Search Results

Search found 28230 results on 1130 pages for 'embedded development'.

Page 527/1130 | < Previous Page | 523 524 525 526 527 528 529 530 531 532 533 534  | Next Page >

  • Working out of a vertex array for destrucible objects

    - by bobobobo
    I have diamond-shaped polygonal bullets. There are lots of them on the screen. I did not want to create a vertex array for each, so I packed them into a single vertex array and they're all drawn at once. | bullet1.xyz | bullet1.rgb | bullet2.xyz | bullet2.rgb This is great for performance.. there is struct Bullet { vector<Vector3f*> verts ; // pointers into the vertex buffer } ; This works fine, the bullets can move and do collision detection, all while having their data in one place. Except when a bullet "dies" Then you have to clear a slot, and pack all the bullets towards the beginning of the array. Is this a good approach to handling lots of low poly objects? How else would you do it?

    Read the article

  • Improving the efficiency of my bloom/glow shader

    - by user1157885
    I'm making a neon style game where everything is glowing but the glow I have is kinda small and I want to know if there's an efficient way to increase the size of it other than increasing the pixel sample iterations. Right now I have something like this: float4 glowColor = tex2D(glowSampler, uvPixel); //Makes the inital lines brighter/closer to white if (glowColor.r != 0 || glowColor.g != 0 || glowColor.b != 0) { glowColor += 0.5; } //Loops over the weights and offsets and samples from the pixels based on those numbers for (int i = 0; i < 20; i++) { glowColor += tex2D(glowSampler, uvPixel + glowOffsets[i] + 0.0018) * glowWeights[i]; } finalColor += glowColor; for the offsets it moves up, down, left and right (5 times each so it loops over 20 times) and the weights just lower the glow amount the further away it gets. The method I was using before to increase it was to increase the number of iterations from 20 to 40 and to increase the size of the offset/weight array but my computer started to have FPS drops when I was doing this so I was wondering how can I make the glow bigger/more vibrant without making it so CPU/Gcard intensive?

    Read the article

  • What economic books would you suggest for learning about economic valuation of goods and simulations thereof?

    - by Rushyo
    I'm looking to create an economic model for a game based on goods created procedurally. Every natural resource and produced good would be procedurally generated, with certain goods being assigned certain uses. Fakesium might be used for the production of Weapon A and produced from Fakesium factories which use Dilithium and Widgets as reagents, where Widgets are also the product of Foo and Bar The problem is not creating the resources and their various production utlities - but getting the game's AI empires and merchants to (Addendum: somewhat) correctly value the goods according to their scarcity, utility and production costs. I need to create a simulation of goods which allows the various game factions to assign a common value denominator (credits) to each resource, depending on how much its worth to that empire. I see the simulation being something like: "I have a high requirement for Weapon A. Since I don't have much of Fakesium, which is needed for Weapon A - I must have a high demand for Fakesium. If I can acquire Fakesium, devalue it. If not, increase its value - and also increase demand for Dilithium and Widgets too." This is very naive - because it may be much much cheaper for the empire to simply purchase Dilithium and Widgets directly rather than purchasing Fakesium, for example. Another example is two resources might allow the creation of Weapon A (Fakesium and Lieron), so we'd need to consider that. I've been scratching my head over the problem and it keeps growing. By the time the player joins the world, I'd expect enough iterations of this process to have occurred that prices would have largely normalised - and would then only trigger rarely to compensate for major changes (eg. if the player blows up the world's only Foo mine!) Could anyone suggest resources (books, largely) which outline this style of modelling, preferably in the context of simulations? Since this problem would never occur outside fantasy worlds, I figured this is probably the most likely place to find people who have encountered similar problems and I'm sure there's people who know of good places for Games Developers to start looking at less specific economic theory too. Additionally, does anyone know of any developers with blogs whose games or research applications perform similar modelling? EDIT: I think I should underline that I'm not looking for optimal solutions. I'm looking to make the actors impulsive - making rudimentary decisions based on fuzzy inputs about what they care about or don't. I'm aiming to understand the problem area better not derive answers. All the textbooks I've found seem to be about real-world economics or how to solve complex theoretical problems, neither of which are terribly relevant to the actor's decision making.

    Read the article

  • Help with Strategy-game AI

    - by f20k
    Hi, I am developing a strategy-game AI (think: Final Fantasy Tactics), and I am having trouble coming up for the design of the AI. My main problem is determining which is the optimal thing for it to do. First let me describe the priority of what action I would like the AI to take: Kill nearest player unit Fulfill primary directive (kill all player units, kill target unit, survive for x turns) Heal ally unit / cast buffer Now the AI can do the following in its turn: Move - {Attack / Ability / Item} (either attack or ability or item) {Attack / Ability / Item} - Move Move closer (if targets not in range) {Attack / Ability / Item} (if move not available) Notes Abilities have various ranges / effects / costs / effects. Each ai unit has maybe 5-10 abilities to choose from. The AI will prioritize killing over safety unless its directive is to survive for x turns. It also doesn't care about ability cost much. While a player may want to save a big spell for later, the AI will most likely use it asap. Movement is on a (hex) grid num of player units: 3-6 num of ai units: 3-7 or more. Probably max 10. AI and player take turns controlling ONE unit, instead of all at the same time. Platform is Android (if program doesnt respond after some time, there will be a popup saying to Force Quit or Wait - which looks really bad!). Now comes the questions: The best ability to use would obviously be the one that hits the most targets for the most damage. But since each ability has different ranges, I won't know if they are in range without exploring each possible place I can move to. One solution would be to go through each possible places to move to, determine the optimal attack at that location - which gives me a list of optimal moves for each location. Then choose the optimal out of the list and execute it. But this will take a lot of CPU time. Is there a better solution? My current idea is to move as close as possible towards the closest, largest group of people, and determine the optimal attack/ability from there. I think this would be a lot less work for the CPU and still allow for wide-range attacks. Its sub-optimal but the AI will still seem 'smart'. Other notes/questions: Am I over-thinking/over-complicating it? Better solution? I am open to all sorts of suggestions I have taken a look at the spell-casting question, but it doesn't take into account the movement - so perhaps use that algo for each possible move location? The top answer mentioned it wasn't great for area-of-effect and group fights - so maybe requires more tweaking? Please, if you mention a graph/tree, let me know basically how to use it. E.g. Node means ability, level corresponds to damage, then search for the deepest node.

    Read the article

  • Making retro games: Any good known game architectures?

    - by A.Quiroga
    I'm trying to do a remake of Snowbros . I'm doing it using libgdx but at each time i must try to thought how things got done . For example the physics of the jump and collisions . It seams to be time perfect , but i use the deltaTime to try to aproximate the value in game . I think in this case maybe its using some calcs with processor Hz , but i don't know. Then the simple question , is there any resources of how did they programm this games? Or any idea of the simple ideas repeated each game to game in the old style retro games.

    Read the article

  • Dynamic navigation mesh changes

    - by Nairou
    I'm currently trying to convert from grids to navigation meshes for pathfinding, since grids are either too coarse for accurate navigation, or too fine to be useful for object tracking. While my map is fairly static, and the navigation mesh could be created in advance, this is somewhat of a tower defense game, where objects can be placed to block paths, so I need a way to recalculate portions of the navigation mesh to allow pathing around them. Is there any existing documentation on good ways to do this? I'm still very new to navigation meshes, so the prospect of modifying them to cut or fill holes sounds daunting.

    Read the article

  • I am thinking about developing a game, but i am single developer? [on hold]

    - by Jake Doe
    Since very little i wanted to create a game, my place where my rules apply, where i am not limited. Now that i am capable of doing. I am asking myself should i start ? I have already the idea i have choosen the engine, only coding and artwork is required. The engine i have choose cost is quite high(50k), i can try throught a kickstarter campaign or indiegogo. But shouid I ? Please give me your opinion. Thank you :)

    Read the article

  • Sprite/Tile Sheets Vs Single Textures

    - by Reanimation
    I'm making a race circuit which is constructed using various textures. To provide some background, I'm writing it in C++ and creating quads with OpenGL to which I assign a loaded .raw texture too. Currently I use 23 500px x 500px textures of which are all loaded and freed individually. I have now combined them all into a single sprite/tile sheet making it 3000 x 2000 pixels seems the number of textures/tiles I'm using is increasing. Now I'm wondering if it's more efficient to load them individually or write extra code to extract a certain tile from the sheet? Is it better to load the sheet, then extract 23 tiles and store them from one sheet, or load the sheet each time and crop it to the correct tile? There seems to be a number of way to implement it... Thanks in advance.

    Read the article

  • How do I do random isometric paths?

    - by user406470
    I'm working on an Isometric city generator, and I am looking for a little push in the right direction. I'm looking to randomly generate roads on a isometric plane. I have never done pathfinding before, and I've googled it and didn't find any articles relating to what I am trying to do. Basically, my program generates a random isometric city and, I am hoping to add roads to that. Any help is appreciated!

    Read the article

  • My image is not showing in java, using ImageIcon

    - by user1048606
    I'd like to know why my images are now showing up when I use ImageIcon and when I have specified the directory the image is in. All I get is a black blank screen with nothing else on it. import java.awt.Image; import java.awt.event.KeyEvent; import javax.swing.ImageIcon; import java.awt.Image; import java.awt.event.KeyEvent; import java.util.ArrayList; import javax.swing.ImageIcon; // Class for handling key input public class Craft { private int dx; private int dy; private int x; private int y; private Image image; private Image image2; private ArrayList missiles; private final int CRAFT_SIZE = 20; private String craft = "C:\\Users\\Jimmy\\Desktop\\Jimmy's Folder\\programs\\craft.png"; public Craft() { ImageIcon ii = new ImageIcon(craft); image2 = ii.getImage(); missiles = new ArrayList(); x = 40; y = 60; } public void move() { x += dx; y += dy; } public int getX() { return x; } public int getY() { return y; } public Image getImage() { return image; } public ArrayList getMissiles() { return missiles; } public void keyPressed(KeyEvent e) { int key = e.getKeyCode(); // Shooting key if (key == KeyEvent.VK_SPACE) { fire(); } if (key == KeyEvent.VK_LEFT) { dx = -1; } if (key == KeyEvent.VK_RIGHT) { dx = 1; } if (key == KeyEvent.VK_UP) { dy = -1; } if (key == KeyEvent.VK_DOWN) { dy = 1; } } // Handles the missile object firing out of the ship public void fire() { missiles.add(new Missile(x + CRAFT_SIZE, y + CRAFT_SIZE/2)); } public void keyReleased(KeyEvent e) { int key = e.getKeyCode(); if (key == KeyEvent.VK_LEFT) { dx = 0; } if (key == KeyEvent.VK_RIGHT) { dx = 0; } if (key == KeyEvent.VK_UP) { dy = 0; } if (key == KeyEvent.VK_DOWN) { dy = 0; } } }

    Read the article

  • Projected trajectory of a vehicle?

    - by mac
    In the game I am developing, I have to calculate if my vehicle (1) which in the example is travelling north with a speed V, can reach its target (2). The example depict the problem from atop: There are actually two possible scenarios: V is constant (resulting in trajectory 4, an arc of a circle) or the vehicle has the capacity to accelerate/decelerate (trajectory 3, an arc of a spiral). I would like to know if there is a straightforward way to verify if the vehicle is able to reach its target (as opposed to overshooting it). I'm particularly interested in trajectory #3, as I the only thing I could think of is integrating the position of the vehicle over time. EDIT: of course the vehicle has always the capacity to steer, but the steer radius vary with its speed (think to a maximum lateral g-force). EDIT2: also notice that (as most of the vehicles in real life) there is a minimum steering radius for the in-game ones too).

    Read the article

  • How can I generate signed distance fields in real time, fast?

    - by heishe
    In a previous question, it was suggested that signed distance fields can be precomputed, loaded at runtime and then used from there. For reasons I will explain at the end of this question (for people interested), I need to create the distance fields in real time. There are some papers out there for different methods which are supposed to be viable in real-time environments, such as methods for Chamfer distance transforms and Voronoi diagram-approximation based transforms (as suggested in this presentation by the Pixeljunk Shooter dev guy), but I (and thus can be assumed a lot of other people) have a very hard time actually putting them to use, since they're usually long, largely bloated with math and not very algorithmic in their explanation. What algorithm would you suggest for creating the distance fields in real-time (favourably on the GPU) especially considering the resulting quality of the distance fields? Since I'm looking for an actual explanation/tutorial as opposed to a link to just another paper or slide, this question will receive a bounty once it's eligible for one :-). Here's why I need to do it in real time:

    Read the article

  • How to render a retro-like pixel graphics from 3d models?

    - by momijigari
    I was wondering if there's a possibility to render a retro-pixel-like graphics from 3d model in real time? I'm talking about the Starfarer-like graphics. I know it's hand drawn, and it's 2d. But if I need a 3d objects with the same aesthetics? I'm currently working with Flash. But I don't need any ready-solutions, I just want to understand the principle from any other platform if there is one. So if anybody met anything like this I would appreciate your help. (If it's not possible to do in real time, I could at least pre-render a sequence of sprites. It would be much better than creating hundreds of hand-drawn ones)

    Read the article

  • Is there a library that handles hexagon tiled 2D maps?

    - by Pete Mancini
    It would represent a map that is semi-square of arbitrary size. It would have a simple system for representation of the map coordinates such as 0101 (first column, 1st hex). I'd want the map to be able to tell me the distance between two points, and what other hexes lay between those two points as a list or array. I don't care as much about the language but c# or python would be ideal. Does one exist?

    Read the article

  • Why is my shadowmap all white?

    - by Berend
    I was trying out a shadowmap. But all my shadow is white. I think there is some problem with my homogeneous component. Can anybody help me? The rest of my code is written in xna Here is the hlsl code I used float4x4 xWorld; float4x4 xView; float4x4 xProjection; struct VertexToPixel { float4 Position : POSITION; float4 ScreenPos : TEXCOORD1; float Depth : TEXCOORD2; }; struct PixelToFrame { float4 Color : COLOR0; }; //------- Technique: ShadowMap -------- VertexToPixel MyVertexShader(float4 inPos: POSITION0, float3 inNormal: NORMAL0) { VertexToPixel Output = (VertexToPixel)0; float4x4 preViewProjection = mul(xView, xProjection); float4x4 preWorldViewProjection = mul(xWorld, preViewProjection); Output.Position =mul(inPos, mul(xWorld, preViewProjection)); Output.Depth = Output.Position.z / Output.Position.w; Output.ScreenPos = Output.Position; return Output; } float4 MyPixelShader(VertexToPixel PSIn) : COLOR0 { PixelToFrame Output = (PixelToFrame)0; Output.Color = PSIn.ScreenPos.z/PSIn.ScreenPos.w; return Output.Color; } technique ShadowMap { pass Pass0 { VertexShader = compile vs_2_0 MyVertexShader(); PixelShader = compile ps_2_0 MyPixelShader(); } }

    Read the article

  • Geometry Shader : points + Triangles

    - by CmasterG
    I have different Shaders and for each Shader a instance of the ShaderClass class, which initializes the Shaders, Renders the Shaders, etc. I use most of the Shaderclasses without Geometry Shader, but in one Shader Class i also use a Geometry Shader. The problem is, that when I render one object with the Shaderclass that uses the Geometry shader, all other object are rendered with the same geometry that I create in the Geometry Shader. Can you help me? Is it possible that I have to use a Geometry Shader for each object, when I use one for one object? I use DirectX 11 with C++.

    Read the article

  • How to add isometric (rts-alike) perspective and scolling in unity?

    - by keinabel
    I want to develop some RTS/simulation game. Therefore I need a camera perspective like one knows it from Anno 1602 - 1404, as well as the camera scrolling. I think this is called isometric perspective (and scrolling). But I honestly have no clue how to manage this. I tried some things I found on google, but they were not satisfying. Can you give me some good tutorials or advice for managing this? Thanks in advance

    Read the article

  • Exporting UV coords from Blender

    - by Soapy
    So I have searched on google and various other websites but I've not found an answer. The only ones I did find did not work. So my question is how do I get UV coords from blender (2.63)? Currently I'm writing my own custom file exporter, and so far have managed to export vertices and their normals. Is there a way to export the UV coords? N.B. I'm currently try to figure it out using a simple cube that is unwrapped and has a texture applied to it.

    Read the article

  • OpenGL directional light creating black spots

    - by AnonymousDeveloper
    I probably ought to start by saying that I suspect the problem is that one of my vectors is not in the correct "space", but I don't know for sure. I am having a strange problem with a directional light. When I move the camera away from (0.0, 0.0, 0.0) it creates tiny black spots that grow larger as the distance increases. I apologize ahead of time for the length of the code. Vertex shader: #version 410 core in vec3 vf_normal; in vec3 vf_bitangent; in vec3 vf_tangent; in vec2 vf_textureCoordinates; in vec3 vf_vertex; out vec3 tc_normal; out vec3 tc_bitangent; out vec3 tc_tangent; out vec2 tc_textureCoordinates; out vec3 tc_vertex; uniform mat3 vf_m_normal; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform float vf_te_inner; uniform float vf_te_outer; void main() { tc_normal = vf_normal; tc_bitangent = vf_bitangent; tc_tangent = vf_tangent; tc_textureCoordinates = vf_textureCoordinates; tc_vertex = vf_vertex; gl_Position = vf_m_mvp * vec4(vf_vertex, 1.0); } Tessellation Control shader: #version 410 core layout (vertices = 3) out; in vec3 tc_normal[]; in vec3 tc_bitangent[]; in vec3 tc_tangent[]; in vec2 tc_textureCoordinates[]; in vec3 tc_vertex[]; out vec3 te_normal[]; out vec3 te_bitangent[]; out vec3 te_tangent[]; out vec2 te_textureCoordinates[]; out vec3 te_vertex[]; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; #define ID gl_InvocationID float getTessLevelInner(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_inner - avgDistance), 1.0, vf_te_inner); } float getTessLevelOuter(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_outer - avgDistance), 1.0, vf_te_outer); } void main() { te_normal[gl_InvocationID] = tc_normal[gl_InvocationID]; te_bitangent[gl_InvocationID] = tc_bitangent[gl_InvocationID]; te_tangent[gl_InvocationID] = tc_tangent[gl_InvocationID]; te_textureCoordinates[gl_InvocationID] = tc_textureCoordinates[gl_InvocationID]; te_vertex[gl_InvocationID] = tc_vertex[gl_InvocationID]; float eyeToVertexDistance0 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[0], 1.0)).xyz); float eyeToVertexDistance1 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[1], 1.0)).xyz); float eyeToVertexDistance2 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[2], 1.0)).xyz); gl_TessLevelOuter[0] = getTessLevelOuter(eyeToVertexDistance1, eyeToVertexDistance2); gl_TessLevelOuter[1] = getTessLevelOuter(eyeToVertexDistance2, eyeToVertexDistance0); gl_TessLevelOuter[2] = getTessLevelOuter(eyeToVertexDistance0, eyeToVertexDistance1); gl_TessLevelInner[0] = getTessLevelInner(eyeToVertexDistance2, eyeToVertexDistance0); } Tessellation Evaluation shader: #version 410 core layout (triangles, equal_spacing, cw) in; in vec3 te_normal[]; in vec3 te_bitangent[]; in vec3 te_tangent[]; in vec2 te_textureCoordinates[]; in vec3 te_vertex[]; out vec3 g_normal; out vec3 g_bitangent; out vec4 g_patchDistance; out vec3 g_tangent; out vec2 g_textureCoordinates; out vec3 g_vertex; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_displace; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 interpolate2D(vec2 v0, vec2 v1, vec2 v2) { return vec2(gl_TessCoord.x) * v0 + vec2(gl_TessCoord.y) * v1 + vec2(gl_TessCoord.z) * v2; } vec3 interpolate3D(vec3 v0, vec3 v1, vec3 v2) { return vec3(gl_TessCoord.x) * v0 + vec3(gl_TessCoord.y) * v1 + vec3(gl_TessCoord.z) * v2; } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2*d*d); return d; } float getDisplacement(vec2 t0, vec2 t1, vec2 t2) { float displacement = 0.0; vec2 textureCoordinates = interpolate2D(t0, t1, t2); vec2 vector = ((t0 + t1 + t2) / 3.0); float sampleDistance = sqrt((vector.x * vector.x) + (vector.y * vector.y)); sampleDistance /= ((vf_te_inner + vf_te_outer) / 2.0); displacement += texture(vf_t_displace, textureCoordinates).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, -sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, -sampleDistance)).x; return (displacement / 5.0); } void main() { g_normal = normalize(interpolate3D(te_normal[0], te_normal[1], te_normal[2])); g_bitangent = normalize(interpolate3D(te_bitangent[0], te_bitangent[1], te_bitangent[2])); g_patchDistance = vec4(gl_TessCoord, (1.0 - gl_TessCoord.y)); g_tangent = normalize(interpolate3D(te_tangent[0], te_tangent[1], te_tangent[2])); g_textureCoordinates = interpolate2D(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); g_vertex = interpolate3D(te_vertex[0], te_vertex[1], te_vertex[2]); float displacement = getDisplacement(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); float d2 = min(min(min(g_patchDistance.x, g_patchDistance.y), g_patchDistance.z), g_patchDistance.w); d2 = amplify(d2, 50, -0.5); g_vertex += g_normal * displacement * 0.1 * d2; gl_Position = vf_m_mvp * vec4(g_vertex, 1.0); } Geometry shader: #version 410 core layout (triangles) in; layout (triangle_strip, max_vertices = 3) out; in vec3 g_normal[3]; in vec3 g_bitangent[3]; in vec4 g_patchDistance[3]; in vec3 g_tangent[3]; in vec2 g_textureCoordinates[3]; in vec3 g_vertex[3]; out vec3 f_tangent; out vec3 f_bitangent; out vec3 f_eyeDirection; out vec3 f_lightDirection; out vec3 f_normal; out vec4 f_patchDistance; out vec4 f_shadowCoordinates; out vec2 f_textureCoordinates; out vec3 f_vertex; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; void main() { int index = 0; while (index < 3) { vec3 vertexNormal_cameraspace = vf_m_normal * normalize(g_normal[index]); vec3 vertexTangent_cameraspace = vf_m_normal * normalize(f_tangent); vec3 vertexBitangent_cameraspace = vf_m_normal * normalize(f_bitangent); mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); vec3 eyeDirection = -(vf_m_view * vf_m_model * vec4(g_vertex[index], 1.0)).xyz; vec3 lightDirection = normalize(-(vf_m_view * vec4(vf_l_position, 1.0)).xyz); f_eyeDirection = TBN * eyeDirection; f_lightDirection = TBN * lightDirection; f_normal = normalize(g_normal[index]); f_patchDistance = g_patchDistance[index]; f_shadowCoordinates = vf_m_depthBias * vec4(g_vertex[index], 1.0); f_textureCoordinates = g_textureCoordinates[index]; f_vertex = (vf_m_model * vec4(g_vertex[index], 1.0)).xyz; gl_Position = gl_in[index].gl_Position; EmitVertex(); index ++; } EndPrimitive(); } Fragment shader: #version 410 core in vec3 f_bitangent; in vec3 f_eyeDirection; in vec3 f_lightDirection; in vec3 f_normal; in vec4 f_patchDistance; in vec4 f_shadowCoordinates; in vec3 f_tangent; in vec2 f_textureCoordinates; in vec3 f_vertex; out vec4 fragColor; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 poissonDisk[16] = vec2[]( vec2(-0.94201624, -0.39906216), vec2( 0.94558609, -0.76890725), vec2(-0.09418410, -0.92938870), vec2( 0.34495938, 0.29387760), vec2(-0.91588581, 0.45771432), vec2(-0.81544232, -0.87912464), vec2(-0.38277543, 0.27676845), vec2( 0.97484398, 0.75648379), vec2( 0.44323325, -0.97511554), vec2( 0.53742981, -0.47373420), vec2(-0.26496911, -0.41893023), vec2( 0.79197514, 0.19090188), vec2(-0.24188840, 0.99706507), vec2(-0.81409955, 0.91437590), vec2( 0.19984126, 0.78641367), vec2( 0.14383161, -0.14100790) ); float random(vec3 seed, int i) { vec4 seed4 = vec4(seed,i); float dot_product = dot(seed4, vec4(12.9898, 78.233, 45.164, 94.673)); return fract(sin(dot_product) * 43758.5453); } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2.0 * d * d); return d; } void main() { vec3 lightColor = vf_l_color.xyz; float lightPower = vf_l_color.w; vec3 materialDiffuseColor = texture(vf_t_diffuse, f_textureCoordinates).xyz; vec3 materialAmbientColor = vec3(0.1, 0.1, 0.1) * materialDiffuseColor; vec3 materialSpecularColor = texture(vf_t_specular, f_textureCoordinates).xyz; vec3 n = normalize(texture(vf_t_normal, f_textureCoordinates).rgb * 2.0 - 1.0); vec3 l = normalize(f_lightDirection); float cosTheta = clamp(dot(n, l), 0.0, 1.0); vec3 E = normalize(f_eyeDirection); vec3 R = reflect(-l, n); float cosAlpha = clamp(dot(E, R), 0.0, 1.0); float visibility = 1.0; float bias = 0.005 * tan(acos(cosTheta)); bias = clamp(bias, 0.0, 0.01); for (int i = 0; i < 4; i ++) { float shading = (0.5 / 4.0); int index = i; visibility -= shading * (1.0 - texture(vf_t_shadow, vec3(f_shadowCoordinates.xy + poissonDisk[index] / 3000.0, (f_shadowCoordinates.z - bias) / f_shadowCoordinates.w))); }\n" fragColor.xyz = materialAmbientColor + visibility * materialDiffuseColor * lightColor * lightPower * cosTheta + visibility * materialSpecularColor * lightColor * lightPower * pow(cosAlpha, 5); fragColor.w = texture(vf_t_diffuse, f_textureCoordinates).w; } The following images should be enough to give you an idea of the problem. Before moving the camera: Moving the camera just a little. Moving it to the center of the scene.

    Read the article

  • Resources for a fighting game

    - by David
    As the title says, I need resources for a 2D fighting game for the PC. The game is being made by me and two close friends. I'm thinking of using the FlatRedBall engine and either Allegro Sprite Editor or Amiga DPaint for the sprites, but I don't know is there is anything better for a more or less beginner in video game making. So my questions are as follows, what would be the best engine to use so that we could also sell the game later on, (I don't really care what language I'd have to use) and what would be the best thing to use for sprite creating? I would really appreciate any help given.

    Read the article

  • Help understand GLSL directional light on iOS (left handed coord system)

    - by Robse
    I now have changed from GLKBaseEffect to a own shader implementation. I have a shader management, which compiles and applies a shader to the right time and does some shader setup like lights. Please have a look at my vertex shader code. Now, light direction should be provided in eye space, but I think there is something I don't get right. After I setup my view with camera I save a lightMatrix to transform the light from global space to eye space. My modelview and projection setup: - (void)setupViewWithWidth:(int)width height:(int)height camera:(N3DCamera *)aCamera { aCamera.aspect = (float)width / (float)height; float aspect = aCamera.aspect; float far = aCamera.far; float near = aCamera.near; float vFOV = aCamera.fieldOfView; float top = near * tanf(M_PI * vFOV / 360.0f); float bottom = -top; float right = aspect * top; float left = -right; // projection GLKMatrixStackLoadMatrix4(projectionStack, GLKMatrix4MakeFrustum(left, right, bottom, top, near, far)); // identity modelview GLKMatrixStackLoadMatrix4(modelviewStack, GLKMatrix4Identity); // switch to left handed coord system (forward = z+) GLKMatrixStackMultiplyMatrix4(modelviewStack, GLKMatrix4MakeScale(1, 1, -1)); // transform camera GLKMatrixStackMultiplyMatrix4(modelviewStack, GLKMatrix4MakeWithMatrix3(GLKMatrix3Transpose(aCamera.orientation))); GLKMatrixStackTranslate(modelviewStack, -aCamera.position.x, -aCamera.position.y, -aCamera.position.z); } - (GLKMatrix4)modelviewMatrix { return GLKMatrixStackGetMatrix4(modelviewStack); } - (GLKMatrix4)projectionMatrix { return GLKMatrixStackGetMatrix4(projectionStack); } - (GLKMatrix4)modelviewProjectionMatrix { return GLKMatrix4Multiply([self projectionMatrix], [self modelviewMatrix]); } - (GLKMatrix3)normalMatrix { return GLKMatrix3InvertAndTranspose(GLKMatrix4GetMatrix3([self modelviewProjectionMatrix]), NULL); } After that, I save the lightMatrix like this: [self.renderer setupViewWithWidth:view.drawableWidth height:view.drawableHeight camera:self.camera]; self.lightMatrix = [self.renderer modelviewProjectionMatrix]; And just before I render a 3d entity of the scene graph, I setup the light config for its shader with the lightMatrix like this: - (N3DLight)transformedLight:(N3DLight)light transformation:(GLKMatrix4)matrix { N3DLight transformedLight = N3DLightMakeDisabled(); if (N3DLightIsDirectional(light)) { GLKVector3 direction = GLKVector3MakeWithArray(GLKMatrix4MultiplyVector4(matrix, light.position).v); direction = GLKVector3Negate(direction); // HACK -> TODO: get lightMatrix right! transformedLight = N3DLightMakeDirectional(direction, light.diffuse, light.specular); } else { ... } return transformedLight; } You see the line, where I negate the direction!? I can't explain why I need to do that, but if I do, the lights are correct as far as I can tell. Please help me, to get rid of the hack. I'am scared that this has something to do, with my switch to left handed coord system. My vertex shader looks like this: attribute highp vec4 inPosition; attribute lowp vec4 inNormal; ... uniform highp mat4 MVP; uniform highp mat4 MV; uniform lowp mat3 N; uniform lowp vec4 constantColor; uniform lowp vec4 ambient; uniform lowp vec4 light0Position; uniform lowp vec4 light0Diffuse; uniform lowp vec4 light0Specular; varying lowp vec4 vColor; varying lowp vec3 vTexCoord0; vec4 calcDirectional(vec3 dir, vec4 diffuse, vec4 specular, vec3 normal) { float NdotL = max(dot(normal, dir), 0.0); return NdotL * diffuse; } ... vec4 calcLight(vec4 pos, vec4 diffuse, vec4 specular, vec3 normal) { if (pos.w == 0.0) { // Directional Light return calcDirectional(normalize(pos.xyz), diffuse, specular, normal); } else { ... } } void main(void) { // position highp vec4 position = MVP * inPosition; gl_Position = position; // normal lowp vec3 normal = inNormal.xyz / inNormal.w; normal = N * normal; normal = normalize(normal); // colors vColor = constantColor * ambient; // add lights vColor += calcLight(light0Position, light0Diffuse, light0Specular, normal); ... }

    Read the article

  • How to reference or connect a variable to another class without stack overflow?

    - by SystemNetworks
    I really need to re-arrange all my functions. I created a class. All my var, booleans, int, doubles and other things. I created every new variable so they can reference it and so they don't have an error. If your asking why I never just reference my main class vars to my sub-class becuase it will give me stack overflow! When in my main class i link my sub-class. subClass s = new subClass(); Then I reference my fake variable to my real variable for example: This is my sub-class variable(I call it fake) public int x = 0; In my main class, I put it like this: s.x = x; The problem is, it does not work! Maybe this is not the right place but I cant ask any questions on stack overflow because they banned me. If I connect my main class and connect my sub-class it will give me stack overflow. How do I stop it?

    Read the article

  • What game systems exist which uses camera input?

    - by Marc Pilgaard
    The group and I is in the middle of a semester project where we are currently researching on which game systems are using camera as input or as an interactive medium? We would like some help listing some of the game systems which uses camera input, as it seems hard to find other examples. Currently we know that webcam browser games uses camera input (Newgrounds webcam games), as well as the xbox kinect. I know this questions seems rather vague, though I still hope some people is capable of helping.

    Read the article

  • How to blend the sprite into background?

    - by optimisez
    I try to blend the character into game but I still cannot remove the blue color in the sprite sheet and discover that the white area of sprite is semi-transparent. Before that, the color D3DCOLOR_XRGB(255, 255, 255) is set in D3DXCreateTextureFromFileEx. You will see the fireball through the sprite. After I change the color to D3DCOLOR_XRGB(0, 255, 255), the result will be Now, I am trying to remove the blue color of the sprite sheet and my expected result is something like that Until now, I still cannot figure out how to do that. Any ideas? void initPlayer() { // Create texture. hr = D3DXCreateTextureFromFileEx(d3dDevice, "player.png", 169, 44, D3DX_DEFAULT, NULL, D3DFMT_A8R8G8B8, D3DPOOL_MANAGED, D3DX_DEFAULT, D3DX_DEFAULT, D3DCOLOR_XRGB(0, 255, 255), NULL, NULL, &player); } void renderPlayer() { sprite->Draw(player, &playerRect, NULL, &D3DXVECTOR3(playerDest.X, playerDest.Y, 0),D3DCOLOR_XRGB(255, 255, 255)); } void initFireball() { hr = D3DXCreateTextureFromFileEx(d3dDevice, "fireball.png", 512, 512, D3DX_DEFAULT, NULL, D3DFMT_A8R8G8B8, D3DPOOL_MANAGED, D3DX_DEFAULT, D3DX_DEFAULT, D3DCOLOR_XRGB(255, 255, 255), NULL, NULL, &fireball); } void renderFireball() { sprite->Draw(fireball, &fireballRect, NULL, &D3DXVECTOR3(fireballDest.X, fireballDest.Y, 0), D3DCOLOR_XRGB(255,255, 255)); }

    Read the article

  • 15 Puzzle Shuffle Method Issues

    - by Codemiester
    I am making a 15 puzzle game in C# that allows the user to enter a custom row and column value up to a maximum of a 10 x 10 puzzle. Because of this I am having problems with the shuffle method. I want to make it so the puzzle is always solvable. By first creating a winning puzzle then shuffling the empty space. The problem is it is too inefficient to call every click event each time. I need a way to invoke the click event of a button adjacent to the empty space but not diagonal. I also use an invisible static button for the empty spot. The PuzzlePiece class inherits from Button. I am not too sure how to do this. I would appreciate any help. Thanks here is what I have: private void shuffleBoard() { //5 is just for test purposes for (int i = 0; i < 5; i++) { foreach (Control item in this.Controls) { if (item is PuzzlePiece) { ((PuzzlePiece)item).PerformClick(); } } } } void PuzzlePiece_Click(object sender, EventArgs e) { PuzzlePiece piece = (PuzzlePiece)sender; if (piece.Right == puzzleForm.emptyPiece.Left && piece.Top == puzzleForm.emptyPiece.Top) { movePiece(piece); } else if (piece.Left == puzzleForm.emptyPiece.Right && piece.Top == puzzleForm.emptyPiece.Top) { movePiece(piece); } else if (piece.Top == puzzleForm.emptyPiece.Bottom && piece.Left == puzzleForm.emptyPiece.Left) { movePiece(piece); } else if (piece.Bottom == puzzleForm.emptyPiece.Top && piece.Left == puzzleForm.emptyPiece.Left) { movePiece(piece); } }

    Read the article

< Previous Page | 523 524 525 526 527 528 529 530 531 532 533 534  | Next Page >