Search Results

Search found 37616 results on 1505 pages for 'model driven development'.

Page 509/1505 | < Previous Page | 505 506 507 508 509 510 511 512 513 514 515 516  | Next Page >

  • What should I use (controls, methods) to make a 2D tile based map editor?

    - by user1306322
    I'm making a 2d game where each tile is a square and it's viewed at straight angle, no skewing, no rotation, it's pretty simple. Two weeks ago I tried using DataGridView, but as the number of rows and columns increased, it became frustratingly slow, then I read how it should've happened to me earlier, because this control is not supposed to work with large number of cells, and I have at least 7500 cells in my smallest level, which made it unbearable to use. This is what I expect from my new editor: Most importantly, tile type. Tile images or their color codes are fine (seeing map as it is in-game is cool, but the faster, the better). Secondly, all tile parameters (in text, preferrably editable in a popup or sidebar). I'm using my own format, so I'm most probably not going to use third party product. Besides, I'm trying to learn how to do it myself.

    Read the article

  • Tile-based 2D collision detection problems

    - by Vee
    I'm trying to follow this tutorial http://www.tonypa.pri.ee/tbw/tut05.html to implement real-time collisions in a tile-based world. I find the center coordinates of my entities thanks to these properties: public float CenterX { get { return X + Width / 2f; } set { X = value - Width / 2f; } } public float CenterY { get { return Y + Height / 2f; } set { Y = value - Height / 2f; } } Then in my update method, in the player class, which is called every frame, I have this code: public override void Update() { base.Update(); int downY = (int)Math.Floor((CenterY + Height / 2f - 1) / 16f); int upY = (int)Math.Floor((CenterY - Height / 2f) / 16f); int leftX = (int)Math.Floor((CenterX + Speed * NextX - Width / 2f) / 16f); int rightX = (int)Math.Floor((CenterX + Speed * NextX + Width / 2f - 1) / 16f); bool upleft = Game.CurrentMap[leftX, upY] != 1; bool downleft = Game.CurrentMap[leftX, downY] != 1; bool upright = Game.CurrentMap[rightX, upY] != 1; bool downright = Game.CurrentMap[rightX, downY] != 1; if(NextX == 1) { if (upright && downright) CenterX += Speed; else CenterX = (Game.GetCellX(CenterX) + 1)*16 - Width / 2f; } } downY, upY, leftX and rightX should respectively find the lowest Y position, the highest Y position, the leftmost X position and the rightmost X position. I add + Speed * NextX because in the tutorial the getMyCorners function is called with these parameters: getMyCorners (ob.x+ob.speed*dirx, ob.y, ob); The GetCellX and GetCellY methods: public int GetCellX(float mX) { return (int)Math.Floor(mX / SGame.Camera.TileSize); } public int GetCellY(float mY) { return (int)Math.Floor(mY / SGame.Camera.TileSize); } The problem is that the player "flickers" while hitting a wall, and the corner detection doesn't even work correctly since it can overlap walls that only hit one of the corners. I do not understand what is wrong. In the tutorial the ob.x and ob.y fields should be the same as my CenterX and CenterY properties, and the ob.width and ob.height should be the same as Width / 2f and Height / 2f. However it still doesn't work. Thanks for your help.

    Read the article

  • What is the kd tree intersection logic?

    - by bobobobo
    I'm trying to figure out how to implement a KD tree. On page 322 of "Real time collision detection" by Ericson The text section is included below in case Google book preview doesn't let you see it the time you click the link text section Relevant section: The basic idea behind intersecting a ray or directed line segment with a k-d tree is straightforward. The line is intersected against the node's splitting plane, and the t value of intersection is computed. If t is within the interval of the line, 0 <= t <= tmax, the line straddles the plane and both children of the tree are recursively descended. If not, only the side containing the segment origin is recursively visited. So here's what I have: (open image in new tab if you can't see the lettering) The logical tree Here the orange ray is going thru the 3d scene. The x's represent intersection with a plane. From the LEFT, the ray hits: The front face of the scene's enclosing cube, The (1) splitting plane The (2.2) splitting plane The right side of the scene's enclosing cube But here's what would happen, naively following Ericson's basic description above: Test against splitting plane (1). Ray hits splitting plane (1), so left and right children of splitting plane (1) are included in next test. Test against splitting plane (2.1). Ray actually hits that plane, (way off to the right) so both children are included in next level of tests. (This is counter-intuitive - shouldn't only the bottom node be included in subsequent tests) Can some one describe what happens when the orange ray goes through the scene correctly?

    Read the article

  • Decal implementation

    - by dreta
    I had issues finding information about decals, so maybe this question will help others. The implementation is for a forward renderer. Could somebody confirm if i got decal implementation right? You define a cube of any dimension that'll define the projection volume in common space. You check for triangle intersection with the defined cube to recieve triangles that the projection will affect. You clip these triangles and save them. You then use matrix tricks to calculate UV coordinates for the saved triangles that'll reference the texture you're projecting. To do this you take the vectors representing height, width and depth of the cube in common space, so that f.e. the bottom left corner is the origin. You put that in a matrix as the i, j, k unit vectors, set the translation for the cube, then you inverse this matrix. You multiply the vertices of the saved triangles by this matrix, that way you get their coordinates inside of a 0 to 1 size cube that you use as the UV coordinates. This way you have the original triangles you're projecting onto and you have UV coordinates for them (the UV coordinates are referencing the texture you're projecting). Then you rerender the saved triangles onto the scene and they overwrite the area of projection with the projected image. Now the questions that i couldn't find answers for. Is the last point right? I've never done software clipping, but it seems error prone enough, due to limited precision, that the'll be some z fighting occuring for the projected texture. Also is the way of getting UV coordinates correct?

    Read the article

  • OpenGL: Attempt to allocate a texture to big for the current hardware

    - by AnonymousMan
    I'm getting the following error: java.io.IOException: Attempt to allocate a texture to big for the current hardware at org.newdawn.slick.opengl.InternalTextureLoader.getTexture(InternalTextureLoader.java:320) at org.newdawn.slick.opengl.InternalTextureLoader.getTexture(InternalTextureLoader.java:254) at org.newdawn.slick.opengl.InternalTextureLoader.getTexture(InternalTextureLoader.java:200) at org.newdawn.slick.opengl.TextureLoader.getTexture(TextureLoader.java:64) at org.newdawn.slick.opengl.TextureLoader.getTexture(TextureLoader.java:24) The image I'm trying to use is 128x128. System.out.println(GL11.glGetInteger(GL11.GL_MAX_TEXTURE_SIZE)); I get: 32. 32??!! My graphics card is AMD Radeon HD 7970M with 2048 MB GDDR5 RAM, I can run all the latest games in 1080p and 60fps with no problem, and those textures sure as hell doesn't look like they are 32x32 pixels to me! How can I fix this? -- Edit: Here's the chaos code I use to init OpenGL: Display.setDisplayMode(new DisplayMode(500,500)); Display.create(); if (!GLContext.getCapabilities().OpenGL11) { throw new Exception("OpenGL 1.1 not supported."); } Display.setTitle("Game"); glMatrixMode(GL_PROJECTION); glLoadIdentity(); GLU.gluPerspective(45, 1, 0.1f, 5000); Mouse.setGrabbed(true); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glEnable(GL_TEXTURE_2D); glClearColor(0, 0, 0, 0); glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LEQUAL); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable(GL_BLEND); glEnable(GL_POINT_SMOOTH); glEnable(GL_LINE_SMOOTH); glEnable(GL_POLYGON_SMOOTH); glEnable(GL_POLYGON_OFFSET_FILL); glShadeModel(GL_SMOOTH); Display is a LWJGL thing, it makes the OpenGL context and the window. Anyway, I don't think there's anything in the init code that can help me but you never know...

    Read the article

  • 3D rotation tool. How can I add simple extrusion?

    - by Gerve
    The 3D rotation tool is excellent but it only lets you rotate 2D objects, this means my object is wafer thin. Is there any way to add simple extrusion or depth to a symbol? I don't really want to use any 3rd party libraries like Away3D or Papervision, this is overkill for my simple 2D game. I only want to do this creating a couple motion tweens if possible. More Details: Below is what my symbol looks like (just with a bit more color). The symbol does a little 3D rotation and then flies away, it's just for something like a scoreboard within the app.

    Read the article

  • How to get tilemap transparency color working with TiledLib's Demo implementation?

    - by Adam LaBranche
    So the problem I'm having is that when using Nick Gravelyn's tiledlib pipeline for reading and drawing tmx maps in XNA, the transparency color I set in Tiled's editor will work in the editor, but when I draw it the color that's supposed to become transparent still draws. The closest things to a solution that I've found are - 1) Change my sprite batch's BlendState to NonPremultiplied (found this in a buried Tweet). 2) Get the pixels that are supposed to be transparent at some point then Set them all to transparent. Solution 1 didn't work for me, and solution 2 seems hacky and not a very good way to approach this particular problem, especially since it looks like the custom pipeline processor reads in the transparent color and sets it to the color key for transparency according to the code, just something is going wrong somewhere. At least that's what it looks like the code is doing. TileSetContent.cs if (imageNode.Attributes["trans"] != null) { string color = imageNode.Attributes["trans"].Value; string r = color.Substring(0, 2); string g = color.Substring(2, 2); string b = color.Substring(4, 2); this.ColorKey = new Color((byte)Convert.ToInt32(r, 16), (byte)Convert.ToInt32(g, 16), (byte)Convert.ToInt32(b, 16)); } ... TiledHelpers.cs // build the asset as an external reference OpaqueDataDictionary data = new OpaqueDataDictionary(); data.Add("GenerateMipMaps", false); data.Add("ResizetoPowerOfTwo", false); data.Add("TextureFormat", TextureProcessorOutputFormat.Color); data.Add("ColorKeyEnabled", tileSet.ColorKey.HasValue); data.Add("ColorKeyColor", tileSet.ColorKey.HasValue ? tileSet.ColorKey.Value : Microsoft.Xna.Framework.Color.Magenta); tileSet.Texture = context.BuildAsset<Texture2DContent, Texture2DContent>( new ExternalReference<Texture2DContent>(path), null, data, null, asset); ... I can share more code as well if it helps to understand my problem. Thank you.

    Read the article

  • XNA 2D line-of-sight check

    - by bionicOnion
    I'm working on a top-down shooter in XNA, and I need to implement line-of-sight checking. I've come up with a solution that seems to work, but I get the nagging feeling that it won't be efficient enough to do every frame for multiple calls (the game already hiccups slightly at about 10 calls per frame). The code is below, but my general plan was to create a series of rectangles with a width and height of zero to act as points along the sight line, and then check to see if any of these rectangles intersects a ClutterObject (an interface I defined for things like walls or other obstacles) after first screening for any that can't possibly be in the line of sight (i.e. behind the viewer) or are too far away (a concession I made for efficiency). public static bool LOSCheck(Vector2 pos1, Vector2 pos2) { Vector2 currentPos = pos1; Vector2 perMove = (pos2 - pos1); perMove.Normalize(); HashSet<ClutterObject> clutter = new HashSet<ClutterObject>(); foreach (Room r in map.GetRooms()) { if (r != null) { foreach (ClutterObject c in r.GetClutter()) { if (c != null &&!(c.GetRectangle().X * perMove.X < 0) && !(c.GetRectangle().Y * perMove.Y < 0)) { Vector2 cVector = new Vector2(c.GetRectangle().X, c.GetRectangle().Y); if ((cVector - pos1).Length() < 1500) clutter.Add(c); } } } } while (currentPos != pos2 && ((currentPos - pos1).Length() < 1500)) { Rectangle position = new Rectangle((int)currentPos.X, (int)currentPos.Y, 0, 0); foreach (ClutterObject c in clutter) { if (position.Intersects(c.GetRectangle())) return false; } currentPos += perMove; } return true; } I'm sure that there's a better way to do this (or at least a way to make this method more efficient), but I'm not too used to XNA yet, so I figured it couldn't hurt to bring it here. At the very least, is there an efficient to determine which objects may be in front of the viewer with greater precision than the rather broad 90 degree window I've given myself?

    Read the article

  • Quaternion Camera

    - by Alex_Hyzer_Kenoyer
    Can someone help me figure out how to use a Quaternion with the PerspectiveCamera in libGDX or in general? I am trying to rotate my camera around a sphere that is being drawn at (0,0,0). I am not sure how to go about setting up the quaternion correctly, manipulating it, and then applying it to the camera. Edit: Here is what I have tried to do so far. // This is how I set it up Quaternion orientation = new Quaternion(); orientation.setFromAxis(Vector3.Y, 45); // This is how I am trying to update the rotations public void rotateX(float amount) { Quaternion temp = new Quaternion(); temp.set(Vector3.X, amount); orientation.mul(temp); } public void rotateY(float amount) { Quaternion temp = new Quaternion(); temp.set(Vector3.Y, amount); orientation.mul(temp); } public void updateCamera() { // This is where I am unsure how to apply the rotations to the camera // I think I should update the view and projection matrices? camera.view.mul(orientation); ... }

    Read the article

  • How should I replan A*?

    - by Gregory Weir
    I've got a pathfinding boss enemy that seeks the player using the A* algorithm. It's a pretty complex environment, and I'm doing it in Flash, so the search can get a bit slow when it's searching over long distances. If the player was stationary, I could just search once, but at the moment I'm searching every frame. This takes long enough that my framerate is suffering. What's the usual solution to this? Is there a way to "replan" A* without redoing the entire search? Should I just search a little less often (every half-second or second) and accept that there will be a little inaccuracy in the path?

    Read the article

  • Calculating adjacent quads on a quad sphere

    - by Caius Eugene
    I've been experimenting with generating a quad sphere. This sphere subdivides into a quadtree structure. Eventually I'm going to be applying some simplex noise to the vertices of each face to create a terrain like surface. To solve the issue of cracks I want to be able to apply a geomitmap technique of triangle fanning on the edges of each quad, but in order to know the subdivision level of the adjacent quads I need to identify which quads are adjacent to each other. Does anyone know any approaches to computing and storing these adjacent quads for quick lookup? Also It's important that I know which direction they are in so I can easily adjust the correct edge.

    Read the article

  • "Marching cubes" voxel terrain - triplanar texturing with depth?

    - by Dan the Man
    I am currently working on a voxel terrain that uses the marching cubes algorithm for polygonizing the scalar field of voxels. I am using a triplanar texturing shader for texturing. say I have a grass texture set to the Y axis and a dirt texture for both the X and Z axes. Now, when my player digs downwards, it still appears as grass. How would I make it to appear as dirt? I have been thinking about this for a while, and the only thing I can think of to make this effect, would be to mark vertices that have been dug with a certain vertex color. When it has that vertex color, the shader would apply that dirt texture to the vertices marked. Is there a better method?

    Read the article

  • Vertex buffer acting strange? [on hold]

    - by Ryan Capote
    I'm having a strange problem, and I don't know what could be causing it. My current code is identical to how I've done this before. I'm trying to render a rectangle using VBO and orthographic projection.   My results:     What I expect: 3x3 rectangle in the top left corner   #include <stdio.h> #include <GL\glew.h> #include <GLFW\glfw3.h> #include "lodepng.h"   static const int FALSE = 0; static const int TRUE = 1;   static const char* VERT_SHADER =     "#version 330\n"       "layout(location=0) in vec4 VertexPosition; "     "layout(location=1) in vec2 UV;"     "uniform mat4 uProjectionMatrix;"     /*"out vec2 TexCoords;"*/       "void main(void) {"     "    gl_Position = uProjectionMatrix*VertexPosition;"     /*"    TexCoords = UV;"*/     "}";   static const char* FRAG_SHADER =     "#version 330\n"       /*"uniform sampler2D uDiffuseTexture;"     "uniform vec4 uColor;"     "in vec2 TexCoords;"*/     "out vec4 FragColor;"       "void main(void) {"    /* "    vec4 texel = texture2D(uDiffuseTexture, TexCoords);"     "    if(texel.a <= 0) {"     "         discard;"     "    }"     "    FragColor = texel;"*/     "    FragColor = vec4(1.f);"     "}";   static int g_running; static GLFWwindow *gl_window; static float gl_projectionMatrix[16];   /*     Structures */ typedef struct _Vertex {     float x, y, z, w;     float u, v; } Vertex;   typedef struct _Position {     float x, y; } Position;   typedef struct _Bitmap {     unsigned char *pixels;     unsigned int width, height; } Bitmap;   typedef struct _Texture {     GLuint id;     unsigned int width, height; } Texture;   typedef struct _VertexBuffer {     GLuint bufferObj, vertexArray; } VertexBuffer;   typedef struct _ShaderProgram {     GLuint vertexShader, fragmentShader, program; } ShaderProgram;   /*   http://en.wikipedia.org/wiki/Orthographic_projection */ void createOrthoProjection(float *projection, float width, float height, float far, float near)  {       const float left = 0;     const float right = width;     const float top = 0;     const float bottom = height;          projection[0] = 2.f / (right - left);     projection[1] = 0.f;     projection[2] = 0.f;     projection[3] = -(right+left) / (right-left);     projection[4] = 0.f;     projection[5] = 2.f / (top - bottom);     projection[6] = 0.f;     projection[7] = -(top + bottom) / (top - bottom);     projection[8] = 0.f;     projection[9] = 0.f;     projection[10] = -2.f / (far-near);     projection[11] = (far+near)/(far-near);     projection[12] = 0.f;     projection[13] = 0.f;     projection[14] = 0.f;     projection[15] = 1.f; }   /*     Textures */ void loadBitmap(const char *filename, Bitmap *bitmap, int *success) {     int error = lodepng_decode32_file(&bitmap->pixels, &bitmap->width, &bitmap->height, filename);       if (error != 0) {         printf("Failed to load bitmap. ");         printf(lodepng_error_text(error));         success = FALSE;         return;     } }   void destroyBitmap(Bitmap *bitmap) {     free(bitmap->pixels); }   void createTexture(Texture *texture, const Bitmap *bitmap) {     texture->id = 0;     glGenTextures(1, &texture->id);     glBindTexture(GL_TEXTURE_2D, texture);       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);     glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);     glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);     glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);       glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, bitmap->width, bitmap->height, 0,              GL_RGBA, GL_UNSIGNED_BYTE, bitmap->pixels);       glBindTexture(GL_TEXTURE_2D, 0); }   void destroyTexture(Texture *texture) {     glDeleteTextures(1, &texture->id);     texture->id = 0; }   /*     Vertex Buffer */ void createVertexBuffer(VertexBuffer *vertexBuffer, Vertex *vertices) {     glGenBuffers(1, &vertexBuffer->bufferObj);     glGenVertexArrays(1, &vertexBuffer->vertexArray);     glBindVertexArray(vertexBuffer->vertexArray);       glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer->bufferObj);     glBufferData(GL_ARRAY_BUFFER, sizeof(Vertex) * 6, (const GLvoid*)vertices, GL_STATIC_DRAW);       const unsigned int uvOffset = sizeof(float) * 4;       glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, sizeof(Vertex), 0);     glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex), (GLvoid*)uvOffset);       glEnableVertexAttribArray(0);     glEnableVertexAttribArray(1);       glBindBuffer(GL_ARRAY_BUFFER, 0);     glBindVertexArray(0); }   void destroyVertexBuffer(VertexBuffer *vertexBuffer) {     glDeleteBuffers(1, &vertexBuffer->bufferObj);     glDeleteVertexArrays(1, &vertexBuffer->vertexArray); }   void bindVertexBuffer(VertexBuffer *vertexBuffer) {     glBindVertexArray(vertexBuffer->vertexArray);     glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer->bufferObj); }   void drawVertexBufferMode(GLenum mode) {     glDrawArrays(mode, 0, 6); }   void drawVertexBuffer() {     drawVertexBufferMode(GL_TRIANGLES); }   void unbindVertexBuffer() {     glBindVertexArray(0);     glBindBuffer(GL_ARRAY_BUFFER, 0); }   /*     Shaders */ void compileShader(ShaderProgram *shaderProgram, const char *vertexSrc, const char *fragSrc) {     GLenum err;     shaderProgram->vertexShader = glCreateShader(GL_VERTEX_SHADER);     shaderProgram->fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);       if (shaderProgram->vertexShader == 0) {         printf("Failed to create vertex shader.");         return;     }       if (shaderProgram->fragmentShader == 0) {         printf("Failed to create fragment shader.");         return;     }       glShaderSource(shaderProgram->vertexShader, 1, &vertexSrc, NULL);     glCompileShader(shaderProgram->vertexShader);     glGetShaderiv(shaderProgram->vertexShader, GL_COMPILE_STATUS, &err);       if (err != GL_TRUE) {         printf("Failed to compile vertex shader.");         return;     }       glShaderSource(shaderProgram->fragmentShader, 1, &fragSrc, NULL);     glCompileShader(shaderProgram->fragmentShader);     glGetShaderiv(shaderProgram->fragmentShader, GL_COMPILE_STATUS, &err);       if (err != GL_TRUE) {         printf("Failed to compile fragment shader.");         return;     }       shaderProgram->program = glCreateProgram();     glAttachShader(shaderProgram->program, shaderProgram->vertexShader);     glAttachShader(shaderProgram->program, shaderProgram->fragmentShader);     glLinkProgram(shaderProgram->program);          glGetProgramiv(shaderProgram->program, GL_LINK_STATUS, &err);       if (err != GL_TRUE) {         printf("Failed to link shader.");         return;     } }   void destroyShader(ShaderProgram *shaderProgram) {     glDetachShader(shaderProgram->program, shaderProgram->vertexShader);     glDetachShader(shaderProgram->program, shaderProgram->fragmentShader);       glDeleteShader(shaderProgram->vertexShader);     glDeleteShader(shaderProgram->fragmentShader);       glDeleteProgram(shaderProgram->program); }   GLuint getUniformLocation(const char *name, ShaderProgram *program) {     GLuint result = 0;     result = glGetUniformLocation(program->program, name);       return result; }   void setUniformMatrix(float *matrix, const char *name, ShaderProgram *program) {     GLuint loc = getUniformLocation(name, program);       if (loc == -1) {         printf("Failed to get uniform location in setUniformMatrix.\n");         return;     }       glUniformMatrix4fv(loc, 1, GL_FALSE, matrix); }   /*     General functions */ static int isRunning() {     return g_running && !glfwWindowShouldClose(gl_window); }   static void initializeGLFW(GLFWwindow **window, int width, int height, int *success) {     if (!glfwInit()) {         printf("Failed it inialize GLFW.");         *success = FALSE;        return;     }          glfwWindowHint(GLFW_RESIZABLE, 0);     *window = glfwCreateWindow(width, height, "Alignments", NULL, NULL);          if (!*window) {         printf("Failed to create window.");         glfwTerminate();         *success = FALSE;         return;     }          glfwMakeContextCurrent(*window);       GLenum glewErr = glewInit();     if (glewErr != GLEW_OK) {         printf("Failed to initialize GLEW.");         printf(glewGetErrorString(glewErr));         *success = FALSE;         return;     }       glClearColor(0.f, 0.f, 0.f, 1.f);     glViewport(0, 0, width, height);     *success = TRUE; }   int main(int argc, char **argv) {          int err = FALSE;     initializeGLFW(&gl_window, 480, 320, &err);     glDisable(GL_DEPTH_TEST);     if (err == FALSE) {         return 1;     }          createOrthoProjection(gl_projectionMatrix, 480.f, 320.f, 0.f, 1.f);          g_running = TRUE;          ShaderProgram shader;     compileShader(&shader, VERT_SHADER, FRAG_SHADER);     glUseProgram(shader.program);     setUniformMatrix(&gl_projectionMatrix, "uProjectionMatrix", &shader);       Vertex rectangle[6];     VertexBuffer vbo;     rectangle[0] = (Vertex){0.f, 0.f, 0.f, 1.f, 0.f, 0.f}; // Top left     rectangle[1] = (Vertex){3.f, 0.f, 0.f, 1.f, 1.f, 0.f}; // Top right     rectangle[2] = (Vertex){0.f, 3.f, 0.f, 1.f, 0.f, 1.f}; // Bottom left     rectangle[3] = (Vertex){3.f, 0.f, 0.f, 1.f, 1.f, 0.f}; // Top left     rectangle[4] = (Vertex){0.f, 3.f, 0.f, 1.f, 0.f, 1.f}; // Bottom left     rectangle[5] = (Vertex){3.f, 3.f, 0.f, 1.f, 1.f, 1.f}; // Bottom right       createVertexBuffer(&vbo, &rectangle);            bindVertexBuffer(&vbo);          while (isRunning()) {         glClear(GL_COLOR_BUFFER_BIT);         glfwPollEvents();                    drawVertexBuffer();                    glfwSwapBuffers(gl_window);     }          unbindVertexBuffer(&vbo);       glUseProgram(0);     destroyShader(&shader);     destroyVertexBuffer(&vbo);     glfwTerminate();     return 0; }

    Read the article

  • Bodies do not stay sticked together by joint in retina display

    - by Mike JM
    I'm rehearsing on Box2D revolute joints. Everything's going pretty well except for one thing. For some reason bodies joined together with revolute joints do not stay sticked, they start getting apart from each other from the app start when I run it on retina device or simulator. On non retina device it works just fine, as expected. Here's the screenshot of the non-retina version: And here's the behavior when I run the same app on retina device/simulator: I'm taking content scale factor into account.

    Read the article

  • Thread safe double buffering

    - by kdavis8
    I am trying to implement a draw map method that will draw the tiled image across the surface of the component. I'm having issue with this code. The double buffering does not seem to be working, because the sprite flickers like crazy; my source code: package myPackage; import java.awt.Color; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Image; import java.awt.Toolkit; import java.awt.image.BufferStrategy; import java.awt.image.BufferedImage; import javax.swing.JFrame; public class GameView extends JFrame implements Runnable { public BufferedImage backbuffer; public Graphics2D g2d; public Image img; Thread gameloop; Scene scene; public GameView() { super("Game View"); setSize(600, 600); setVisible(true); setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); backbuffer = new BufferedImage(getWidth(), getHeight(), BufferedImage.TYPE_INT_RGB); g2d = backbuffer.createGraphics(); Toolkit tk = Toolkit.getDefaultToolkit(); img = tk.getImage(this.getClass().getResource("cage.png")); scene = new Scene(g2d, this); gameloop = new Thread(this); gameloop.start(); } public static void main(String args[]) { new GameView(); } public void paint(Graphics g) { g.drawImage(backbuffer, 0, 0, this); repaint(); } @Override public void run() { // TODO Auto-generated method stub Thread t = Thread.currentThread(); while (t == gameloop) { scene.getScene("dirtmap"); g2d.drawImage(img, 80, 80,this![enter image description here][1]); } } private void drawScene(String string) { // TODO Auto-generated method stub // g2d.setColor(Color.white); // g2d.fillRect(0, 0, getWidth(), getHeight()); scene.getScene(string); } } package myPackage; import java.awt.Color; import java.awt.Component; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Image; import java.awt.Toolkit; public class Scene { Graphics g2d; Component c; boolean loaded = false; public Scene(Graphics2D gr, Component co) { g2d = gr; c = co; } public void getScene(String mapName) { Toolkit tk = Toolkit.getDefaultToolkit(); Image tile = tk.getImage(this.getClass().getResource("dirt.png")); // g2d.setColor(Color.red); for (int y = 0; y <= 18; y++) { for (int x = 0; x <= 18; x += 1) { g2d.drawImage(tile, x * 32, y * 32, c); } } loaded = true; } }

    Read the article

  • Camera frustum calculation coming out wrong

    - by Telanor
    I'm trying to calculate a view/projection/bounding frustum for the 6 directions of a point light and I'm having trouble with the views pointing along the Y axis. Our game uses a right-handed, Y-up system. For the other 4 directions I create the LookAt matrix using (0, 1, 0) as the up vector. Obviously that doesn't work when looking along the Y axis so for those I use an up vector of (-1, 0, 0) for -Y and (1, 0, 0) for +Y. The view matrix seems to come out correctly (and the projection matrix always stays the same), but the bounding frustum is definitely wrong. Can anyone see what I'm doing wrong? This is the code I'm using: camera.Projection = Matrix.PerspectiveFovRH((float)Math.PI / 2, ShadowMapSize / (float)ShadowMapSize, 1, 5); for(var i = 0; i < 6; i++) { var renderTargetView = shadowMap.GetRenderTargetView((TextureCubeFace)i); var up = DetermineLightUp((TextureCubeFace) i); var forward = DirectionToVector((TextureCubeFace) i); camera.View = Matrix.LookAtRH(this.Position, this.Position + forward, up); camera.BoundingFrustum = new BoundingFrustum(camera.View * camera.Projection); } private static Vector3 DirectionToVector(TextureCubeFace direction) { switch (direction) { case TextureCubeFace.NegativeX: return -Vector3.UnitX; case TextureCubeFace.NegativeY: return -Vector3.UnitY; case TextureCubeFace.NegativeZ: return -Vector3.UnitZ; case TextureCubeFace.PositiveX: return Vector3.UnitX; case TextureCubeFace.PositiveY: return Vector3.UnitY; case TextureCubeFace.PositiveZ: return Vector3.UnitZ; default: throw new ArgumentOutOfRangeException("direction"); } } private static Vector3 DetermineLightUp(TextureCubeFace direction) { switch (direction) { case TextureCubeFace.NegativeY: return -Vector3.UnitX; case TextureCubeFace.PositiveY: return Vector3.UnitX; default: return Vector3.UnitY; } } Edit: Here's what the values are coming out to for the PositiveX and PositiveY directions: Constants: Position = {X:0 Y:360 Z:0} camera.Projection = [M11:0.9999999 M12:0 M13:0 M14:0] [M21:0 M22:0.9999999 M23:0 M24:0] [M31:0 M32:0 M33:-1.25 M34:-1] [M41:0 M42:0 M43:-1.25 M44:0] PositiveX: up = {X:0 Y:1 Z:0} target = {X:1 Y:360 Z:0} camera.View = [M11:0 M12:0 M13:-1 M14:0] [M21:0 M22:1 M23:0 M24:0] [M31:1 M32:0 M33:0 M34:0] [M41:0 M42:-360 M43:0 M44:1] camera.BoundingFrustum: Matrix = [M11:0 M12:0 M13:1.25 M14:1] [M21:0 M22:0.9999999 M23:0 M24:0] [M31:0.9999999 M32:0 M33:0 M34:0] [M41:0 M42:-360 M43:-1.25 M44:0] Top = {A:0.7071068 B:-0.7071068 C:0 D:254.5584} Bottom = {A:0.7071068 B:0.7071068 C:0 D:-254.5584} Left = {A:0.7071068 B:0 C:0.7071068 D:0} Right = {A:0.7071068 B:0 C:-0.7071068 D:0} Near = {A:1 B:0 C:0 D:-1} Far = {A:-1 B:0 C:0 D:5} PositiveY: up = {X:0 Y:0 Z:-1} target = {X:0 Y:361 Z:0} camera.View = [M11:-1 M12:0 M13:0 M14:0] [M21:0 M22:0 M23:-1 M24:0] [M31:0 M32:-1 M33:0 M34:0] [M41:0 M42:0 M43:360 M44:1] camera.BoundingFrustum: Matrix = [M11:-0.9999999 M12:0 M13:0 M14:0] [M21:0 M22:0 M23:1.25 M24:1] [M31:0 M32:-0.9999999 M33:0 M34:0] [M41:0 M42:0 M43:-451.25 M44:-360] Top = {A:0 B:0.7071068 C:0.7071068 D:-254.5585} Bottom = {A:0 B:0.7071068 C:-0.7071068 D:-254.5585} Left = {A:-0.7071068 B:0.7071068 C:0 D:-254.5585} Right = {A:0.7071068 B:0.7071068 C:0 D:-254.5585} Near = {A:0 B:1 C:0 D:-361} Far = {A:0 B:-1 C:0 D:365} When I use the resulting BoundingFrustum to cull regions outside of it, this is the result: Pass PositiveX: Drew 3 regions Pass NegativeX: Drew 6 regions Pass PositiveY: Drew 400 regions Pass NegativeY: Drew 36 regions Pass PositiveZ: Drew 3 regions Pass NegativeZ: Drew 6 regions There are only 400 regions to draw and the light is in the center of them. As you can see, the PositiveY direction is drawing every single region. With the near/far planes of the perspective matrix set as small as they are, there's no way a single frustum could contain every single region.

    Read the article

  • box2d tween what am I missing

    - by philipp
    I have a Box2D project and I want to tween an kinematic body from position A, to position B. The tween function, got it from this blog: function easeInOut(t , b, c, d ){ if ( ( t /= d / 2 ) < 1){ return c/2 * t * t * t * t + b; } return -c/2 * ( (t -= 2 ) * t * t * t - 2 ) + b; } where t is the current value, b the start, c the end and d the total amount of frames (in my case). I am using the method introduced by this lesson of todd's b2d tutorials to move the body by setting its linear Velocity so here is relevant update code of the sprite: if( moveData.current == moveData.total ){ this._body.SetLinearVelocity( new b2Vec2() ); return; } var t = easeNone( moveData.current, 0, 1, moveData.total ); var step = moveData.length / moveData.total * t; var dir = moveData.direction.Copy(); //this is the line that I think might be corrected dir.Multiply( t * moveData.length * fps /moveData.total ) ; var bodyPosition = this._body.GetWorldCenter(); var idealPosition = bodyPosition.Copy(); idealPosition.Add( dir ); idealPosition.Subtract( bodyPosition.Copy() ); moveData.current++; this._body.SetLinearVelocity( idealPosition ); moveData is an Object that holds the global values of the tween, namely: current frame (int), total frames (int), the length of the total distance to travel (float) the direction vector (targetposition - bodyposition) (b2Vec2) and the start of the tween (bodyposition) (b2Vec2) Goal is to tween the body based on a fixed amount of frames: in moveData.total frames. The value of t is always between 0 and 1 and the only thing that is not working correctly is the resulting distance the body travels. I need to calculate the multiplier for the direction vector. What am I missing to make it work?? Greetings philipp

    Read the article

  • My raycaster is putting out strange results, how do I fix it?

    - by JamesK89
    I'm working on a raycaster in ActionScript 3.0 for the fun of it, and as a learning experience. I've got it up and running and its displaying me output as expected however I'm getting this strange bug where rays go through corners of blocks and the edges of blocks appear through walls. Maybe somebody with more experience can point out what I'm doing wrong or maybe a fresh pair of eyes can spot a tiny bug I haven't noticed. Thank you so much for your help! Screenshots: http://i55.tinypic.com/25koebm.jpg http://i51.tinypic.com/zx5jq9.jpg Relevant code: function drawScene() { rays.graphics.clear(); rays.graphics.lineStyle(1, rgba(0x00,0x66,0x00)); var halfFov = (player.fov/2); var numRays:int = ( stage.stageWidth / COLUMN_SIZE ); var prjDist = ( stage.stageWidth / 2 ) / Math.tan(toRad( halfFov )); var angStep = ( player.fov / numRays ); for( var i:int = 0; i < numRays; i++ ) { var rAng = ( ( player.angle - halfFov ) + ( angStep * i ) ) % 360; if( rAng < 0 ) rAng += 360; var ray:Object = castRay(player.position, rAng); drawRaySlice(i*COLUMN_SIZE, prjDist, player.angle, ray); } } function drawRaySlice(sx:int, prjDist, angle, ray:Object) { if( ray.distance >= MAX_DIST ) return; var height:int = int(( TILE_SIZE / (ray.distance * Math.cos(toRad(angle-ray.angle))) ) * prjDist); if( !height ) return; var yTop = int(( stage.stageHeight / 2 ) - ( height / 2 )); if( yTop < 0 ) yTop = 0; var yBot = int(( stage.stageHeight / 2 ) + ( height / 2 )); if( yBot > stage.stageHeight ) yBot = stage.stageHeight; rays.graphics.moveTo( (ray.origin.x / TILE_SIZE) * MINI_SIZE, (ray.origin.y / TILE_SIZE) * MINI_SIZE ); rays.graphics.lineTo( (ray.hit.x / TILE_SIZE) * MINI_SIZE, (ray.hit.y / TILE_SIZE) * MINI_SIZE ); for( var x:int = 0; x < COLUMN_SIZE; x++ ) { for( var y:int = yTop; y < yBot; y++ ) { buffer.setPixel(sx+x, y, clrTable[ray.tile-1] >> ( ray.horz ? 1 : 0 )); } } } function castRay(origin:Point, angle):Object { // Return values var rTexel = 0; var rHorz = false; var rTile = 0; var rDist = MAX_DIST + 1; var rMap:Point = new Point(); var rHit:Point = new Point(); // Ray angle and slope var ra = toRad(angle) % ANGLE_360; if( ra < ANGLE_0 ) ra += ANGLE_360; var rs = Math.tan(ra); var rUp = ( ra > ANGLE_0 && ra < ANGLE_180 ); var rRight = ( ra < ANGLE_90 || ra > ANGLE_270 ); // Ray position var rx = 0; var ry = 0; // Ray step values var xa = 0; var ya = 0; // Ray position, in map coordinates var mx:int = 0; var my:int = 0; var mt:int = 0; // Distance var dx = 0; var dy = 0; var ds = MAX_DIST + 1; // Horizontal intersection if( ra != ANGLE_180 && ra != ANGLE_0 && ra != ANGLE_360 ) { ya = ( rUp ? TILE_SIZE : -TILE_SIZE ); xa = ya / rs; ry = int( origin.y / TILE_SIZE ) * ( TILE_SIZE ) + ( rUp ? TILE_SIZE : -1 ); rx = origin.x + ( ry - origin.y ) / rs; mx = 0; my = 0; while( mx >= 0 && my >= 0 && mx < world.size.x && my < world.size.y ) { mx = int( rx / TILE_SIZE ); my = int( ry / TILE_SIZE ); mt = getMapTile(mx,my); if( mt > 0 && mt < 9 ) { dx = rx - origin.x; dy = ry - origin.y; ds = ( dx * dx ) + ( dy * dy ); if( rDist >= MAX_DIST || ds < rDist ) { rDist = ds; rTile = mt; rMap.x = mx; rMap.y = my; rHit.x = rx; rHit.y = ry; rHorz = true; rTexel = int(rx % TILE_SIZE) } break; } rx += xa; ry += ya; } } // Vertical intersection if( ra != ANGLE_90 && ra != ANGLE_270 ) { xa = ( rRight ? TILE_SIZE : -TILE_SIZE ); ya = xa * rs; rx = int( origin.x / TILE_SIZE ) * ( TILE_SIZE ) + ( rRight ? TILE_SIZE : -1 ); ry = origin.y + ( rx - origin.x ) * rs; mx = 0; my = 0; while( mx >= 0 && my >= 0 && mx < world.size.x && my < world.size.y ) { mx = int( rx / TILE_SIZE ); my = int( ry / TILE_SIZE ); mt = getMapTile(mx,my); if( mt > 0 && mt < 9 ) { dx = rx - origin.x; dy = ry - origin.y; ds = ( dx * dx ) + ( dy * dy ); if( rDist >= MAX_DIST || ds < rDist ) { rDist = ds; rTile = mt; rMap.x = mx; rMap.y = my; rHit.x = rx; rHit.y = ry; rHorz = false; rTexel = int(ry % TILE_SIZE); } break; } rx += xa; ry += ya; } } return { angle: angle, distance: Math.sqrt(rDist), hit: rHit, map: rMap, tile: rTile, horz: rHorz, origin: origin, texel: rTexel }; }

    Read the article

  • How to improve batching performance

    - by user4241
    Hello, I am developing a sprite based 2D game for mobile platform(s) and I'm using OpenGL (well, actually Irrlicht) to render graphics. First I implemented sprite rendering in a simple way: every game object is rendered as a quad with its own GPU draw call, meaning that if I had 200 game objects, I made 200 draw calls per frame. Of course this was a bad choice and my game was completely CPU bound because there is a little CPU overhead assosiacted in every GPU draw call. GPU stayed idle most of the time. Now, I thought I could improve performance by collecting objects into large batches and rendering these batches with only a few draw calls. I implemented batching (so that every game object sharing the same texture is rendered in same batch) and thought that my problems are gone... only to find out that my frame rate was even lower than before. Why? Well, I have 200 (or more) game objects, and they are updated 60 times per second. Every frame I have to recalculate new position (translation and rotation) for vertices in CPU (GPU on mobile platforms does not support instancing so I can't do it there), and doing this calculation 48000 per second (200*60*4 since every sprite has 4 vertices) simply seems to be too slow. What I could do to improve performance? All game objects are moving/rotating (almost) every frame so I really have to recalculate vertex positions. Only optimization that I could think of is a look-up table for rotations so that I wouldn't have to calculate them. Would point sprites help? Any nasty hacks? Anything else? Thanks.

    Read the article

  • How to make a battle system in a mobile indie game more fun and engaging

    - by Matt Beckman
    I'm developing an indie game for mobile platforms, and part of the game involves a PvP battle system (where the target player is passive). My vision is simple: the active player can select a weapon/item, then attack/use, and display the calculated outcome. I have a concept for battle modifiers that affect stats to make it more interesting, but I'm not convinced the vision is complete. I've received some inspiration from the game engine that powers Modern War/Kingdom Age/Crime City, but I want more control to make it more fun. In those games, you don't have the option to select weapons or use items, and the "battling" screen is simply 3D eye candy. Since this will be an indie game, I won't be spending $$$ on a team of professional 3D artists/animators, so my edge needs to be different. How would you make a battle system like this more fun and engaging?

    Read the article

  • How to shoot a triangle out of an asteroid which floats all of the way up to the screen?

    - by Holland
    I currently have an asteroid texture loaded as my "test player" for the game I'm writing. What I'm trying to figure out how to do is get a triangle to shoot from the center of the asteroid, and keep going until it hits the top of the screen. What happens in my case (as you'll see from the code I've posted), is that the triangle will show, however it will either be a long line, or it will just be a single triangle which stays in the same location as the asteroid moving around (that disappears when I stop pressing the space bar), or it simply won't appear at all. I've tried many different methods, but I could use a formula here. All I'm trying to do is write a space invaders clone for my final in C#. I know how to code fairly well, my formulas just need work is all. So far, this is what I have: Main Logic Code protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(ClearOptions.Target, Color.Black, 1, 1); mAsteroid.Draw(mSpriteBatch); if (mIsFired) { mPositions.Add(mAsteroid.LastPosition); mRay.Fire(mPositions); mIsFired = false; mRay.Bullets.Clear(); mPositions.Clear(); } base.Draw(gameTime); } Draw Code public void Draw() { VertexPositionColor[] vertices = new VertexPositionColor[3]; int stopDrawing = mGraphicsDevice.Viewport.Width / mGraphicsDevice.Viewport.Height; for (int i = 0; i < mRayPos.Length(); ++i) { vertices[0].Position = new Vector3(mRayPos.X, mRayPos.Y + 5f, 10); vertices[0].Color = Color.Blue; vertices[1].Position = new Vector3(mRayPos.X - 5f, mRayPos.Y - 5f, 10); vertices[1].Color = Color.White; vertices[2].Position = new Vector3(mRayPos.X + 5f, mRayPos.Y - 5f, 10); vertices[2].Color = Color.Red; mShader.CurrentTechnique.Passes[0].Apply(); mGraphicsDevice.DrawUserPrimitives<VertexPositionColor>(PrimitiveType.TriangleStrip, vertices, 0, 1); mRayPos += new Vector2(0, 1f); mGraphicsDevice.ReferenceStencil = 1; } }

    Read the article

  • *DX11, HLSL* - Colour as 4 floats or one UINT

    - by Paul
    With the DX11 pipeline, would it be much quicker for the vertex buffer to pass one single UINT with one byte per channel to the input assembler, as opposed to three floats? Then the vertex shader would convert the four bytes to four floats, which I guess is the required colour format for the pipeline. In this instance, colour accuracy isn't an issue. The vertex buffer would need to be updated many times per frame, so using a single UINT and saving 12 bytes for every vertex could well be worth it: quicker uploads to vram and also less memory used. But the cost is the extra shader work for every vertex to convert each 8 bits of the input UNIT into a float. Anyone have an idea if it might be worth doing? Or, is it possible for the pipeline to be set to just internally use a four-byte colour format? The swap chain buffer has been initialised as DXGI_FORMAT_R8G8B8A8_UNORM, so ultimately that's how the colour will be written. Thanks!

    Read the article

  • How do people get around the Carmack's Reverse patent?

    - by Rei Miyasaka
    Apparently, Creative has a patent on Carmack's Reverse, and they successfully forced Id to modify their techniques for the source drop, as well as to include EAX in Doom 3. But Carmack's Reverse is discussed quite often and apparently it's a good choice for deferred shading, so it's presumably used in a lot of other high-budget productions too. Even though it's unlikely that Creative would go after smaller companies, I'm wondering how the bigger studios get around this problem. Do they just cross their fingers and hope Creative doesn't troll them, or do they just not use Carmack's Reverse at all?

    Read the article

  • How are events in games handled?

    - by Alex
    In may games that I have played, I have seen events being triggered, such as when you walk into a certain land area while holding a specific object, it will trigger a special creature to spawn. I was wondering, how do games deal with events such as this? Not in a specific game, but in general among games. The first thought I had was that each place has a hard-coded set of events that it will call when something happens there. However, that would be too inefficient to maintain, as when something new is added, that would require modification of every part of the game that would potentially cause the event to be called. Next up, I had the idea of maybe how GUI programming works. In all of the GUI programming I've done, you create a component and a callback function, or a listener. Then, when the user interacts when the button, the callback function is called, allowing you to do something with it. So, I was thinking that in terms of a game, when a land area gets loaded the game loops over a list of all events, creating instances of them and calling public methods to bind them to the current scene. The events themselves then handle what scene it is, and if it is a scene that pertains to the event, will call the public method of the scene to bind the event to an action. Then, when the action takes place, the scene would call all events that are bound to that action. However, I'm sure that's not how games would operate either, as that would require a lot of creating of events all the time. So how to video games handle events, are either of those methods correct, or is it something completely different?

    Read the article

  • Libgdx Box2d createfixture crashes vm intermittently

    - by user45021
    I have a hard to debug problem. I have a Box2D game which creates a wheeled vehicle. I want the vehicle body to reflect when it goes from moving left to moving right. to do this i set a flag in a changelistener on a button and then in update method i destroy and recreate the body facing the other way. it works fine most of the time but if i flip the vehicle several times quickly JVM crashes. no errors nothing in log. i added system.out.prints and the errors occur in the routine that instantiates the new body and before anything gets deleted/removed so i don't think the UI is trying to access null pointers. and if it was it should throw an error. M the crash seems to be at createFixture statements. but the work most of the first time. I tried debugging but the error doesn't happen much when the flips are slow. in any case createFixture drops fairly quickly into jni. Is this a Box2D bug? Is GC the issue? From Mission Control I see the GC is collecting on a period of ooh maybe 5s and flipping slower than that mostly works. how do i debug this? i am win7 64bit with 64bit at and jdk7 64bit. libgdx-0.9.9 and sometimes libgdx-nightly-20140215.

    Read the article

< Previous Page | 505 506 507 508 509 510 511 512 513 514 515 516  | Next Page >