i am trying to convert it to cocos2d 2.0... i got it to compile by changing glVertexPointer to glVertexAttribPointer like in the 2.0 version of CCSpriteScale9 here http://jpsarda.tumblr.com/post/9162433577/scale9grid-for-cocos2d and changing contentSizeInPixels_ to contentSize_... -(id) init { if( (self=[super init]) ) { opacityModifyRGB_ = YES; opacity_ = 255; color_ = colorUnmodified_ = ccWHITE; capSize=capSizeInPixels=CGSizeZero; //Not used blendFunc_.src = CC_BLEND_SRC; blendFunc_.dst = CC_BLEND_DST; // update texture (calls updateBlendFunc) [self setTexture:nil]; // default transform anchor anchorPoint_ = ccp(0.5f, 0.5f); vertexDataCount=24; vertexData = (ccV2F_C4F_T2F*) malloc(vertexDataCount * sizeof(ccV2F_C4F_T2F)); [self setTextureRectInPixels:CGRectZero untrimmedSize:CGSizeZero]; } return self; } -(id) initWithTexture:(CCTexture2D*)texture rect:(CGRect)rect { NSAssert(texture!=nil, @"Invalid texture for sprite"); // IMPORTANT: [self init] and not [super init]; if( (self = [self init]) ) { [self setTexture:texture]; [self setTextureRect:rect]; } return self; } -(id) initWithTexture:(CCTexture2D*)texture { NSAssert(texture!=nil, @"Invalid texture for sprite"); CGRect rect = CGRectZero; rect.size = texture.contentSize; return [self initWithTexture:texture rect:rect]; } -(id) initWithFile:(NSString*)filename { NSAssert(filename!=nil, @"Invalid filename for sprite"); CCTexture2D *texture = [[CCTextureCache sharedTextureCache] addImage: filename]; if( texture ) return [self initWithTexture:texture]; return nil; } +(id)spriteWithFile:(NSString*)f { return [[self alloc] initWithFile:f]; } - (void) dealloc { if (vertexData) free(vertexData); } -(void) updateColor { ccColor4F color4; color4.r=(float)color_.r/255.0f; color4.g=(float)color_.g/255.0f; color4.b=(float)color_.b/255.0f; color4.a=(float)opacity_/255.0f; for (int i=0; i<vertexDataCount; i++) { vertexData[i].colors=color4; } } -(void)updateTextureCoords:(CGRect)rect { CCTexture2D *tex = texture_; if(!tex) return; float atlasWidth = (float)tex.pixelsWide; float atlasHeight = (float)tex.pixelsHigh; float left,right,top,bottom; left = rect.origin.x/atlasWidth; right = left + rect.size.width/atlasWidth; top = rect.origin.y/atlasHeight; bottom = top + rect.size.height/atlasHeight; // // |/|/|/| // CGSize capTexCoordsSize=CGSizeMake(capSizeInPixels.width/atlasWidth, capSizeInPixels.height/atlasHeight); // From left to right //Top band // Left vertexData[0].texCoords=(ccTex2F){left,top}; vertexData[1].texCoords=(ccTex2F){left,top+capTexCoordsSize.height}; vertexData[2].texCoords=(ccTex2F){left+capTexCoordsSize.width,top}; vertexData[3].texCoords=(ccTex2F){left+capTexCoordsSize.width,top+capTexCoordsSize.height}; // Center vertexData[4].texCoords=(ccTex2F){right-capTexCoordsSize.width,top}; vertexData[5].texCoords=(ccTex2F){right-capTexCoordsSize.width,top+capTexCoordsSize.height}; // Right vertexData[6].texCoords=(ccTex2F){right,top}; vertexData[7].texCoords=(ccTex2F){right,top+capTexCoordsSize.height}; //Center band // Left vertexData[8].texCoords=(ccTex2F){left,bottom-capTexCoordsSize.height}; vertexData[9].texCoords=(ccTex2F){left,top+capTexCoordsSize.height}; vertexData[10].texCoords=(ccTex2F){left+capTexCoordsSize.width,bottom-capTexCoordsSize.height}; vertexData[11].texCoords=(ccTex2F){left+capTexCoordsSize.width,top+capTexCoordsSize.height}; // Center vertexData[12].texCoords=(ccTex2F){right-capTexCoordsSize.width,bottom-capTexCoordsSize.height}; vertexData[13].texCoords=(ccTex2F){right-capTexCoordsSize.width,top+capTexCoordsSize.height}; // Right vertexData[14].texCoords=(ccTex2F){right,bottom-capTexCoordsSize.height}; vertexData[15].texCoords=(ccTex2F){right,top+capTexCoordsSize.height}; //Bottom band //Left vertexData[16].texCoords=(ccTex2F){left,bottom}; vertexData[17].texCoords=(ccTex2F){left,bottom-capTexCoordsSize.height}; vertexData[18].texCoords=(ccTex2F){left+capTexCoordsSize.width,bottom}; vertexData[19].texCoords=(ccTex2F){left+capTexCoordsSize.width,bottom-capTexCoordsSize.height}; // Center vertexData[20].texCoords=(ccTex2F){right-capTexCoordsSize.width,bottom}; vertexData[21].texCoords=(ccTex2F){right-capTexCoordsSize.width,bottom-capTexCoordsSize.height}; // Right vertexData[22].texCoords=(ccTex2F){right,bottom}; vertexData[23].texCoords=(ccTex2F){right,bottom-capTexCoordsSize.height}; } -(void) updateVertices { float left=0; //-spriteSizeInPixels.width*0.5f; float right=left+contentSize_.width; float bottom=0; //-spriteSizeInPixels.height*0.5f; float top=bottom+contentSize_.height; float holeLeft=holeRect.origin.x*CC_CONTENT_SCALE_FACTOR(); float holeRight=holeLeft+holeRect.size.width*CC_CONTENT_SCALE_FACTOR(); float holeBottom=holeRect.origin.y*CC_CONTENT_SCALE_FACTOR(); float holeTop=holeBottom+holeRect.size.height*CC_CONTENT_SCALE_FACTOR(); // // |/|/|/| // // From left to right //Top band // Left vertexData[0].vertices=(ccVertex2F){left,top}; vertexData[1].vertices=(ccVertex2F){left,holeTop}; vertexData[2].vertices=(ccVertex2F){holeLeft,top}; vertexData[3].vertices=(ccVertex2F){holeLeft,holeTop}; // Center vertexData[4].vertices=(ccVertex2F){holeRight,top}; vertexData[5].vertices=(ccVertex2F){holeRight,holeTop}; // Right vertexData[6].vertices=(ccVertex2F){right,top}; vertexData[7].vertices=(ccVertex2F){right,holeTop}; //Center band // Left vertexData[8].vertices=(ccVertex2F){left,holeBottom}; vertexData[9].vertices=(ccVertex2F){left,holeTop}; vertexData[10].vertices=(ccVertex2F){holeLeft,holeBottom}; vertexData[11].vertices=(ccVertex2F){holeLeft,holeTop}; // Center vertexData[12].vertices=(ccVertex2F){holeRight,holeBottom}; vertexData[13].vertices=(ccVertex2F){holeRight,holeTop}; // Right vertexData[14].vertices=(ccVertex2F){right,holeBottom}; vertexData[15].vertices=(ccVertex2F){right,holeTop}; //Bottom band //Left vertexData[16].vertices=(ccVertex2F){left,bottom}; vertexData[17].vertices=(ccVertex2F){left,holeBottom}; vertexData[18].vertices=(ccVertex2F){holeLeft,bottom}; vertexData[19].vertices=(ccVertex2F){holeLeft,holeBottom}; // Center vertexData[20].vertices=(ccVertex2F){holeRight,bottom}; vertexData[21].vertices=(ccVertex2F){holeRight,holeBottom}; // Right vertexData[22].vertices=(ccVertex2F){right,bottom}; vertexData[23].vertices=(ccVertex2F){right,holeBottom}; } -(void) setHole:(CGRect)r inRect:(CGRect)totalSurface { holeRect=r; self.contentSize=totalSurface.size; holeRect.origin=ccpSub(holeRect.origin,totalSurface.origin); CGPoint holeCenter=ccp(holeRect.origin.x+holeRect.size.width*0.5f,holeRect.origin.y+holeRect.size.height*0.5f); self.anchorPoint=ccp(holeCenter.x/contentSize_.width,holeCenter.y/contentSize_.height); //[self updateTextureCoords:rectInPixels_]; [self updateVertices]; [self updateColor]; } -(void) draw { BOOL newBlend = NO; if( blendFunc_.src != CC_BLEND_SRC || blendFunc_.dst != CC_BLEND_DST ) { newBlend = YES; glBlendFunc( blendFunc_.src, blendFunc_.dst ); } glBindTexture(GL_TEXTURE_2D, [texture_ name]); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[0].vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[0].texCoords); glVertexAttribPointer(kCCVertexAttrib_Color, 4, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[0].colors); glDrawArrays(GL_TRIANGLE_STRIP, 0, 8); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[8].vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[8].texCoords); glVertexAttribPointer(kCCVertexAttrib_Color, 4, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[8].colors); glDrawArrays(GL_TRIANGLE_STRIP, 0, 8); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[16].vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[16].texCoords); glVertexAttribPointer(kCCVertexAttrib_Color, 4, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[16].colors); glDrawArrays(GL_TRIANGLE_STRIP, 0, 8); if( newBlend ) glBlendFunc(CC_BLEND_SRC, CC_BLEND_DST); } -(void)setTextureRectInPixels:(CGRect)rect untrimmedSize:(CGSize)untrimmedSize { rectInPixels_ = rect; rect_ = CC_RECT_PIXELS_TO_POINTS( rect ); //[self setContentSizeInPixels:untrimmedSize]; [self updateTextureCoords:rectInPixels_]; } -(void)setTextureRect:(CGRect)rect { CGRect rectInPixels = CC_RECT_POINTS_TO_PIXELS( rect ); [self setTextureRectInPixels:rectInPixels untrimmedSize:rectInPixels.size]; } // // RGBA protocol // #pragma mark CCSpriteHole - RGBA protocol -(GLubyte) opacity { return opacity_; } -(void) setOpacity:(GLubyte) anOpacity { opacity_ = anOpacity; // special opacity for premultiplied textures if( opacityModifyRGB_ ) [self setColor: (opacityModifyRGB_ ? colorUnmodified_ : color_ )]; [self updateColor]; } - (ccColor3B) color { if(opacityModifyRGB_){ return colorUnmodified_; } return color_; } -(void) setColor:(ccColor3B)color3 { color_ = colorUnmodified_ = color3; if( opacityModifyRGB_ ){ color_.r = color3.r * opacity_/255; color_.g = color3.g * opacity_/255; color_.b = color3.b * opacity_/255; } [self updateColor]; } -(void) setOpacityModifyRGB:(BOOL)modify { ccColor3B oldColor = self.color; opacityModifyRGB_ = modify; self.color = oldColor; } -(BOOL) doesOpacityModifyRGB { return opacityModifyRGB_; } #pragma mark CCSpriteHole - CocosNodeTexture protocol -(void) updateBlendFunc { if( !texture_ || ! [texture_ hasPremultipliedAlpha] ) { blendFunc_.src = GL_SRC_ALPHA; blendFunc_.dst = GL_ONE_MINUS_SRC_ALPHA; [self setOpacityModifyRGB:NO]; } else { blendFunc_.src = CC_BLEND_SRC; blendFunc_.dst = CC_BLEND_DST; [self setOpacityModifyRGB:YES]; } } -(void) setTexture:(CCTexture2D*)texture { // accept texture==nil as argument NSAssert( !texture || [texture isKindOfClass:[CCTexture2D class]], @"setTexture expects a CCTexture2D. Invalid argument"); texture_ = texture; [self updateBlendFunc]; } -(CCTexture2D*) texture { return texture_; } @end but now positioning and scaling seem to not work? and it starts in the wrong position... but changing the opacity still works. so i was wondering if anyone can see why my 2.0 version is not working? or if maybe there is a better way to do a sprite hole with cocos2d/opengl 2.0? shaders? thanks

    Read the article

  • DirectX 11 Constant Buffers vs Effect Framework

    - by Alex
    I'm having some trouble understanding the differences between using constant buffers or using the effect framework of DirectX11 for updating shader constants. From what I understand they both do exactly the same thing, although from reading the documentation it appears as if using effects is meant to be 'easier'. However they seem the same to me, one uses VSSetConstantBuffers and the other GetConstantBufferByName. Is there something I'm missing here?

    Read the article

  • Multiple objects listening for the same key press

    - by xiaohouzi79
    I want to learn the best way to implement this: I have a hero and an enemy on the screen. Say the hero presses "k" to get out a knife, I want the enemy to react in a certain way. Now, if in my game loop I have a listener for the key press event and I identify a "k" was pressed, the quick and easy way would be to do: // If K pressed // hero.getOoutKnife() // enemy.getAngry() But what is commonly done in more complex games, where say I have 10 types of character on screen and they all need to react in a unique way when the letter "k" is pressed? I can think of a bunch of hacky ways to do this, but would love to know how it should be done properly. I am using C++, but I'm not looking for a code implementation, just some ideas on how it should be done the right way.

    Read the article

  • Using NumPy arrays as 2D mathematical vectors?

    - by CorundumGames
    Right now I'm using lists as position, velocity, and acceleration vectors in my game. Is that a better option than using NumPy's arrays (not the standard library's) as vectors (with float data types)? I'm frequently adding vectors and changing their values directly, then placing the values in these vectors into a Pygame Rect. The vector is used for position (because Rects can't hold floats, so we can't go "between" pixels), and the Rect is used for rendering (because Pygame will only take in Rects for rendering positions).

    Read the article

  • Grid based collision - How many cells?

    - by Fibericon
    The game I'm creating is a bullet hell game, so there can be quite a few objects on the screen at any given time. It probably maxes out at about 40 enemies and 200 or so bullets. That being said, I'm splitting up the playing field into a grid for my collision checking. Right now, it's only 8 cells. How many would be optimal? I'm worried that if I use too many, I'll be wasting CPU power. My main concern is processing power, to make the game run smoothly. RAM is not a big concern for me.

    Read the article

  • How can I customize an FPS game?

    - by monoceres
    I want to create a customized (modded) fps game where I can change the look and feel of the game to match my intended theme. Some of the things I would like to do: Create a custom map (terrain). Add custom sound effects Change AI (For example, running away instead of actively looking for combat). Change menus and add some storyboard. Script events in game (like a countdown until game over) Change the models of the NPC's. What options do I have? Is there any platform/game/engine/whatever that allows one to do the things above in a reasonable way? I work as a programmer so I'm not afraid of coding some part of the project, but to save time it would be nice to work in some high-level way (like scripting or configuration files).

    Read the article

  • Wheel Joint Implementation in AndEngine

    - by Siddharth
    I am currently developing car game in AndEngine. In which I was using revolute joint for car wheel and chassis attachment. But my friend suggest me that use wheel joint for that purpose for better behavior of the car. In AndEnginen I didn't found the wheel joint implementation. So what I have to do for wheel joint implementation. I think I have to manually update the box2d library for this purpose but I don't know how many things get updated. Please suggest me some guidance on achieving better car behavior in AndEngine.

    Read the article

  • (SOLVED) Problems Rendering Text in OpenGL Using FreeType

    - by Sean M.
    I've been following both the FreeType2 tutorial and the WikiBooks tuorial, trying to combine things from them both in order to load and render fonts using the FreeType library. I used the font loading code from the FreeType2 tutorial and tried to implement the rendering code from the wikibooks tutorial (tried being the keyword as I'm still trying to learn model OpenGL, I'm using 3.2). Everything loads correctly and I have the shader program to render the text with working, but I can't get the text to render. I'm 99% sure that it has something to do with how I cam passing data to the shader, or how I set up the screen. These are the code segments that handle OpenGL initialization, as well as Font initialization and rendering: //Init glfw if (!glfwInit()) { fprintf(stderr, "GLFW Initialization has failed!\n"); exit(EXIT_FAILURE); } printf("GLFW Initialized.\n"); //Process the command line arguments processCmdArgs(argc, argv); //Create the window glfwWindowHint(GLFW_SAMPLES, g_aaSamples); glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 2); g_mainWindow = glfwCreateWindow(g_screenWidth, g_screenHeight, "Voxel Shipyard", g_fullScreen ? glfwGetPrimaryMonitor() : nullptr, nullptr); if (!g_mainWindow) { fprintf(stderr, "Could not create GLFW window!\n"); closeOGL(); exit(EXIT_FAILURE); } glfwMakeContextCurrent(g_mainWindow); printf("Window and OpenGL rendering context created.\n"); glClearColor(0.2f, 0.2f, 0.2f, 1.0f); //Are these necessary for Modern OpenGL (3.0+)? glViewport(0, 0, g_screenWidth, g_screenHeight); glOrtho(0, g_screenWidth, g_screenHeight, 0, -1, 1); //Init glew int err = glewInit(); if (err != GLEW_OK) { fprintf(stderr, "GLEW initialization failed!\n"); fprintf(stderr, "%s\n", glewGetErrorString(err)); closeOGL(); exit(EXIT_FAILURE); } printf("GLEW initialized.\n"); Here is the font file (it's slightly too big to post): CFont.h/CFont.cpp Here is the solution zipped up: [solution] (https://dl.dropboxusercontent.com/u/36062916/VoxelShipyard.zip), if anyone feels they need the entire solution. If anyone could take a look at the code, it would be greatly appreciated. Also if someone has a tutorial that is a little more user friendly, that would also be appreciated. Thanks.

    Read the article

  • Getting a texture from a renderbuffer in OpenGL?

    - by Rushyo
    I've got a renderbuffer (DepthStencil) in an FBO and I need to get a texture from it. I can't have both a DepthComponent texture and a DepthStencil renderbuffer in the FBO, it seems, so I need some way to convert the renderbuffer to a DepthComponent texture after I'm done with it for use later down the pipeline. I've tried plenty of techniques to grab the depth component from the renderbuffer for weeks but I always come out with junk. All I want at the end is the same texture I'd get from an FBO if I wasn't using a renderbuffer. Can anyone post some comprehensive instructions or code that covers this seemingly simple operation? EDIT: Linky to an extract version of the code http://dl.dropbox.com/u/9279501/fbo.cs Screeny of the Depth of Field effect + FBO - without depth(!) http://i.stack.imgur.com/Hj9Oe.jpg Screeny without Depth of Field effect + FBO - depth working fine http://i.stack.imgur.com/boOm1.jpg

    Read the article

  • Knowing state of game in real time

    - by evthim
    I'm trying to code a tic tac toe game in java and I need help figuring out how to efficiently and without freezing the program check if someone won the game. I'm only in the design stages now, I haven't started programming anything but I'm wondering how would I know at all times the state of the game and exactly when someone wins? Response to MarkR: (note: had to place comment here, it was too long for comment section) It's not a homework problem, I'm trying to get more practice programming GUI's which I've only done once as a freshman in my second introductory programming course. I understand I'll have a 2D array. I plan to have a 2D integer array where x would equal 1 and o would equal 0. However, won't it take too much time if I check after every move if someone won the game? Is there a way or a data structure or algorithm I can use so that the program will know the state (when I say state I mean not just knowing every position on the board, the int array will take care of that, I mean knowing that user 1 will win if he places x on this block) of the game at all times and thus can know automatically when someone won?

    Read the article

  • I want to learn to program in SDL C++where do i start? I want to learn only what i need to to start making 2d games [on hold]

    - by user2644399
    Lazyfoo of Lazyfoo.net of the SDL 2d tutorial wrote that in order for me to start game programming in SDL, I need to know these concepts well; Operators, Controls, Loops, Functions, Structures, Arrays, References, Pointers, Classes, Objects how to use a template and Bitwise and/or. I want to know the fastest way to learn as much as I need of basic c++ that would allow me to make 2d games. Thanks in advance.

    Read the article

< Previous Page | 500 501 502 503 504 505 506 507 508 509 510 511  | Next Page >