Search Results

Search found 32114 results on 1285 pages for 'general development'.

Page 538/1285 | < Previous Page | 534 535 536 537 538 539 540 541 542 543 544 545  | Next Page >

  • Making efficeint voxel engines using "chunks"

    - by Wardy
    Concept I'm currently looking in to how voxel engines work with a view to possibly making one myself. I see a lot of stuff like this ... https://sites.google.com/site/letsmakeavoxelengine/home/chunks ... which talks about how to go about reducing the draw calls. What I can't seem to understand is how it actually saves draw call counts on the basis of the logic being something like this ... Without chunks foreach voxel in myvoxels DrawIfVisible() With Chunks foreach chunk in mychunks DrawIfVisible() which then does ... foreach voxel in myvoxels DrawIfVisible() So surely you saved nothing ?!?! You still make a draw call for each visible voxel do you not? A visible voxel needs a draw call in either scenario. The only real saving I can see is that the logic that evaluates a chunk will be able to determine if a large number of voxels are visible or not effectively saving a bit of "is this chunk visible" cpu time. But it's the draw calls that interest me ... The fewer of those, the faster the application. EDIT: In case it makes any difference I will probably be using XNA (DX not OpenGL) for my engine so don't consider my choice of example in the link above my choice of technology. But this question is such that I doubt it would matter.

    Read the article

  • Fast determination of whether objects are onscreen in 2D

    - by Ben Ezard
    So currently, I have this in each object's renderer's update method: float a = transform.position.x * Main.scale; float b = transform.position.y * Main.scale; float c = Camera.main.transform.position.x * Main.scale; float d = Camera.main.transform.position.y * Main.scale; onscreen = a + width - c > 0 && a - c < GameView.width && b + height - d > 0 && b - d < GameView.height; transform.position is a 2D vector containing the game engine's definition of where the object is - this is then multiplied by Main.scale to translate that coordinate into actual screen space Similarly, Camera.main.transform.position is the in-engine representation of where the main camera is, and this is also multiplied by Main.scale The problem is, as my game is tile-based, thousands of these updates get called every frame, just to determine whether or not each object should be drawn - how can I improve this please?

    Read the article

  • How should I determine direction from a phone's orientation & accelerometer?

    - by Manoj Kumar
    I have an Android application which moves a ball based on the orientation of the phone. I've been using the following code to extract the data - but how do I use it to determine what direction the ball should actually travel in? public void onSensorChanged(int sensor, float[] values) { // TODO Auto-generated method stub synchronized (this) { Log.d("HIIIII :- ", "onSensorChanged: " + sensor + ", x: " + values[0] + ", y: " + values[1] + ", z: " + values[2]); if (sensor == SensorManager.SENSOR_ORIENTATION) { System.out.println("Orientation X: " + values[0]); System.out.println("Orientation Y: " + values[1]); System.out.println("Orientation Z: " + values[2]); } if (sensor == SensorManager.SENSOR_ACCELEROMETER) { System.out.println("Accel X: " + values[0]); System.out.println("Accel Y: " + values[1]); System.out.println("Accel Z: " + values[2]); } } }

    Read the article

  • two-part dice pool mechanic

    - by bythenumbers
    I'm working on a dice mechanic/resolution system based off of the Ghost/Echo (hereafter shortened to G/E) tabletop RPG. Specifically, since G/E can be a little harsh with dealing out consequences and failure, I was hoping to soften the system and add a little more player control, as well as offer the chance for players to evolve their characters into something unique, right from creation. So, here's the mechanic: Players roll 2d12 against the two statistics for their character (each is a number from 2-11, and may be rolled above or below depending on the nature of the action attempted, rolling your stat exactly always fails). Depending on the success for that roll, they add dice to the pool rolled for a modified G/E style action. The acting player gets two dice anyhow, and I am debating offering a bonus die for each success, or a single bonus die for succeeding on both of the statistic-compared rolls. One the size of the dice pool is set, the entire pool is rolled, and the players are allowed to assign rolled dice to a goal and a danger. Assigned results are judged as follows: 1-4 means the attempted goal fails, or the danger comes true. 5-8 is a partial success at the goal, or partially avoiding the danger. 9-12 means the goal is achieved, or the danger avoided. My concerns are twofold: Firstly, that the two-stage action is too complicated, with two rolls to judge separately before anything can happen. Secondly, that the statistics involved go too far in softening the game. I've run some basic simulations, and the approximate statistics follow: 2 dice (up to) 3 dice (up to) 4 dice failure ~33% ~25% ~20% partial ~33% ~35% ~35% success ~33% ~40% ~45% I'd appreciate any advice that addresses my concerns or offers to refine my simulation (right now the first roll is statistically modeled as sign(1d12-1d12), where 0 is a success).

    Read the article

  • GLSL, all in one or many shader programs?

    - by stjepano
    I am doing some 3D demos using OpenGL and I noticed that GLSL is somewhat "limited" (or is it just me?). Anyway I have many different types of materials. Some materials have ambient and diffuse color, some materials have ambient occlusion map, some have specular map and bump map etc. Is it better to support everything in one vertex/fragment shader pair or is it better to create many vertex/fragment shaders and select them based on currently selected material? What is the usual shader strategy in OpenGL or D3D?

    Read the article

  • Non-unique display names?

    - by Davy8
    I know of at least big title game (Starcraft II) that doesn't require unique display names, so it would seem like it can work in at least some circumstance. Under what situations does allowing non-unique display names work well? When does it not work well? Does it come down to whether or not impersonation of someone else is a problem? The reasons I believe it works for Starcraft II is that there isn't any kind of in-game trading of virtual goods and other than "for kicks" there isn't much incentive to impersonate someone else in the game. There's also ladder rankings so even trying to impersonate a pro is easily detectable unless you're on a similar skill level. What are some other cases where it makes sense to specifically allow or disallow duplicate display names? (I have no idea what to tag this as. I went with game-design because I needed at least 1 tag and I don't have rep to create new ones yet.)

    Read the article

  • When dealing with a static game board, what are some methods to make it more interesting?

    - by Ólafur Waage
    Let's say you have a game board that you look at. It does not move but there is some action going on. For example Chess, Checkers, Solitaire. The game I'm working on is not one of this but it's a good reference. What are some methods you can apply to the game or the design that increases the appeal of the user to the game. Of course you can make it prettier but what are some other methods you can use? For example: Visual cues, game design changes, user interface arrangement, etc.

    Read the article

  • OpenGL directional light creating black spots

    - by AnonymousDeveloper
    I probably ought to start by saying that I suspect the problem is that one of my vectors is not in the correct "space", but I don't know for sure. I am having a strange problem with a directional light. When I move the camera away from (0.0, 0.0, 0.0) it creates tiny black spots that grow larger as the distance increases. I apologize ahead of time for the length of the code. Vertex shader: #version 410 core in vec3 vf_normal; in vec3 vf_bitangent; in vec3 vf_tangent; in vec2 vf_textureCoordinates; in vec3 vf_vertex; out vec3 tc_normal; out vec3 tc_bitangent; out vec3 tc_tangent; out vec2 tc_textureCoordinates; out vec3 tc_vertex; uniform mat3 vf_m_normal; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform float vf_te_inner; uniform float vf_te_outer; void main() { tc_normal = vf_normal; tc_bitangent = vf_bitangent; tc_tangent = vf_tangent; tc_textureCoordinates = vf_textureCoordinates; tc_vertex = vf_vertex; gl_Position = vf_m_mvp * vec4(vf_vertex, 1.0); } Tessellation Control shader: #version 410 core layout (vertices = 3) out; in vec3 tc_normal[]; in vec3 tc_bitangent[]; in vec3 tc_tangent[]; in vec2 tc_textureCoordinates[]; in vec3 tc_vertex[]; out vec3 te_normal[]; out vec3 te_bitangent[]; out vec3 te_tangent[]; out vec2 te_textureCoordinates[]; out vec3 te_vertex[]; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; #define ID gl_InvocationID float getTessLevelInner(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_inner - avgDistance), 1.0, vf_te_inner); } float getTessLevelOuter(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_outer - avgDistance), 1.0, vf_te_outer); } void main() { te_normal[gl_InvocationID] = tc_normal[gl_InvocationID]; te_bitangent[gl_InvocationID] = tc_bitangent[gl_InvocationID]; te_tangent[gl_InvocationID] = tc_tangent[gl_InvocationID]; te_textureCoordinates[gl_InvocationID] = tc_textureCoordinates[gl_InvocationID]; te_vertex[gl_InvocationID] = tc_vertex[gl_InvocationID]; float eyeToVertexDistance0 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[0], 1.0)).xyz); float eyeToVertexDistance1 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[1], 1.0)).xyz); float eyeToVertexDistance2 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[2], 1.0)).xyz); gl_TessLevelOuter[0] = getTessLevelOuter(eyeToVertexDistance1, eyeToVertexDistance2); gl_TessLevelOuter[1] = getTessLevelOuter(eyeToVertexDistance2, eyeToVertexDistance0); gl_TessLevelOuter[2] = getTessLevelOuter(eyeToVertexDistance0, eyeToVertexDistance1); gl_TessLevelInner[0] = getTessLevelInner(eyeToVertexDistance2, eyeToVertexDistance0); } Tessellation Evaluation shader: #version 410 core layout (triangles, equal_spacing, cw) in; in vec3 te_normal[]; in vec3 te_bitangent[]; in vec3 te_tangent[]; in vec2 te_textureCoordinates[]; in vec3 te_vertex[]; out vec3 g_normal; out vec3 g_bitangent; out vec4 g_patchDistance; out vec3 g_tangent; out vec2 g_textureCoordinates; out vec3 g_vertex; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_displace; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 interpolate2D(vec2 v0, vec2 v1, vec2 v2) { return vec2(gl_TessCoord.x) * v0 + vec2(gl_TessCoord.y) * v1 + vec2(gl_TessCoord.z) * v2; } vec3 interpolate3D(vec3 v0, vec3 v1, vec3 v2) { return vec3(gl_TessCoord.x) * v0 + vec3(gl_TessCoord.y) * v1 + vec3(gl_TessCoord.z) * v2; } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2*d*d); return d; } float getDisplacement(vec2 t0, vec2 t1, vec2 t2) { float displacement = 0.0; vec2 textureCoordinates = interpolate2D(t0, t1, t2); vec2 vector = ((t0 + t1 + t2) / 3.0); float sampleDistance = sqrt((vector.x * vector.x) + (vector.y * vector.y)); sampleDistance /= ((vf_te_inner + vf_te_outer) / 2.0); displacement += texture(vf_t_displace, textureCoordinates).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, -sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, -sampleDistance)).x; return (displacement / 5.0); } void main() { g_normal = normalize(interpolate3D(te_normal[0], te_normal[1], te_normal[2])); g_bitangent = normalize(interpolate3D(te_bitangent[0], te_bitangent[1], te_bitangent[2])); g_patchDistance = vec4(gl_TessCoord, (1.0 - gl_TessCoord.y)); g_tangent = normalize(interpolate3D(te_tangent[0], te_tangent[1], te_tangent[2])); g_textureCoordinates = interpolate2D(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); g_vertex = interpolate3D(te_vertex[0], te_vertex[1], te_vertex[2]); float displacement = getDisplacement(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); float d2 = min(min(min(g_patchDistance.x, g_patchDistance.y), g_patchDistance.z), g_patchDistance.w); d2 = amplify(d2, 50, -0.5); g_vertex += g_normal * displacement * 0.1 * d2; gl_Position = vf_m_mvp * vec4(g_vertex, 1.0); } Geometry shader: #version 410 core layout (triangles) in; layout (triangle_strip, max_vertices = 3) out; in vec3 g_normal[3]; in vec3 g_bitangent[3]; in vec4 g_patchDistance[3]; in vec3 g_tangent[3]; in vec2 g_textureCoordinates[3]; in vec3 g_vertex[3]; out vec3 f_tangent; out vec3 f_bitangent; out vec3 f_eyeDirection; out vec3 f_lightDirection; out vec3 f_normal; out vec4 f_patchDistance; out vec4 f_shadowCoordinates; out vec2 f_textureCoordinates; out vec3 f_vertex; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; void main() { int index = 0; while (index < 3) { vec3 vertexNormal_cameraspace = vf_m_normal * normalize(g_normal[index]); vec3 vertexTangent_cameraspace = vf_m_normal * normalize(f_tangent); vec3 vertexBitangent_cameraspace = vf_m_normal * normalize(f_bitangent); mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); vec3 eyeDirection = -(vf_m_view * vf_m_model * vec4(g_vertex[index], 1.0)).xyz; vec3 lightDirection = normalize(-(vf_m_view * vec4(vf_l_position, 1.0)).xyz); f_eyeDirection = TBN * eyeDirection; f_lightDirection = TBN * lightDirection; f_normal = normalize(g_normal[index]); f_patchDistance = g_patchDistance[index]; f_shadowCoordinates = vf_m_depthBias * vec4(g_vertex[index], 1.0); f_textureCoordinates = g_textureCoordinates[index]; f_vertex = (vf_m_model * vec4(g_vertex[index], 1.0)).xyz; gl_Position = gl_in[index].gl_Position; EmitVertex(); index ++; } EndPrimitive(); } Fragment shader: #version 410 core in vec3 f_bitangent; in vec3 f_eyeDirection; in vec3 f_lightDirection; in vec3 f_normal; in vec4 f_patchDistance; in vec4 f_shadowCoordinates; in vec3 f_tangent; in vec2 f_textureCoordinates; in vec3 f_vertex; out vec4 fragColor; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 poissonDisk[16] = vec2[]( vec2(-0.94201624, -0.39906216), vec2( 0.94558609, -0.76890725), vec2(-0.09418410, -0.92938870), vec2( 0.34495938, 0.29387760), vec2(-0.91588581, 0.45771432), vec2(-0.81544232, -0.87912464), vec2(-0.38277543, 0.27676845), vec2( 0.97484398, 0.75648379), vec2( 0.44323325, -0.97511554), vec2( 0.53742981, -0.47373420), vec2(-0.26496911, -0.41893023), vec2( 0.79197514, 0.19090188), vec2(-0.24188840, 0.99706507), vec2(-0.81409955, 0.91437590), vec2( 0.19984126, 0.78641367), vec2( 0.14383161, -0.14100790) ); float random(vec3 seed, int i) { vec4 seed4 = vec4(seed,i); float dot_product = dot(seed4, vec4(12.9898, 78.233, 45.164, 94.673)); return fract(sin(dot_product) * 43758.5453); } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2.0 * d * d); return d; } void main() { vec3 lightColor = vf_l_color.xyz; float lightPower = vf_l_color.w; vec3 materialDiffuseColor = texture(vf_t_diffuse, f_textureCoordinates).xyz; vec3 materialAmbientColor = vec3(0.1, 0.1, 0.1) * materialDiffuseColor; vec3 materialSpecularColor = texture(vf_t_specular, f_textureCoordinates).xyz; vec3 n = normalize(texture(vf_t_normal, f_textureCoordinates).rgb * 2.0 - 1.0); vec3 l = normalize(f_lightDirection); float cosTheta = clamp(dot(n, l), 0.0, 1.0); vec3 E = normalize(f_eyeDirection); vec3 R = reflect(-l, n); float cosAlpha = clamp(dot(E, R), 0.0, 1.0); float visibility = 1.0; float bias = 0.005 * tan(acos(cosTheta)); bias = clamp(bias, 0.0, 0.01); for (int i = 0; i < 4; i ++) { float shading = (0.5 / 4.0); int index = i; visibility -= shading * (1.0 - texture(vf_t_shadow, vec3(f_shadowCoordinates.xy + poissonDisk[index] / 3000.0, (f_shadowCoordinates.z - bias) / f_shadowCoordinates.w))); }\n" fragColor.xyz = materialAmbientColor + visibility * materialDiffuseColor * lightColor * lightPower * cosTheta + visibility * materialSpecularColor * lightColor * lightPower * pow(cosAlpha, 5); fragColor.w = texture(vf_t_diffuse, f_textureCoordinates).w; } The following images should be enough to give you an idea of the problem. Before moving the camera: Moving the camera just a little. Moving it to the center of the scene.

    Read the article

  • I love video games and know I want to work in the sector but hate programming

    - by normyp
    I just hate how I'll put in 8-10 hours in and get little to nothing back. The return results for your efforts seem to be pathetically small the majority of the time and I don't find that rewarding enough for me to put in the time and effort to learn programming and make myself better. I've heard game design is fun and I think I'd love that but apparently you can only get into that really if you can program, is that true? I feel a bit lost because I'm doing a degree in Games Technology and am worried that I'm sending myself into a job I'll hate.

    Read the article

  • CCSpriteHole in cocos2d 2.0?

    - by rakkarage
    i was using this cocos2d class CCSpriteHole in cocos2d 1.0 fine... http://jpsarda.tumblr.com/post/15779708304/new-cocos2d-iphone-extensions-a-progress-bar-and-a i am trying to convert it to cocos2d 2.0... i got it to compile by changing glVertexPointer to glVertexAttribPointer like in the 2.0 version of CCSpriteScale9 here http://jpsarda.tumblr.com/post/9162433577/scale9grid-for-cocos2d and changing contentSizeInPixels_ to contentSize_... -(id) init { if( (self=[super init]) ) { opacityModifyRGB_ = YES; opacity_ = 255; color_ = colorUnmodified_ = ccWHITE; capSize=capSizeInPixels=CGSizeZero; //Not used blendFunc_.src = CC_BLEND_SRC; blendFunc_.dst = CC_BLEND_DST; // update texture (calls updateBlendFunc) [self setTexture:nil]; // default transform anchor anchorPoint_ = ccp(0.5f, 0.5f); vertexDataCount=24; vertexData = (ccV2F_C4F_T2F*) malloc(vertexDataCount * sizeof(ccV2F_C4F_T2F)); [self setTextureRectInPixels:CGRectZero untrimmedSize:CGSizeZero]; } return self; } -(id) initWithTexture:(CCTexture2D*)texture rect:(CGRect)rect { NSAssert(texture!=nil, @"Invalid texture for sprite"); // IMPORTANT: [self init] and not [super init]; if( (self = [self init]) ) { [self setTexture:texture]; [self setTextureRect:rect]; } return self; } -(id) initWithTexture:(CCTexture2D*)texture { NSAssert(texture!=nil, @"Invalid texture for sprite"); CGRect rect = CGRectZero; rect.size = texture.contentSize; return [self initWithTexture:texture rect:rect]; } -(id) initWithFile:(NSString*)filename { NSAssert(filename!=nil, @"Invalid filename for sprite"); CCTexture2D *texture = [[CCTextureCache sharedTextureCache] addImage: filename]; if( texture ) return [self initWithTexture:texture]; return nil; } +(id)spriteWithFile:(NSString*)f { return [[self alloc] initWithFile:f]; } - (void) dealloc { if (vertexData) free(vertexData); } -(void) updateColor { ccColor4F color4; color4.r=(float)color_.r/255.0f; color4.g=(float)color_.g/255.0f; color4.b=(float)color_.b/255.0f; color4.a=(float)opacity_/255.0f; for (int i=0; i<vertexDataCount; i++) { vertexData[i].colors=color4; } } -(void)updateTextureCoords:(CGRect)rect { CCTexture2D *tex = texture_; if(!tex) return; float atlasWidth = (float)tex.pixelsWide; float atlasHeight = (float)tex.pixelsHigh; float left,right,top,bottom; left = rect.origin.x/atlasWidth; right = left + rect.size.width/atlasWidth; top = rect.origin.y/atlasHeight; bottom = top + rect.size.height/atlasHeight; // // |/|/|/| // CGSize capTexCoordsSize=CGSizeMake(capSizeInPixels.width/atlasWidth, capSizeInPixels.height/atlasHeight); // From left to right //Top band // Left vertexData[0].texCoords=(ccTex2F){left,top}; vertexData[1].texCoords=(ccTex2F){left,top+capTexCoordsSize.height}; vertexData[2].texCoords=(ccTex2F){left+capTexCoordsSize.width,top}; vertexData[3].texCoords=(ccTex2F){left+capTexCoordsSize.width,top+capTexCoordsSize.height}; // Center vertexData[4].texCoords=(ccTex2F){right-capTexCoordsSize.width,top}; vertexData[5].texCoords=(ccTex2F){right-capTexCoordsSize.width,top+capTexCoordsSize.height}; // Right vertexData[6].texCoords=(ccTex2F){right,top}; vertexData[7].texCoords=(ccTex2F){right,top+capTexCoordsSize.height}; //Center band // Left vertexData[8].texCoords=(ccTex2F){left,bottom-capTexCoordsSize.height}; vertexData[9].texCoords=(ccTex2F){left,top+capTexCoordsSize.height}; vertexData[10].texCoords=(ccTex2F){left+capTexCoordsSize.width,bottom-capTexCoordsSize.height}; vertexData[11].texCoords=(ccTex2F){left+capTexCoordsSize.width,top+capTexCoordsSize.height}; // Center vertexData[12].texCoords=(ccTex2F){right-capTexCoordsSize.width,bottom-capTexCoordsSize.height}; vertexData[13].texCoords=(ccTex2F){right-capTexCoordsSize.width,top+capTexCoordsSize.height}; // Right vertexData[14].texCoords=(ccTex2F){right,bottom-capTexCoordsSize.height}; vertexData[15].texCoords=(ccTex2F){right,top+capTexCoordsSize.height}; //Bottom band //Left vertexData[16].texCoords=(ccTex2F){left,bottom}; vertexData[17].texCoords=(ccTex2F){left,bottom-capTexCoordsSize.height}; vertexData[18].texCoords=(ccTex2F){left+capTexCoordsSize.width,bottom}; vertexData[19].texCoords=(ccTex2F){left+capTexCoordsSize.width,bottom-capTexCoordsSize.height}; // Center vertexData[20].texCoords=(ccTex2F){right-capTexCoordsSize.width,bottom}; vertexData[21].texCoords=(ccTex2F){right-capTexCoordsSize.width,bottom-capTexCoordsSize.height}; // Right vertexData[22].texCoords=(ccTex2F){right,bottom}; vertexData[23].texCoords=(ccTex2F){right,bottom-capTexCoordsSize.height}; } -(void) updateVertices { float left=0; //-spriteSizeInPixels.width*0.5f; float right=left+contentSize_.width; float bottom=0; //-spriteSizeInPixels.height*0.5f; float top=bottom+contentSize_.height; float holeLeft=holeRect.origin.x*CC_CONTENT_SCALE_FACTOR(); float holeRight=holeLeft+holeRect.size.width*CC_CONTENT_SCALE_FACTOR(); float holeBottom=holeRect.origin.y*CC_CONTENT_SCALE_FACTOR(); float holeTop=holeBottom+holeRect.size.height*CC_CONTENT_SCALE_FACTOR(); // // |/|/|/| // // From left to right //Top band // Left vertexData[0].vertices=(ccVertex2F){left,top}; vertexData[1].vertices=(ccVertex2F){left,holeTop}; vertexData[2].vertices=(ccVertex2F){holeLeft,top}; vertexData[3].vertices=(ccVertex2F){holeLeft,holeTop}; // Center vertexData[4].vertices=(ccVertex2F){holeRight,top}; vertexData[5].vertices=(ccVertex2F){holeRight,holeTop}; // Right vertexData[6].vertices=(ccVertex2F){right,top}; vertexData[7].vertices=(ccVertex2F){right,holeTop}; //Center band // Left vertexData[8].vertices=(ccVertex2F){left,holeBottom}; vertexData[9].vertices=(ccVertex2F){left,holeTop}; vertexData[10].vertices=(ccVertex2F){holeLeft,holeBottom}; vertexData[11].vertices=(ccVertex2F){holeLeft,holeTop}; // Center vertexData[12].vertices=(ccVertex2F){holeRight,holeBottom}; vertexData[13].vertices=(ccVertex2F){holeRight,holeTop}; // Right vertexData[14].vertices=(ccVertex2F){right,holeBottom}; vertexData[15].vertices=(ccVertex2F){right,holeTop}; //Bottom band //Left vertexData[16].vertices=(ccVertex2F){left,bottom}; vertexData[17].vertices=(ccVertex2F){left,holeBottom}; vertexData[18].vertices=(ccVertex2F){holeLeft,bottom}; vertexData[19].vertices=(ccVertex2F){holeLeft,holeBottom}; // Center vertexData[20].vertices=(ccVertex2F){holeRight,bottom}; vertexData[21].vertices=(ccVertex2F){holeRight,holeBottom}; // Right vertexData[22].vertices=(ccVertex2F){right,bottom}; vertexData[23].vertices=(ccVertex2F){right,holeBottom}; } -(void) setHole:(CGRect)r inRect:(CGRect)totalSurface { holeRect=r; self.contentSize=totalSurface.size; holeRect.origin=ccpSub(holeRect.origin,totalSurface.origin); CGPoint holeCenter=ccp(holeRect.origin.x+holeRect.size.width*0.5f,holeRect.origin.y+holeRect.size.height*0.5f); self.anchorPoint=ccp(holeCenter.x/contentSize_.width,holeCenter.y/contentSize_.height); //[self updateTextureCoords:rectInPixels_]; [self updateVertices]; [self updateColor]; } -(void) draw { BOOL newBlend = NO; if( blendFunc_.src != CC_BLEND_SRC || blendFunc_.dst != CC_BLEND_DST ) { newBlend = YES; glBlendFunc( blendFunc_.src, blendFunc_.dst ); } glBindTexture(GL_TEXTURE_2D, [texture_ name]); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[0].vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[0].texCoords); glVertexAttribPointer(kCCVertexAttrib_Color, 4, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[0].colors); glDrawArrays(GL_TRIANGLE_STRIP, 0, 8); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[8].vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[8].texCoords); glVertexAttribPointer(kCCVertexAttrib_Color, 4, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[8].colors); glDrawArrays(GL_TRIANGLE_STRIP, 0, 8); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[16].vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[16].texCoords); glVertexAttribPointer(kCCVertexAttrib_Color, 4, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[16].colors); glDrawArrays(GL_TRIANGLE_STRIP, 0, 8); if( newBlend ) glBlendFunc(CC_BLEND_SRC, CC_BLEND_DST); } -(void)setTextureRectInPixels:(CGRect)rect untrimmedSize:(CGSize)untrimmedSize { rectInPixels_ = rect; rect_ = CC_RECT_PIXELS_TO_POINTS( rect ); //[self setContentSizeInPixels:untrimmedSize]; [self updateTextureCoords:rectInPixels_]; } -(void)setTextureRect:(CGRect)rect { CGRect rectInPixels = CC_RECT_POINTS_TO_PIXELS( rect ); [self setTextureRectInPixels:rectInPixels untrimmedSize:rectInPixels.size]; } // // RGBA protocol // #pragma mark CCSpriteHole - RGBA protocol -(GLubyte) opacity { return opacity_; } -(void) setOpacity:(GLubyte) anOpacity { opacity_ = anOpacity; // special opacity for premultiplied textures if( opacityModifyRGB_ ) [self setColor: (opacityModifyRGB_ ? colorUnmodified_ : color_ )]; [self updateColor]; } - (ccColor3B) color { if(opacityModifyRGB_){ return colorUnmodified_; } return color_; } -(void) setColor:(ccColor3B)color3 { color_ = colorUnmodified_ = color3; if( opacityModifyRGB_ ){ color_.r = color3.r * opacity_/255; color_.g = color3.g * opacity_/255; color_.b = color3.b * opacity_/255; } [self updateColor]; } -(void) setOpacityModifyRGB:(BOOL)modify { ccColor3B oldColor = self.color; opacityModifyRGB_ = modify; self.color = oldColor; } -(BOOL) doesOpacityModifyRGB { return opacityModifyRGB_; } #pragma mark CCSpriteHole - CocosNodeTexture protocol -(void) updateBlendFunc { if( !texture_ || ! [texture_ hasPremultipliedAlpha] ) { blendFunc_.src = GL_SRC_ALPHA; blendFunc_.dst = GL_ONE_MINUS_SRC_ALPHA; [self setOpacityModifyRGB:NO]; } else { blendFunc_.src = CC_BLEND_SRC; blendFunc_.dst = CC_BLEND_DST; [self setOpacityModifyRGB:YES]; } } -(void) setTexture:(CCTexture2D*)texture { // accept texture==nil as argument NSAssert( !texture || [texture isKindOfClass:[CCTexture2D class]], @"setTexture expects a CCTexture2D. Invalid argument"); texture_ = texture; [self updateBlendFunc]; } -(CCTexture2D*) texture { return texture_; } @end but now positioning and scaling seem to not work? and it starts in the wrong position... but changing the opacity still works. so i was wondering if anyone can see why my 2.0 version is not working? or if maybe there is a better way to do a sprite hole with cocos2d/opengl 2.0? shaders? thanks

    Read the article

  • (CanvsEngine) Collission problem ( TypeError: this._polygon[this._frame] is undefined) [on hold]

    - by user2127102
    How can i fix this error TypeError: this._polygon[this._frame] is undefined Heres my code: html: <!DOCTYPE Html> <head> <meta charset="utf-8"> <title>Project</title> <link href="css/style.css" rel="stylesheet"> <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript"></script> <script src="js/canvasengine-1.3.0.all.min.js"></script> <script src="js/extends/Input.js"></script> <script src="main.js"></script> </head> <body> <canvas id="window"></canvas> </body> main.js: var canvas = CE.defines("window"). extend(Input). ready(function() { canvas.Scene.call("Game"); }); canvas.Scene.new({ name: "Game", materials: { images: { player: "img/character.png", Wall: "img/TestWall.png" } }, ready: function(stage) { var _canvas = this.getCanvas(); _canvas.setSize("browser", "strech"); this.Player = Class.new("Entity", [stage]); this.Player.el.drawImage("player"); stage.append(this.Player.el); this.Wall = Class.new("Entity", [stage]); this.Wall.el.drawImage("Wall"); this.Wall.position(300, 0); stage.append(this.Wall.el); }, render: function(stage) { //Controls ====== //Control calculations var self = this; this.Mover_A; this.Mover_D; this.Mover_W; this.Mover_S; canvas.Input.keyDown(Input.A, function(e) { self.Mover_A = true; }); canvas.Input.keyDown(Input.D, function(e) { self.Mover_D = true; }); canvas.Input.keyDown(Input.W, function(e) { self.Mover_W = true; }); canvas.Input.keyDown(Input.S, function(e) { self.Mover_S = true; console.log(self.Mover_S); }); canvas.Input.keyUp(Input.A, function(e) { self.Mover_A = false; }); canvas.Input.keyUp(Input.D, function(e) { self.Mover_D = false; }); canvas.Input.keyUp(Input.W, function(e) { self.Mover_W = false; }); canvas.Input.keyUp(Input.S, function(e) { self.Mover_S = false; }); x = 0; y = 0; if(this.Mover_A)x -= 1.5; //A if(this.Mover_D)x += 1.5;//D if(this.Mover_W)y -= 1.5;//W if(this.Mover_S)y += 1.5; //S this.Player.move(x, y); this.Player.hit("over", [this.Wall], function(state, el) { this.Player.move(x * -1, y * -1); }); //End Controls ===== stage.refresh(); } });

    Read the article

  • How do I make A* check all diagonal and orthogonal directions?

    - by Munezane
    I'm making a turn-based tactical game and I'm trying to implement the A* algorithm. I've been following a tutorial and got to this point, but my characters can't move diagonally up and left. Can anyone help me with this? The return x and y are int pointers which the characters are using to move towards the target. void level::aStar(int startx, int starty, int targetx, int targety, int* returnx, int* returny) { aStarGridSquare* currentSquare = new aStarGridSquare(); aStarGridSquare* startSquare = new aStarGridSquare(); aStarGridSquare* targetSquare = new aStarGridSquare(); aStarGridSquare* adjacentSquare = new aStarGridSquare(); aStarOpenList.clear(); for(unsigned int i=0; i<aStarGridSquareList.size(); i++) { aStarGridSquareList[i]->open=false; aStarGridSquareList[i]->closed=false; } startSquare=getaStarGridSquare(startx, starty); targetSquare=getaStarGridSquare(targetx, targety); if(startSquare==targetSquare) { *returnx=startx; *returny=starty; return; } startSquare->CostFromStart=0; startSquare->CostToTraverse=0; startSquare->parent = NULL; currentSquare=startSquare; aStarOpenList.push_back(currentSquare); while(currentSquare!=targetSquare && aStarOpenList.size()>0) { //unsigned int totalCostEstimate=aStarOpenList[0]->TotalCostEstimate; //currentSquare=aStarOpenList[0]; for(unsigned int i=0; i<aStarOpenList.size(); i++) { if(aStarOpenList.size()>1) { for(unsigned int j=1; j<aStarOpenList.size()-1; j++) { if(aStarOpenList[i]->TotalCostEstimate<aStarOpenList[j]->TotalCostEstimate) { currentSquare=aStarOpenList[i]; } else { currentSquare=aStarOpenList[j]; } } } else { currentSquare = aStarOpenList[i]; } } currentSquare->closed=true; currentSquare->open=false; for(unsigned int i=0; i<aStarOpenList.size(); i++) { if(aStarOpenList[i]==currentSquare) { aStarOpenList.erase(aStarOpenList.begin()+i); } } for(unsigned int i = currentSquare->blocky - 32; i <= currentSquare->blocky + 32; i+=32) { for(unsigned int j = currentSquare->blockx - 32; j<= currentSquare->blockx + 32; j+=32) { adjacentSquare=getaStarGridSquare(j/32, i/32); if(adjacentSquare!=NULL) { if(adjacentSquare->blocked==false && adjacentSquare->closed==false) { if(adjacentSquare->open==false) { adjacentSquare->parent=currentSquare; if(currentSquare->parent!=NULL) { currentSquare->CostFromStart = currentSquare->parent->CostFromStart + currentSquare->CostToTraverse + startSquare->CostFromStart; } else { currentSquare->CostFromStart=0; } adjacentSquare->CostFromStart =currentSquare->CostFromStart + adjacentSquare->CostToTraverse;// adjacentSquare->parent->CostFromStart + adjacentSquare->CostToTraverse; //currentSquare->CostToEndEstimate = abs(currentSquare->blockx - targetSquare->blockx) + abs(currentSquare->blocky - targetSquare->blocky); //currentSquare->TotalCostEstimate = currentSquare->CostFromStart + currentSquare->CostToEndEstimate; adjacentSquare->open = true; adjacentSquare->CostToEndEstimate=abs(adjacentSquare->blockx- targetSquare->blockx) + abs(adjacentSquare->blocky-targetSquare->blocky); adjacentSquare->TotalCostEstimate = adjacentSquare->CostFromStart+adjacentSquare->CostToEndEstimate; //adjacentSquare->open=true;*/ aStarOpenList.push_back(adjacentSquare); } else { if(adjacentSquare->parent->CostFromStart > currentSquare->CostFromStart) { adjacentSquare->parent=currentSquare; if(currentSquare->parent!=NULL) { currentSquare->CostFromStart = currentSquare->parent->CostFromStart + currentSquare->CostToTraverse + startSquare->CostFromStart; } else { currentSquare->CostFromStart=0; } adjacentSquare->CostFromStart =currentSquare->CostFromStart + adjacentSquare->CostToTraverse;// adjacentSquare->parent->CostFromStart + adjacentSquare->CostToTraverse; //currentSquare->CostToEndEstimate = abs(currentSquare->blockx - targetSquare->blockx) + abs(currentSquare->blocky - targetSquare->blocky); //currentSquare->TotalCostEstimate = currentSquare->CostFromStart + currentSquare->CostToEndEstimate; adjacentSquare->CostFromStart = adjacentSquare->parent->CostFromStart + adjacentSquare->CostToTraverse; adjacentSquare->CostToEndEstimate=abs(adjacentSquare->blockx - targetSquare->blockx) + abs(adjacentSquare->blocky - targetSquare->blocky); adjacentSquare->TotalCostEstimate = adjacentSquare->CostFromStart+adjacentSquare->CostToEndEstimate; } } } } } } } if(aStarOpenList.size()==0)//if empty { *returnx =startx; *returny =starty; return; } else { for(unsigned int i=0; i< aStarOpenList.size(); i++) { if(currentSquare->parent==NULL) { //int tempX = targetSquare->blockx; //int tempY = targetSquare->blocky; *returnx=targetSquare->blockx; *returny=targetSquare->blocky; break; } else { currentSquare=currentSquare->parent; } } } }

    Read the article

  • How do you maintain content size vs. content quality in an application?

    - by PeterK
    I am developing my first Cocos2d iPhone/iPad game that includes quite a few sprites, I would need approximately 80 different. As this is for both normal and HD displays I have 2x of each sprite. I am using TexturePacker to optimize the thing. I would like to ask if there are any rules-of-thumb, tricks, ideas etc. to adjust to in regards to size of content, quality and how you maintain high-quality HD-based graphics due to its size vs. the device memory sizes? Also, is it a good idea to only have one copy of the sprites and scale it using code?

    Read the article

  • Selection of a mesh with arbitrary region

    - by Tigran
    Considering example: I have a mesh(es) on the OpenGL screen and would like to select a part of it (say for delete purpose). There is a clear way to do the selction via Ray Tracing, or via Selection provided by OpenGL itself. But, for my users, considering that meshes can get wired surfaces, I need to implement a selection via a Arbitrary closed region, so all triangles that appears present inside that region has to be selected. To be more clear, here is screen shot: I want all triangles inside black polygon to be selected, identified, whatever in some way. How can I achieve that ?

    Read the article

  • How can I efficiently update only the entities that matter in a given frame?

    - by lezebulon
    I'm making a RTS, which can potentially have lots of units in one map (think Age of Empires). I'm looking for a way to update my units. I want to avoid calling a virtual Update() method every frame on every entity. On the other hand, units that are not in view should still be updated and behave "normally." I'm assuming this is a fairly standard question; what would be a way to handle this situation?

    Read the article

  • String Conversion to Char for Java Game

    - by Jen
    Is there someone who could help me achieve the following points on this problems? I can't seem to get it. I tried using toCharArray and Scanner to achieve this, but it doesn't work, nor do I know how to make this things possible for my word game. :( · Get a popular name of person, place, verse, saying or event from the user. This may have a single or multiple words in it. · Create a copy of this string to an array where each letter is replaced with a hyphen (-) and each space is replaced with an underscore (_). Symbols and numbers will remain shown. · The program then asks a letter from the user. If the letter is in the inputted string, then it should be shown on the array at the same position it is shown in the string. Meaning, the letter replaces the hyphen (-) at the correct position of the array. · The program again prompts for a letter from the user and replaces the hyphen (-) of the array if it exists on the inputted string. This will be repeatedly done until such time each hyphen (-) is replaced with the correct letter. · If the user inputs an invalid letter, that is, a letter that does not exist on the inputted string, then the program should inform the user. If this happens 3 times while there is still at least one hyphen on the array, then the program should inform the user that he lost the game and showing him the whole correct string. · If the user completes the game, meaning, all hyphens have been replaced with the correct letters; then the program should congratulate the user for a job well done.

    Read the article

  • How should I organize my matrices in a 3D game engine?

    - by Need4Sleep
    I'm working with a group of people from around the world to create a game engine (and hopefully a game with it) within the next upcoming years. My first task is to write a camera class for the engine to use in order to add cameras to the scene, with position and follow points. The problem I have is with using matrices for transformations in the class, should I keep matrices separate to each class? Such as have the model matrix in the model class, camera matrix in the camera class, or have all matrices placed in one class/chuck? I could see pros and cons for each method, but I wanted to hear some input form a more professional standpoint.

    Read the article

  • Line Intersection from parametric equation

    - by Sidar
    I'm sure this question has been asked before. However, I'm trying to connect the dots by translating an equation on paper into an actual function. I thought It would be interesting to ask here instead on the Math sites (since it's going to be used for games anyway ). Let's say we have our vector equation : x = s + Lr; where x is the resulting vector, s our starting point/vector. L our parameter and r our direction vector. The ( not sure it's called like this, please correct me ) normal equation is : x.n = c; If we substitute our vector equation we get: (s+Lr).n = c. We now need to isolate L which results in L = (c - s.n) / (r.n); L needs to be 0 < L < 1. Meaning it needs to be between 0 and 1. My question: I want to know what L is so if I were to substitute L for both vector equation (or two lines) they should give me the same intersection coordinates. That is if they intersect. But I can't wrap my head around on how to use this for two lines and find the parameter that fits the intersection point. Could someone with a simple example show how I could translate this to a function/method?

    Read the article

  • What are some ways to separate game logic from animations and the draw loop?

    - by TMV
    I have only previously made flash games, using MovieClips and such to separate out my animations from my game logic. Now I am getting into trying my hand at making a game for Android, but the game programming theory around separating these things still confuses me. I come from a background of developing non game web applications so I am versed in more MVC like patterns and am stuck in that mindset as I approach game programming. I want to do things like abstract my game by having, for example, a game board class that contains the data for a grid of tiles with instances of a tile class that each contain properties. I can give my draw loop access to this and have it draw the game board based on the properties of each tile on the game board, but I don't understand where exactly animation should go. As far as I can tell, animation sort of sits between the abstracted game logic (model) and the draw loop (view). With my MVC mindset, it's frustrating trying to decide where animation is actually supposed to go. It would have quite a bit of data associated with it like a model, but seemingly needs to be very closely coupled with the draw loop in order to have things like frame independent animation. How can I break out of this mindset and start thinking about patterns that make more sense for games?

    Read the article

  • I need help with specific types of movement.

    - by IronGiraffe
    I'm adding movable crates to my game and I need some help with my movement code. The way I've set up my movement code the crate's X and Y are moved according to a vector2 unless it hits a wall. Here's the movement code: if (frameCount % (delay / 2) == 0) { for (int i = 0; i < Math.Abs(cSpeed.X); i++) { if (!Level.PlayerHit(new Rectangle(crateBounds.X + (Math.Sign(cSpeed.X) * 32), crateBounds.Y, crateBounds.Width, crateBounds.Height))) { if (!Level.CollideTiles(crateBounds.X + (Math.Sign(cSpeed.X) * 32), crateBounds.Y, crateBounds.Width, crateBounds.Height)) { if (cSpeed.X != 0) { crateBounds.X += Math.Sign(cSpeed.X); } else { Equalize(2); } } else { cSpeed.X = 0f; } } else { if (!Level.CollideTiles(crateBounds.X - (Math.Sign(cSpeed.X) * 32), crateBounds.Y, crateBounds.Width, crateBounds.Height)) { if (cSpeed.X != 0) { crateBounds.X -= Math.Sign(cSpeed.X); } else { Equalize(2); } } else { cSpeed.X = 0f; } } } for (int i = 0; i < Math.Abs(cSpeed.Y); i++) { if (!Level.PlayerHit(new Rectangle(crateBounds.X, crateBounds.Y + Math.Sign(cSpeed.Y), crateBounds.Width, crateBounds.Height))) { if (!Level.CollideTiles(crateBounds.X, crateBounds.Y + Math.Sign(cSpeed.Y), crateBounds.Width, crateBounds.Height)) { crateBounds.Y += Math.Sign(cSpeed.Y); } else { cSpeed.Y = 0f; } } else { if (!Level.CollideTiles(crateBounds.X, crateBounds.Y - Math.Sign(cSpeed.Y), crateBounds.Width, crateBounds.Height)) { crateBounds.Y -= Math.Sign(cSpeed.Y); } else { cSpeed.Y = 0f; } } } } The frameCount and delay variables just slow down the movement somewhat. Anyway, I've added a tool to my game that acts as a gravity well (drawing objects into it's center; the closer they get to the center the faster they go) and what I'm trying to do is make it so that the crate will bounce off the player (and vice versa) when they collide. Thus far, my code only keeps the crate and player from getting stuck inside each other (the player can still get stuck under the crate, but I'll fix that later.) So what I'd like to know is how I can best make the crate bounce off the player. The other movement problem I'm having is related to another tool which allows the player to pick up crates and move around with them. The problem is that the crate's movement while being carried isn't tied to the movement script (it moves the crate itself, instead of adding to speed), which makes the crate go through walls and such. I know what I have to do: make the crate's speed match the player's speed while the player is holding it, but I need the crate to snap to a certain position (just in front of the player) when the player grabs it and it needs to switch to another position (just in front of the player on the other side) when they player faces the other direction while holding it. What would be the best way to make it switch places while keeping all the movement tied to the speed vector?

    Read the article

  • How can I solve this SAT direct corner intersection edge case?

    - by ssb
    I have a working SAT implementation, but I am running into a problem where direct collisions at a corner do not work for tiled surfaces. That is, it clips on the surface when going in a certain direction because it gets hung up on one of the tiles, and so, for example, if I walk across a floor while holding both down and left, the player will stop when meeting the next shape because the player will be colliding with the right side rather than with the top of the floor tile. This illustration shows what I mean: The top block will translate right first and then up. I have checked here and here which are helpful, but this does not address what I should do in a situation where I don't have a tile-based world. My usage of the term "tile" before isn't really accurate since what I'm doing here is manually placing square obstacles next to each other, not assigning them spots on a grid. What can I do to fix this?

    Read the article

  • What forms of non-interactive RPG battle systems exist?

    - by Landstander
    I am interested in systems that allow players to develop a battle plan or setup strategy for the party or characters prior to entering battle. During the battle the player either cannot input commands or can choose not to. Rule Based In this system the player can setup a list of rules in the form of [Condition - Action] that are then ordered by priority. Gambits in Final Fantasy XII Tactics in Dragon Age Origin & II

    Read the article

  • Improving the efficiency of frustum culling

    - by DeadMG
    I've got some code which performs frustum culling. However, this defines the "frustum" way too broadly- when I have ~10 objects on screen, the code returns 42 objects to be rendered. I've tried taking "slices" through the frustum to attempt to increase the accuracy of the technique, but it doesn't seem to have made much impact. I also significantly reduced the far plane, so that the objects are barely at the edge. Here's my code (where size is the size in screen space- the resolution of the client area of the window I'm rendering into). Any suggestions? auto&& size = GetDimensions(); D3DVIEWPORT9 vp = { 0, 0, size.x, size.y, 0, 1 }; D3DCALL(device->SetViewport(&vp)); static const int slices = 10; std::vector<Object*> result; for(int i = 0; i < slices; i++) { D3DXVECTOR3 WorldSpaceFrustrumPoints[8] = { D3DXVECTOR3(0, size.y, static_cast<float>(i) / slices), D3DXVECTOR3(size.x, 0, static_cast<float>(i) / slices), D3DXVECTOR3(size.x, size.y, static_cast<float>(i) / slices), D3DXVECTOR3(0, 0, static_cast<float>(i) / slices), D3DXVECTOR3(0, 0, static_cast<float>(i + 1) / slices), D3DXVECTOR3(size.x, 0, static_cast<float>(i + 1) / slices), D3DXVECTOR3(size.x, size.y, static_cast<float>(i + 1) / slices), D3DXVECTOR3(0, size.y, static_cast<float>(i + 1) / slices) }; D3DXMATRIXA16 Identity; D3DXMatrixIdentity(&Identity); D3DXVec3UnprojectArray( WorldSpaceFrustrumPoints, sizeof(D3DXVECTOR3), WorldSpaceFrustrumPoints, sizeof(D3DXVECTOR3), &vp, &Projection, &View, &Identity, 8 ); Math::AABB Frustrum; auto world_begin = std::begin(WorldSpaceFrustrumPoints); auto world_end = std::end(WorldSpaceFrustrumPoints); auto world_initial = WorldSpaceFrustrumPoints[0]; Frustrum.BottomLeftClosest.x = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.x < rhs.x ? lhs : rhs; }).x; Frustrum.BottomLeftClosest.y = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.y < rhs.y ? lhs : rhs; }).y; Frustrum.BottomLeftClosest.z = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.z < rhs.z ? lhs : rhs; }).z; Frustrum.TopRightFurthest.x = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.x > rhs.x ? lhs : rhs; }).x; Frustrum.TopRightFurthest.y = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.y > rhs.y ? lhs : rhs; }).y; Frustrum.TopRightFurthest.z = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.z > rhs.z ? lhs : rhs; }).z; auto slices_result = ObjectTree.collision(Frustrum); result.insert(result.end(), slices_result.begin(), slices_result.end()); } return result;

    Read the article

  • Technologies stack to create soccer game vizualization on web page [on hold]

    - by Lambrusco
    I want to create soccer game vizualization. What technologies will be best to create such one for web page? On input I have two teams with players. I have theory about their movements, the movement of the ball on field and so on. I just want to vizualize their movements. What will be the best technology stack? I mean programming languages (C++, Ruby, Java, PHP) and vizualization ways (Flash, HTML5, JS)

    Read the article

  • Optimizing hierarchical transform

    - by Geotarget
    I'm transforming objects in 3D space by transforming each vector with the object's 4x4 transform matrix. In order to achieve hierarchical transform, I transform the child by its own matrix, and then the child by the parent matrix. This becomes costly because objects deeper in the display tree have to be transformed by all the parent objects. This is what's happening, in summary: Root -- transform its verts by Root matrix Parent -- transform its verts by Parent, Root matrix Child -- transform its verts by Child, Parent, Root matrix Is there a faster way to transform vertices to achieve hierarchical transform? What If I first concatenated each transform matrix with the parent matrices, and then transform verts by that final resulting matrix, would that work and wouldn't that be faster? Root -- transform its verts by Root matrix Parent -- concat Parent, Root matrices, transform its verts by Concated matrix Child -- concat Child, Parent, Root matrices, transform its verts by Concated matrix

    Read the article

< Previous Page | 534 535 536 537 538 539 540 541 542 543 544 545  | Next Page >