Search Results

Search found 32277 results on 1292 pages for 'module development'.

Page 512/1292 | < Previous Page | 508 509 510 511 512 513 514 515 516 517 518 519  | Next Page >

  • Pathfinding for fleeing

    - by Philipp
    As you know there are plenty of solutions when you wand to find the best path in a 2-dimensional environment which leads from point A to point B. But how do I calculate a path when an object is at point A, and wants to get away from point B, as fast and far as possible? A bit of background information: My game uses a 2d environment which isn't tile-based but has floating point accuracy. The movement is vector-based. The pathfinding is done by partitioning the game world into rectangles which are walkable or non-walkable and building a graph out of their corners. I already have pathfinding between points working by using Dijkstras algorithm. The use-case for the fleeing algorithm is that in certain situations, actors in my game should perceive another actor as a danger and flee from it. The trivial solution would be to just move the actor in a vector in the direction which is opposite from the threat until a "safe" distance was reached or the actor reaches a wall where it then covers in fear. The problem with this approach is that actors will be blocked by small obstacles they could easily get around. As long as moving along the wall wouldn't bring them closer to the threat they could do that, but it would look smarter when they would avoid obstacles in the first place: Another problem I see is with dead ends in the map geometry. In some situations a being must choose between a path which gets it faster away now but ends in a dead end where it would be trapped, or another path which would mean that it wouldn't get that far away from the danger at first (or even a bit closer) but on the other hand would have a much greater long-term reward in that it would eventually get them much further away. So the short-term reward of getting away fast must be somehow valued against the long-term reward of getting away far. There is also another rating problem for situations where an actor should accept to move closer to a minor threat to get away from a much larger threat. But completely ignoring all minor threats would be foolish, too (that's why the actor in this graphic goes out of its way to avoid the minor threat in the upper right area): Are there any standard solutions for this problem?

    Read the article

  • Drawing of a huge model - How to regain performance?

    - by marc wellman
    I have a huge model I want to draw in my XNA application but because of its size I am experiencing a tremendous loss of performance. The model has about ~50 000 000 edges and has a size on disk of 205 MB in DirectX Format. Please don't ask whether this model has to be that big - yes it has! Is there a way to transfer the model directly to my GPU in order to let the GPU do the drawing like when transferring a VertexBuffer like this: graphicsDevice.Vertices[1].SetSource(_instanceBuffers[i], 0, _sizeofMatrix); because when I try to fill a vertexBuffer with all the vertices I am getting a OutOfMemoryException.

    Read the article

  • Xna GS 4 Animation Sample bone transforms not copying correctly

    - by annonymously
    I have a person model that is animated and a suitcase model that is not. The person can pick up the suitcase and it should move to the location of the hand bone of the person model. Unfortunately the suitcase doesn't follow the animation correctly. it moves with the hand's animation but its position is under the ground and way too far to the right. I haven't scaled any of the models myself. Thank you. The source code (forgive the rough prototype code): Matrix[] tran = new Matrix[man.model.Bones.Count];// The absolute transforms from the animation player man.model.CopyAbsoluteBoneTransformsTo(tran); Vector3 suitcasePos, suitcaseScale, tempSuitcasePos = new Vector3();// Place holders for the Matrix Decompose Quaternion suitcaseRot = new Quaternion(); // The transformation of the right hand bone is decomposed tran[man.model.Bones["HPF_RightHand"].Index].Decompose(out suitcaseScale, out suitcaseRot, out tempSuitcasePos); suitcasePos = new Vector3(); suitcasePos.X = tempSuitcasePos.Z;// The axes are inverted for some reason suitcasePos.Y = -tempSuitcasePos.Y; suitcasePos.Z = -tempSuitcasePos.X; suitcase.Position = man.Position + suitcasePos;// The actual Suitcase properties suitcase.Rotation = man.Rotation + new Vector3(suitcaseRot.X, suitcaseRot.Y, suitcaseRot.Z); I am also copying the bone transforms from the animation player in the Person class like so: // The transformations from the AnimationPlayer Matrix[] skinTrans = new Matrix[model.Bones.Count]; skinTrans = player.GetBoneTransforms(); // copy each transformation to its corresponding bone for (int i = 0; i < skinTrans.Length; i++) { model.Bones[i].Transform = skinTrans[i]; }

    Read the article

  • 2D Platform Game Jumping

    - by Bradley Kreuger
    I'm currently writing a game in XNA for fun which uses C#. I have got my sprites loaded and when the character moves right he looks like he is running right and when he moves left he looks like he is running left. I been looking everywhere for a good coding example for how to create a jumping ability. I have read all the physics stuff that I can stand and it doesn't help when I can't figure out how to use say space bar to jump yet can't keep them from using space just jump again until they land.

    Read the article

  • Is good practice to optimize FPS even when it's above the lower limit to give illusion of movement?

    - by rraallvv
    I started over 50 FPS on the iPhone, but now I'm bellow 30 PFS, I've seen most iPhone games clamped to either 60 or 30 FPS, even when 24 or less would give the illusion of movement. I've concidered my limit to be a little bit over 15 FPS, in fact my physics simulation is updated at that rate (15.84 steps/s) as that is the lowest that still give fluid movement, a bit lower gives jerky motion. Is there a practical reason why to clamp FPS way above the lower limit? Update: The following image could help to clarify I can independently set the physic simulation step, frame rate, and simulation interval update. My concern is why should I clamp any of those to values greater than the minimum? For instance to conserve battery life I could just to choose the lower limits, but it seems that 60 or 30 FPS are the most used values.

    Read the article

  • Extrapolation breaks collision detection

    - by user22241
    Before applying extrapolation to my sprite's movement, my collision worked perfectly. However, after applying extrapolation to my sprite's movement (to smooth things out), the collision no longer works. This is how things worked before extrapolation: However, after I implement my extrapolation, the collision routine breaks. I am assuming this is because it is acting upon the new coordinate that has been produced by the extrapolation routine (which is situated in my render call ). After I apply my extrapolation How to correct this behaviour? I've tried puting an extra collision check just after extrapolation - this does seem to clear up a lot of the problems but I've ruled this out because putting logic into my rendering is out of the question. I've also tried making a copy of the spritesX position, extrapolating that and drawing using that rather than the original, thus leaving the original intact for the logic to pick up on - this seems a better option, but it still produces some weird effects when colliding with walls. I'm pretty sure this also isn't the correct way to deal with this. I've found a couple of similar questions on here but the answers haven't helped me. This is my extrapolation code: public void onDrawFrame(GL10 gl) { //Set/Re-set loop back to 0 to start counting again loops=0; while(System.currentTimeMillis() > nextGameTick && loops < maxFrameskip){ SceneManager.getInstance().getCurrentScene().updateLogic(); nextGameTick+=skipTicks; timeCorrection += (1000d/ticksPerSecond) % 1; nextGameTick+=timeCorrection; timeCorrection %=1; loops++; tics++; } extrapolation = (float)(System.currentTimeMillis() + skipTicks - nextGameTick) / (float)skipTicks; render(extrapolation); } Applying extrapolation render(float extrapolation){ //This example shows extrapolation for X axis only. Y position (spriteScreenY is assumed to be valid) extrapolatedPosX = spriteGridX+(SpriteXVelocity*dt)*extrapolation; spriteScreenPosX = extrapolationPosX * screenWidth; drawSprite(spriteScreenX, spriteScreenY); } Edit As I mentioned above, I have tried making a copy of the sprite's coordinates specifically to draw with.... this has it's own problems. Firstly, regardless of the copying, when the sprite is moving, it's super-smooth, when it stops, it's wobbling slightly left/right - as it's still extrapolating it's position based on the time. Is this normal behavior and can we 'turn it off' when the sprite stops? I've tried having flags for left / right and only extrapolating if either of these is enabled. I've also tried copying the last and current positions to see if there is any difference. However, as far as collision goes, these don't help. If the user is pressing say, the right button and the sprite is moving right, when it hits a wall, if the user continues to hold the right button down, the sprite will keep animating to the right, while being stopped by the wall (therefore not actually moving), however because the right flag is still set and also because the collision routine is constantly moving the sprite out of the wall, it still appear to the code (not the player) that the sprite is still moving, and therefore extrapolation continues. So what the player would see, is the sprite 'static' (yes, it's animating, but it's not actually moving across the screen), and every now and then it shakes violently as the extrapolation attempts to do it's thing....... Hope this help

    Read the article

  • MonoGame not all letters being drawn with DrawString

    - by Lex Webb
    I'm currently making a dynamic user interface for my game and are setting up having text on my buttons. I'm having an odd issue where, when i use a specific piece of code to determine the text position, it will not render all of the text passed to DrawString. Even weirder, is if i insert another DrawString after this, drawing more text at a different place, different parts of the text will be drawn. The code for drawing my button with the text attached is: public override void Draw(SpriteBatch sb, GameTime gt) { sb.Draw(currentImage, GetRelativeRectangle(), Color.White); sb.DrawString(font, text, new Vector2(this.GetRelativeDrawOffset().X + this.Width / 2 - font.MeasureString(text).X / 2, this.GetRelativeDrawOffset().Y + this.Height / 2 - font.MeasureString(text).Y / 2), textColor); } The methods in the creation of the Vector2 simply get the draw position of the button. I'm then doing some calculation to center the text. This produces this when the text is set to 'Test': And when i enter this piece of code below the first DrawString: sb.DrawString(font, "test", new Vector2(500, 50), Color.Pink); I should mention that that grey square is being drawn in the same spritebatch, before the button and the text. Any ideas as to what could be causing this? I have a feeling it may be due to draw order, but i have no idea how to control that.

    Read the article

  • From where does the game engines add location of an object?

    - by Player
    I have started making my first game( a pong game )with ruby (Gosu). I'm trying to detect the collision of two images using their location by comparing the location of the object (a ball) to another one(a player). For example: if (@player.x - @ball.x).abs <=184 && (@player.y - @ball.y).abs <= 40 @ball.vx = [email protected] @ball.vy = [email protected] But my problem is that with these numbers, the ball collides near the player sometimes, even though the dimensions of the player are correct. So my question is from where does the x values start to count? Is it from the center of gravity of the image or from the beginning of the image? (i.e When you add the image on a specific x,y,z what are these values compared to the image?

    Read the article

  • Collision Detection with SAT: False Collision for Diagonal Movement Towards Vertical Tile-Walls?

    - by Macks
    Edit: Problem solved! Big thanks to Jonathan who pointed me in the right direction. Sean describes the method I used in a different thread. Also big thanks to him! :) Here is how I solved my problem: If a collision is registered by my SAT-method, only fire the collision-event on my character if there are no neighbouring solid tiles in the direction of the returned minimum translation vector. I'm developing my first tile-based 2D-game with Javascript. To learn the basics, I decided to write my own "game engine". I have successfully implemented collision detection using the separating axis theorem, but I've run into a problem that I can't quite wrap my head around. If I press the [up] and [left] arrow-keys simultaneously, my character moves diagonally towards the upper left. If he hits a horizontal wall, he'll just keep moving in x-direction. The same goes for [up] and [left] as well as downward-diagonal movements, it works as intended: http://i.stack.imgur.com/aiZjI.png Diagonal movement works fine for horizontal walls, for both left and right-movement However: this does not work for vertical walls. Instead of keeping movement in y-direction, he'll just stop as soon as he "enters" a new tile on the y-axis. So for some reason SAT thinks my character is colliding vertically with tiles from vertical walls: http://i.stack.imgur.com/XBEKR.png My character stops because he thinks that he is colliding vertically with tiles from the wall on the right. This only occurs, when: Moving into top-right direction towards the right wall Moving into top-left direction towards the left wall Bottom-right and bottom-left movement work: the character keeps moving in y-direction as intended. Is this inherited from the way SAT works or is there a problem with my implementation? What can I do to solve my problem? Oh yeah, my character is displayed as a circle but he's actually a rectangular polygon for the collision detection. Thank you very much for your help.

    Read the article

  • Load Texture From Image Content In Runtime

    - by Austin Brunkhorst
    Basically I wrote a world editor for a game I'm working on. Looking ahead, I was brainstorming ways to save the created world including the tile-sets (this game will rely on a tile engine). I was hoping to save the image data of each tile-set in the same file containing the tile positions, etc. and load the image data into a Texture with XNA. Is it possible? Something like this is what I'm going for. Texture2D tileset = Content.LoadFromString<Texture2D>("png tileset data");

    Read the article

  • 3D Graphics with XNA Game Studio 4.0 bug in light map?

    - by Eibis
    i'm following the tutorials on 3D Graphics with XNA Game Studio 4.0 and I came up with an horrible effect when I tried to implement the Light Map http://i.stack.imgur.com/BUWvU.jpg this effect shows up when I look towards the center of the house (and it moves with me). it has this shape because I'm using a sphere to represent light; using other light shapes gives different results. I'm using a class PreLightingRenderer: using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Graphics; using Dhpoware; using Microsoft.Xna.Framework.Content; namespace XNAFirstPersonCamera { public class PrelightingRenderer { // Normal, depth, and light map render targets RenderTarget2D depthTarg; RenderTarget2D normalTarg; RenderTarget2D lightTarg; // Depth/normal effect and light mapping effect Effect depthNormalEffect; Effect lightingEffect; // Point light (sphere) mesh Model lightMesh; // List of models, lights, and the camera public List<CModel> Models { get; set; } public List<PPPointLight> Lights { get; set; } public FirstPersonCamera Camera { get; set; } GraphicsDevice graphicsDevice; int viewWidth = 0, viewHeight = 0; public PrelightingRenderer(GraphicsDevice GraphicsDevice, ContentManager Content) { viewWidth = GraphicsDevice.Viewport.Width; viewHeight = GraphicsDevice.Viewport.Height; // Create the three render targets depthTarg = new RenderTarget2D(GraphicsDevice, viewWidth, viewHeight, false, SurfaceFormat.Single, DepthFormat.Depth24); normalTarg = new RenderTarget2D(GraphicsDevice, viewWidth, viewHeight, false, SurfaceFormat.Color, DepthFormat.Depth24); lightTarg = new RenderTarget2D(GraphicsDevice, viewWidth, viewHeight, false, SurfaceFormat.Color, DepthFormat.Depth24); // Load effects depthNormalEffect = Content.Load<Effect>(@"Effects\PPDepthNormal"); lightingEffect = Content.Load<Effect>(@"Effects\PPLight"); // Set effect parameters to light mapping effect lightingEffect.Parameters["viewportWidth"].SetValue(viewWidth); lightingEffect.Parameters["viewportHeight"].SetValue(viewHeight); // Load point light mesh and set light mapping effect to it lightMesh = Content.Load<Model>(@"Models\PPLightMesh"); lightMesh.Meshes[0].MeshParts[0].Effect = lightingEffect; this.graphicsDevice = GraphicsDevice; } public void Draw() { drawDepthNormalMap(); drawLightMap(); prepareMainPass(); } void drawDepthNormalMap() { // Set the render targets to 'slots' 1 and 2 graphicsDevice.SetRenderTargets(normalTarg, depthTarg); // Clear the render target to 1 (infinite depth) graphicsDevice.Clear(Color.White); // Draw each model with the PPDepthNormal effect foreach (CModel model in Models) { model.CacheEffects(); model.SetModelEffect(depthNormalEffect, false); model.Draw(Camera.ViewMatrix, Camera.ProjectionMatrix, Camera.Position); model.RestoreEffects(); } // Un-set the render targets graphicsDevice.SetRenderTargets(null); } void drawLightMap() { // Set the depth and normal map info to the effect lightingEffect.Parameters["DepthTexture"].SetValue(depthTarg); lightingEffect.Parameters["NormalTexture"].SetValue(normalTarg); // Calculate the view * projection matrix Matrix viewProjection = Camera.ViewMatrix * Camera.ProjectionMatrix; // Set the inverse of the view * projection matrix to the effect Matrix invViewProjection = Matrix.Invert(viewProjection); lightingEffect.Parameters["InvViewProjection"].SetValue(invViewProjection); // Set the render target to the graphics device graphicsDevice.SetRenderTarget(lightTarg); // Clear the render target to black (no light) graphicsDevice.Clear(Color.Black); // Set render states to additive (lights will add their influences) graphicsDevice.BlendState = BlendState.Additive; graphicsDevice.DepthStencilState = DepthStencilState.None; foreach (PPPointLight light in Lights) { // Set the light's parameters to the effect light.SetEffectParameters(lightingEffect); // Calculate the world * view * projection matrix and set it to // the effect Matrix wvp = (Matrix.CreateScale(light.Attenuation) * Matrix.CreateTranslation(light.Position)) * viewProjection; lightingEffect.Parameters["WorldViewProjection"].SetValue(wvp); // Determine the distance between the light and camera float dist = Vector3.Distance(Camera.Position, light.Position); // If the camera is inside the light-sphere, invert the cull mode // to draw the inside of the sphere instead of the outside if (dist < light.Attenuation) graphicsDevice.RasterizerState = RasterizerState.CullClockwise; // Draw the point-light-sphere lightMesh.Meshes[0].Draw(); // Revert the cull mode graphicsDevice.RasterizerState = RasterizerState.CullCounterClockwise; } // Revert the blending and depth render states graphicsDevice.BlendState = BlendState.Opaque; graphicsDevice.DepthStencilState = DepthStencilState.Default; // Un-set the render target graphicsDevice.SetRenderTarget(null); } void prepareMainPass() { foreach (CModel model in Models) foreach (ModelMesh mesh in model.Model.Meshes) foreach (ModelMeshPart part in mesh.MeshParts) { // Set the light map and viewport parameters to each model's effect if (part.Effect.Parameters["LightTexture"] != null) part.Effect.Parameters["LightTexture"].SetValue(lightTarg); if (part.Effect.Parameters["viewportWidth"] != null) part.Effect.Parameters["viewportWidth"].SetValue(viewWidth); if (part.Effect.Parameters["viewportHeight"] != null) part.Effect.Parameters["viewportHeight"].SetValue(viewHeight); } } } } that uses three effect: PPDepthNormal.fx float4x4 World; float4x4 View; float4x4 Projection; struct VertexShaderInput { float4 Position : POSITION0; float3 Normal : NORMAL0; }; struct VertexShaderOutput { float4 Position : POSITION0; float2 Depth : TEXCOORD0; float3 Normal : TEXCOORD1; }; VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; float4x4 viewProjection = mul(View, Projection); float4x4 worldViewProjection = mul(World, viewProjection); output.Position = mul(input.Position, worldViewProjection); output.Normal = mul(input.Normal, World); // Position's z and w components correspond to the distance // from camera and distance of the far plane respectively output.Depth.xy = output.Position.zw; return output; } // We render to two targets simultaneously, so we can't // simply return a float4 from the pixel shader struct PixelShaderOutput { float4 Normal : COLOR0; float4 Depth : COLOR1; }; PixelShaderOutput PixelShaderFunction(VertexShaderOutput input) { PixelShaderOutput output; // Depth is stored as distance from camera / far plane distance // to get value between 0 and 1 output.Depth = input.Depth.x / input.Depth.y; // Normal map simply stores X, Y and Z components of normal // shifted from (-1 to 1) range to (0 to 1) range output.Normal.xyz = (normalize(input.Normal).xyz / 2) + .5; // Other components must be initialized to compile output.Depth.a = 1; output.Normal.a = 1; return output; } technique Technique1 { pass Pass1 { VertexShader = compile vs_1_1 VertexShaderFunction(); PixelShader = compile ps_2_0 PixelShaderFunction(); } } PPLight.fx float4x4 WorldViewProjection; float4x4 InvViewProjection; texture2D DepthTexture; texture2D NormalTexture; sampler2D depthSampler = sampler_state { texture = ; minfilter = point; magfilter = point; mipfilter = point; }; sampler2D normalSampler = sampler_state { texture = ; minfilter = point; magfilter = point; mipfilter = point; }; float3 LightColor; float3 LightPosition; float LightAttenuation; // Include shared functions #include "PPShared.vsi" struct VertexShaderInput { float4 Position : POSITION0; }; struct VertexShaderOutput { float4 Position : POSITION0; float4 LightPosition : TEXCOORD0; }; VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; output.Position = mul(input.Position, WorldViewProjection); output.LightPosition = output.Position; return output; } float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0 { // Find the pixel coordinates of the input position in the depth // and normal textures float2 texCoord = postProjToScreen(input.LightPosition) + halfPixel(); // Extract the depth for this pixel from the depth map float4 depth = tex2D(depthSampler, texCoord); // Recreate the position with the UV coordinates and depth value float4 position; position.x = texCoord.x * 2 - 1; position.y = (1 - texCoord.y) * 2 - 1; position.z = depth.r; position.w = 1.0f; // Transform position from screen space to world space position = mul(position, InvViewProjection); position.xyz /= position.w; // Extract the normal from the normal map and move from // 0 to 1 range to -1 to 1 range float4 normal = (tex2D(normalSampler, texCoord) - .5) * 2; // Perform the lighting calculations for a point light float3 lightDirection = normalize(LightPosition - position); float lighting = clamp(dot(normal, lightDirection), 0, 1); // Attenuate the light to simulate a point light float d = distance(LightPosition, position); float att = 1 - pow(d / LightAttenuation, 6); return float4(LightColor * lighting * att, 1); } technique Technique1 { pass Pass1 { VertexShader = compile vs_1_1 VertexShaderFunction(); PixelShader = compile ps_2_0 PixelShaderFunction(); } } PPShared.vsi has some common functions: float viewportWidth; float viewportHeight; // Calculate the 2D screen position of a 3D position float2 postProjToScreen(float4 position) { float2 screenPos = position.xy / position.w; return 0.5f * (float2(screenPos.x, -screenPos.y) + 1); } // Calculate the size of one half of a pixel, to convert // between texels and pixels float2 halfPixel() { return 0.5f / float2(viewportWidth, viewportHeight); } and finally from the Game class I set up in LoadContent with: effect = Content.Load(@"Effects\PPModel"); models[0] = new CModel(Content.Load(@"Models\teapot"), new Vector3(-50, 80, 0), new Vector3(0, 0, 0), 1f, Content.Load(@"Textures\prova_texture_autocad"), GraphicsDevice); house = new CModel(Content.Load(@"Models\house"), new Vector3(0, 0, 0), new Vector3((float)-Math.PI / 2, 0, 0), 35.0f, Content.Load(@"Textures\prova_texture_autocad"), GraphicsDevice); models[0].SetModelEffect(effect, true); house.SetModelEffect(effect, true); renderer = new PrelightingRenderer(GraphicsDevice, Content); renderer.Models = new List(); renderer.Models.Add(house); renderer.Models.Add(models[0]); renderer.Lights = new List() { new PPPointLight(new Vector3(0, 120, 0), Color.White * .85f, 2000) }; where PPModel.fx is: float4x4 World; float4x4 View; float4x4 Projection; texture2D BasicTexture; sampler2D basicTextureSampler = sampler_state { texture = ; addressU = wrap; addressV = wrap; minfilter = anisotropic; magfilter = anisotropic; mipfilter = linear; }; bool TextureEnabled = true; texture2D LightTexture; sampler2D lightSampler = sampler_state { texture = ; minfilter = point; magfilter = point; mipfilter = point; }; float3 AmbientColor = float3(0.15, 0.15, 0.15); float3 DiffuseColor; #include "PPShared.vsi" struct VertexShaderInput { float4 Position : POSITION0; float2 UV : TEXCOORD0; }; struct VertexShaderOutput { float4 Position : POSITION0; float2 UV : TEXCOORD0; float4 PositionCopy : TEXCOORD1; }; VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; float4x4 worldViewProjection = mul(World, mul(View, Projection)); output.Position = mul(input.Position, worldViewProjection); output.PositionCopy = output.Position; output.UV = input.UV; return output; } float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0 { // Sample model's texture float3 basicTexture = tex2D(basicTextureSampler, input.UV); if (!TextureEnabled) basicTexture = float4(1, 1, 1, 1); // Extract lighting value from light map float2 texCoord = postProjToScreen(input.PositionCopy) + halfPixel(); float3 light = tex2D(lightSampler, texCoord); light += AmbientColor; return float4(basicTexture * DiffuseColor * light, 1); } technique Technique1 { pass Pass1 { VertexShader = compile vs_1_1 VertexShaderFunction(); PixelShader = compile ps_2_0 PixelShaderFunction(); } } I don't have any idea on what's wrong... googling the web I found that this tutorial may have some bug but I don't know if it's the LightModel fault (the sphere) or in a shader or in the class PrelightingRenderer. Any help is very appreciated, thank you for reading!

    Read the article

  • sprite animation system height recalculating has some issues

    - by Nicolas Martel
    Basically, the way it works is that it update the frame to show every let's say 24 ticks and every time the frame update, it recalculates the height and width of the new sprite to render so that my gravity logics and stuff works well. But the problem i am having now is a bit hard to explain in words only, therefore i will use this picture to assist me The picture So what i need basically is that if let's say i froze the sprite at the first frame, then unfreeze it and freeze it at the second frame, have the second frame's sprite (let's say it's a prone move) simply stand on the foothold without starting the gravity and when switching back, have the first sprite go back on the foothold like normal without being under the foothold. I had 2 ideas on doing this but I'm not sure it's the most efficient ways to do it so i wanna hear your inputs.

    Read the article

  • glColor3f Setting colour

    - by Aaron
    This draws a white vertical line from 640 to 768 at x512: glDisable(GL_TEXTURE_2D); glBegin(GL_LINES); glColor3f((double)R/255,(double)G/255,(double)B/255); glVertex3f(SX, -SPosY, 0); // origin of the line glVertex3f(SX, -EPosY, 0); // ending point of the line glEnd(); glEnable(GL_TEXTURE_2D); This works, but after having a problem where it wouldn't draw it white (Or to any colour passed) I discovered that disabling GL_TEXTURE_2D Before drawing the line, and the re-enabling it afterwards for other things, fixed it. I want to know, is this a normal step a programmer might take? Or is it highly inefficient? I don't want to be causing any slow downs due to a mistake =) Thanks

    Read the article

  • Apply bone tranforms when importing FBX in XNA

    - by hichaeretaqua
    Preconditions: I have some models, that does only contain some meshes and one texture. There is no animation within the model. An example: a model of a table. I want to draw the Model with a custom effect, so I have to swap the effect after loading the model. In order to draw them correctly, I have to apply the bone transformation manually on each draw for each mesh and effect as can be seen here. So there are two questions: Is there a option during import that allows my to apply the bone transformation on all vertices, so that during draw call I should not have to do this? Is there a option during import that merges all vertices into a Vertex- and IndexBuffer, that allows me to draw the whole model with just one call? I'm pretty sure that the build-in "Autodesk FBX - XNA Framework" does not support this features, but maybe there is an other imported available or an other possibility I missed. The aim is to speed up rendering a little bit especially by using instancing. So having one VertexBuffer to draw at one time would be pretty nice.

    Read the article

  • Texture displays on Android emulator but not on device

    - by Rob
    I have written a simple UI which takes an image (256x256) and maps it to a rectangle. This works perfectly on the emulator however on the phone the texture does not show, I see only a white rectangle. This is my code: public void onSurfaceCreated(GL10 gl, EGLConfig config) { byteBuffer = ByteBuffer.allocateDirect(shape.length * 4); byteBuffer.order(ByteOrder.nativeOrder()); vertexBuffer = byteBuffer.asFloatBuffer(); vertexBuffer.put(cardshape); vertexBuffer.position(0); byteBuffer = ByteBuffer.allocateDirect(shape.length * 4); byteBuffer.order(ByteOrder.nativeOrder()); textureBuffer = byteBuffer.asFloatBuffer(); textureBuffer.put(textureshape); textureBuffer.position(0); // Set the background color to black ( rgba ). gl.glClearColor(0.0f, 0.0f, 0.0f, 0.5f); // Enable Smooth Shading, default not really needed. gl.glShadeModel(GL10.GL_SMOOTH); // Depth buffer setup. gl.glClearDepthf(1.0f); // Enables depth testing. gl.glEnable(GL10.GL_DEPTH_TEST); // The type of depth testing to do. gl.glDepthFunc(GL10.GL_LEQUAL); // Really nice perspective calculations. gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT, GL10.GL_NICEST); gl.glEnable(GL10.GL_TEXTURE_2D); loadGLTexture(gl); } public void onDrawFrame(GL10 gl) { gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT); gl.glDisable(GL10.GL_DEPTH_TEST); gl.glMatrixMode(GL10.GL_PROJECTION); // Select Projection gl.glPushMatrix(); // Push The Matrix gl.glLoadIdentity(); // Reset The Matrix gl.glOrthof(0f, 480f, 0f, 800f, -1f, 1f); gl.glMatrixMode(GL10.GL_MODELVIEW); // Select Modelview Matrix gl.glPushMatrix(); // Push The Matrix gl.glLoadIdentity(); // Reset The Matrix gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY); gl.glLoadIdentity(); gl.glTranslatef(card.x, card.y, 0.0f); gl.glBindTexture(GL10.GL_TEXTURE_2D, texture[0]); //activates texture to be used now gl.glVertexPointer(2, GL10.GL_FLOAT, 0, vertexBuffer); gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, textureBuffer); gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0, 4); gl.glDisableClientState(GL10.GL_VERTEX_ARRAY); gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY); } public void onSurfaceChanged(GL10 gl, int width, int height) { // Sets the current view port to the new size. gl.glViewport(0, 0, width, height); // Select the projection matrix gl.glMatrixMode(GL10.GL_PROJECTION); // Reset the projection matrix gl.glLoadIdentity(); // Calculate the aspect ratio of the window GLU.gluPerspective(gl, 45.0f, (float) width / (float) height, 0.1f, 100.0f); // Select the modelview matrix gl.glMatrixMode(GL10.GL_MODELVIEW); // Reset the modelview matrix gl.glLoadIdentity(); } public int[] texture = new int[1]; public void loadGLTexture(GL10 gl) { // loading texture Bitmap bitmap; bitmap = BitmapFactory.decodeResource(context.getResources(), R.drawable.image); // generate one texture pointer gl.glGenTextures(0, texture, 0); //adds texture id to texture array // ...and bind it to our array gl.glBindTexture(GL10.GL_TEXTURE_2D, texture[0]); //activates texture to be used now // create nearest filtered texture gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER, GL10.GL_NEAREST); gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER, GL10.GL_LINEAR); // Use Android GLUtils to specify a two-dimensional texture image from our bitmap GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0); // Clean up bitmap.recycle(); } As per many other similar issues and resolutions on the web i have tried setting the minsdkversion is 3, loading the bitmap via an input stream bitmap = BitmapFactory.decodeStream(is), setting BitmapFactory.Options.inScaled to false, putting the images in the nodpi folder and putting them in the raw folder.. all of which didn't help. I'm not really sure what else to try..

    Read the article

  • Multi-Threaded Pipelined Game Engine Data Synchronization Questions

    - by Douglas
    Let's say I'm setting up a worker pool based game engine with pipelining. Let's say I have 4 stages in my pipeline as such: Stage 1: Physics Stage 2: AI/Input Stage 3: Game Logic Stage 4: Rendering Now let's say that the physics detects a collision between a bullet and a character in stage 1. Two frames later the game logic may choose to remove that bullet from the simulation, however none of the other copies of the data for the other pipeline stages will get this information. How is this sort of thing and other things like it get handled? Do you generally make changes like this to every pipeline stage's data at the end of a frame?

    Read the article

  • Complexity of defense AI

    - by Fredrik Johansson
    I have a non-released game, and currently it's only possible to play with another human being. As the game rules are made up by me, I think it would be great if new players could learn basic game play by playing against an AI opponent. I mean it's not like Tennis, where the majority knows at least the fundamental rules. On the other hand, I'm a bit concerned that this AI implementation can be quite complex. I hope you can help me with an complexity estimation. I've tried to summarize the gameplay below. Is this defense AI very hard to do? Basic Defense Game Play Player Defender can move within his land, i.e. inside a random, non-convex, polygon. This land will also contain obstacles modeled as polygons, that Defender has to move around. Player Attacker has also a land, modeled as another such polygon. Assume that Defender shall defend against Attacker. Attacker will then throw a thingy towards Defender's land. To be rewarded, Attacker wants to hit Defender's land, and Defender will want to strike away the thingy from his land before it stops to prevent Attacker from scoring. To feint Defender, Attacker might run around within his land before the throw, and based on these attacker movements Defender shall then continuously move to the best defense position within his land.

    Read the article

  • Is chess-like AI really inapplicable in turn-based strategy games?

    - by Joh
    Obviously, trying to apply the min-max algorithm on the complete tree of moves works only for small games (I apologize to all chess enthusiasts, by "small" I do not mean "simplistic"). For typical turn-based strategy games where the board is often wider than 100 tiles and all pieces in a side can move simultaneously, the min-max algorithm is inapplicable. I was wondering if a partial min-max algorithm which limits itself to N board configurations at each depth couldn't be good enough? Using a genetic algorithm, it might be possible to find a number of board configurations that are good wrt to the evaluation function. Hopefully, these configurations might also be good wrt to long-term goals. I would be surprised if this hasn't been thought of before and tried. Has it? How does it work?

    Read the article

  • Resources on expected behaviour when manipulating 3D objects with the mouse

    - by sebf
    Hello, In my animation editor, I have a 3D gizmo that sits on the origin of a bone; the user drags the mesh around to rotate the bone. I've found that translating the 2D movements of the mouse into sensible 3D transforms is not near as simple as i'd hoped. For example what is intuitively 'up' or 'down'? How should the magnitude of rotations change with respect to dX/dY? How to implement this? What happens when the gizmo changes position or orientation with respect to the camera? ect. So far with trial and error i've written something (very) simple that works 70% of the time. I could probably continue to hack at it until I made something that works 99% of the time, but there must be someone who needed the same thing, and spent the time coming up with a much more elegant solution. Does anyone know of one?

    Read the article

  • What causes Box2D revolute joints to separate?

    - by nbolton
    I have created a rag doll using dynamic bodies (rectangles) and simple revolute joints (with lower and upper angles). When my rag doll hits the ground (which is a static body) the bodies seem to fidget and the joints separate. It looks like the bodies are sticking to the ground, and the momentum of the rag doll pulls the joint apart (see screenshot below). I'm not sure if it's related, but I'm using the Badlogic GDX Java wrapper for Box2D. Here's some snippets of what I think is the most relevant code: private RevoluteJoint joinBodyParts( Body a, Body b, Vector2 anchor, float lowerAngle, float upperAngle) { RevoluteJointDef jointDef = new RevoluteJointDef(); jointDef.initialize(a, b, a.getWorldPoint(anchor)); jointDef.enableLimit = true; jointDef.lowerAngle = lowerAngle; jointDef.upperAngle = upperAngle; return (RevoluteJoint)world.createJoint(jointDef); } private Body createRectangleBodyPart( float x, float y, float width, float height) { PolygonShape shape = new PolygonShape(); shape.setAsBox(width, height); BodyDef bodyDef = new BodyDef(); bodyDef.type = BodyType.DynamicBody; bodyDef.position.y = y; bodyDef.position.x = x; Body body = world.createBody(bodyDef); FixtureDef fixtureDef = new FixtureDef(); fixtureDef.shape = shape; fixtureDef.density = 10; fixtureDef.filter.groupIndex = -1; fixtureDef.filter.categoryBits = FILTER_BOY; fixtureDef.filter.maskBits = FILTER_STUFF | FILTER_WALL; body.createFixture(fixtureDef); shape.dispose(); return body; } I've skipped the method for creating the head, as it's pretty much the same as the rectangle method (just using a cricle shape). Those methods are used like so: torso = createRectangleBodyPart(x, y + 5, 0.25f, 1.5f); Body head = createRoundBodyPart(x, y + 7.4f, 1); Body leftLegTop = createRectangleBodyPart(x, y + 2.7f, 0.25f, 1); Body rightLegTop = createRectangleBodyPart(x, y + 2.7f, 0.25f, 1); Body leftLegBottom = createRectangleBodyPart(x, y + 1, 0.25f, 1); Body rightLegBottom = createRectangleBodyPart(x, y + 1, 0.25f, 1); Body leftArm = createRectangleBodyPart(x, y + 5, 0.25f, 1.2f); Body rightArm = createRectangleBodyPart(x, y + 5, 0.25f, 1.2f); joinBodyParts(torso, head, new Vector2(0, 1.6f), headAngle); leftLegTopJoint = joinBodyParts(torso, leftLegTop, new Vector2(0, -1.2f), 0.1f, legAngle); rightLegTopJoint = joinBodyParts(torso, rightLegTop, new Vector2(0, -1.2f), 0.1f, legAngle); leftLegBottomJoint = joinBodyParts(leftLegTop, leftLegBottom, new Vector2(0, -1), -legAngle * 1.5f, 0); rightLegBottomJoint = joinBodyParts(rightLegTop, rightLegBottom, new Vector2(0, -1), -legAngle * 1.5f, 0); leftArmJoint = joinBodyParts(torso, leftArm, new Vector2(0, 1), -armAngle * 0.7f, armAngle); rightArmJoint = joinBodyParts(torso, rightArm, new Vector2(0, 1), -armAngle * 0.7f, armAngle);

    Read the article

  • SWF file not playing after being published

    - by rsquare
    I'm trying to run the "connector" example that comes bundled with the SmartFoxServer 2X downloads.. There it connects to the server and loads the correct configuration file. When I run it in Adobe Flash Professional 5, it runs correctly and connects to the server but after being published as SWF movie, it doesnt work. It loads the configuration file but can't connect and gives an error connection failure: ERROR 2048. This is the example I'm talking about.

    Read the article

  • Server side random selection of players

    - by Ron
    Assuming I have a simple client-server game, where the server picks random players on a very frequent base, I was wondering what is the best way to select a random player (According to the following constraints): Solution must be high performance and highly scalable Random spread should be relatively even (meaning if I have 3 players and pick 99 times, they will all be picked 33 times more or less) Should only pick players who were active in the past X days (optional, but a big bonus) The actual DB or data model used to store players isn't an issue here, as we'll select the technology in accordance to our needs. However, high performance and scalability is (at the moment we have over 60,000 unique daily active players, and we plan on growing even more). Thanks!

    Read the article

  • How to play the sound of an object sliding on another object for a variable duration

    - by Antoine
    I would like to add sound effects to a basic 2D game. For example, a stone sphere is rolling on wood surface. Let's say I have a 2 second audio recording of this. How could I use the sample to add sound for an arbitrary duration ? So far I have two solutions in mind: a/ record the sound for an amount of time that is greater than the maximum expected duration, and play only a part of it; b/ extract a small portion of the sample and play it in a loop for the duration of the move; however I'm not sure if it makes sense with an audio wave.

    Read the article

  • (int) Math.floor(x / TILESIZE) or just (int) (x / TILESIZE)

    - by Aidan Mueller
    I have a Array that stores my map data and my Tiles are 64X64. Sometimes I need to convert from pixels to units of tiles. So I was doing: int x int y public void myFunction() { getTile((int) Math.floor(x / 64), (int) Math.floor(y / 64)).doOperation(); } But I discovered by using (I'm using java BTW) System.out.println((int) (1 / 1.5)) that converting to an int automatically rounds down. This means that I can replace the (int) Math.floor with just x / 64. But if I run this on a different OS do you think it might give a different result? I'm just afraid there might be some case where this would round up and not down. Should I keep doing it the way I was and maybe make a function like convert(int i) to make it easier? Or is it OK to just do x / 64?

    Read the article

  • How to convert pitch and yaw to x, y, z rotations?

    - by Aaron Anodide
    I'm a beginner using XNA to try and make a 3D Asteroids game. I'm really close to having my space ship drive around as if it had thrusters for pitch and yaw. The problem is I can't quite figure out how to translate the rotations, for instance, when I pitch forward 45 degrees and then start to turn - in this case there should be rotation being applied to all three directions to get the "diagonal yaw" - right? I thought I had it right with the calculations below, but they cause a partly pitched forward ship to wobble instead of turn.... :( So my quesiton is: how do you calculate the X, Y, and Z rotations for an object in terms of pitch and yaw? Here's current (almost working) calculations for the Rotation acceleration: float accel = .75f; // Thrust +Y / Forward if (currentKeyboardState.IsKeyDown(Keys.I)) { this.ship.AccelerationY += (float)Math.Cos(this.ship.RotationZ) * accel; this.ship.AccelerationX += (float)Math.Sin(this.ship.RotationZ) * -accel; this.ship.AccelerationZ += (float)Math.Sin(this.ship.RotationX) * accel; } // Rotation +Z / Yaw if (currentKeyboardState.IsKeyDown(Keys.J)) { this.ship.RotationAccelerationZ += (float)Math.Cos(this.ship.RotationX) * accel; this.ship.RotationAccelerationY += (float)Math.Sin(this.ship.RotationX) * accel; this.ship.RotationAccelerationX += (float)Math.Sin(this.ship.RotationY) * accel; } // Rotation -Z / Yaw if (currentKeyboardState.IsKeyDown(Keys.K)) { this.ship.RotationAccelerationZ += (float)Math.Cos(this.ship.RotationX) * -accel; this.ship.RotationAccelerationY += (float)Math.Sin(this.ship.RotationX) * -accel; this.ship.RotationAccelerationX += (float)Math.Sin(this.ship.RotationY) * -accel; } // Rotation +X / Pitch if (currentKeyboardState.IsKeyDown(Keys.F)) { this.ship.RotationAccelerationX += accel; } // Rotation -X / Pitch if (currentKeyboardState.IsKeyDown(Keys.D)) { this.ship.RotationAccelerationX -= accel; } I'm combining that with drawing code that does a rotation to the model: public void Draw(Matrix world, Matrix view, Matrix projection, TimeSpan elsapsedTime) { float seconds = (float)elsapsedTime.TotalSeconds; // update velocity based on acceleration this.VelocityX += this.AccelerationX * seconds; this.VelocityY += this.AccelerationY * seconds; this.VelocityZ += this.AccelerationZ * seconds; // update position based on velocity this.PositionX += this.VelocityX * seconds; this.PositionY += this.VelocityY * seconds; this.PositionZ += this.VelocityZ * seconds; // update rotational velocity based on rotational acceleration this.RotationVelocityX += this.RotationAccelerationX * seconds; this.RotationVelocityY += this.RotationAccelerationY * seconds; this.RotationVelocityZ += this.RotationAccelerationZ * seconds; // update rotation based on rotational velocity this.RotationX += this.RotationVelocityX * seconds; this.RotationY += this.RotationVelocityY * seconds; this.RotationZ += this.RotationVelocityZ * seconds; Matrix translation = Matrix.CreateTranslation(PositionX, PositionY, PositionZ); Matrix rotation = Matrix.CreateRotationX(RotationX) * Matrix.CreateRotationY(RotationY) * Matrix.CreateRotationZ(RotationZ); model.Root.Transform = rotation * translation * world; model.CopyAbsoluteBoneTransformsTo(boneTransforms); foreach (ModelMesh mesh in model.Meshes) { foreach (BasicEffect effect in mesh.Effects) { effect.World = boneTransforms[mesh.ParentBone.Index]; effect.View = view; effect.Projection = projection; effect.EnableDefaultLighting(); } mesh.Draw(); } }

    Read the article

< Previous Page | 508 509 510 511 512 513 514 515 516 517 518 519  | Next Page >