Search Results

Search found 31839 results on 1274 pages for 'plugin development'.

Page 515/1274 | < Previous Page | 511 512 513 514 515 516 517 518 519 520 521 522  | Next Page >

  • GetContactList stops reporting collisions on welded bodies

    - by Henrique Jung
    I have some strange problem with my game which uses Box2D as physics engine and I'm out of ideas on what I can do to solve it. My game is a class assignment where I need to build a simple game where the main character moves in a 2D environment while square blocks comes from below him. Each time a collision occurs, that block is attached to the character using a weld joint, when three blocks of the same colors are together, they annihilate themselves(an effect similar to Bejeweled). I'm using a recursive function to iterate through all the attached blocks of a given block to see if there are enough blocks for them to be deleted. I'm using GetContactList function to iterate through the list of contacts to see which blocks are adjacent to each other. The results are quite disappointing, the blocks only get annihilated in few cases. After a lot of debugging, I found the issue, but I still don't know how to solve. My issue is: after some time, GetContactList STOPS returning contacts (return NULL) to blocks that were already attached for some time. I spent some time reading the Box2D manual as well as some tutorials and still didn't find any clue of what is happening. Below there's some simplified version of the code that I wrote. for(int a = 0; a < blocksList.size(); a++) { blocksList[a].BuildConnections(); } And on BuildConnections b2ContactEdge* edge = body->GetContactList(); while(edge != NULL) { if (long_check_to_see_if_there's_a_block_nearby) { // add itself to the list to be anihilated globalList.push_back(this); //if there's, call BuildConnections again on the adjacent block adjacentBody->GetUserData()->BuildConnections; } edge = edge->next; } I know that there's another issue related to circular inclusions, but I fairly sure that this problem isn't causing the problem with the collisions. You can download my entire code from this page if you'd like http://code.google.com/p/fellz/source/list

    Read the article

  • How to correctly export UV coordinates from Blender

    - by KlashnikovKid
    Alright, so I'm just now getting around to texturing some assets. After much trial and error I feel I'm pretty good at UV unwrapping now and my work looks good in Blender. However, either I'm using the UV data incorrectly (I really doubt it) or Blender doesn't seem to export the correct UV coordinates into the obj file because the texture is mapped differently in my game engine. And in Blender I've played with the texture panel and it's mapping options and have noticed it doesn't appear to affect the exported obj file's uv coordinates. So I guess my question is, is there something I need to do prior to exporting in order to bake the correct UV coordinates into the obj file? Or something else that needs to be done to massage the texture coordinates for sampling. Or any thoughts at all of what could be going wrong? (Also here is a screen shot of my diffused texture in blender and the game engine. As you can see in the image, I have the same problem with a simple test cube not getting correct uv's either) http://www.digitalinception.net/blenderSS.png http://www.digitalinception.net/gameSS.png

    Read the article

  • Multi Pass Blend

    - by Kirk Patrick
    I am seeking the simplest working example of a two pass HLSL pixel shader. It can do anything really, but the main idea is to perform "ping ponging" to take the output of the first pass and then send it for the second pass. In my example I want to draw to the R channel and then draw to the G channel and produce a simple Venn Diagram in the shader, but need to detect overlap. I can currently detect one or the other but not overlap. There are a red and green circle overlapping, and I want to put a dynamic texture map in the overlap region. I can currently put it in either or. Below is how it looks in the shader. -------------------------------- Texture2D shaderTexture; SamplerState SampleType; ////////////// // TYPEDEFS // ////////////// struct PixelInputType { float4 position : SV_POSITION; float2 tex0 : TEXCOORD0; float2 tex1 : TEXCOORD1; float4 color : COLOR; }; //////////////////////////////////////////////////////////////////////////////// // Pixel Shader //////////////////////////////////////////////////////////////////////////////// float4 main(PixelInputType input) : SV_TARGET { float4 textureColor0; float4 textureColor1; // Sample the pixel color from the texture using the sampler at this texture coordinate location. textureColor0 = shaderTexture.Sample(SampleType, input.tex0); textureColor1 = shaderTexture.Sample(SampleType, input.tex1); if (input.color[0]==1.0f && input.color[1]==1.0f) // Requires multi-pass textureColor0 = textureColor1; return textureColor0; } Here is the calling code (that needs to be modified) m_d3dContext->IASetVertexBuffers(0, 2, vbs, strides, offsets); m_d3dContext->IASetIndexBuffer(m_indexBuffer.Get(), DXGI_FORMAT_R32_UINT,0); m_d3dContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST); m_d3dContext->IASetInputLayout(m_inputLayout.Get()); m_d3dContext->VSSetShader(m_vertexShader.Get(), nullptr, 0); m_d3dContext->VSSetConstantBuffers(0, 1, m_constantBuffer.GetAddressOf()); m_d3dContext->PSSetShader(m_pixelShader.Get(), nullptr, 0); m_d3dContext->PSSetShaderResources(0, 1, m_SRV.GetAddressOf()); m_d3dContext->PSSetSamplers(0, 1, m_QuadsTexSamplerState.GetAddressOf());

    Read the article

  • SceneManagers as systems in entity system or as a core class used by a system?

    - by Hatoru Hansou
    It seems entity systems are really popular here. Links posted by other users convinced me of the power of such system and I decided to try it. (Well, that and my original code getting messy) In my project, I originally had a SceneManager class that maintained needed logic and structures to organize the scene (QuadTree, 2D game). Before rendering I call selectRect() and pass the x,y of the camera and the width and height of the screen and then obtain a minimized list containing only visible entities ordered from back to front. Now with Systems, originally in my first attempt my Render system required to get added all entities it should handle. This may sound like the correct approach but I realized this was not efficient. Trying to optimize It I reused the SceneManager class internally in the Renderer system, but then I realized I needed methods such as selectRect() in others systems too (AI principally) and make the SceneManager accessible globally again. Currently I converted SceneManager to a system, and ended up with the following interface (only relevant methods): /// Base system interface class System { public: virtual void tick (double delta_time) = 0; // (methods to add and remove entities) }; typedef std::vector<Entity*> EntitiesVector; /// Specialized system interface to allow query the scene class SceneManager: public System { public: virtual EntitiesVector& cull () = 0; /// Sets the entity to be used as the camera and replaces previous ones. virtual void setCamera (Entity* entity) = 0; }; class SceneRenderer // Not a system { vitual void render (EntitiesVector& entities) = 0; }; Also I could not guess how to convert renderers to systems. My game separates logic updates from screen updates, my main class have a tick() method and a render() method that may not be called the same times. In my first attempt renderers were systems but they was saved in a separated manager, updated only in render() and not in tick() like all other systems. I realized that was silly and simply created a SceneRenderer interface and give up about converting them to systems, but that may be for another question. Then... something does not feel right, isn't it? If I understood correctly a system should not depend on another or even count with another system exposing an specific interface. Each system should care only about its entities, or nodes (as optimization, so they have direct references to relevant components without having to constantly call the component() or getComponent() method of the entity).

    Read the article

  • Toon/cel shading with variable line width?

    - by Nick Wiggill
    I see a few broad approaches out there to doing cel shading: Duplication & enlargement of model with flipped normals (not an option for me) Sobel filter / fragment shader approaches to edge detection Stencil buffer approaches to edge detection Geometry (or vertex) shader approaches that calculate face and edge normals Am I correct in assuming the geometry-centric approach gives the greatest amount of control over lighting and line thickness, as well eg. for terrain where you might see the silhouette line of a hill merging gradually into a plain? What if I didn't need pixel lighting on my terrain surfaces? (And I probably won't as I plan to use cell-based vertex- or texturemap-based lighting/shadowing.) Would I then be better off sticking with the geometry-type approach, or go for a screen space / fragment approach instead to keep things simpler? If so, how would I get the "inking" of hills within the mesh silhouette, rather than only the outline of the entire mesh (with no "ink" details inside that outline? Lastly, is it possible to cheaply emulate the flipped-normals approach, using a geometry shader? Is that exactly what the GS approaches do? What I want - varying line thickness with intrusive lines inside the silhouette... What I don't want...

    Read the article

  • Moving player in direciton camera is facing

    - by Samurai Fox
    I have a 3rd person camera which can rotate around the player. My problem is that wherever camera is facing, players forward is always the same direction. For example when camera is facing the right side of the player, when I press button to move forward, I want player to turn to the left and make that the "new forward". My camera script so far: using UnityEngine; using System.Collections; public class PlayerScript : MonoBehaviour { public float RotateSpeed = 150, MoveSpeed = 50; float DeltaTime; void Update() { DeltaTime = Time.deltaTime; transform.Rotate(0, Input.GetAxis("LeftX") * RotateSpeed * DeltaTime, 0); transform.Translate(0, 0, -Input.GetAxis("LeftY") * MoveSpeed * DeltaTime); } } public class CameraScript : MonoBehaviour { public GameObject Target; public float RotateSpeed = 170, FollowDistance = 20, FollowHeight = 10; float RotateSpeedPerTime, DesiredRotationAngle, DesiredHeight, CurrentRotationAngle, CurrentHeight, Yaw, Pitch; Quaternion CurrentRotation; void LateUpdate() { RotateSpeedPerTime = RotateSpeed * Time.deltaTime; DesiredRotationAngle = Target.transform.eulerAngles.y; DesiredHeight = Target.transform.position.y + FollowHeight; CurrentRotationAngle = transform.eulerAngles.y; CurrentHeight = transform.position.y; CurrentRotationAngle = Mathf.LerpAngle(CurrentRotationAngle, DesiredRotationAngle, 0); CurrentHeight = Mathf.Lerp(CurrentHeight, DesiredHeight, 0); CurrentRotation = Quaternion.Euler(0, CurrentRotationAngle, 0); transform.position = Target.transform.position; transform.position -= CurrentRotation * Vector3.forward * FollowDistance; transform.position = new Vector3(transform.position.x, CurrentHeight, transform.position.z); Yaw = Input.GetAxis("Right Horizontal") * RotateSpeedPerTime; Pitch = Input.GetAxis("Right Vertical") * RotateSpeedPerTime; transform.Translate(new Vector3(Yaw, -Pitch, 0)); transform.position = new Vector3(transform.position.x, transform.position.y, transform.position.z); transform.LookAt(Target.transform); } }

    Read the article

  • Ensuring that saved data has not been edited in a game with both offline and online components

    - by Omar Kooheji
    I'm in the pre-planning phase of coming up with a game design and I was wondering if there was a sensible way to stop people from editing saves in a game with offline and online components. The offline component would allow the player to play through the game and the online component would allow them to play against other players, so I would need to make sure that people hadn't edited the source code/save files while offline to gain an advantage while online. Game likely to be developed in either .Net or Java, both of which are unfortunately easy to decompile.

    Read the article

  • What is the correct and most efficient approach of streaming vertex data?

    - by Martijn Courteaux
    Usually, I do this in my current OpenGL ES project (for iOS): Initialization: Create two VBO's and one IndexBuffer (since I will use the same indices), same size. Create two VAO's and configure them, both bound to the same Index Buffer. Each frame: Choose a VBO/VAO couple. (Different from the previous frame, so I'm alternating.) Bind that VBO Upload new data using glBufferSubData(GL_ARRAY_BUFFER, ...). Bind the VAO Render my stuff using glDrawElements(GL_***, ...); Unbind the VAO However, someone told me to avoid uploading data (step 3) and render immediately the new data (step 5). I should avoid this, because the glDrawElements call will stall until the buffer is effectively uploaded to VRAM. So he suggested to draw all my geometry I uploaded the previous frame and upload in the current frame what will be drawn in the next frame. Thus, everything is rendered with the delay of one frame. Is this true or am I using the good approach to work with streaming vertex data? (I do know that the pipeline will stall the other way around. Ie: when you draw and immediately try to change the buffer data. But I'm not doing that, since I implemented double buffering.)

    Read the article

  • How do I implement collision detection with a sprite walking up a rocky-terrain hill?

    - by detectivecalcite
    I'm working in SDL and have bounding rectangles for collisions set up for each frame of the sprite's animation. However, I recently stumbled upon the issue of putting together collisions for characters walking up and down hills/slopes with irregularly curved or rocky terrain - what's a good way to do collisions for that type of situation? Per-pixel? Loading up the points of the incline and doing player-line collision checking? Should I use bounding rectangles in general or circle collision detection?

    Read the article

  • Stencil buffer appears to not be decrementing values correctly

    - by Alex Ames
    I'm attempting to use the stencil buffer as a clipper for my UI system, but I'm having trouble debugging a problem I'm running in to. This is what I'm doing: A widget can pass a rectangle to the the stencil clipper functions, which will increment the stencil buffer values that it covers. Then it will draw its children, which will only get drawn in the stencilled area (so that if they extend outside they'll be clipped). After a widget is done drawing its children, it pops that rectangle from the stack and in the process decrements the values in the stencil buffer that it has previously incremented. The slightly simplified code is below: static void drawStencil(Rect& rect, unsigned int ref) { // Save previous values of the color and depth masks GLboolean colorMask[4]; GLboolean depthMask; glGetBooleanv(GL_COLOR_WRITEMASK, colorMask); glGetBooleanv(GL_DEPTH_WRITEMASK, &depthMask); // Turn off drawing glColorMask(0, 0, 0, 0); glDepthMask(0); // Draw vertices here ... // Turn everything back on glColorMask(colorMask[0], colorMask[1], colorMask[2], colorMask[3]); glDepthMask(depthMask); // Only render pixels in areas where the stencil buffer value == ref glStencilFunc(GL_EQUAL, ref, 0xFF); glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); } void pushScissor(Rect rect) { // increment things only at the current stencil stack level glStencilFunc(GL_EQUAL, s_scissorStack.size(), 0xFF); glStencilOp(GL_KEEP, GL_INCR, GL_INCR); s_scissorStack.push_back(rect); drawStencil(rect, states, s_ScissorStack.size()); } void popScissor() { // undo what was done in the previous push, // decrement things only at the current stencil stack level glStencilFunc(GL_EQUAL, s_scissorStack.size(), 0xFF); glStencilOp(GL_KEEP, GL_DECR, GL_DECR); Rect rect = s_scissorStack.back(); s_scissorStack.pop_back(); drawStencil(rect, states, s_scissorStack.size()); } And this is how it's being used by the Widgets if (m_clip) pushScissor(m_rect); drawInternal(target, states); for (auto child : m_children) target.draw(*child, states); if (m_clip) popScissor(); This is the result of the above code: There are two things on the screen, a giant test button, and a window with some buttons and text areas on it. The text area scroll box is set to clip its children (so that the text doesn't extend outside the scroll box). The button is drawn after the window and should be on top of it completely. However, for some reason the text area is appearing on top of the button. The only reason I can think of that this would happen is if the stencil values were not getting decremented in the pop, and when it comes time to render the button, since those pixels don't have the right stencil value it doesn't draw over. But I can't figure out whats wrong with my code that would cause that to happen.

    Read the article

  • Using Lerp to create a hovering effect for a GameObject

    - by OhMrBigshot
    I want to have a GameObject that has a "hovering" effect when the mouse is over it. What I'm having trouble with is actually having a color that gradually goes from one color to the next. I'm assuming Color.Lerp() is the best function for that, but I can't seem to get it working properly. Here's my CubeBehavior.cs's Update() function: private bool ReachedTop = false; private float t = 0f; private float final_t; private bool MouseOver = false; // Update is called once per frame void Update () { if (MouseOver) { t = Time.time % 1f; // using Time.time to get a value between 0 and 1 if (t >= 1f || t <= 0f) // If it reaches either 0 or 1... ReachedTop = ReachedTop ? false : true; if (ReachedTop) final_t = 1f - t; // Make it count backwards else final_t = t; print (final_t); // for debugging purposes renderer.material.color = Color.Lerp(Color.red, Color.green, final_t); } } void OnMouseEnter() { MouseOver = true; } void OnMouseExit() { renderer.material.color = Color.white; MouseOver = false; } Now, I've tried several approaches to making it reach 1 then count backwards till 0 including a multiplier that alternates between 1 and -1, but I just can't seem to get that effect. The value goes to 1 then resets at 0. Any ideas on how to do this?

    Read the article

  • Calculating 3D camera positions from a video

    - by Geotarget
    I need to calculate the 3D camera position and rotation for each frame in a given video. This is typically used for motion-tracking, and to insert 3D objects into a video. I'm currently using VideoTrace to calculate this for me, and I'm getting the data exported as a 3DS Maxscript file. However when I try to use the 3D camera rotations, I'm getting strange errors in my 3D calculations, as if there is an error with the 3x3 rotation matrices. Can you spot any error with the data itself? Or is it my other calculations that are erroneous? frame 1 rotation=(matrix3[-0.011938, 0.756018, -0.654442][-0.382040, -0.608284, -0.695727][-0.924068, 0.241718, 0.296091][0, 0, 0]).rotationpart position=[-0.767177, 0.308723, -0.232722] fov=57.352135 frame 2 rotation=(matrix3[-0.460922, -0.726580, -0.509541][-0.200163, 0.644491, -0.737947][ 0.864572, -0.238145, -0.442495][0, 0, 0]).rotationpart position=[-0.856630, 0.198654, -0.243853] fov=57.352135

    Read the article

  • Help with this optimization

    - by Milo
    Here is what I do: I have bitmaps which I draw into another bitmap. The coordinates are from the center of the bitmap, thus on a 256 by 256 bitmap, an object at 0.0,0.0 would be drawn at 128,128 on the bitmap. I also found the furthest extent and made the bitmap size 2 times the extent. So if the furthest extent is 200,200 pixels, then the bitmap's size is 400,400. Unfortunately this is a bit inefficient. If a bitmap needs to be drawn at 500,500 and the other one at 300,300, then the target bitmap only needs to be 200,200 in size. I cannot seem to find a correct way to draw in the components correctly with a reduced size. I figure out the target bitmap size like this: float AvatarComposite::getFloatWidth(float& remainder) const { float widest = 0.0f; float widestNeg = 0.0f; for(size_t i = 0; i < m_components.size(); ++i) { if(m_components[i].getSprite() == NULL) { continue; } float w = m_components[i].getX() + ( ((m_components[i].getSprite()->getWidth() / 2.0f) * m_components[i].getScale()) / getWidthToFloat()); float wn = m_components[i].getX() - ( ((m_components[i].getSprite()->getWidth() / 2.0f) * m_components[i].getScale()) / getWidthToFloat()); if(w > widest) { widest = w; } if(wn > widest) { widest = wn; } if(w < widestNeg) { widestNeg = w; } if(wn < widestNeg) { widestNeg = wn; } } remainder = (2 * widest) - (widest - widestNeg); return widest - widestNeg; } And here is how I position and draw the bitmaps: int dw = m_components[i].getSprite()->getWidth() * m_components[i].getScale(); int dh = m_components[i].getSprite()->getHeight() * m_components[i].getScale(); int cx = (getWidth() + (m_remainderX * getWidthToFloat())) / 2; int cy = (getHeight() + (m_remainderY * getHeightToFloat())) / 2; cx -= m_remainderX * getWidthToFloat(); cy -= m_remainderY * getHeightToFloat(); int dx = cx + (m_components[i].getX() * getWidthToFloat()) - (dw / 2); int dy = cy + (m_components[i].getY() * getHeightToFloat()) - (dh / 2); g->drawScaledSprite(m_components[i].getSprite(),0.0f,0.0f, m_components[i].getSprite()->getWidth(),m_components[i].getSprite()->getHeight(),dx,dy, dw,dh,0); I basically store the difference between the original 2 * longest extent bitmap and the new optimized one, then I translate by that much which I would think would cause me to draw correctly but then some of the components look cut off. Any insight would help. Thanks

    Read the article

  • SDL_BlitSurface segmentation fault (surfaces aren't null)

    - by Trollkemada
    My app is crashing on SDL_BlitSurface() and i can't figure out why. I think it has something to do with my static object. If you read the code you'll why I think so. This happens when the limits of the map are reached, i.e. (iwidth || jheight). This is the code: Map.cpp (this render) Tile const * Map::getTyle(int i, int j) const { if (i >= 0 && j >= 0 && i < width && j < height) { return data[i][j]; } else { return &Tile::ERROR_TYLE; // This makes SDL_BlitSurface (called later) crash //return new Tile(TileType::ERROR); // This works with not problem (but is memory leak, of course) } } void Map::render(int x, int y, int width, int height) const { //DEBUG("(Rendering...) x: "<<x<<", y: "<<y<<", width: "<<width<<", height: "<<height); int firstI = x / TileType::PIXEL_PER_TILE; int firstJ = y / TileType::PIXEL_PER_TILE; int lastI = (x+width) / TileType::PIXEL_PER_TILE; int lastJ = (y+height) / TileType::PIXEL_PER_TILE; // The previous integer division rounds down when dealing with positive values, but it rounds up // negative values. This is a fix for that (We need those values always rounded down) if (firstI < 0) { firstI--; } if (firstJ < 0) { firstJ--; } const int firstX = x; const int firstY = y; SDL_Rect srcRect; SDL_Rect dstRect; for (int i=firstI; i <= lastI; i++) { for (int j=firstJ; j <= lastJ; j++) { if (i*TileType::PIXEL_PER_TILE < x) { srcRect.x = x % TileType::PIXEL_PER_TILE; srcRect.w = TileType::PIXEL_PER_TILE - (x % TileType::PIXEL_PER_TILE); dstRect.x = i*TileType::PIXEL_PER_TILE + (x % TileType::PIXEL_PER_TILE) - firstX; } else if (i*TileType::PIXEL_PER_TILE >= x + width) { srcRect.x = 0; srcRect.w = x % TileType::PIXEL_PER_TILE; dstRect.x = i*TileType::PIXEL_PER_TILE - firstX; } else { srcRect.x = 0; srcRect.w = TileType::PIXEL_PER_TILE; dstRect.x = i*TileType::PIXEL_PER_TILE - firstX; } if (j*TileType::PIXEL_PER_TILE < y) { srcRect.y = 0; srcRect.h = TileType::PIXEL_PER_TILE - (y % TileType::PIXEL_PER_TILE); dstRect.y = j*TileType::PIXEL_PER_TILE + (y % TileType::PIXEL_PER_TILE) - firstY; } else if (j*TileType::PIXEL_PER_TILE >= y + height) { srcRect.y = y % TileType::PIXEL_PER_TILE; srcRect.h = y % TileType::PIXEL_PER_TILE; dstRect.y = j*TileType::PIXEL_PER_TILE - firstY; } else { srcRect.y = 0; srcRect.h = TileType::PIXEL_PER_TILE; dstRect.y = j*TileType::PIXEL_PER_TILE - firstY; } SDL::YtoSDL(dstRect.y, srcRect.h); SDL_BlitSurface(getTyle(i,j)->getType()->getSurface(), &srcRect, SDL::getScreen(), &dstRect); // <-- Crash HERE /*DEBUG("i = "<<i<<", j = "<<j); DEBUG("srcRect.x = "<<srcRect.x<<", srcRect.y = "<<srcRect.y<<", srcRect.w = "<<srcRect.w<<", srcRect.h = "<<srcRect.h); DEBUG("dstRect.x = "<<dstRect.x<<", dstRect.y = "<<dstRect.y);*/ } } } Tile.h #ifndef TILE_H #define TILE_H #include "TileType.h" class Tile { private: TileType const * type; public: static const Tile ERROR_TYLE; Tile(TileType const * t); ~Tile(); TileType const * getType() const; }; #endif Tile.cpp #include "Tile.h" const Tile Tile::ERROR_TYLE(TileType::ERROR); Tile::Tile(TileType const * t) : type(t) {} Tile::~Tile() {} TileType const * Tile::getType() const { return type; } TileType.h #ifndef TILETYPE_H #define TILETYPE_H #include "SDL.h" #include "DEBUG.h" class TileType { protected: TileType(); ~TileType(); public: static const int PIXEL_PER_TILE = 30; static const TileType * ERROR; static const TileType * AIR; static const TileType * SOLID; virtual SDL_Surface * getSurface() const = 0; virtual bool isSolid(int x, int y) const = 0; }; #endif ErrorTyle.h #ifndef ERRORTILE_H #define ERRORTILE_H #include "TileType.h" class ErrorTile : public TileType { friend class TileType; private: ErrorTile(); mutable SDL_Surface * surface; static const char * FILE_PATH; public: SDL_Surface * getSurface() const; bool isSolid(int x, int y) const ; }; #endif ErrorTyle.cpp (The surface can't be loaded when building the object, because it is a static object and SDL_Init() needs to be called first) #include "ErrorTile.h" const char * ErrorTile::FILE_PATH = ("C:\\error.bmp"); ErrorTile::ErrorTile() : TileType(), surface(NULL) {} SDL_Surface * ErrorTile::getSurface() const { if (surface == NULL) { if (SDL::isOn()) { surface = SDL::loadAndOptimice(ErrorTile::FILE_PATH); if (surface->w != TileType::PIXEL_PER_TILE || surface->h != TileType::PIXEL_PER_TILE) { WARNING("Bad tile surface size"); } } else { ERROR("Trying to load a surface, but SDL is not on"); } } if (surface == NULL) { // This if doesn't get called, so surface != NULL ERROR("WTF? Can't load surface :\\"); } return surface; } bool ErrorTile::isSolid(int x, int y) const { return true; }

    Read the article

  • Terrain sqaure loading

    - by AndroidXTr3meN
    Games like Skyrim, Morrowind, and more are using quads or sqaure to divide the terrain if im correct. The player is always at #5 1 | 2 | 3 4 | 5 | 6 7 | 8 | 9 So whenever you cross the border you unload and load the new "areas" But if the user goes just over the edge and then the second after goes back previous area a lot of uneccessary loading and unloading is done. Is there a general approach to this becuase I dont think games like skyrim have this issue? Cheers!

    Read the article

  • Convience of mySQL over xml

    - by Bonechilla
    Currently I use XML to store specific information to correctly load a few things such as a list of specfied characters, scenes and music, Once more I use JAXB in combination with standard compression/decompression(ZIP) functionality to store a list of extrenous data. This data is called to add functionality to the character, somewhat like Skills in an RPG. Each skill is seperated into its own XML file with a grandlist which contains the names of each file with their extensions omitted and zipped in folder that gets encrypted. At first using xml was working fine however as the skill list grow i worry about its stability. I was wondering if I should begin storing the data in mySQL. Originally I planned to simply convert everything to JSON over xml but i think possibly mySQL would be a better move. Can anyone inform me of the key difference and pros and cons of each I guess i'm looking for the best way to store the data more conviently and would be easier to operate on. The data is mostly primatives and strings and the only arraylist of values i have i can just concat into a single field and parse later

    Read the article

  • How should I show shared resources during a Shared Resource game in the Galaxy Editor?

    - by Mag Roader
    One of my favorite ways to play the original StarCraft was in a "Team" game. In this game type, multiple players on the same "team" would share control, resources, supply, and even the same starting location. It was like playing as 1 player, only 2 humans were controlling it. It was a lot of fun. I want to do something very similar in StarCraft 2, but I need to create a custom map in the Galaxy Editor to do it. I found the editor can quite easily emulate this behavior. There is a Trigger action "Set Alliance for Player Group" to "...treat each other as Ally With Shared Vision, Control, And Spending." To use this, I create units for only 1 of the players, and then set all players to be allied with each other in this way. All the other players get no units and no resources. This makes it so 1 player is the actual owner of all the units and everyone else is tagging along with full control. This nearly works! The problem is that if I am not the actual owning player, I can't actually see how many minerals/gas/supply the team has. This makes it pretty difficult to build stuff. What would be the best way to display to the other players how many Minerals/Gas/Supply the team has?

    Read the article

  • Collision Resolution

    - by CiscoIPPhone
    I know quite well how to check for collisions, but I don't know how to handle the collision in a good way. Simplified, if two objects collide I use some calculations to change the velocity direction. If I don't move the two objects they will still overlap and if the velocity is not big enough they will still collide after next update. This can cause objects to get stuck in each other. But what if I try to move the two objects so they do not overlap. This sounds like a good idea but I have realised that if there is more than two objects this becomes very complicated. What if I move the two objects and one of them collides with other objects so I have to move them too and they may collide with walls etc. I have a top down 2D game in mind but I don't think that has much to do with it. How are collisions usually handled? This question is asked on behalf of Wooh

    Read the article

  • Per-pixel displacement mapping GLSL

    - by Chris
    Im trying to implement a per-pixel displacement shader in GLSL. I read through several papers and "tutorials" I found and ended up with trying to implement the approach NVIDIA used in their Cascade Demo (http://www.slideshare.net/icastano/cascades-demo-secrets) starting at Slide 82. At the moment I am completly stuck with following problem: When I am far away the displacement seems to work. But as more I move closer to my surface, the texture gets bent in x-axis and somehow it looks like there is a little bent in general in one direction. EDIT: I added a video: click I added some screen to illustrate the problem: Well I tried lots of things already and I am starting to get a bit frustrated as my ideas run out. I added my full VS and FS code: VS: #version 400 layout(location = 0) in vec3 IN_VS_Position; layout(location = 1) in vec3 IN_VS_Normal; layout(location = 2) in vec2 IN_VS_Texcoord; layout(location = 3) in vec3 IN_VS_Tangent; layout(location = 4) in vec3 IN_VS_BiTangent; uniform vec3 uLightPos; uniform vec3 uCameraDirection; uniform mat4 uViewProjection; uniform mat4 uModel; uniform mat4 uView; uniform mat3 uNormalMatrix; out vec2 IN_FS_Texcoord; out vec3 IN_FS_CameraDir_Tangent; out vec3 IN_FS_LightDir_Tangent; void main( void ) { IN_FS_Texcoord = IN_VS_Texcoord; vec4 posObject = uModel * vec4(IN_VS_Position, 1.0); vec3 normalObject = (uModel * vec4(IN_VS_Normal, 0.0)).xyz; vec3 tangentObject = (uModel * vec4(IN_VS_Tangent, 0.0)).xyz; //vec3 binormalObject = (uModel * vec4(IN_VS_BiTangent, 0.0)).xyz; vec3 binormalObject = normalize(cross(tangentObject, normalObject)); // uCameraDirection is the camera position, just bad named vec3 fvViewDirection = normalize( uCameraDirection - posObject.xyz); vec3 fvLightDirection = normalize( uLightPos.xyz - posObject.xyz ); IN_FS_CameraDir_Tangent.x = dot( tangentObject, fvViewDirection ); IN_FS_CameraDir_Tangent.y = dot( binormalObject, fvViewDirection ); IN_FS_CameraDir_Tangent.z = dot( normalObject, fvViewDirection ); IN_FS_LightDir_Tangent.x = dot( tangentObject, fvLightDirection ); IN_FS_LightDir_Tangent.y = dot( binormalObject, fvLightDirection ); IN_FS_LightDir_Tangent.z = dot( normalObject, fvLightDirection ); gl_Position = (uViewProjection*uModel) * vec4(IN_VS_Position, 1.0); } The VS just builds the TBN matrix, from incoming normal, tangent and binormal in world space. Calculates the light and eye direction in worldspace. And finally transforms the light and eye direction into tangent space. FS: #version 400 // uniforms uniform Light { vec4 fvDiffuse; vec4 fvAmbient; vec4 fvSpecular; }; uniform Material { vec4 diffuse; vec4 ambient; vec4 specular; vec4 emissive; float fSpecularPower; float shininessStrength; }; uniform sampler2D colorSampler; uniform sampler2D normalMapSampler; uniform sampler2D heightMapSampler; in vec2 IN_FS_Texcoord; in vec3 IN_FS_CameraDir_Tangent; in vec3 IN_FS_LightDir_Tangent; out vec4 color; vec2 TraceRay(in float height, in vec2 coords, in vec3 dir, in float mipmap){ vec2 NewCoords = coords; vec2 dUV = - dir.xy * height * 0.08; float SearchHeight = 1.0; float prev_hits = 0.0; float hit_h = 0.0; for(int i=0;i<10;i++){ SearchHeight -= 0.1; NewCoords += dUV; float CurrentHeight = textureLod(heightMapSampler,NewCoords.xy, mipmap).r; float first_hit = clamp((CurrentHeight - SearchHeight - prev_hits) * 499999.0,0.0,1.0); hit_h += first_hit * SearchHeight; prev_hits += first_hit; } NewCoords = coords + dUV * (1.0-hit_h) * 10.0f - dUV; vec2 Temp = NewCoords; SearchHeight = hit_h+0.1; float Start = SearchHeight; dUV *= 0.2; prev_hits = 0.0; hit_h = 0.0; for(int i=0;i<5;i++){ SearchHeight -= 0.02; NewCoords += dUV; float CurrentHeight = textureLod(heightMapSampler,NewCoords.xy, mipmap).r; float first_hit = clamp((CurrentHeight - SearchHeight - prev_hits) * 499999.0,0.0,1.0); hit_h += first_hit * SearchHeight; prev_hits += first_hit; } NewCoords = Temp + dUV * (Start - hit_h) * 50.0f; return NewCoords; } void main( void ) { vec3 fvLightDirection = normalize( IN_FS_LightDir_Tangent ); vec3 fvViewDirection = normalize( IN_FS_CameraDir_Tangent ); float mipmap = 0; vec2 NewCoord = TraceRay(0.1,IN_FS_Texcoord,fvViewDirection,mipmap); //vec2 ddx = dFdx(NewCoord); //vec2 ddy = dFdy(NewCoord); vec3 BumpMapNormal = textureLod(normalMapSampler, NewCoord.xy, mipmap).xyz; BumpMapNormal = normalize(2.0 * BumpMapNormal - vec3(1.0, 1.0, 1.0)); vec3 fvNormal = BumpMapNormal; float fNDotL = dot( fvNormal, fvLightDirection ); vec3 fvReflection = normalize( ( ( 2.0 * fvNormal ) * fNDotL ) - fvLightDirection ); float fRDotV = max( 0.0, dot( fvReflection, fvViewDirection ) ); vec4 fvBaseColor = textureLod( colorSampler, NewCoord.xy,mipmap); vec4 fvTotalAmbient = fvAmbient * fvBaseColor; vec4 fvTotalDiffuse = fvDiffuse * fNDotL * fvBaseColor; vec4 fvTotalSpecular = fvSpecular * ( pow( fRDotV, fSpecularPower ) ); color = ( fvTotalAmbient + (fvTotalDiffuse + fvTotalSpecular) ); } The FS implements the displacement technique in TraceRay method, while always using mipmap level 0. Most of the code is from NVIDIA sample and another paper I found on the web, so I guess there cannot be much wrong in here. At the end it uses the modified UV coords for getting the displaced normal from the normal map and the color from the color map. I looking forward for some ideas. Thanks in advance! Edit: Here is the code loading the heightmap: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, mWidth, mHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, mImageData); glGenerateMipmap(GL_TEXTURE_2D); //glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR_MIPMAP_LINEAR); //glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); //glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); //glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); Maybe something wrong in here?

    Read the article

  • Mapping a 3D texture to a standard hollow-hull 3D model

    - by John
    I have 3D models which are typical hollow hulls. If such a model also had a 3D volumetric/voxel texture map then given a point P inside such a model, I'd like to be able to find its uvw coordinates within the 3D texture. Is this possible by simply setting 3D texcoords on my existing mesh or does it have to be broken up into polyhedra? Is there a way to map a 3D texture onto a mesh without doing this?

    Read the article

  • D3D11 how to simulate multiple depth channels

    - by Nock
    Here's what I'd like to achieve: Rendering a first pass of objects in my scene, using standard depth comparison Rendering another pass of objects in the same scene, but with the following rules: A Pixel of the 2nd pass always override the first pass (no depth compare between them) Use Depth comparison between pixels written from the second pass. In English I want depth comparison made inside each pass but I always want the second pass pixels to override the first pass ones. Some things I've thought: I tried to think about using stencil to solve this, but I couldn't find a way. I know I could render into a separate target the second pass then composite the result into the first, but I'd like to avoid that. I could use two separate Depth Buffer, one dedicated to each pass. (I never tried, but I figure it's possible to switch the depth buffer in a Render Target "on the fly") Any idea of the best solution? Thanks

    Read the article

  • Engine Rendering pipeline : Making shaders generic

    - by fakhir
    I am trying to make a 2D game engine using OpenGL ES 2.0 (iOS for now). I've written Application layer in Objective C and a separate self contained RendererGLES20 in C++. No GL specific call is made outside the renderer. It is working perfectly. But I have some design issues when using shaders. Each shader has its own unique attributes and uniforms that need to be set just before the main draw call (glDrawArrays in this case). For instance, in order to draw some geometry I would do: void RendererGLES20::render(Model * model) { // Set a bunch of uniforms glUniformMatrix4fv(.......); // Enable specific attributes, can be many glEnableVertexAttribArray(......); // Set a bunch of vertex attribute pointers: glVertexAttribPointer(positionSlot, 2, GL_FLOAT, GL_FALSE, stride, m->pCoords); // Now actually Draw the geometry glDrawArrays(GL_TRIANGLES, 0, m->vertexCount); // After drawing, disable any vertex attributes: glDisableVertexAttribArray(.......); } As you can see this code is extremely rigid. If I were to use another shader, say ripple effect, i would be needing to pass extra uniforms, vertex attribs etc. In other words I would have to change the RendererGLES20 render source code just to incorporate the new shader. Is there any way to make the shader object totally generic? Like What if I just want to change the shader object and not worry about game source re-compiling? Any way to make the renderer agnostic of uniforms and attributes etc?. Even though we need to pass data to uniforms, what is the best place to do that? Model class? Is the model class aware of shader specific uniforms and attributes? Following shows Actor class: class Actor : public ISceneNode { ModelController * model; AIController * AI; }; Model controller class: class ModelController { class IShader * shader; int textureId; vec4 tint; float alpha; struct Vertex * vertexArray; }; Shader class just contains the shader object, compiling and linking sub-routines etc. In Game Logic class I am actually rendering the object: void GameLogic::update(float dt) { IRenderer * renderer = g_application->GetRenderer(); Actor * a = GetActor(id); renderer->render(a->model); } Please note that even though Actor extends ISceneNode, I haven't started implementing SceneGraph yet. I will do that as soon as I resolve this issue. Any ideas how to improve this? Related design patterns etc? Thank you for reading the question.

    Read the article

  • Bomberman clone, how to do bombs?

    - by hustlerinc
    I'm playing around with a bomberman clone to learn game-developement. So far I've done tiles, movement, collision detection, and item pickup. I also have pseudo bombplacing (just graphics and collision, no real functionality). I've made a jsFiddle of the game with the functionality I currently have. The code in the fiddle is very ugly though. Scroll past the map and you find how I place bombs. Anyway, what I would like to do is an object, that has the general information about bombs like: function Bomb(){ this.radius = player.bombRadius; this.placeBomb = function (){ if(player.bombs != 0){ // place bomb } } this.explosion = function (){ // Explosion } } I don't really know how to fit it into the code though. Everytime I place a bomb, do I do var bomb = new Bomb(); or do i need to constantly have that in the script to be able to access it. How does the bomb do damage? Is it as simple as doing X,Y in all directions until radius runs out or object stops it? Can I use something like setTimeout(bomb.explosion, 3000) as timer? Any help is appreciated, be it a simple explanation of the theory or code examples based on the fiddle. When I tried the object way it breaks the code.

    Read the article

  • 2D Collision masks for handling slopes

    - by JiminyCricket
    I've been looking at the example at: http://create.msdn.com/en-US/education/catalog/tutorial/collision_2d_perpixel and am trying to figure out how to adjust the sprite once a collision has been detected. As David suggested at XNA 4.0 2D sidescroller variable terrain heightmap for walking/collision, I made a few sensor points (feet, sides, bottom center, etc.) and can easily detect when these points actually collide with non-transparent portions of a second texture (simple slope). I'm having trouble with the algorithm of how I would actually adjust the sprite position based on a collision. Say I detect a collision with the slope at the sprite's right foot. How can I scan the slope texture data to find the Y position to place the sprite's foot so it is no longer inside the slope? The way it is stored as a 1D array in the example is a bit confusing, should I try to store the data as a 2D array instead? For test purposes, I'm thinking of just using the slope texture alpha itself as a primitive and easy collision mask (no grass bits or anything besides a simple non-linear slope). Then, as in the example, I find the coordinates of any collisions between the slope texture and the sprite's sensors and mark these special sensor collisions as having occurred. Finally, in the case of moving up a slope, I would scan for the first transparent pixel above (in the texture's Ys at that X) the right foot collision point and set that as the new height of the sprite. I'm a little unclear also on when I should make these adjustments. Collisions are checked on every game.update() so would I quickly change the position of the sprite before the next update is called? I also noticed several people mention that it's best to separate collision checks horizontally and vertically, why is that exactly? Open to any suggestions if this is an inefficient or inaccurate way of handling this. I wish MSDN had provided an example of something like this, I didn't know it would be so much more complex than NES Mario style pure box platforming!

    Read the article

  • Physics System ignores collision in some rare cases

    - by Gajoo
    I've been developing a simple physics engine for my game. since the game physics is very simple I've decided to increase accuracy a little bit. Instead of formal integration methods like fourier or RK4, I'm directly computing the results after delta time "dt". based on the very first laws of physics : dx = 0.5 * a * dt^2 + v0 * dt dv = a * dt where a is acceleration and v0 is object's previous velocity. Also to handle collisions I've used a method which is somehow different from those I've seen so far. I'm detecting all the collision in the given time frame, stepping the world forward to the nearest collision, resolving it and again check for possible collisions. As I said the world consist of very simple objects, so I'm not loosing any performance due to multiple collision checking. First I'm checking if the ball collides with any walls around it (which is working perfectly) and then I'm checking if it collides with the edges of the walls (yellow points in the picture). the algorithm seems to work without any problem except some rare cases, in which the collision with points are ignored. I've tested everything and all the variables seem to be what they should but after leaving the system work for a minute or two the system the ball passes through one of those points. Here is collision portion of my code, hopefully one of you guys can give me a hint where to look for a potential bug! void PhysicalWorld::checkForPointCollision(Vec2 acceleration, PhysicsComponent& ball, Vec2& collisionNormal, float& collisionTime, Vec2 target) { // this function checks if there will be any collision between a circle and a point // ball contains informations about the circle (it's current velocity, position and radius) // collisionNormal is an output variable // collisionTime is also an output varialbe // target is the point I want to check for collisions Vec2 V = ball.mVelocity; Vec2 A = acceleration; Vec2 P = ball.mPosition - target; float wallWidth = mMap->getWallWidth() / (mMap->getWallWidth() + mMap->getHallWidth()) / 2; float r = ball.mRadius / (mMap->getWallWidth() + mMap->getHallWidth()); // r is ball radius scaled to match actual rendered object. if (A.any()) // todo : I need to first correctly solve the collisions in case there is no acceleration return; if (V.any()) // if object is not moving there will be no collisions! { float D = P.x * V.y - P.y * V.x; float Delta = r*r*V.length2() - D*D; if(Delta < eps) return; Delta = sqrt(Delta); float sgnvy = V.y > 0 ? 1: (V.y < 0?-1:0); Vec2 c1(( D*V.y+sgnvy*V.x*Delta) / V.length2(), (-D*V.x+fabs(V.y)*Delta) / V.length2()); Vec2 c2(( D*V.y-sgnvy*V.x*Delta) / V.length2(), (-D*V.x-fabs(V.y)*Delta) / V.length2()); float t1 = (c1.x - P.x) / V.x; float t2 = (c2.x - P.x) / V.x; if(t1 > eps && t1 <= collisionTime) { collisionTime = t1; collisionNormal = c1; } if(t2 > eps && t2 <= collisionTime) { collisionTime = t2; collisionNormal = c2; } } } // this function should step the world forward by dt. it doesn't check for collision of any two balls (components) // it just checks if there is a collision between the current component and 4 points forming a rectangle around it. void PhysicalWorld::step(float dt) { for (unsigned i=0;i<mObjects.size();i++) { PhysicsComponent &current = *mObjects[i]; Vec2 acceleration = current.mForces * current.mInvMass; float rt=dt; // stores how much more the world should advance while(rt > eps) { float collisionTime = rt; Vec2 collisionNormal = Vec2(0,0); float halfWallWidth = mMap->getWallWidth() / (mMap->getWallWidth() + mMap->getHallWidth()) / 2; // we check if there is any collision with any of those 4 points around the ball // if there is a collision both collisionNormal and collisionTime variables will change // after these functions collisionTime will be exactly the value of nearest collision (if any) // and if there was, collisionNormal will report in which direction the ball should return. checkForPointCollision(acceleration,current,collisionNormal,collisionTime,Vec2(floor(current.mPosition.x) + halfWallWidth,floor(current.mPosition.y) + halfWallWidth)); checkForPointCollision(acceleration,current,collisionNormal,collisionTime,Vec2(floor(current.mPosition.x) + halfWallWidth, ceil(current.mPosition.y) - halfWallWidth)); checkForPointCollision(acceleration,current,collisionNormal,collisionTime,Vec2( ceil(current.mPosition.x) - halfWallWidth,floor(current.mPosition.y) + halfWallWidth)); checkForPointCollision(acceleration,current,collisionNormal,collisionTime,Vec2( ceil(current.mPosition.x) - halfWallWidth, ceil(current.mPosition.y) - halfWallWidth)); // either if there is a collision or if there is not we step the forward since we are sure there will be no collision before collisionTime current.mPosition += collisionTime * (collisionTime * acceleration * 0.5 + current.mVelocity); current.mVelocity += collisionTime * acceleration; // if the ball collided with anything collisionNormal should be at least none zero in one of it's axis if (collisionNormal.any()) { collisionNormal *= Dot(collisionNormal, current.mVelocity) / collisionNormal.length2(); current.mVelocity -= 2 * collisionNormal; // simply reverse velocity along collision normal direction } rt -= collisionTime; } // reset all forces for current object so it'll be ready for later game event current.mForces.zero(); } }

    Read the article

< Previous Page | 511 512 513 514 515 516 517 518 519 520 521 522  | Next Page >